

TUGAS AKHIR - SS141501

PEMODELAN FAKTOR-FAKTOR YANG BERPENGARUH TERHADAP KEMISKINAN KABUPATEN/KOTA DI JAWA TIMUR TAHUN 2005-2013 MENGGUNAKAN REGRESI DATA PANEL

NUR FAJRIYAH NRP 1312 100 071

Dosen Pembimbing Santi Puteri Rahayu, M.Si, Ph.D

PROGRAM STUDI S1 STATISTIKA Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Teknologi Sepuluh Nopember Surabaya 2016

FINAL PROJECT - SS141501

MODELLING OF FACTORS THAT AFFECT THE POVERTY IN EAST JAVA FOR 2005-2013 WITH PANEL DATA REGRESSION

NUR FAJRIYAH NRP 1312 100 071

Supervisor Santi Puteri Rahayu, M.Si, Ph.D

Undergraduate Program of Statistics Faculty of Mathematics and Natural Sciences Institut Teknologi Sepuluh Nopember Surabaya 2016

LEMBAR PENGESAHAN

PEMODELAN FAKTOR-FAKTOR YANG BERPENGARUH TERHADAP KEMISKINAN KABUPATEN/KOTA DI JAWA TIMUR TAHUN 2005-2013 MENGGUNAKAN REGRESI DATA PANEL

TUGAS AKHIR

Diajukan untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Sains pada

Program Studi S-1 Jurusan Statistika Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Teknologi Sepuluh Nopember

> Oleh : NUR FAJRIYAH NRP. 1312 100 071

Disetujui oleh Pembimbing Tugas Akhir:

Santi Puteri Rahayu, M.Si., Ph.D NIP. 19750115 199903 2 003 (Til)

Mengetahui Ketua Jurusan Statistika FMIPA-ITS

Dr. Suhartono

NIP. 19710929 199512 1 001

URUSAN

SURABAYA, JANUARI 2016

PEMODELAN FAKTOR-FAKTOR YANG BERPENGARUH TERHADAP KEMISKINAN KABUPATEN/KOTA DI JAWA TIMUR TAHUN 2005-2013 MENGGUNAKAN REGRESI DATA PANEL

Nama Mahasiswa : Nur Fajriyah NRP : 1312 100 071

Jurusan : Statistika FMIPA-ITS

Dosen Pembimbing: Santi Puteri Rahayu, M.Si, Ph.D

Abstrak

Masalah klasik yang masih menjadi persoalan utama di Jawa Timur adalah masalah kemiskinan. Pada tahun 2011. tingkat kemiskinan Jawa Timur melebihi tingkat kemiskinan nasional. Padahal di tahun yang sama, pertumbuhan ekonomi Jawa Timur menunjukkan angka yang lebih besar dibandingkan pertumbuhan ekonomi nasional. Tahun 2013 Jawa Timur menjadi provinsi dengan jumlah penduduk miskin terbanyak di Indonesia. Dengan mengetahui faktor – faktor yang berpengaruh pada kemiskinan, diharapkan dapat menurunkan tingkat kemiskinan di Jawa Timur, Metode yang dapat digunakan adalah regresi data panel, dimana metode tersebut melibatkan data cross section dan time series. Untuk itu, dalam penelitian ini akan dilakukan analisa mengenai faktor-faktor yang berpengaruh terhadap kemiskinan Kabupaten/Kota di Jawa Timur menggunakan regresi data panel. Data dalam penelitian ini merupakan data sekunder mengenai kemiskinan yang diperoleh dari Badan Pusat Statistik (BPS). Hasil penelitian menunjukkan metode estimasi terbaik untuk ketiga variabel respon adalah FEM dengan efek cross section. Variabel prediktor yang sama-sama signifikan pada ketiga model adalah angka melek huruf, tingkat partisipasi angkatan kerja, penduduk yang bekerja di sektor pertanian, serta PDBR per kapita. Sedangkan variabel prediktor yang sama-sama tidak signifikan adalah penduduk tanpa akses kesehatan.

Kata Kunci: Jawa Timur, Kemiskinan, Regresi Data Panel

(Halaman ini sengaja dikosongkan)

MODELLING OF FACTORS THAT AFFECT THE POVERTY IN EAST JAVA FOR 2005 -2013 WITH PANEL DATA REGRESSION

Name : Nur Fajriyah NRP : 1312 100 071

Department : Statistika FMIPA-ITS

Supervisor : Santi Puteri Rahayu, M.Si, Ph.D

Abstract

Classical problem which is still become a major problem in East Java is the problem of poverty. In 2011, East Java's poverty rate exceeds the national poverty level. In the same year, economic growth in East Java showed larger numbers than the national economic growth. In 2013. East Java became the province with the largest number of poor people in Indonesia. By knowing the factors that affect the number of poor people, is expected to be lowered the poverty rate in East Java. One method that can be used is panel data regression, where the method involves cross section and time series. In this study will be analyzed the factors that affect poverty Regency / City in East Java using panel data regression. The data in this study is a secondary data on poverty obtained from the Badan Pusat Statistik (BPS). The results showed the best estimation method for the all variable responses is the FEM model with cross section's effects. A significant predictor variables of the three models is the literacy rate, labor force participation rate, workers in agriculture, as well as the PDBR per capita. While the predictor variables were not significant to the three models is the population without access to health care.

Keywords: East Java, Panel Data Regression, Poverty

(Halaman ini sengaja dikosongkan)

KATA PENGANTAR

Penulis ucapkan Puji Syukur atas kehadirat Allah SWT yang telah memberikan nikmat dan karunia-Nya sehingga penulis dapat menyelesaikan Tugas Akhir yang berjudul

"Pemodelan Faktor-Faktor yang Berpengaruh Terhadap Kemiskinan Kabupaten/Kota di Jawa Timur Tahun 2005-2013 Menggunakan Regresi Data Panel"

dengan baik dan tepat waktu. Dalam proses penyusunan Tugas Akhir ini tidak terlepas dari bantuan, bimbingan, serta dukungan berbagai pihak. Untuk itu, pada kesempatan ini penulis mengucapkan terima kasih kepada:

- 1. Ibu Santi Puteri Rahayu, M.Si., Ph.D selaku Dosen Pembimbing yang telah sabar untuk membimbing dan memberikan masukan dalam penyelesaian Tugas Akhir.
- Bapak Dr. Ir. Setiawan, MS dan Ibu Dra. Destri Susilaningrum, M.Si selaku dosen penguji yang telah memberikan kritikan dan saran untuk kesempurnaan Tugas Akhir
- 3. Bapak Dr. Suhartono selaku Ketua Jurusan Statistika ITS yang telah menyediakan fasilitas guna kelancaran pengerjaan Tugas Akhir ini.
- 4. Ibu Dra. Lucia Aridinanti, MT selaku Ketua Program Studi Sarjana Jurusan Statistika ITS.
- 5. Bapak Dr. Muhammad Mashuri, M.T selaku dosen wali yang senantiasa memberikan nasehat dan bimbingan selama 7 semester ini.
- 6. Almarhum ayah penulis yang belum sempat penulis bahagiakan dan ibunda penulis yang senantiasa memberikan doa, dukungan, nasehat, dan menjadi penyemangat bagi penulis dalam menyelesaikan Tugas Akhir.
- 7. Kakak-kakak penulis Chuzaimatul Faridah, Nurul Aisyah, M. Arif Hidayat, Mahmudi, Miftakhul Huda, dan Mar'atus Sholichah yang telah memberikan bantuan baik moril maupun material.

- 8. Teman-teman muslimah Henik, Sekar, Feby, Jupita, Riza, Niken, Ziza yang sering menghabiskan waktu makan bersama.
- 9. Teman sekaligus ibu kos terbaik, Ekha, yang selalu memberikan semangat dan mengingatkan penulis untuk menyelesaikan Tugas Akhir.
- 10. Partner Kerja Prakter yang hebat, Lia, yang telah memberikan dukungan dengan sepenuh hati kepada penulis.
- 11. Teman-teman Statistika ITS Σ23 yang telah memberi dukungan dan membantu baik secara langsung maupun tidak langsung dalam pembuatan Tugas Akhir.
- 12. Serta semua pihak yang tidak dapat disebutkan satu persatu Semoga Tugas Akhir ini memberikan manfaat bagi pembaca. Penulis menyadari bahwa Tugas Akhir ini masih belum sempurna, sehingga kritik atau saran dari pembaca sangat berguna bagi penyempurnaan di masa mendatang.

Surabaya, Desember 2015

Penulis

DAFTAR ISI

		Halaman
	LAMAN JUDUL	
	LEPAGE	
LE	MBAR PENGESAHAN	iii
AB	STRAK	V
ABS	STRACT	vii
KA	TA PENGANTAR	ix
DA	FTAR ISI	xi
DA	FTAR TABEL	XV
DA	FTAR GAMBAR	xxi
DA	FTAR LAMPIRAN	xxiii
	B I PENDAHULUAN Latar Belakang	1
1.2	Rumusan Masalah	4
1.3	Tujuan Penelitian	4
1.4	Manfaat	5
1.5	Batasan Penelitian	5
BA	B II TINJAUAN PUSTAKA	
2.1	Data Panel	7
2.2	Regresi Data Panel	7
2.3	Metode Estimasi Model Regresi Data Panel	8
2.4	Koefisien Determinasi	
2.5	Pemilihan Estimasi Model Regresi Data Panel	13
2.6	Uji Asumsi Regresi	
2.7	Pengujian Parameter	18
2.8	Kemiskinan	
BA	B III METODOLOGI PENELITIAN	
3.1		25
3.2	Langkah Analisis	30

BAB IV ANALISIS DAN PEMBAHASAN
4.1 Karakteristik Kemiskinan Kabupaten/Kota Jawa Timur
dan Faktor-Faktor yang Mempengaruhi33
4.1.1 Karakteristik Persentase Penduduk Miskin33
4.1.2 Karakteristik Indeks Kedalaman Kemiskinan36
4.1.3 Karakteristik Indeks Keparahan Kemiskinan38
4.1.4 Karakteristik Angka Melek Huruf42
4.1.5 Karakteristik Penduduk Tanpa Akses Air
Bersih43
4.1.6 Karakteristik Angka Partisipasi Usia Sekolah
Usia Menengah44
4.1.7 Karakteristik Penduduk Tanpa Akses
Kesehatan45
4.1.8 Karakteristik Tingkat Partisipasi Angkatan
Kerja46
4.1.9 Karakteristik Pekerja di Sektor Pertanian47
4.1.10 Karakteristik Laju Pertumbuhan Ekonomi48
4.1.11 Karakteristik PDRB Per Kapita49
4.2 Uji Multikolinearitas50
4.3 Pemodelan Persentase Penduduk Miskin
Kabupaten/Kota Jawa Timur50
4.3.1 Pemodelan Persentase Penduduk Miskin
dengan Semua Variabel Prediktor51
4.3.1.1 Spesifikasi Model Persentase Penduduk
Miskin51
4.3.1.2 Pemilihan Metode Estimasi Model
Persentase Penduduk Miskin52
4.3.1.3 Estimasi Model Persentase Penduduk
Miskin53
4.3.1.4 Pengujian Asumsi Residual Model
Persentase Penduduk Miskin54
4.3.1.5 Pengujian Signifikansi Parameter Model
Persentase Penduduk Miskin
4.3.2 Pemodelan Persentase Penduduk Miskin
dengan Variabel Prediktor yang Signifikan 57

4	.3.2.1	Pemilihan						
		Persentase	Pendudu	k Mis	kin			.57
4	.3.2.2	Estimasi	Model	Pers	entase	Pen	duduk	
		Miskin						.58
4	.3.2.3	Pengujian	Asum	si	Residua	al	Model	
		Persentase	Pendudu	k Mis	kin			.60
4	.3.2.4	Pengujian	Signifik	ansi	Parame	eter	Model	
		Persentase	Pendudu	k Mis	kin			.61
1.4	P	emodelan	Indeks	Kedal	aman	Kemi	skinan	
	Kabu	paten/Kota.	Jawa Tim	ıur				.63
4.4		modelan I						
	de	ngan Semua	. Variabe	l Pred	liktor			.63
4	.4.1.1	Spesifikasi	Mode	l In	ıdeks	Keda	alaman	
		Kemiskina	n					.63
4	.4.1.2	Pemilihan	Metode	Estin	nasi Mo	odel	Indeks	
		Kedalamar	Kemisk	inan				.64
4	.4.1.3	Estimasi						
		miskinan						.65
4	.4.1.4	Pengujian						
		Kedalamar	Kemisk	inan				.67
4	.4.1.5	Pengujian						
		Indeks Ked	lalaman I	Kemis	kinan			.68
4.4		modelan I						
	de	ngan Variab	el Predik	ctor ya	ang Sigr	nifika	n	.69
4	.4.2.1	Pemilihan						
		Kedalaman						
4	.4.2.2	Estimasi	Model I	ndeks	Keda	lamaı	n Ke-	
		miskinan						.72
4	.4.2.3	Pengujian						
		Kedalamar						
4	.4.2.4	Pengujian	Signifik	ansi	Parame	eter	Model	
		Indeks Ked						.75
4.5	P	emodelan	Indeks	Kepa	rahan	Kemi	skinan	
	Kabın	naten/Kota .	Iawa Tim	ıır				.75

4.5.1 Pemodelan Indeks Keparahan Kemiskinan
dengan Semua Variabel Prediktor75
4.5.1.1 Spesifikasi Model Indeks Keparahan
Kemiskinan76
4.5.1.2 Pemilihan Metode Estimasi Model Indeks
Keparahan Kemiskinan76
4.5.1.3 Estimasi Model Indeks Keparahan Ke-
miskinan77
4.5.1.4 Pengujian Asumsi Residual Model Indeks
Keparahan Kemiskinan79
4.5.1.5 Pengujian Signifikansi Parameter Model
Indeks Keparahan Kemiskinan80
4.5.2 Pemodelan Indeks Keparahan Kemiskinan
dengan Variabel Prediktor yang Signifikan81
4.5.2.1 Pemilihan Metode Estimasi Model Indeks
Keparahan Kemiskinan82
4.5.2.2 Estimasi Model Indeks Keparahan Ke-
miskinan83
4.5.2.3 Pengujian Asumsi Residual Model Indeks
Keparahan Kemiskinan84
4.5.2.4 Pengujian Signifikansi Parameter Model
Indeks Keparahan Kemiskinan85
BAB V KESIMPULAN DAN SARAN
5.1 Kesimpulan89
5.2 Saran
DAFTAR PUSTAKA91
LAMPIRAN 93
BIODATA PENULIS
DIODATA FENULIS14,

DAFTAR TABEL

	Halaman
Tabel 3.1	Struktur Data Penelitian
Tabel 3.2	Variabel Penelitian
Tabel 4.1	Hasil Uji Multikolinearitas50
Tabel 4.2	Uji Statistik F untuk Model Persentase Penduduk Miskin dengan Semua Variabel Prediktor
Tabel 4.3	Uji <i>Hausman</i> untuk Model Persentase Penduduk Miskin dengan Semua Variabel Prediktor
Tabel 4.4	Random Error Tiap Kabupaten/Kota untuk Model Persentase Penduduk Miskin dengan Semua Variabel Prediktor
Tabel 4.5	Hasil Pengujian Residual Identik untuk Model Persentase Penduduk Miskin dengan Semua Variabel Prediktor
Tabel 4.6	Hasil Pengujian Residual Independen untuk Model Persentase Penduduk Miskin dengan Semua Variabel Prediktor
Tabel 4.7	Hasil Pengujian Residual Berdistribusi Normal untuk Model Persentase Penduduk Miskin dengan Semua Variabel Prediktor
Tabel 4.8	Pengujian Serentak untuk Model Persentase Penduduk Miskin dengan Semua Variabel Prediktor
Tabel 4.9	Pengujian Parsial untuk Model Persentase Penduduk Miskin dengan Semua Variabel Prediktor
Tabel 4.10	Uji Statistik F untuk Model Persentase Penduduk Miskin dengan Variabel Signifikan 58

Tabel 4.11	Uji <i>Hausman</i> untuk Model Persentase Penduduk Miskin dengan Variabel Signifikan
Tabel 4.12	Nilai Intersep Tiap Kabupaten/Kota untuk Model Persentase Penduduk Miskin dengan Variabel Signifikan
Tabel 4.13	Hasil Pengujian Residual Identik untuk Model Persentase Penduduk Miskin dengan Variabel Signifikan
Tabel 4.14	Hasil Pengujian Residual Independen untuk Model Persentase Penduduk Miskin dengan Variabel Signifikan
Tabel 4.15	Hasil Pengujian Residual Berdistribusi Normal untuk Model Persentase Penduduk Miskin dengan Variabel Signifikan
Tabel 4.16	Pengujian Serentak untuk Model Persentase Penduduk Miskin dengan Variabel Signifikan 61
Tabel 4.17	Pengujian Parsial untuk Model Persentase Penduduk Miskin dengan Variabel Signifikan 62
Tabel 4.18	Uji Statistik F untuk Model Indeks Kedalaman Kemiskinan dengan Semua Variabel Prediktor 64
Tabel 4.19	Uji <i>Hausman</i> untuk Model Indeks Kedalaman Kemiskinan dengan Semua Variabel Prediktor 65
Tabel 4.20	Nilai Intersep Tiap Kabupaten/Kota untuk Model Indeks Kedalaman Kemiskinan dengan Semua Variabel Prediktor
Tabel 4.21	Hasil Pengujian Residual Identik untuk Model Indeks Kedalaman Kemiskinan dengan Semua Variabel Prediktor
Tabel 4.22	Hasil Pengujian Residual Independen untuk Model Indeks Kedalaman Kemiskinan dengan Semua Variabel Prediktor

Tabel 4.23	Hasil Pengujian Residual Berdistribusi Normal untuk Model Indeks Kedalaman Kemiskinan dengan Semua Variabel Prediktor
Tabel 4.24	Pengujian Serentak untuk Model Indeks Kedalaman Kemiskinan dengan Semua Variabel Prediktor
Tabel 4.25	Pengujian Parsial untuk Model Indeks Kedalaman Kemiskinan dengan Semua Variabel Prediktor
Tabel 4.26	Uji Statistik F untuk Model Indeks Kedalaman Kemiskinan dengan Variabel Signifikan70
Tabel 4.27	Uji <i>Hausman</i> untuk Model Indeks Kedalaman Kemiskinan dengan Variabel Signifikan70
Tabel 4.28	Nilai Intersep Tiap Kabupaten/Kota untuk Model Indeks Kedalaman Kemiskinan dengan Variabel Signifikan71
Tabel 4.29	Hasil Pengujian Residual Identik untuk Model Indeks Kedalaman Kemiskinan dengan Variabel Signifikan
Tabel 4.30	Hasil Pengujian Residual Independen untuk Model Indeks Kedalaman Kemiskinan dengan Variabel Signifikan
Tabel 4.31	Hasil Pengujian Residual Berdistribusi Normal untuk Model Indeks Kedalaman Kemiskinan dengan Variabel Signifikan
Tabel 4.32	Pengujian Serentak untuk Model Indeks Kedalaman Kemiskinan dengan Variabel Signifikan
Tabel 4.33	
Tabel 4.34	Uji Statistik F untuk Model Indeks Keparahan Kemiskinan dengan Semua Variabel Prediktor 77

Tabel 4.35	Uji <i>Hausman</i> untuk Model Indeks Keparahan Kemiskinan dengan Semua Variabel Prediktor 77
Tabel 4.36	Nilai Intersep Tiap Kabupaten/Kota untuk Model Indeks Keparahan Kemiskinan dengan Semua Variabel Prediktor
Tabel 4.37	Hasil Pengujian Residual Identik untuk Model Indeks Keparahan Kemiskinan dengan Semua Variabel Prediktor
Tabel 4.38	Hasil Pengujian Residual Independen untuk Model Indeks Keparahan Kemiskinan dengan Semua Variabel Prediktor79
Tabel 4.39	Hasil Pengujian Residual Berdistribusi Normal untuk Model Indeks Keparahan Kemiskinan dengan Semua Variabel Prediktor
Tabel 4.40	Pengujian Serentak untuk Model Indeks Kedalaman Kemiskinan dengan Semua Variabel Prediktor
Tabel 4.41	Pengujian Parsial untuk Model Indeks Kedalaman Kemiskinan dengan Semua Variabel Prediktor
Tabel 4.42	Uji Statistik F untuk Model Indeks Keparahan Kemiskinan dengan Variabel Signifikan
Tabel 4.43	Uji <i>Hausman</i> untuk Model Indeks Keparahan Kemiskinan dengan Variabel Signifikan
Tabel 4.44	Nilai Intersep Tiap Kabupaten/Kota untuk Model Indeks Keparahan Kemiskinan dengan Variabel Signifikan
Tabel 4.45	Hasil Pengujian Residual Identik untuk Model Indeks Keparahan Kemiskinan dengan Variabel Signifikan
Tabel 4.46	Hasil Pengujian Residual Independen untuk Model Indeks Keparahan Kemiskinan dengan Variabel Signifikan

Tabel 4.47	Hasil Pengujian Residual Berdistribusi Normal untuk Model Indeks Keparahan Kemiskinan	
	dengan Variabel Signifikan	85
Tabel 4.48	Pengujian Serentak untuk Model Indeks Kedalaman Kemiskinan dengan Variabel Signifikan	
Tabel 4.49	Pengujian Parsial untuk Model Indeks Kedalaman Kemiskinan dengan Variabel Signifikan	

(Halaman ini sengaja dikosongkan)

DAFTAR GAMBAR

	Halaman
Gambar 3.1	Kerangka Analisis
Gambar 4.1	Persentase Penduduk Miskin di Jawa Timur Tahun 2005-2013
Gambar 4.2	Persentase Penduduk Miskin Kabupaten/Kota Jawa Timur Tahun 2006
Gambar 4.3	Indeks Kedalaman Kemiskinan di Jawa Timur Tahun 2005-2013
Gambar 4.4	Indeks Kedalaman Kemiskinan Kabupaten/ Kota Jawa Timur Tahun 200837
Gambar 4.5	Selisih Indeks Kedalaman Kemiskinan Kabupaten/ Kota Jawa Timur Tahun 2012 dan 2013
Gambar 4.6	Indeks Keparahan Kemiskinan di Jawa Timur Tahun 2005-2013
Gambar 4.7	Indeks Keparahan Kemiskinan Kabupaten/ Kota Jawa Timur
Gambar 4.8	Selisih Indeks Keparahan Kemiskinan Kabupaten/ Kota Jawa Timur Tahun 2012 dan 201341
Gambar 4.9	Angka Melek Huruf di Jawa Timur Tahun 2005-2013
Gambar 4.10	Persentase Penduduk Tanpa Akses Air Bersih di Jawa Timur Tahun 2005-2013
Gambar 4.11	Angka Partisipasi Sekolah Usia Menengah di Jawa Timur Tahun 2005-2013
Gambar 4.12	Persentase Penduduk Tanpa Akses Kesehatan di Jawa Timur Tahun 2005-2013
Gambar 4.13	Tingkat Partisipasi Angkatan Kerja di Jawa Timur Tahun 2005-2013

Gambar 4.14 Pekerja di Sektor Pertanian di Jawa Timur	•
Tahun 2005-2013	47
Gambar 4.15 Laju Pertumbuhan Ekonomi Jawa Timur Tahun 2005-2013	
Gambar 4.16 PDRB Per Kapita ADHB Jawa Timur Tahun 2005-2013	l

DAFTAR LAMPIRAN

	Halaman
Lampiran 1	Data Pengamatan
Lampiran 2	Rata-Rata Kemiskinan dan Faktor yang Berpengaruh
Lampiran 3	Karakteristik Persentase Penduduk Miskin 95
Lampiran 4	Karakteristik Indeks Kedalaman Kemiskinan . 97
Lampiran 5	Karakteristik Indeks Keparahan Kemiskinan 99
Lampiran 6	Karakteristik Angka Melek Huruf101
Lampiran 7	Karakteristik Penduduk Tanpa Akses Air Bersih103
Lampiran 8	Karakteristik Angka Partisipasi Usia Sekolah Usia Menengah
Lampiran 9	Karakteristik Penduduk Tanpa Akses Kesehatan107
Lampiran 10	Karakteristik Tingkat Partisipasi Angkatan Kerja109
Lampiran 11	Karakteristik Pekerja di Sektor Pertanian 111
Lampiran 12	Karakteristik Laju Pertumbuhan Ekonomi 113
Lampiran 13	Karakteristik PDRB Per Kapita115
Lampiran 14	Output Uji Multikolinearitas117
Lampiran 15	Pemilihan Metode Estimasi Model Persentase Penduduk Miskin dengan Semua Variabel Prediktor
Lampiran 16	Pemodelan Persentase Penduduk Miskin dengan Semua Variabel Prediktor119
Lampiran 17	Pengujian Asumsi Residual Identik Model Persentase Penduduk Miskin dengan Semua Variabel Prediktor

Lampiran 18	Pengujian Asumsi Residual Berdistribusi Normal Model Persentase Penduduk Miskin dengan Semua Variabel Prediktor121
Lampiran 19	Pemilihan Metode Estimasi Model Persentase Penduduk Miskin dengan Variabel Signifikan122
Lampiran 20	Pemodelan Persentase Penduduk Miskin dengan Variabel Signifikan
Lampiran 21	Pengujian Asumsi Residual Identik Model Persentase Penduduk Miskin dengan Variabel Signifikan124
Lampiran 22	Pengujian Asumsi Residual Berdistribusi Normal Model Persentase Penduduk Miskin dengan Variabel Signifikan
Lampiran 23	Pemilihan Metode Estimasi Model Indeks Kedalaman Kemiskinan dengan Semua Variabel Prediktor
Lampiran 24	Pemodelan Indeks Kedalaman Kemiskinan dengan Semua Variabel Prediktor 127
Lampiran 25	Pengujian Asumsi Residual Identik Model Indeks Kedalaman Kemiskinan dengan Semua Variabel Prediktor128
Lampiran 26	Pengujian Asumsi Residual Independen Model Indeks Kedalaman Kemiskinan dengan Semua Variabel Prediktor
Lampiran 27	Pengujian Asumsi Residual Berdistribusi Normal Model Indeks Kedalaman Kemiskinan dengan Semua Variabel Prediktor
Lampiran 28	Pemilihan Metode Estimasi Model Indeks Kedalaman Kemiskinan dengan Variabel Signifikan

Lampiran 29	Pemodelan Indeks Kedalaman Kemiskinan dengan Variabel Signifikan
Lampiran 30	Pengujian Asumsi Residual Identik Model Indeks Kedalaman Kemiskinan dengan Variabel Signifikan
Lampiran 31	Pengujian Asumsi Residual Independen Model Indeks Kedalaman Kemiskinan dengan Variabel Signifikan
Lampiran 32	Pengujian Asumsi Residual Berdistribusi Normal Model Indeks Kedalaman Kemiskinan dengan Variabel Signifikan 135
Lampiran 33	Pemilihan Metode Estimasi Model Indeks Keparahan Kemiskinan dengan Semua Variabel Prediktor
Lampiran 34	Pemodelan Indeks Keparahan Kemiskinan dengan Semua Variabel Prediktor137
Lampiran 35	Pengujian Asumsi Residual Identik Model Indeks Keparahan Kemiskinan dengan Semua Variabel Prediktor
Lampiran 36	Pengujian Asumsi Residual Berdistribusi Normal Model Indeks Keparahan Kemiskinan dengan Semua Variabel Prediktor
Lampiran 37	Pemilihan Metode Estimasi Model Indeks Keparahan Kemiskinan dengan Variabel Signifikan140
Lampiran 38	Pemodelan Indeks Keparahan Kemiskinan dengan Variabel Signifikan
Lampiran 39	Pengujian Asumsi Residual Identik Model Indeks Keparahan Kemiskinan dengan Variabel Signifikan142

Lampiran 40	Pengujian	Asumsi	Residual	Berdistribusi	
	Normal	Model	Indeks	Keparahan	
	Kemiskina	n dengan	Variabel S	ignifikan	143
Lampiran 41	Output FE	M dengan	Minitab		144

BAB I PENDAHULUAN

1.1 Latar Belakang

Kemiskinan merupakan salah satu masalah klasik yang masih sering dihadapi oleh baik negara berkembang maupun negara maju. Kemiskinan menjadi prioritas utama pemerintah dalam menyusun strategi pembangunan di setiap negara. Masalah kemiskinan erat kaitannya dengan pertumbuhan ekonomi, sebab pertumbuhan ekonomi diyakini sebagai salah satu faktor yang mempengaruhi kemiskinan di suatu negara. Yudhoyono dalam Munajat (2009: 12) mengemukakan bahwa kemiskinan merupakan masalah kritis yang harus ditangani dalam pembangunan nasional. Hal ini dikarenakan salah satu indikator keberhasilan pembangunan adalah sejauhmana kemiskinan dapat dikendalikan dan diupayakan untuk dikurangi secara nyata dari waktu ke waktu dengan tujuan agar tercapainya keadilan dan kemakmuran bersama.

Jawa Timur adalah salah satu provinsi di Indonesia yang secara administratif berdasarkan Permendagri Nomor 66 Tahun 2011 terdiri dari 29 kabupaten dan 9 kota dengan luas wilayah 47.799,75 Km². Jawa Timur dapat dikatakan sebagai provinsi yang berkembang dalam bidang ekonomi. Hal ini dapat diketahui dari keberhasilan pembangunan di Jawa Timur, dimana pada tahun 2011 pertumbuhan ekonomi Jawa Timur adalah sebesar 7,22 persen yang jauh lebih tinggi dibandingkan dengan pertumbuhan ekonomi nasional yang hanya sebesar 6,50 persen. Di sisi lain, Jawa Timur masih memiliki permasalahan ekonomi yang mencemaskan, yaitu tingkat kemiskinan yang tinggi. Dikutip dari laman resmi Badan Pusat Statistik (BPS), di tahun 2011 tingkat kemiskinan Jawa Timur adalah sebesar 14,23 persen yang lebih tinggi dibanding tingkat kemiskinan nasional sebesar 12,49 persen. Pada tahun 2013, jumlah penduduk miskin di Jawa Timur mencapai 4,86 juta jiwa. Angka ini merupakan angka tertinggi diantara provinsi lainnya di Indonesia. Sebanyak 1,62 juta merupakan penduduk miskin dari perkotaan, sisanya penduduk di pedesaan. Bila dibandingkan dengan data pada Maret 2013, jumlah penduduk miskin telah bertambah sebanyak 0,49 juta jiwa. Di tahun 2014, jumlah penduduk miskin di Jawa Timur mencapai angka 4,7 juta jiwa. Meskipun angka ini mengalami penurunan, namun jumlah penduduk miskin tertinggi masih terjadi di Jawa Timur.

Faktor-faktor yang mempengaruhi kemiskinan perlu diketahui sehingga dapat diharapkan mengatasi masalah kemiskinan di Jawa Timur. Selama ini kemiskinan cenderung dikaitkan dengan faktor ekonomi, hal ini dikarenakan lebih mudah dilakukan pengamatan, pengukuran, dan perbandingan. Selain faktor ekonomi, kemiskinan juga berkaitan dengan berbagai faktor lainnya, seperti faktor sosial, budaya, sosial politik, lingkungan, kesehatan, pendidikan, dan budi pekerti. Menurut World Development Report dalam Sita (2014: 19), selain dilihat dari faktor pendapatan, kemiskinan juga perlu dilihat dari faktor lain yaitu faktor sosial, faktor kesehatan, faktor pendidikan, faktor akses terhadap air bersih, dan perumahan.

Masalah kemiskinan juga dapat diatasi dengan melakukan analisis terhadap kemiskinan berdasarkan waktu dan daerah. Salah satu metode yang dapat digunakan adalah regresi data panel. Regresi data panel merupakan regresi yang melibatkan data cross section dan time series. Terdapat beberapa keuntungan yang dapat diperoleh dengan menggunakan data panel. Pertama, data panel merupakan gabungan data cross section dan time series yang mampu menyediakan data yang lebih banyak sehingga akan menghasilkan degree of freedom (derajat bebas) yang lebih besar. Kedua, menggabungkan informasi dari data cross section dan time series dapat mengatasi masalah yang timbul ketika ada masalah penghilangan variabel (omitted-variable).

Berdasarkan uraian yang telah dijelaskan, maka pada penelitian ini akan dilakukan analisa mengenai faktor – faktor yang berpengaruh terhadap kemiskinan Kabupaten/Kota di Jawa Timur melalui pemodelan regresi data panel. Pendekatan model regresi

yang digunakan meliputi pendekatan *Common Effect Model* (CEM), *Fixed Effect Model* (FEM), dan *Ramdom Effect Model* (REM). Kemudian akan dipilih metode pendekatan yang dapat memberikan model regresi data panel terbaik. Dalam penelitian ini akan digunakan tiga indikator kemiskinan yang meliputi persentase penduduk miskin, indeks kedalaman kemiskinan, dan indeks keparahan kemiskinan.

Metode regresi data panel telah banyak dilakukan pada penelitian sebelumnya. Pada tahun 2014, Sembodo menggunakan regresi data panel untuk memodelkan pengaruh pendapatan asli daerah (PAD) dan dana alokasi umum (DAU) terhadap belanja daerah pada Kabupaten/Kota di Jawa Timur. Penelitian tersebut menghasilkan model yang sesuai adalah model menggunakan pendekatan FEM dengan seluruh variabel prediktor berpengaruh positif terhadap belanja daerah. Pada tahun yang sama, Efendi melakukan penelitian tentang pengaruh profitabilitas terhadap dividend payout ratio (DPR) pada perusahaan manufaktur menggunakan analisis regresi data panel. Hasil dari penelitian tersebut adalah model FEM merupakan model terbaik dengan semua variabel berpengaruh signifikan. Hermanto dan Fitriani (2014) melakukan perbandingan regresi panel satu arah dan dua arah menggunakan metode FEM pada laju inflasi dan faktor yang mempengaruhinya. Dalam penelitian tersebut, dihasilkan model terbaik adalah model regresi panel dua arah.

Penelitian mengenai faktor-faktor yang berpengaruh terhadap kemiskinan Kabupaten/Kota Jawa Timur menggunakan regresi data panel ini diharapkan mampu memberikan hasil terbaik yang secara tidak langsung menjadi dasar terkait pengambilan kebijakan pemerintah Provinsi Jawa Timur dalam mengatasi masalah kemiskinan di Kabupaten/Kota Jawa Timur sehingga diharapkan dapat meningkatkan perekonomian Kabupaten/Kota Jawa Timur.

1.2 Rumusan Masalah

Tingkat kemiskinan di Jawa Timur melebihi tingkat kemiskinan Indonesia. Pada tahun 2013 dan 2014, Jawa Timur menjadi provinsi dengan jumlah penduduk miskin terbanyak di Indonesia. Salah satu cara yang dapat dilakukan untuk menurunkan tingkat kemiskinan adalah dengan mengetahui faktor-faktor yang berpengaruh terhadap kemiskinan. Selain itu, masalah kemiskinan juga dipengaruhi oleh adanya faktor daerahdan waktu, sehingga perlu dilakukan analisis terhadap faktor-faktor kemiskinan berdasarkan waktu dan daerah menggunakan regresi data panel. Adapun rumusan masalah dari penelitian ini adalah sebagai berikut:

- 1. Bagaimana karakteristik kemiskinan Kabupaten/Kota di Jawa Timur berdasarkan tiga indikator kemiskinan serta faktor faktor yang diduga mempengaruhi?
- 2. Bagaimana faktor-faktor yang berpengaruh signifikan pada estimasi pemodelan persentase penduduk miskin Kabupaten/Kota di Jawa Timur menggunakan regresi data panel?
- 3. Bagaimana faktor-faktor yang berpengaruh signifikan pada estimasi pemodelan indeks kedalaman kemiskinan Kabupaten/Kota di Jawa Timur menggunakan regresi data panel?
- 4. Bagaimana faktor-faktor yang berpengaruh signifikan pada estimasi pemodelan indeks keparahan kemiskinan Kabupaten/Kota di Jawa Timur menggunakan regresi data panel?

1.3 Tujuan Penelitian

Berdasarkan rumusan masalah yang telah diuraikan, berikut adalah tujuan yang ingin dicapai dari penelitian, yaitu:

- 1. Memperoleh informasi mengenai karakteristik kemiskinan serta faktor faktor yang berpengaruh terhadap kemiskinan Kabupaten/Kota di Jawa Timur
- 2. Mendapatkan faktor faktor yang berpengaruh signifikan terhadap persentase penduduk miskin Kabupaten/Kota di Jawa Timur menggunakan regresi data panel.

- 3. Mendapatkan faktor faktor yang berpengaruh signifikan terhadap indeks kedalaman kemiskinan Kabupaten/Kota di Jawa Timur menggunakan regresi data panel.
- 4. Mendapatkan faktor faktor yang berpengaruh signifikan terhadap indeks keparahan kemiskinan Kabupaten/Kota di Jawa Timur menggunakan regresi data panel.

1.4 Manfaat

Manfaat dari penelitian yang ingin dicapai adalah sebagai berikut:

- 1. Menambah pengetahuan mengenai metode metode regresi data panel.
- 2. Dapat memberikan masukan kepada pemerintah Provinsi Jawa Timur dalam mengambil kebijakan terhadap penanganan masalah kemiskinan.

1.5 Batasan Penelitian

Batasan dalam penelitian ini adalah pemodelan dilakukan pada masing-masing indikator kemiskinan sehingga dihasilkan tiga model regresi data panel tunggal. Asumsi-asumsi klasik yang belum terpenuhi pada penelitian tidak diprioritaskan sehingga tidak dilakukan suatu penanganan khusus terhadap asumsi yang belum terpenuhi.

(Halaman ini sengaja dikosongkan)

BAB II TINJAUAN PUSTAKA

Pada bagian ini akan disajikan tinjauan statistik dan non statistik yang akan dibahas pada penelitian ini, antara lain, data panel, regresi data panel, metode estimasi model regresi data panel, koefisien determinasi, pemilihan metode estimasi, uji asumsi regresi, dan definisi kemiskinan.

2.1 Data Panel

Data panel merupakan data gabungan antara data *cross section* dengan data *time series*. Data *cross section* adalah data yang didapatkan melalui pengamatan terhadap satu atau lebih variabel pada suatu waktu tertentu. Sedangkan data *time series* adalah data yang diperoleh melalui pengamatan yang dilakukan pada beberapa kurun waktu. Menurut Murray (2006) data panel adalah data *cross section* yang dilakukan pengamatan berulang kali pada individu yang sama.

Data panel terdiri dari *n* jumlah pengamatan pada *T* periode waktu. Terdapat dua jenis data panel, yaitu *balanced panel* dan *unbalanced panel* (Gujarati, 2004: 640). Data panel dikatakan *balanced panel* jika jumlah waktu pengamatan pada masingmasing unit *cross section* sama. Sedangkan dikatakan *unbalanced panel* jika jumlah waktu pengamatan pada masing-masing unir *cross section* berbeda.

2.2 Regresi Data Panel

Model regresi data panel merupakan pengembangan dari model regresi *time series* dan *cross section*, sehingga model regresi data panel memiliki dua indeks. Adapun model umum dari regresi data panel adalah sebagai berikut (Baltagi, 2005: 11).

$$y_{it} = \alpha + \mathbf{X'}_{it}\mathbf{\beta} + \varepsilon_{it} \tag{2.1}$$

dengan

i = 1, 2, ..., n; t = 1, 2, ..., T

 y_{it} = individu ke-i untuk periode waktu ke-t pada variabel respon

 α = intersep

 $\mathbf{X'_{it}}$ = individu ke-*i* untuk periode waktu ke- *t* pada variabel prediktor.

 β = parameter regresi (slope koefisien) berukuran $k \times 1$

 ε_{it} = eror regresi dari individu ke-i untuk periode waktu ke- t

Gujarati (2004: 640) menyatakan bahwa terdapat beberapa kemungkinan asumsi berkaitan dengan intersep, slope koefisen, dan komponen eror, yaitu sebagai berikut:

- 1. Intersep dan slope koefisien diasumsikan tetap sepanjang waktu dan individu
- 2. Slope koefisien diasumikan tetap, namun intersep antar individu berbeda
- 3. Slope koefisien tetap namun intersep antar individu dan waktu berbeda
- 4. Intersep dan slope koefisien antar individu diasumsikan berbeda
- 5. Intersep dan slope koefisien antar individu dan waktu diasumsikan berbeda

2.3 Metode Estimasi Model Regresi Data Panel

Metode estimasi model regresi data panel dapat dilakukan melalui tiga pendekatan, yaitu pendekatan *common effect model, fixed effect model*, dan *random effect model*. Berikut adalah uraian dari masing – masing metode estimasi.

a. Common Effect Model (CEM)

Pendekatan CEM disebut juga sebagai pooled model atau model yang mengkombinasikan data time series dan data cross section. Nilai intersep dan slope koefisien diasumsikan sama untuk semua unit cross section dan time series. Adapun model

CEM dapat dinyatakan sebagai berikut (Widarjono dalam Hanum, 2014: 8).

$$y = \alpha + X_1 \beta_1 + X_2 \beta_2 + \dots + X_k \beta_k + \varepsilon \tag{2.2}$$

Pada metode ini digunakan metode *Ordinary Least Square* (OLS) untuk melakukan estimasi parameter (Greene, 2003: 285). OLS merupakan salah satu metode untuk menentukan estimasi parameter yang biasanya diterapkan pada model regresi klasik. Ide yang digunakan adalah dengan meminimumkan jumlah kuadrat residual. Dalam hal ini residual didefinisikan melalui rumus sebagai berikut:

$$\mathbf{\varepsilon} = \mathbf{v} - \mathbf{X}\widehat{\mathbf{G}} \tag{2.3}$$

Jika X'X tidak singular, maka solusi dari penduga OLS dari β dapat dituliskan (Draper and Smith, 1998: 123).

$$\widehat{\mathbf{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y} \tag{2.4}$$

$$\operatorname{Var}\left(\widehat{\boldsymbol{\beta}}\right) = \sigma^{2}(\mathbf{X}'\mathbf{X})^{-1} \tag{2.5}$$

dengan σ^2 merupakan varians residual yang diduga dari *Mean Square Error* (MSE) dengan rumus.

$$MSE = \frac{\mathbf{y}'\mathbf{y} - \widehat{\mathbf{\beta}}\mathbf{X}'\mathbf{y}}{nT - k - 1}$$
 (2.6)

(Draper and Smith, 1998: 129).

b. Fixed Effect Model (FEM)

Pada pendekatan FEM diasumsikan nilai intersep berbeda namun slope koefisien tetap dengan menambahkan variabel boneka (*dummy*). Perbedaan nilai intersep dapat berupa perbedaan antar unit *cross section* atau perbedaan pada unit *time series*. Model FEM dapat dinyatakan sebagai berikut (Greene, 2004: 287).

$$\mathbf{y}_{i} = \mathbf{D}_{i}\alpha_{i} + \mathbf{X}_{i}\mathbf{\beta} + \mathbf{\varepsilon}_{i} \tag{2.7}$$

Secara umum persamaan (2.3) dapat ditulis dalam bentuk vektor yaitu:

$$\begin{bmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \\ \vdots \\ \mathbf{y}_n \end{bmatrix} = \begin{bmatrix} \mathbf{D}_i & \mathbf{0} & \dots & \mathbf{0} \\ \mathbf{0} & \mathbf{D}_i & \dots & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0} & \mathbf{0} & \dots & \mathbf{D}_i \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix} + \begin{bmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \\ \vdots \\ \mathbf{X}_n \end{bmatrix} \boldsymbol{\beta} + \begin{bmatrix} \boldsymbol{\epsilon}_1 \\ \boldsymbol{\epsilon}_2 \\ \vdots \\ \boldsymbol{\epsilon}_n \end{bmatrix}$$

atau

$$\mathbf{y} = \begin{bmatrix} \mathbf{X} & \mathbf{D} \end{bmatrix} \begin{bmatrix} \boldsymbol{\beta} \\ \boldsymbol{\alpha} \end{bmatrix} + \boldsymbol{\varepsilon} \tag{2.8}$$

dengan

$$\mathbf{y}_{\mathbf{i}_{(T\times 1)}} = \begin{bmatrix} y_{i1} \\ y_{i2} \\ \vdots \\ y_{iT} \end{bmatrix}; \ \mathbf{X}_{\mathbf{i}_{(T\times 1)}} = \begin{bmatrix} X_{1_{i1}} & X_{2_{i1}} & \dots & X_{k_{i1}} \\ X_{1_{i2}} & X_{2_{i2}} & \dots & X_{k_{i2}} \\ \vdots & \vdots & \ddots & \vdots \\ X_{1_{iT}} & X_{2_{i2}} & \dots & X_{k_{iT}} \end{bmatrix};$$

$$\mathbf{D}_{\mathbf{i}_{(T\times 1)}} = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}; \ \boldsymbol{\varepsilon}_{\mathbf{i}_{(T\times 1)}} = \begin{bmatrix} \varepsilon_{i1} \\ \varepsilon_{i2} \\ \vdots \\ \varepsilon_{iT} \end{bmatrix}$$

Metode estimasi parameter pada pendekatan FEM adalah Least Square Dummy Variable (LSDV), dimana LSDV merupakan suatu metode yang dipakai dalam pendugaan parameter regresi linear dengan menggunakan OLS pada model yang melibatkan variabel dummy sebagai salah salah satu variabel prediktor. Gujarati (2004: 646) menyatakan bahwa terdapat beberapa kekurangan dari metode FEM antara lain:

- Semakin banyak jumlah variabel dummy maka akan menimbulkan masalah terhadap jumlah dari derajat bebas (degree of freedom)
- Semakin banyak jumlah variabel yang masuk dalam model maka peluang terjadinya multikolinearitas akan semakin tinggi. Multikolinearitas adalah suatu keadaaan dimana terdapat hubungan linear antara beberapa atau semua variabel prediktor.
- 3. Masih terdapat permasalahan mengenai asumsi eror.

4. Metode LSDV tidak mampu mengidentifikasi pengaruh dari variabel yang bersifat tetap terhadap waktu (*time-invariant variable*).

c. Random Effect Model (REM)

Pendekatan ketiga yang dapat digunakan adalah *Random Effect Model* (REM). Pada dasarnya pendekatan REM mengasumsikan eror bersifat *random*. Persamaan model REM dapat dituliskan sebagai berikut.

$$y_{it} = \alpha_i + \mathbf{X}'_{it}\mathbf{\beta} + \varepsilon_{it} \tag{2.9}$$

Pada model REM, diasumsikan α_i merupakan variabel acak dengan mean α . Sehingga intersep untuk masing-masing unit *cross section* dapat dinyatakan sebagai berikut (Gujarati, 2004: 647).

$$\alpha_i = \alpha + u_i \tag{2.10}$$

dengan ε_i merupakan eror acak dengan mean nol dan variansi σ_{ε}^2 dan tidak secara langsung diamati. Substitusi dari persamaan (2.9) dan (2.10) akan menghasilkan persamaan sebagai berikut.

$$y_{it} = (\alpha + u_i) + \mathbf{X'}_{it}\mathbf{\beta} + \varepsilon_{it}$$
 (2.11)

$$y_{it} = \alpha + \mathbf{X'}_{it}\mathbf{\beta} + v_{it} \tag{2.12}$$

dengan

 $v_{it} = u_i + \varepsilon_{it}$

 $u_i = \text{komponen eror } cross section$

 ε_{it} = kombinasi komponen eror *cross section* dan *time series* Beberapa asumsi yang berlaku pada model REM adalah (Gujarati, 2004: 648):

$$u_i \sim N(0, \sigma_u^2) \tag{2.13}$$

$$\varepsilon_{it} \sim N(0, \sigma_{\varepsilon}^2)$$
 (2.14)

$$E(u_i \varepsilon_{it}) = 0$$
; $E(u_i u_j) = 0$ untuk $i \neq j$ (2.15)

$$E(\varepsilon_{it}\varepsilon_{is}) = E(\varepsilon_{it}\varepsilon_{jt}) = E(\varepsilon_{it}\varepsilon_{js}) = 0$$

untuk $i \neq j; t \neq s$ (2.16)

Persamaan (2.16) menyatakan bahwa eror tidak saling berkorelasi dan tidak berautokorelasi antar unit *cross section* maupun antar unit *time series*. Berdasarkan asumsi-asumsi yang terdapat pada model REM, maka diperoleh.

$$E(v_{it}) = 0 \operatorname{dan} Var(v_{it}) = \sigma_u^2 + \sigma_{\varepsilon}^2$$
 (2.17)

Persamaan (2.17) menunjukkan bahwa eror v_{it} memiliki varians konstan. Sedangkan v_{it} dan v_{is} dimana $t \neq s$ berkorelasi (eror suatu unit *cross section* pada dua titik waktu yang berbeda saling berkorelasi). Sehingga koefisien korelasi dinyatakan sebagai berikut (Murray, 2006).

$$cov(v_{it}, v_{is}) = E([u_i + \varepsilon_{it}][u_i + \varepsilon_{is}])$$

$$= E(u_i^2) + 2E(u_i\varepsilon_{it}) + E(\varepsilon_{it}\varepsilon_{is})$$

$$= E(u_i^2)$$

$$cov(v_{it}, v_{is}) = \sigma_u^2$$

$$corr(v_{it}, v_{is}) = \frac{\sigma_u^2}{\sigma_u^2 + \sigma_\varepsilon^2}$$
(2.18)

Metode OLS tidak dapat melakukan estimasi parameter model REM dengan baik karena terdapat autokorelasi dalam dua titik waktu yang berbeda pada suatu unit $cross\ section$. Sehingga metode estimasi yang sesuai untuk mengestimasi parameter model REM adalah $Generalized\ Least\ Square\ (GLS)$. Penduga GLS dari β dapat dituliskan (Greene, 2004: 295).

$$\widehat{\boldsymbol{\beta}} = (\mathbf{X}' \mathbf{\Omega}^{-1} \mathbf{X})^{-1} \mathbf{X}' \mathbf{\Omega}^{-1} \mathbf{y}$$
 (2.20)

dengan

$$\boldsymbol{\Omega} = \begin{bmatrix} \boldsymbol{\Sigma} & \boldsymbol{0} & \boldsymbol{0} & \dots & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{\Sigma} & \boldsymbol{0} & \dots & \boldsymbol{0} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{0} & \dots & \boldsymbol{\Sigma} \end{bmatrix} = \boldsymbol{I}_{n} \boldsymbol{\otimes} \boldsymbol{\Sigma}$$

$$\boldsymbol{\Sigma} = \begin{bmatrix} \sigma_{u}^{2} + \sigma_{\varepsilon}^{2} & \sigma_{u}^{2} & \sigma_{u}^{2} & \cdots & \sigma_{u}^{2} \\ \sigma_{u}^{2} & \sigma_{u}^{2} + \sigma_{\varepsilon}^{2} & \sigma_{u}^{2} & \cdots & \sigma_{u}^{2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \sigma_{u}^{2} & \sigma_{u}^{2} & \sigma_{u}^{2} & \cdots & \sigma_{u}^{2} + \sigma_{\varepsilon}^{2} \end{bmatrix} = \sigma_{\varepsilon}^{2} \boldsymbol{I}_{T} + \sigma_{u}^{2} \boldsymbol{i}_{T} \boldsymbol{i}'_{T}$$

2.4 Koefisien Determinasi (R²)

Koefisien determinasi menunjukkan besarnya keragaman variabel respon yang dapat dijelaskan oleh variabel prediktor. Semakin tinggi nilai koefisien determinasi, maka model dapat dikatakan semakin baik. Adapun rumus dari koefisien determinasi adalah sebagai berikut (Baltagi dalam Hanum, 2014: 18):

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} \sum_{t=1}^{T} (y_{it} - \hat{y}_{it})^{2}}{\sum_{i=1}^{n} \sum_{t=1}^{T} (y_{it} - \bar{y}_{i})^{2}}$$
(2.21)

dengan

 \hat{y}_{it} : nilai prediksi individu ke-*i* untuk periode waktu ke- *t* pada variabel respon

 \bar{y}_i : rata-rata nilai variabel respon pada individu ke-i

2.5 Pemilihan Metode Estimasi Model Regresi Data Panel

Metode estimasi model regresi data panel terdiri dari tiga jenis pendekatan. Terdapat tiga pengujian yang dapat dilakukan untuk mengetahui metode regresi data panel yang sesuai dalam memodelkan data. Adapun tiga pengujian tersebut adalah sebagai berikut.

a. Uji Statistik F

Uji statistik F digunakan untuk mengetahui metode regresi data panel yang sesuai antara CEM dan FEM. Hipotesis dalam pengujian ini adalah sebagai berikut (Greene, 2003: 289).

 H_0 : $\alpha_i = 0$ (model yang sesuai adalah model CEM)

 H_1 : $\alpha_i \neq 0$ (model yang sesuai adalah model FEM)

Statistik uji yang digunakan adalah statistik uji F dengan rumus.

$$F = \frac{(R_{LSDV}^2 - R_{Pooled}^2)/(n-1)}{(1 - R_{LSDV}^2)/(nT - n - k)}$$
(2.22)

dengan

 R_{LSDV}^2 = koefisien determinasi model FEM $R_{Rocaled}^2$ = koefisien determinasi model CEM

n = jumlah unit cross section

T= jumlah unit time series = jumlah variabel prediktor

Hasil pengujian dikatakan signifikan jika nilai F hitung lebih besar dibanding F tabel pada taraf signifikansi α dengan derajat bebas n-1 dan nT-n-k. Jika pengujian signifikan maka model yang sesuai adalah model FEM. Sebaliknya, jika pengujian tidak signifikan maka model yang sesuai adalah model CEM.

b. Uii Langrange Multiplier (LM)

Pengujian menggunakan uji LM digunakan untuk mengetahui metode regresi data panel yang sesuai antara CEM dan REM. Pengujian ini diperkenalkan oleh Breusch dan Pagan pada tahun 1980. Dalam Greene (2003: 298) hipotesis untuk uji LM dituliskan sebagai berikut.

 H_0 : $\sigma_u^2 = 0$ (model yang sesuai adalah model CEM) H_1 : $\sigma_u^2 \neq 0$ (model yang sesuai adalah model REM)

Sedangkan statistik uji LM dirumuskan sebagai berikut.

$$LM = \frac{nT}{2(T-1)} \left[\frac{\sum_{i=1}^{n} (T\bar{e}_{i.})^{2}}{\sum_{i=1}^{n} \sum_{t=1}^{T} e_{it}^{2}} - 1 \right]^{2}$$
 (2.23)

atau

$$LM = \frac{nT}{2(T-1)} \left[\frac{T^2 \overline{\mathbf{e}}' \overline{\mathbf{e}}}{\mathbf{e}' \mathbf{e}} - 1 \right]^2$$
 (2.24)

dengan

= jumlah unit *cross section*

T= jumlah unit time series

= eror cross section dan time series

= rata-rata eror pada tiap-tiap unit cross section

Distribusi dari LM adalah chi-square dengan derajat bebas 1. Maka pengujian LM dikatakan signifikan jika nilai statistik uji LM lebih besar dibanding *chi-square* pada taraf signifikansi α dengan derajat bebas 1. Jika pengujian signifikan maka model yang sesuai adalah model REM. Sebaliknya, jika pengujian tidak signifikan maka model yang sesuai adalah model CEM.

c. Uji Hausman

Pada tahun 1978, J.A. Hausman memperkenalkan sebuah pengujian dengan tujuan untuk menguji ortogonalitas efek *random* dan variabel prediktor. Pengujian ini dikenal dengan uji Hausman yang kemudian digunakan untuk mengetahui metode regresi data panel yang sesuai antara FEM dan REM. Dalam Murray (2006) hipotesis dalam uji Hausman adalah sebagai berikut.

 H_0 : $E(X_{it}u_i) = 0$ (model yang sesuai adalah model REM) H_1 : $E(X_{it}u_i) \neq 0$ (model yang sesuai adalah model FEM) Statistik uji Hausman dirumuskan sebagai berikut (Greene, 2003: 302).

$$W = [\mathbf{b} - \widehat{\boldsymbol{\beta}}]' \widehat{\boldsymbol{\psi}}^{-1} [\mathbf{b} - \widehat{\boldsymbol{\beta}}]$$
 (2.25)

dengan

$$\widehat{\mathbf{\psi}} = \text{Var}[\mathbf{b}] - \text{Var}[\widehat{\boldsymbol{\beta}}] \tag{2.26}$$

 $\widehat{\psi}$ = selisih matriks estimasi kovarian dari slope koefisien LSDV dengan matriks estimasi kovarian dari slope koefisien model efek *random*, tanpa intersep

b = matriks estimasi kovarian dari slope koefisien LSDV

 $\hat{\beta}$ = matriks estimasi kovarian dari slope koefisien model efek *random*

Uji Hausman dikatakan signifikan jika nilai statistik uji W lebih besar dibanding *chi-square* pada taraf signifikansi α dengan derajat bebas k. Jika pengujian signifikan maka model yang sesuai adalah model FEM. Sebaliknya, jika pengujian tidak signifikan maka model yang sesuai adalah model REM.

2.6 Uji Asumsi Regresi

Pada regresi terdapat beberapa asumsi klasik yang harus dipenuhi, yaitu tidak terjadi multikolinearitas dan residual atau error mengikuti asumsi identik, independen, dan berdistribusi normal ($\varepsilon_{it} \sim IIDN$). Untuk mengetahui asumsi tersebut, maka perlu dilakukan pengujian terhadap asumsi tersebut, yaitu sebagai berikut:

1. Tidak Terjadi Kasus Multikolinearitas

Multikolinearitas adalah suatu keadaan dimana terdapat hubungan linear diantara semua atau beberapa variabel prediktor. Multikolinearitas harus dihindari sebab jika multikolinearitas maka terdapat konsekuensi yang akan terjadi seperti penaksir koefisien yang seharusnya signifikan menjadi tidak signifikan. Hal ini disebabkan oleh standar eror vang dihasilkan cenderung semakin besar sehingga selang kepercayaan juga semakin besar yang menyebabkan probabilitas untuk gagal tolak H₀ semakin tinggi. Multikolinearitas dapat dideteksi menggunakan nilai Variance Inflation Factors (VIF) dengan rumus sebagai berikut (Gujarati, 2004: 351).

$$VIF_j = \frac{1}{1 - R_i^2} \tag{2.27}$$

dengan R_i^2 adalah koefisien determinasi dari variabel prediktor x_j yang diregresikan terhadap variabel prediktor lainnya. jika nilai VIF < 10, tidak terdapat multikolinearitas. Sebaliknya jika nilai VIF > 10 maka terjadi multikolinearitas.

2. Uji Asumsi Residual

a. Residual Identik

Residual dikatakan identik jika antar residual memiliki varians yang konstan dan disebut homoskedastisitas. Namun, jika varians antar residual tidak memiliki nilai yang konstan maka hal ini disebut dengan heteroskedastisitas. Heteroskedastisitas dapat diidentifikasi menggunakan uji Breusch-Pagan yang dilakukan dengan langkah-langkah sebagai berikut (Gujarati, 2004: 411):

- i. Meregresikan dengan estimasi OLS sehingga didapatkan nilai residual ($\hat{\varepsilon}_{it}$)

ii. Menghitung nilai
$$\hat{\sigma}^2$$
 yang didapatkan melalui rumus:
$$\hat{\sigma}^2 = \frac{\sum_{i=1}^n \sum_{t=1}^T \hat{\varepsilon}_{it}^2}{nT}$$
 (2.28) iii. Menghitung variabel p_{it} yang didapatkan melalui:

$$p_{it} = \frac{\hat{\varepsilon}_{it}^2}{\hat{\sigma}^2} \tag{2.29}$$

iv. Meregresikan variabel p_{it} dengan semua variabel prediktor, sehingga didapatkan nilai SSR. Statistik uij *Breusch-Pagan* dapat dihitung melalui rumus sebagai berikut:

$$\Theta = \frac{1}{2}SSR \tag{2.30}$$

dengan hipotesis sebagai berikut.

H₀: residual identik

H₁: residual tidak identik

Pengujian dikatakan signifikan atau Tolak H₀ jika nilai $\Theta > \chi_k^2$ dimana k adalah banyaknya variable prediktor.

b. Residual Independen

Residual dikatakan memenuhi asumsi independen jika tidak terdapat kovarian antar residual. Namun, bila dalam model regresi linear berganda terdapat kovarian antara residual pada periode t dengan residual pada periode sebelumnya (t-1), maka dapat dikatakan terjadi autokorelasi sehingga dapat disimpulkan bahwa residual tidak memenuhi asumsi independen. Adapun hipotesis dalam pengujian autokorelasi adalah sebagai berikut:

 H_0 : ρ =0 (residual independen atau tidak terjadi autokorelasi) H_1 : ρ =0 (residual tidak independen atau terjadi autokorelasi)

Terdapat beberapa pengujian yang dapat dilakukan untuk mengidentifikasi ada atau tidaknya autokorelasi dalam model. Dalam penelitian ini akan dijabarkan dua pengujian autokorelasi.

i. Uji Durbin-Watson

Statistik uji yang digunakan adalah (Gujarati, 2004: 467).

$$d = \frac{\sum_{i=1}^{n} \sum_{t=1}^{T} (\hat{\varepsilon}_{it} - \hat{\varepsilon}_{it-1})^{2}}{\sum_{i=1}^{n} \sum_{t=1}^{T} \hat{\varepsilon}_{it}^{2}}$$
(2.31)

dengan

 $\hat{\epsilon}_{it}$ = komponen eror pada unit *cross section* ke-*i* waktu ke-*t*

 $\hat{\varepsilon}_{it-1}$ = komponen eror pada unit *cross section* ke-i

waktu ke-t-1

Pengujian dikatakan signifikan jika d < dU atau (4-d) < dU. Sehingga disimpulkan terdapat autokorelasi.

ii. Run Test

Statistik uji yang digunakan adalah (Daniel, 1989: 137).

$$z = \frac{r - \left[\frac{2n_1n_2}{n_1n_2} + 1\right]}{\sqrt{\frac{2n_1n_2(2n_1n_2 - n_1 - n_2)}{(n_1 + n_2)^2(n_1 + n_2 - 1)}}}$$
(2.32)

dengan

r = banyaknya runtun

 n_1 = banyak data yang bernilai lebih dari nilai *mean*

 n_2 = banyak data yang bernilai kurang dari nilai *mean* Pengujian dikatakan signifikan jika $|z| > z_{\alpha/2}$ dan disimpulkan

terdapat autokorelasi. c. Residual Berdistribusi Normal

Dalam analisis regresi klasik, residual diasumsikan berdistribusi normal. Untuk mengidentifikasi normalitas digunakan statistik uji Kolmogorov-Smirnov dengan prosedur pengujian seperti berikut (Daniel, 1989: 345).

 $H_0: S(x) = F_0(x)$ (Residual memenuhi asumsi berdistribusi normal)

 $H_1: S(x) \neq F_0(x)$ (Residual tidak memenuhi asumsi berdistribusi normal)

dengan α adalah taraf signifikansi dan statistik uji pengujian tersebut adalah sebagai berikut.

$$D = \frac{Sup}{x} |S(x) - F_0(x)|$$
 (2.33)

daerah penolakan pada uji KS yaitu tolak H_0 , jika $|D| > D_\alpha$. D_α adalah nilai kritis yang didasarkan pada tabel *Kolmogorov Smirnov*, atau tolak H_0 jika p-value $< \alpha$.

2.7 Pengujian Parameter

Pengujian parameter dilakukan untuk mengetahui signifikansi pengaruh dari variabel prediktor terhadap variabel respon.

Pengujian parameter terdiri dari dua tahap yaitu pengujian secara serentak dan pengujian secara parsial.

a. Pengujian Serentak

Uji serentak adalah metode yang dilakukan untuk mengetahui pengaruh variabel prediktor secara bersama-sama terhadap variabel respon. Hipotesis pengujian serentak adalah sebagai berikut.

$$H_0: \beta_1 = \beta_2 = ... = \beta_p = 0$$

 H_1 : paling sedikit ada satu $\beta_k \neq 0$, dengan k = 1, 2, ..., pStatistik uji (Draper and Smith, 1998: 39).

$$F = \frac{(\sum_{i=1}^{n} \sum_{t=1}^{T} (\hat{y}_{it} - \bar{y}_{i})^{2})/k}{(\sum_{i=1}^{n} \sum_{t=1}^{T} (y_{it} - \hat{y}_{it})^{2})/(n \times T - k - 1)}$$
(2.34)

dengan

 \hat{y}_{it} : nilai prediksi individu ke-*i* untuk periode waktu ke-*t* pada variabel respon

 \bar{y}_i : rata-rata nilai variabel respon pada individu ke-i

k: jumlah parameter dalam model

Daerah penolakan H_0 adalah jika $F > F_{\frac{\alpha}{2},(k,(n \times T - k - 1))}$

b. Pengujian Parsial

Uji parsial adalah metode pengujian yang dilakukan untuk mengetahui pengaruh variabel prediktor secara individu terhadap variabel respon. Hipotesis pada pengujian parsial adalah sebagai berikut.

 $H_0: \beta_k = 0$

 H_1 : $\beta_k \neq 0$; k = 1, 2, ...p; p = jumlah prediktor dalam model Statistik uji (Draper and Smith, 1998: 39).

$$t = \frac{\hat{\beta}_k}{SE(\hat{\beta}_k)} \tag{2.35}$$

Daerah penolakan H_0 adalah jika $t > t_{\frac{\alpha}{2},(n \times T - k - 1)}$.

2.8 Kemiskinan

Kemiskinan adalah keadaan dimana terjadi ketidakmampuan untuk memenuhi kebutuhan dasar seperti makanan, pakaian, tempat berlindung, pendidikan, dan kesehatan. Kemiskinan dapat disebabkan oleh kelangkaan alat pemenuh kebutuhan dasar, ataupun sulitnya akses terhadap pendidikan dan pekerjaan. Sedangkan menurut *World Bank* (Bank Dunia) dalam Sita (2014: 18), definisi kemiskinan adalah kehilangan kesejahteraan (*deprivation of well being*). Kesejahteraan dapat diartikan sebagai kemampuan untuk mengakses sumber daya yang tersedia (barang yang dikonsumsi) yang dapat diukur melalui pendapatan ataupun pengeluaran seseorang. Menurut Badan Pusat Statistik (BPS) dalam Analisis dan Penghitungan Tingkat Kemiskinan Tahun 2008, secara konseptual kemiskinan dikelompokkan dalam dua kategori berdasarkan standar penilaian yaitu:

1. Kemiskinan Relatif

Kemiskinan relatif merupakan kondisi miskin karena pengaruh kebijakan pembangunan yang belum mampu menjangkau seluruh lapisan masyarakat sehingga menyebabkan ketimpangan distribusi pendapatan

2. Kemiskinan Absolut

Kemiskinan secara absolute ditentukan berdasarkan ketidakmampuan untuk mencukupi kebutuhan pokok minimum seperti pangan, sandang, kesehatan, perumahan, dan pendidikan yang diperlukan untuk bisa hidup dan bekerja.

Berdasarkan penyebab kemiskinan, BPS (2008: 7) membagi kemiskinan berdasarkan penyebabnya menjadi dua kategori, yaitu kemiskinan struktural dan kemiskinan kultural. Kemiskinan structural adalah kemiskinan yang disebabkan oleh kondisi struktur, atau tatanan kehidupan yang tidak menguntungkan. Tatanan yang tidak adil menyebabkan banyak masyarakat yang gagal memperoleh peluang dan/atau akses untuk mengembangkan diri serta meningkatkan kualitas hidupnya, sehingga mereka terperangkap dalam kemiskinan yang serba kekurangan. Sedangkan kemiskinan kultural disebabkan oleh faktor-faktor adat dan budaya suatu daerah tertentu yang membelenggu seseorang tetap melekat dengan indikator kemiskinan. Keadaan tersebut dapat dikurangi atau dihilangkan secara bertahap dengan adat budaya mengabaikan faktor-faktor tertentu yang menghalangi seseorang untuk melakukan perubahan ke arah tingkat kehidupan yang lebih baik.

BPS mengukur kemiskinan menggunakan konsep kemampuan memenuhi kebutuhan dasar (basic needs approach). Dalam hal tersebut digunakan garis kemiskinan yang didefinisikan sebagai nilai rupiah untuk memenuhi kebutuhan dasar makanan dan non makanan. Garis kemiskinan terdiri dari dua komponen yaitu Garis Kemiskinan Makanan (GKM) dan Garis Kemiskinan Non-(GKNM). GKM merupakan nilai pengeluaran Makanan kebutuhan minimum makanan yang disetarakan dengan 2100 kilokalori per kapita per hari. Sedangkan GKNM adalah kebutuhan minimum untuk perumahan, sandang, pendidikan, dan kesehatan. Nilai garis kemiskinan diperoleh melalui penambahan nilai keduanya. Penduduk yang memiliki rata-rata pengeluaran per kapita per bulan di bawah Garis Kemiskinan dikategorikan sebagai penduduk miskin.

Berdasarkan pendekatan kebutuhan dasar, terdapat tiga indikator kemiskinan yang digunakan, yaitu (BPS, 2008: 33):

- 1. *Head Count Index* (HCI-P₀) yaitu persentase penduduk miskin yang berada di bawah garis kemiskinan
- 2. Indeks Kedalaman Kemiskinan (*Poverty Gap Index-P*₁) yang merupakan ukuran rata-rata kesenjangan pengeluaran masingmasing penduduk miskin terhadap garis kemiskinan. Semakin tinggi nilai indeks, semakin jauh rata-rata pengeluaran penduduk dari garis kemiskinan.
- 3. Indeks Keparahan Kemiskinan (*Poverty Severity Index-P*₂) yaitu indeks yang memberikan gambaran mengenai penyebaran pengeluaran diantara penduduk miskin. Semakin tinggi nilai indeks, semakin tinggi ketimpangan pengeluaran diantara penduduk miskin.

Foster-Greer-Thorbecke dalam Permatasari (2013: 15) telah merumuskan suatu ukuran yang digunakan untuk mengukur tingkat kemiskinan dirumuskan pada Persamaan (2.36).

$$P_{\alpha} = \frac{1}{n} \sum_{i=1}^{q} \left[\frac{z - y_i}{z} \right]^{\alpha} \tag{2.36}$$

dengan

 $\alpha = 0, 1, 2$

z = garis kemiskinan

 y_i =rata-rata pengeluaran per kapita sebulan penduduk yang berada di bawah garis kemiskinan (i=1, 2, ..., q); $y_i < z$

q = jumlah penduduk yang berada di bawah garis kemiskinan

n = jumlah penduduk

Jika α =0, maka diperoleh nilai *Head Count Index* (HCI-P₀), jika α =1 maka diperoleh nilai indeks kedalaman kemiskinan (*Poverty Gap Index*-P₁), dan jika α =2 diperoleh nilai indeks keparahan kemiskinan (*Poverty Severity Index*-P₂).

BPS telah melakukan Studi Penentuan Kriteria Penduduk Miskin (SPKPM 2000) untuk mengetahui karakteristik rumah tangga yang mampu mencirikan kemiskinan secara konseptual (pendekatan kebutuhan dasar/garis kemiskinan). Dari hasil SPKPM 2000, diperoleh 8 variabel yang dianggap layak dan operasional untuk penentuan rumah tangga miskin, yaitu sebagai berikut:

- 1. Luas lantai per kapita, dimana dikatakan miskin jika luas lantai perkapita $\leq 8 \text{ m}^2$.
- 2. Jenis lantai, dimana dikatakan miskin jika jenis lantai yang digunakan adalah tanah.
- 3. Air minum/ ketersediaan air bersih, dikatakan miskin jika air minum/ketersediaan air bersih berasal dari air hujan/sumur tak terlindung
- 4. Jenis jamban/WC, dikatakan miskin jika tidak terdapat jamban/WC dalam rumah.
- 5. Kepemilikan aset, dikatakan miskin jika tidak memiliki aset.
- 6. Pendapatan (total pendapatan per bulan), dikatakan miskin jika total pendapatan per bulan <= 350.000 rupiah

- 7. Pengeluaran (persentase pengeluaran untuk makanan), dikatakan miskin jika pengeluaran untuk makanan sebesar 80 persen ke atas.
- 8. Konsumsi lauk pauk (daging, ikan, telur, ayam), dikatakan miskin jika tidak ada konsumsi lauk pauk atau ada namun tidak bervariasi.

(Halaman ini sengaja dikosongkan)

BAB III METODOLOGI PENELITIAN

3.1 Sumber Data dan Variabel Penelitian

Data yang digunakan dalam penelitian ini merupakan data sekunder yang didapatkan dari Badan Pusat Statistik (BPS) Jawa Timur mengenai kemiskinan Kabupaten/Kota Jawa Timur beserta faktor yang diduga berpengaruh terhadap kemiskinan tahun 2005-2013. Variabel yang digunakan dibedakan menjadi dua jenis, yaitu variabel prediktor dan variabel respon. Dalam penelitian ini digunakan tiga indikator kemiskinan sebagai variabel respon. Sedangkan variabel prediktor yang digunakan adalah sebanyak delapan variabel prediktor. Pemilihan variabel prediktor pada umumnya berasal dari penelitian yang dilakukan oleh Saleh (2002) dan Wini (2010). Adapun struktur data yang digunakan dapat dilihat melalui Tabel 3.1.

Tabel 3.1 Struktur Data Penelitian

1 and 5.1 Structur Data i Cicittati									
Sampel	Tahun	Y_{1}_{it}	<i>Y</i> ₂ .	Y_{α}	Χ.	X_{2it}		X_{8it}	
ke-i	ke-t	11 it	¹² it	¹³ it	¹¹ it	¹¹² it	•••	¹¹⁸ it	
1	1	Y_{1}_{11}	$Y_{2}^{}_{11}$	Y_{3}_{11}	$X_{1_{11}}$	$X_{2_{11}}$		$X_{5_{11}}$	
2	1	Y_{1}_{21}	Y_{2}_{21}	Y_{3}_{21}	X_{1}_{21}	X_{2}_{21}		$X_{5_{21}}$	
:	:	:		:	:	:		:	
n	1	Y_{1}_{n1}	Y_{2n1}	Y_{3n1}	X_{1n1}	X_{2n1}		$X_{5_{n1}}$	
1	2	$Y_{1_{12}}$	Y_{2}_{12}	Y_{3}_{12}	$X_{1_{12}}$	$X_{2_{12}}$		$X_{5_{12}}$	
2	2	Y_{1}_{22}			X_{1}_{22}			X_{5}_{22}	
:	:	:		:	:	:		:	
n	2	Y_{1}_{n2}	Y_{2n2}	Y_{3n2}	$X_{1_{n2}}$	X_{2n2}		X_{5}_{n2}	
:	:	:		:	:	:		:	
1	9	$Y_{1_{19}}$	$Y_{2_{19}}$	$Y_{3_{19}}$	$X_{1_{19}}$	$X_{2_{19}}$		$X_{5_{19}}$	
2	9	Y_{1}_{29}	Y_{2}_{29}	Y_{3}_{29}	$X_{1_{29}}$	$X_{2_{29}}$		$X_{5_{29}}$	
:	÷	:		:	:	:		:	
n	9	$Y_{1_{n9}}$	Y_{2n9}	Y_{3}_{n9}	$X_{1_{n9}}$	X_{2n9}		$X_{5_{n9}}$	

Sedangkan variabel penelitian yang digunakan dalam penelitian ini akan disajikan melalui Tabel 3.2.

Tabel 3.2 Variabel Penelitian

Variabel	Simbol	Nama	Satuan	
	Y ₁	Penduduk Miskin	Persen	
Respon	Y_2	Indeks Kedalaman Kemiskinan	-	
	Y ₃	Indeks Keparahan Kemiskinan	-	
Prediktor	X_1	Angka Melek Huruf	Persen	
	X ₂ Penduduk yang Tidak Mendapatkan Akses Air Bersih		Persen	
	X_3	Angka Partisipasi Sekolah Usia Menengah (APS)	Persen	
	X_4	Penduduk yang Tidak Mendapatkan Akses Fasilitas Kesehatan	Persen	
	X_5	Tingkat Partisipasi Angkatan Kerja (TPAK)	Persen	
	X_6	Pekerja di Sektor Pertanian	Persen	
	X_7	Laju Pertumbuhan Ekonomi	Persen	
	X_8	PDRB Per Kapita ADHB	Juta Rupiah	

Berikut akan disajikan uraian mengenai variabel prediktor yang digunakan dalam penelitian.

a. Angka Melek Huruf (X_1)

Angka melek huruf adalah persentase penduduk usia 15 tahun keatas yang dapat membaca dan menulis huruf latin atau huruf lainnya. Dikatakan dapat membaca dan menulis dengan katakata/kalimat sederhana dalam aksara tertentu yaitu huruf latin atau aksara lainnya. Angka melek huruf merupakan salah satu indikator kesejahteraan di bidang pendidikan. Indikator ini mencerminkan kemampuan penduduk di suatu daerah untuk mengakses fasilitas, layanan pemerintahan, dan sarana lainnya yang membutuhkan kemampuan untuk bisa membaca dan menulis, termasuk diantaranya adalah persyaratan dalam mencari kerja (Suryawati, 2004). Semakin tinggi jumlah penduduk yang melek huruf, maka semakin tinggi pula kemampuan masyarakat untuk mengakses fasilitas maupun sarana untuk dapat

meningkatkan taraf kesejahteraannya, sehingga akan menurunkan tingkat kemiskinan (Wini, 2010).

b. Penduduk yang Tidak Mendapat Akses Air Bersih (X2)

Akses terhadap air bersih atau air minum akan menentukan kemampuan penduduk untuk mencukupi kebutuhan pokoknya yang terdiri atas kebutuhan makanan, minuman, serta kebutuhan lain yang berhubungan dengan peningkatan kesejahteraan. Dalam hal ini, penduduk yang dikatakan tidak mendapat air bersih adalah penduduk dengan sumber air untuk minum berasal dari sumur tak terlindung, mata air tak terlindung, air sungai, air hujan, dan lainnya. Jika penduduk kesulitan dalam mendapat akses air bersih, maka penduduk akan mudah terserang penyakit. Akibatnya, penduduk menjadi tidak produktif sehingga tidak dapat memenuhi kebutuhannya. Jadi, semakin tinggi jumlah penduduk yang tidak mendapat akses atas air bersih, maka akan semakin tinggi pula jumlah penduduk miskin di daerah tersebut (Wini, 2010).

c. Angka Partisipasi Sekolah Usia Menengah (X₃)

Angka partisipasi sekolah usia menengah menunjukkan persentase penduduk yang bersekolah pada jenjang menengah terhadap seluruh penduduk usia menengah. Usia menengah yang dimaksud adalah pada usia 13-15 tahun. Bank Dunia (2010) menyatakan bahwa lebih dari 52 persen angkatan kerja di Jawa Timur hanya berpendidikan SD atau bahkan lebih rendah. Pendidikan yang rendah menyebabkan keterampilan pekerja juga cenderung rendah sehingga tingkat upah relatif rendah. Semakin tinggi angka partisipasi sekolah usia menengah maka akan menurunkan tingkat kemiskinan. Sebagaimana telah dibuktikan dalam penelitian Siregar dan Wahyuniarti dalam Kuncoro (2014) bahwa pendidikan berpengaruh positif terhadap penurunan kemiskinan.

d. Penduduk yang Tidak Mendapatkan Akses Fasilitas Kesehatan (X_4)

Fasilitas kesehatan sekarang ini tidak hanya berfungsi untuk memberikan layanan kesehatan, akan tetapi berperan pula untuk memberikan perbaikan gizi keluarga. Layanan kesehatan akan memberikan pencegahan dan pengobatan atas penyakit atau gangguan medis, sehingga akan mampu meningkatkan kualitas kesehatan masyarakat. Dalam hal ini penduduk yang tidak adalah penduduk yang pada mendapatkan akses fasilitas persalinan pertama tidak ditolong oleh tenaga kesehatan. pelayanan kesehatan ini berpengaruh terhadap kesehatan ibu dan bayi. Semakin tinggi jumlah penduduk yang tidak mendapatkan akses fasilitas kesehatan, maka akan semakin tinggi resiko penularan penyakit ataupun gizi buruk yang selanjutnya akan menjadi penyebab tingginya angka kematian. Angka kematian yang tinggi dan keadaan kesehatan masyarakat yang rendah akan berdampak pada partisipasi sosial yang rendah, kecerdasan yang rendah, serta keterampilan yang rendah (Wini, 2010). Hal ini tentunya akan menurunkan tingkat produktivitas penduduk sehingga menyebabkan penghasilan yang didapatkan rendah. Jika penghasilan yang didapatkan rendah, maka akan menyebabkan kemiskinan karena ketidakmampuan dalam memenuhi kebutuhan (Saleh, 2002).

e. Tingkat Partisipasi Angkatan Kerja (X5)

Tingkat Partisipasi Angkatan Kerja (TPAK) adalah persentase penduduk yang bekerja terhadap jumlah seluruh penduduk usia kerja (15-64 tahun). Semakin rendah TPAK, maka akan memperbesar rasio ketergantungan penduduk. Jika rasio ketergantungan meningkat, maka hal itu akan memperbesar tingkat kemiskinan (Saleh, 2002).

f. Pekerja di Sektor Pertanian (X₆)

Menurut Kuncoro dalam Wini (2010), penduduk negara tersebut miskin karena menggantungkan diri pada sektor pertanian yang subsistem, metode produksi yang tradisional, yang seringkali dibarengi dengan sikap apatis terhadap lingkungan.

Metode yang tradisional, aksesbilitas yang rendah pada modal, serta teknologi yang kurang memadai menyebabkan rendahnya penghasilan yang diterima oleh penduduk yang bekerja di sektor pertanian (Munajat, 2009). Ketidakmampuan dalam pemenuhan kebutuhan akibat penghasilan yang rendah, menyebabkan terjadinya kemiskinan.

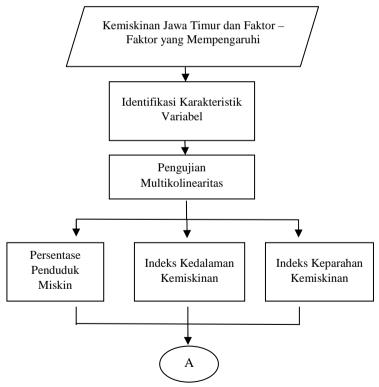
g. Laju Pertumbuhan Ekonomi (X₇)

Pertumbuhan ekonomi yang tinggi dan berkelanjutan kondisi keharusan merupakan utama atau suatu bagi kelangsungan pembangunan ekonomi dan peningkatan kesejahteraan. Menurunnya laju pertumbuhan ekonomi suatu daerah berdampak pada kualitas dan konsumsi rumah tangga. Menurut penelitian Siregar dan Wahyuniarti (2008) menunjukkan hasil yang negatif antara pertumbuhan ekonomi dan penurunan jumlah penduduk miskin.

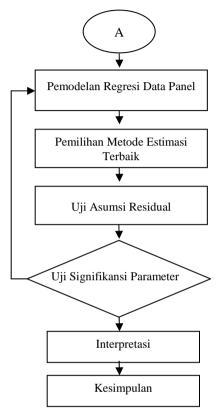
h. PDRB Per Kapita ADHB (X₈)

Pada prinsipnya, PDRB per kapita merupakan konsep dari pendapatan per kapita yang diimplemantasikan penjelasannya pada lingkup regional/daerah. Dalam hal ini digunakan PDRB per kapita Atas Dasar Harga Berlaku (ADHB) yang artinya PDRB per kapita dipengaruhi adanya inflasi. Pendapatan per kapita menggambarkan kemampuan rata-rata ADHB pendapatan masyarakat di suatu daerah. Apabila pendapatan per kapita ADHB meningkat, maka kemampuan rata-rata pendapatan masyarakat di suatu daerah akan semakin meningkat. Ini berarti kemampuan pendapatan dalam memenuhi kebutuhan pokok di daerah tersebut juga akan semakin meningkat. Jika kemampuan untuk memenuhi kebutuhan pokok meningkat, maka jumlah penduduk miskin di daerah tersebut akan berkurang (Wini, 2010). Sehingga, PDRB per kapita ADHB berpengaruh negatif terhadap jumlah penduduk miskin.

3.2 Langkah Analisis


Dalam melaksanakan penelitian, dilakukan beberapa langkah analisis sebagai berikut:

- Melakukan identifikasi terhadap karakteristik dari masing masing variabel menggunakan statistika deskriptif
- 2. Untuk menjawab tujuan kedua, dimana variabel respon yang digunakan adalah persentase penduduk miskin, maka dilakukan langkah sebagai berikut:
 - a. Mengidentifikasi ada tidaknya multikolinearitas dengan VIF.
 - b. Pemodelan dengan pendekatan CEM melalui metode estimasi OLS.
 - c. Pemodelan dengan pendekatan FEM. Dalam hal ini dilakukan pemodelan dengan asumsi efek individu tetap. Metode estimasi yang digunakan adalah LSDV.
 - d. Pemodelan dengan pendekatan REM dimana metode estimasi yang digunakan adalah metode GLS.
 - e. Melakukan pengujian statistik F untuk memilih metode estimasi yang terbaik antara CEM dan FEM. Jika dihasilkan Tolak H₀ maka dilanjutkan ke langkah (e). Jika dihasilkan Gagal Tolak H₀ maka dilanjutkan ke langkah (f).
 - f. Melakukan uji Hausman untuk memilih metode estimasi yang terbaik antara FEM dan REM. Jika dihasilkan Tolak H₀ maka metode estimasi terbaik adalah FEM. Jika dihasilkan Gagal Tolak H₀ maka metode estimasi terbaik adalah REM.
 - g. Melakukan pengujian Lagrange Multiplier untuk memilih model yang terbaik antara CEM dan REM. Jika dihasilkan Tolak H₀ maka metode estimasi terbaik adalah REM. Jika dihasilkan Gagal Tolak H₀ maka metode estimasi terbaik adalah CEM.
 - h. Melakukan uji asumsi residual identik, independen, dan berdistribusi normal.
 - Melakukan uji signifikansi parameter. Jika terdapat variabel yang tidak signifikan, maka dilakukan pemodelan kembali dengan mengeluarkan variabel prediktor yang


tidak signifikan secara satu per satu.. Sehingga mengulang dari langkah (b) hingga didapatkan model dengan variabel yang signifikan.

- j. Menginterpretasi model yang telah diperoleh.
- k. Penarikan kesimpulan.
- 3. Untuk menjawab tujuan ketiga dan keempat, langkah-langkah yang dilakukan sama seperti langkah 2. Namun, dalam hal ini variabel respon yang digunakan adalah indeks kedalaman kemiskinan untuk tujuan ketiga dan indeks keparahan kemiskinan untuk tujuan keempat.

Langkah – langkah yang telah disajikan, dapat diringkas dalam diagram alir sebagai berikut:

Gambar 3.1 Kerangka Analisis

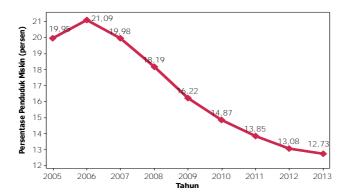
Gambar 3.1 Kerangka Analisis (Lanjutan)

BAB IV ANALISIS DAN PEMBAHASAN

Pada bagian ini akan disajikan karakteristik kemiskinan beserta faktor-faktor yang diduga berpengaruh terhadap kemiskinan Kabupaten/Kota di Jawa Timur pada tahun 2005 hingga 2013. Selain itu, juga akan disajikan pemodelan kemiskinan Kabupaten/Kota di Jawa Timur dengan regresi data panel. Dalam hal ini terdapat 3 (tiga) variabel respon, yaitu persentase penduduk miskin, indeks kedalaman kemiskinan, dan indeks keparahan kemiskinan. Ketiga variabel respon akan dimodelkan secara *univariate*.

4.1 Karakteristik Kemiskinan Kabupaten/Kota Jawa Timur dan Faktor-Faktor yang Mempengaruhi

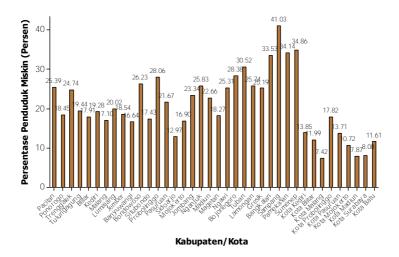
Karakteristik kemiskinan dan faktor-faktor yang diduga berpengaruh terhadap kemiskinan Kabupaten/Kota di Jawa Timur dapat diketahui dengan menggunakan analisis deskriptif. Dalam hal ini akan dihitung nilai rata-rata, deviasi standar, minimum, dan maksimum dari setiap variabel pada tiap Kabupaten/Kota di Jawa Timur dari tahun 2005 hingga 2013. Selain itu, juga akan disajikan perkembangan kemiskinan dan faktor-faktor yang diduga berpengaruh terhadap kemiskinan di Jawa Timur dari tahun 2005 hingga 2013.


4.1.1 Karakteristik Persentase Penduduk Miskin

Persentase penduduk miskin menunjukkan banyaknya penduduk yang berada di bawah garis kemiskinan.Persentase penduduk miskin berbeda pada tiap Kabupaten/Kota.Karakteristik persentase penduduk miskin tiap Kabupaten/ Kota di Jawa Timur dapat dilihat melalui Lampiran 3.

Lampiran 3memberikan informasi mengenai nilai ratarata, deviasi standar, minimum, dan maksimum persentase penduduk miskin pada 38 Kabupaten/Kota di Jawa Timur.Ratarata persentase penduduk miskin di Kabupaten Pacitan adalah sebesar 20,52 persen. Nilai deviasi standar sebesar 3,17 menun-

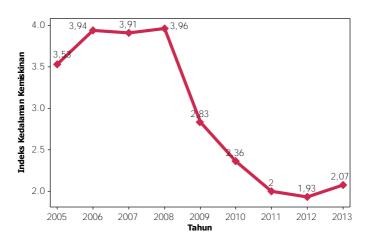
jukkan bahwa selama tahun 2005 hingga 2013, keragaman persentase penduduk miskin di Kabupaten Pacitan adalah sebesar 3,17 persen. Persentase penduduk miskin terendah dan tertinggi di Kabupaten Pacitan masing-masing ditunjukkan oleh nilai minimum dan maksimum, yaitu sebesar 16,66 persen dan 25,39 persen. Nilai rata-rata, deviasi standar, minimum, dan maksimum memiliki makna yang sama untuk Kabupaten/Kota lainnya. Dari Lampiran 2 juga dapat diketahui bahwa Kabupaten Sampang memiliki rata-rata persentase penduduk miskin tertinggi diantara Kabupaten/Kota lainnya, yaitu sebesar 33,8 persen. Kabupaten Sampang juga memiliki nilai minimum dan maksimum yang tertinggi, yaitu masing-masing sebesar 26,97 persen dan 41,03 persen. Sedangkan Kabupaten Pamekasan memiliki deviasi standar tertinggi, yaitu sebesar 5,99 persen.


Karakteristik persentase penduduk miskin di Jawa Timur juga akan disajikan dalam bentuk *time series plot*. Dalam hal ini bertujuan untuk mengetahui perkembangan persentase penduduk miskin di Jawa Timur dari tahun 2005 hingga 2013.Adapun hasilnya berdasarkan data pada Lampiran 2dapat dilihat melalui Gambar 4.1

Gambar 4.1 Persentase Penduduk Miskin di Jawa Timur Tahun 2005-2013

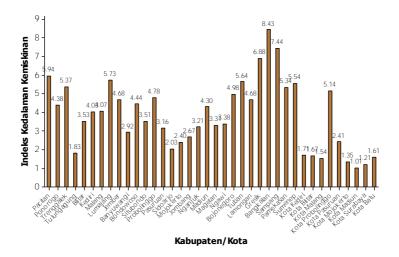
Informasi yang didapatkan melalui Gambar 4.1 adalah persentase penduduk miskin di Jawa Timur cenderung mengalami

penurunan.Dari tahun 2005 hingga 2013, kenaikan terjadi satu kali yaitu pada tahun 2006, dimana pada tahun tersebut terjadipersentase penduduk miskin tertinggi. Sebagai informasi tambahan, maka akan disajikan grafik persentase penduduk miskin pada tahun 2006 berdasarkan data pada Lampiran 1. Berikut akan disajikanmelalui Gambar 4.2.

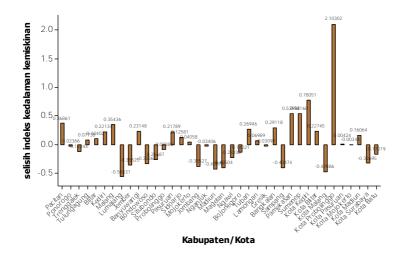

Gambar 4.2Persentase Penduduk Miskin Kabupaten/Kota Jawa Timur Tahun 2006

Berdasarkan Gambar 4.2 dapat diketahui bahwa Kabupaten Sampang memiliki jumlah penduduk miskin tertinggi, yaitu sebesar 41,03 persen. Sedangkan jumlah penduduk miskin tertinggi kedua dimiliki oleh Kabupaten Sumenep, yaitu sebesar 34,86 persen. Jumlah penduduk miskin tertinggi ketiga dan keempat dimiliki oleh Kabupaten Pamekasan dan Kabupaten Bangkalan yaitu masing-masing sebesar 34,14 persen dan 33,53 persen. Hal ini mengindikasikan jika Kabupaten di pulau Madura memiliki tingkat kemiskinan yang tinggi dibandingkan Kabupaten/Kota lainnya.

4.1.2Karakteristik Indeks Kedalaman Kemiskinan


Indeks kedalaman kemiskinan menunjukkan rata-rata kesenjangan pengeluaran masing-masing penduduk miskin terhadap garis kemiskinan.Karakteristik indeks kedalaman kemiskinan tiap Kabupaten/ Kota di Jawa Timurdisajikan melalui Lampiran 4 yang memberikan informasi bahwa Kabupaten Sampang memiliki rata-rata indeks kedalaman kemiskinan tertinggi diantara Kabupaten/Kota lainnya, yaitu sebesar 33,8. Kabupaten Sampang juga memiliki nilai minimum tertinggi yaitu sebesar 4,325. Sedangkan Kabupaten Bangkalan memiliki deviasi standar dan nilai maksimum tertinggi, yaitu masing-masing sebesar 1,792 dan 8,43.

Karakteristik indeks kedalaman kemiskinan di Jawa Timur juga akan disajikan dalam bentuk *time series plot*. Hal ini bertujuan untuk mengetahui perkembangan indeks kedalaman kemiskinan di Jawa Timur dari tahun 2005 hingga 2013.Perkembangan indeks kedalaman kemiskinan berdasarkan data pada Lampiran 2dapat dilihat melalui Gambar 4.3.

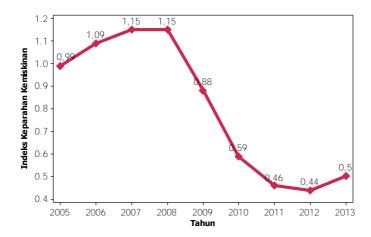

Gambar 4.3Indeks Kedalaman Kemiskinan di Jawa Timur Tahun 2005-2013

Gambar 4.3 menunjukkan bahwa indeks kedalaman kemiskinan di Jawa Timur cenderung mengalami penurunan.Indeks kedalaman kemiskinan tertinggi terjadi pada tahun 2008 yaitu sebesar 3,96.Nilai terus mengalami penurunan hingga tahun 2012. Namun, nilai indeks kedalaman kemiskinan kembali mengalami kenaikan pada tahun 2013 yakni menjadi 2,07123. Sebagai informasi tambahan, maka akan disajikan indeks kedalaman kemiskinan tertinggi yaitu pada tahun 2008. Berdasarkan data pada Lampiran 1 berikut akan disajikan melalui Gambar 4.4.

Gambar 4.4Indeks Kedalaman KemiskinanKabupaten/Kota Jawa Timur Tahun 2008

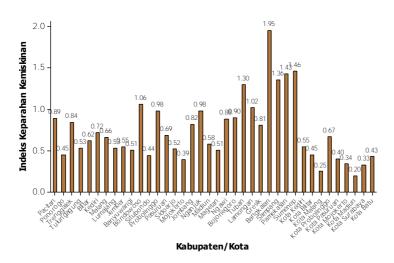
Berdasarkan Gambar 4.4 dapat diketahui bahwa Kabupaten Bangkalan memiliki nilai indeks kedalaman kemiskinan tertinggi, yaitu sebesar 8,43. Sedangkan indeks kedalaman tertinggi kedua dimiliki oleh Kabupaten Sampang, yaitu sebesar 7,44. Selain itu, untuk mengetahui, Kabupaten manakah yang memberikan kontribusi tertinggi dalam kenaikan indeks kedalaman kemiskinan tahun 2013, maka akan disajikan grafik selisih indeks kedalaman kemiskinan antara tahun 2012 dan 2013. Berikut akan disajikan melalui Gambar 4.5.

Gambar 4.5 Selisih Indeks Kedalaman KemiskinanKabupaten/Kota Jawa Timur Tahun 2012 dan 2013

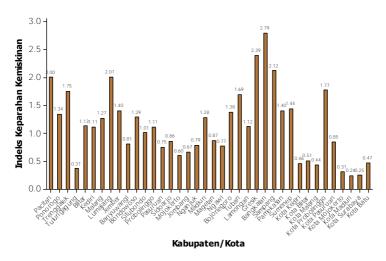

Informasi yang didapatkan melalui Gambar 4.5 adalah kenaikan nilai indeks kedalaman kemiskinan tertinggi terjadi pada Kota Probolinggo, yaitu sebesar 2,103.Hal ini menunjukkan bahwa salah satu faktor penyebab naiknya nilai indeks kedalaman kemiskinan pada tahun 2013 adalah kenaikan tertinggi nilai indeks kedalaman kemiskinan di Kota Probolinggo. Sedangkan penurunan nilai indeks kedalaman tertinggi terjadi pada Kabupaten Lumajang, dengan penurunan sebesar 0,57.

4.1.3 Karakteristik Indeks Keparahan Kemiskinan

Karakteristik indeks keparahan kemiskinan dapat dilihat melalui Lampiran 5. Pada Lampiran 5 tersebut dapat diketahui bahwa rata-rata indeks keparahan kemiskinan tertinggi dimiliki oleh Kabupaten Bangkalan, yaitu sebesar 1,693. Selain rata-rata tertinggi, Kabupaten Bangkalan juga memiliki deviasi standar dan nilai maksimum tertinggi, yaitu masing-masing sebesar 0,74 dan 2,79.

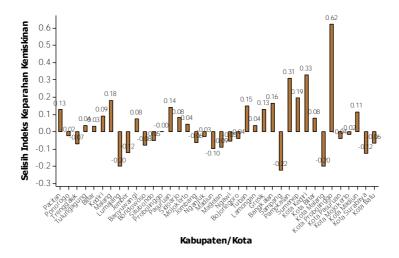

Sedangkan Kabupaten Sampang memiliki nilai minimum indeks keparahan kemiskinan tertinggi yaitu sebesar 0,966.

Karakteristik indeks keparahan kemiskinan di Jawa Timur juga disajikan dalam bentuk *time series plot*. Dalam hal ini bertujuan untuk mengetahui perkembangan indeks keparahan di Jawa Timur dari tahun 2005 hingga 2013.Adapun hasilnya berdasarkan Lampiran 2dapat dilihat melalui Gambar 4.6.



Gambar 4.6 Indeks Keparahan Kemiskinan di Jawa Timur Tahun 2005-2013

Pola perkembangan indeks keparahan kemiskinan di Jawa Timur hampir sama dengan pola perkembangan indeks kedalaman kemiskinan di Jawa Timur. Berdasarkan Gambar 4.3 dapat diketahui bahwa indeks keparahan kemiskinan tertinggi terjadi pada tahun 2007 dan 2008 yaitu sebesar 1,15. Sedangkan indeks keparahan kemiskinan tahun 2013 adalah sebesar 0,503171, dimana nilai ini merupakan nilai yang tinggi dibandingkan nilai indeks keparahan kemiskinan dalam 5 tahun terakhir. Sebagai informasi tambahan, maka akan disajikan indeks keparahan kemiskinan tertinggi yaitu pada tahun 2007 dan 2008. Berdasarkan data pada Lampiran 1 berikut akan disajikan melalui Gambar 4.7.

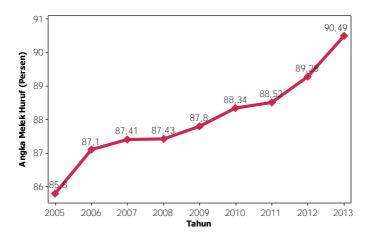

(a) Tahun 2007

(b) Tahun 2008

Gambar 4.7 Indeks Keparahan Kemiskinan Kabupaten/Kota Jawa Timur

Berdasarkan Gambar 4.7(a) dapat diketahui bahwa Kabupaten Bangkalan memiliki nilai indeks keparahan kemiskinan tertinggi, yaitu sebesar 1,95, dan indeks keparahan tertinggi kedua dimiliki oleh Kabupaten Sumenep, yaitu sebesar 1,46. Hal yang sama juga terjadi pada tahun 2008 (Gambar 4.7(b)). Nilai indeks keparahan kemiskinan tertinggi juga terjadi di Kabupaten Bangkalan, yaitu sebesar 2,79. Namun, indeks keparahan kemiskinan tertinggi kedua terjadi di Kabupaten Gresik, yaitu sebesar 2,39. Selain itu, untuk mengetahui, Kabupaten manakah yang memberikan kontribusi tertinggi dalam kenaikan indeks keparahan kemiskinan tahun 2013, maka akan disajikan grafik selisih indeks keparahan kemiskinan antara tahun 2012 dan 2013. Berikut akan disajikan melalui Gambar 4.8.

Gambar 4.8Selisih Indeks Keparahan KemiskinanKabupaten/Kota Jawa Timur Tahun 2012 dan 2013

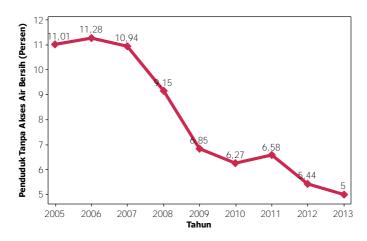

Informasi yang didapatkan melalui Gambar 4.8 adalah kenaikan nilai indeks keparahan kemiskinan tertinggi terjadi pada Kota Probolinggo, yaitu sebesar 0,62. Hal ini menunjukkan bahwa salah satu faktor penyebab naiknya nilai indeks keparahan kemiskinan pada tahun 2013 adalah kenaikan tertinggi nilai in-

deks keparahan kemiskinan di Kota Probolinggo. Sedangkan penurunan nilai indeks keparahan tertinggi terjadi pada Kabupaten Sampang, dengan penurunan sebesar 0,2.

4.1.4 Karakteristik Angka Melek Huruf

Karakteristik angka melek huruf pada masing-masing Kabupaten/Kota di Jawa Timur disajikan pada Lampiran 6.Dapat diketahui bahwa Kabupaten Sampang memiliki rata-rata, nilai minimum, dan nilai maksimum terendah dibandingkan Kabupaten/Kota lainnya di Jawa Timur.Adapun besarnya rata-rata, nilai minimum, dan maksimum dari Kabupaten Sampang masingmasing adalah sebesar 65,684; 61,8; dan 69,47 persen. Deviasi standar terendah dimiliki oleh Kabupaten Sidoarjo yakni sebesar 0,231.

Karakteristik angka melek huruf di Jawa Timur juga disajikan dalam bentuk *time series plot*. Hal ini bertujuan untuk mengetahui perkembangan angka melek huruf di Jawa Timur dari tahun 2005 hingga 2013. Adapun hasilnya berdasarkan Lampiran 2 dapat dilihat melalui Gambar 4.9.

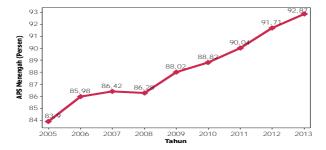

Gambar 4.9 Angka Melek Huruf di Jawa Timur Tahun 2005-2013

Gambar 4.9 menunjukkan pola perkembangan angka melek huruf di Jawa Timur.Informasi yang didapatkan melalui Gambar 4.9 adalah terdapat kecenderungan kenaikan pada pola perkembangan angka melek huruf di Jawa Timur tahun 2005 hingga 2013.

4.1.5 Karakteristik Penduduk Tanpa Akses Air Bersih

Karakteristik persentase penduduk Tanpa Air Bersihdi Kabupaten/Kota di Jawa Timur disajikan pada Lampiran 7.Pada Lampiran 7 diberikan informasi bahwa rata-rata dan nilai minimum tertinggi dimiliki oleh Kabupaten Pacitan yaitu sebesar 29,87 dan 16,5 persen. Sedangkan Kabupaten Sampang memiliki nilai deviasi standar dan nilai maksimum tertinggi yaitu sebesar 11,67 dan 53,33 persen.

Karakteristik penduduk tanpa akses air bersih di Jawa Timur juga disajikan dalam bentuk *time series plot*. Hal ini bertujuan untuk mengetahui perkembangan persentase penduduk di Jawa Timur yang tidak mendapat akses air bersih. Adapun hasilnya berdasarkan Lampiran 2dapat dilihat melalui Gambar 4.10.

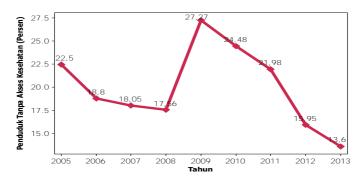

Gambar 4.10 Persentase Penduduk Tanpa Akses Air Bersih di Jawa Timur Tahun 2005-2013

Pola perkembangan penduduk tanpa air di bersih di Jawa Timur cenderung mengalami penurunan.Hal ini dapat dilihat melalui Gambar 4.10.Penurunan tertinggi terjadi pada tahun 2009. Dimana pada tahun 2008 penduduk tanpa air bersih adalah sebesar 9,15 persen menjadi 6,85 persen pada tahun 2009. Penduduk tanpa akses air bersih pada tahun 2013 adalah sebesar 5 persen.

4.1.6Karakteristik Angka Partisipasi Sekolah Usia Menengah

Angka partisipasi sekolah usia menengah memiliki karakteristik yang disajikan pada Lampiran 8. Informasi yang didapatkan melalui Lampiran 8adalah Kabuparen/Kota di Jawa timur yang memiliki karakteristik angka partisipasi sekolah usia menengah terendah adalah Kabupaten Bangkalan. Hal ini dapat dilihat bahwa Kabupaten Bangkalan memiliki rata-rata, nilai minimum, dan maksimum angka partisipasi sekolah usia menengah terendah, yaitu masing-masing sebesar 74,24; 59,14; dan 85,87 persen. Kabupaten Bangkalan juga memiliki deviasi standar tertinggi, yakni sebesar 8,99.

Karakteristik angka partisipasi sekolah pada usia menengah di Jawa Timur juga disajikan dalam bentuk *time series plot*. Tujuannya adalah untuk mengetahui perkembangan angka partisipasi sekolah usia menengah di Jawa Timur. Adapun hasilnya berdasarkan data pada Lampiran 2dapat dilihat melalui Gambar 4.11.

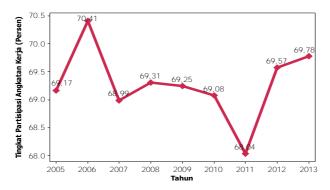

Gambar 4.11 Angka Partisipasi Sekolah Usia Menengah di Jawa Timur Tahun 2005-2013

Pola perkembangan angka partisipasi sekolah usia menengah di Jawa Timur cenderung mengalami kenaikan. Hal ini dapat dilihat melalui Gambar 4.11.Angka partisipasi sekolah usia menengah pada tahun 2013 mencapai angka 92,870 persen.

4.1.7 Karakteristik Penduduk Tanpa Akses Kesehatan

Karakteristik masing-masing Kabupaten/Kota di Jawa Timur mengenai persentase penduduk yang tidak mendapat akses kesehatan dapat dilihat melalui Lampiran 9. Melalui Lampiran 9 dapat diketahui bahwa rata-rata penduduk tanpa akses kesehatan tertinggi adalah Kabupaten Sampang yaitu sebesar 58,88 persen. Deviasi standar tertinggi sebesar 19,96 adalah Kabupaten Nganjuk. Sedangkan nilai minimum tertinggi dimiliki oleh Kabupaten Sumenep yaitu sebesar 47,24 persen. Nilai maksimum tertinggi dimiliki oleh Kabupaten Sampang dengan nilai 72,71 persen.

Karakteristik penduduk tanpa akses kesehatan di Jawa Timur juga disajikan dalam bentuk *time series plot*. Tujuannya adalah untuk mengetahui perkembangan persentase penduduk yang tidak mendapatkan akses kesehatan di Jawa Timur.Adapun hasilnya berdasarkan data pada Lampiran 2dapat dilihat melalui Gambar 4.12.

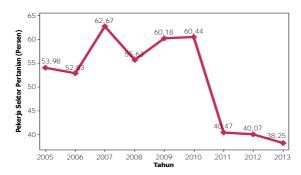

Gambar 4.12 Persentase Penduduk Tanpa Akses Kesehatan di Jawa Timur Tahun 2005-2013

Gambar 4.12 menunjukkan pola perkembangan persentase penduduk yang tidak mendapat akses kesehatan di Jawa Timur tahun 2005 hingga 2013.Persentase tertinggi terjadi pada tahun 2009 yaitu jumlah penduduk yang tidak mendapat akses kesehatan adalah sebesar 27,27 persen. Nilai ini kemudian mengalami penurunan hingga tahun 2013 jumlah penduduk yang tidak mendapat akses kesehatan adalah sebesar 13,6 persen.

4.1.8 Karakteristik Tingkat Partisipasi Angkatan Kerja

Karakteristik tingkat partisipasi angkatan kerjamasing-masing Kabupaten/Kota di Jawa Timur disajikan pada Lampiran 10.Pada Lampiran 10 dapat diketahui bahwa Kota Madiun memiliki rata-rata dan nilai minimum tingkat partisipasi angkatan kerja terendah yaitu masing-masing sebesar 62,91 dan 56,65 persen. Deviasi standar tertinggi dimiliki oleh Kabupaten Pacitan.Sedangkan Kota Blitar memiliki nilai maksimum tingkat partisipasi angkatan kerja terendah yaitu sebesar 66,534 persen.

Karakteristik tingkat partisipasi angkatan kerja di Jawa Timur juga disajikan dalam bentuk *time series plot*. Tujuannya adalah untuk mengetahui perkembangan tingkat partisipasi angkatan kerja di Jawa Timur.Adapun hasilnya berdasarkan data pada Lampiran 2 dapat dilihat melalui Gambar 4.13.

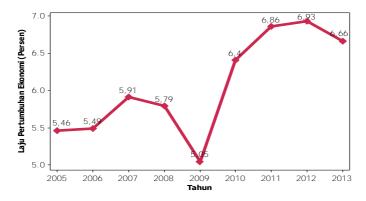

Gambar 4.13 Tingkat Partisipasi Angkatan Kerja di Jawa Timur Tahun 2005-2013

Gambar 4.13 menunjukkan pola perkembangan tingkat partisipasi angkatan kerja di Jawa Timur tahun 2005 hingga 2013. Tingkat partisipasi angkatan kerja terendah terjadi pada tahun 2011 yaitu sebesar 68,037 persen. Tingkat partisipasi angkatan kerja tertinggi terjadi pada tahun 2006 yaitu sebesar 70,410 persen. Di tahun 2013 tingkat partisipasi angkatan kerja mencapai angka 69,776 persen.

4.1.9 Karakteristik Pekerja di Sektor Pertanian

Karakteristik masing-masing Kabupaten/Kota di Jawa Timur mengenai penduduk yang bekerja di sektor pertaniandisajikan pada Lampiran 11. Lampiran 11memberikan informasi bahwa rata-rata tertinggi penduduk yang bekerja di sektor pertanian adalah Kabupaten Pamekasan yaitu sebesar 75,83 persen. Deviasi standar tertinggi sebesar 14,78 adalah Kabupaten Kediri. Sedangkan nilai minimum tertinggi dimiliki oleh Kabupaten Pacitan yaitu sebesar 64,99 persen. Nilai maksimum tertinggi dimiliki oleh Kabupaten Sampang dengan nilai 88,89 persen.

Karakteristik persentase jumlah penduduk yang bekerja di sektor pertanian di Jawa Timur juga disajikan dalam bentuk *time series plot*. Tujuannya adalah untuk mengetahui perkembangan persentase jumlah penduduk yang bekerja di sektor pertanian di Jawa Timur. Adapun hasilnya berdasarkan data pada Lampiran 2 dapat dilihat melalui Gambar 4.14.

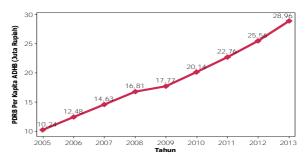

Gambar 4.14 Pekerja di Sektor Pertanian di Jawa Timur Tahun 2005-2013

Gambar 4.14 menunjukkan pola perkembangan persentase penduduk yang bekerja di sektor pertanian di Jawa Timur tahun 2005 hingga 2013.Persentase penduduk yang bekerja di sektor pertanian terendah terjadi pada tahun 2013 yaitu sebesar 38,25 persen. Persentase penduduk yang bekerja di sektor pertanian tertinggi terjadi pada tahun 2007 yaitu sebesar 62,67 persen.

4.1.10Karakteristik Laju Pertumbuhan Ekonomi

Karakteristik laju pertumbuhan ekonomi masing-masing Kabupaten/Kota di Jawa Timur dapat dilihat pada Lampiran 12. Lampiran 12didapatkan informasi bahwa rata-rata laju pertumbuhan ekonomi terendah adalah Kabupaten Sumenep yaitu sebesar 4,983 persen.Deviasi standar tertinggi sebesar 2,512 adalah Kabupaten Bojonegoro. Sedangkan nilai minimum terendah dimiliki oleh Kota Kediri yaitu sebesar 1,58 persen. Nilai maksimum terendah dimiliki oleh Kabupaten Sampang dengan nilai 6,19 persen.

Karakteristik laju pertumbuhan ekonomi di Jawa Timur juga disajikan dalam bentuk *time series plot*. Hal ini bertujuan untuk mengetahui perkembangan persentase laju pertumbuhan ekonomi di Jawa Timur. Adapun hasilnya berdasarkan data pada Lampiran 2dapat dilihat melalui Gambar 4.15.


Gambar 4.15 Laju Pertumbuhan Ekonomi Jawa Timur Tahun 2005-2013

Gambar 4.15 menunjukkan pola perkembangan laju pertumbuhan ekonomi Jawa Timur tahun 2005 hingga 2013. Informasi yang didapatkan adalah terdapat kecenderungan pola kenaikan laju pertumbuhan ekonomi Jawa Timur. Selama 2005 hingga 2013, laju pertumbuhan ekonomi terendah terjadi pada tahun 2009 yaitu sebesar 5,046 persen. Laju pertumbuhan ekonomi tertinggi terjadi pada tahun 2012 yaitu sebesar 6,929 persen. Pada tahun 2013 laju pertumbuhan ekonomi Jawa Timur mencapai angka 6,663 persen.

4.1.11 Karakteristik PDRB Per Kapita ADHB

Karakteristik PDRB per kapita ADHB masing-masing Kabupaten/Kota di Jawa Timur dapat dilihat pada Lampiran 13. Lampiran 13 didapatkan informasi bahwa rata-rata PDRB per kapita ADHB terendah adalah Kabupaten Pacitan yaitu sebesar 5,722 juta rupiah. Deviasi standar tertinggi sebesar 64,6 adalah Kota Kediri. Sedangkan nilai minimum terendah dimiliki oleh Kabupaten Pacitan yaitu sebesar 3,245 juta rupiah.Nilai maksimum terendah dimiliki oleh Kabupaten Pamekasansebesar 8,675 juta rupiah.

Karakteristik PDRB per kapita ADHB di Jawa Timur disajikan dalam bentuk *time series plot*. Hal ini bertujuan untuk mengetahui perkembangan PDRB per kapitaADHB di Jawa Timur. Adapun hasilnya berdasarkan data pada Lampiran 2 dapat dilihat melalui Gambar 4.16.

Gambar 4.16 PDRB Per Kapita ADHB Jawa Timur Tahun 2005-2013

Gambar 4.16 menunjukkan pola perkembangan PDRB per kapita ADHB Jawa Timur tahun 2005 hingga 2013. Informasi yang didapatkan adalah terjadi kenaikan pada pola perkembangan PDRB per kapita ADHB Jawa Timur. Pada tahun 2013 PDRB per kapita ADHB Jawa Timur mencapai angka 28,965 juta rupiah.

4.2 Uji Multikolinearitas

Salah satu asumsi regresi klasik yang harus dipenuhi adalah tidak adanya korelasi yang tinggi antar variabel prediktor atau disebut juga tidak ada multikolinearitas. Dalam regresi data panel, asumsi tersebut juga perlu dipenuhi. Pengujian multikolinearitas dilakukan dengan melihat nilai VIF masing-masing variabel prediktor. Nilai VIF untuk masing-masing variabel prediktor pada Lampiran 14 akan disajikan pada Tabel 4.1.

Tabel 4.1 Hasil Uji Multikolinearitas

Variabel	VIF
Angka Melek Huruf	4,053
Penduduk Tanpa Akses Air Bersih	1,954
Angka Partisipasi Sekolah Usia Menengah	2,61
Penduduk Tanpa Akses Kesehatan	2,963
Tingkat Partisipasi Angkatan Kerja	1,905
Pekerja di Sektor Pertanian	3,164
Laju Pertumbuhan Ekonomi	1,155
PDRB Per Kapita	1,238

Tabel 4.1 memberikan informasi bahwa tidak terjadi multikolinearitas diantara variabel prediktor.Hal ini dapat diketahui karena semua variabel prediktor memiliki nilai VIF lebih kecil dari 10. Seperti yang telah dijelaskan pada bab 2, kasus multikolinearitas terjadi jika nilai VIF lebih besar dari 10.

4.3 Pemodelan Persentase Penduduk Miskin Kabupaten/Kota Jawa Timur

Pemodelan regresi data panel untuk variabel respon persentase penduduk miskin di Jawa Timur akan dilakukan berdasarkan model dengan semua variabel prediktor masuk ke dalam model dan model dengan variabel prediktor yang signifikan.

4.3.1 Pemodelan Persentase Penduduk Miskin dengan Semua Variabel Prediktor

Langkah-langkah dalam pemodelan meliputi spesifikasi model, pemilihan metode estimasi model regresi data panel, estimasi model, pengujian asumsi residual dari model yang telah terbentuk, serta pengujian signifikansi parameter.

4.3.1.1 Spesifikasi Model Persentase Penduduk Miskin

Model regresi untuk variabel respon persentase penduduk miskin di Kabupaten/Kota Jawa Timur tahun 2005-2013 adalah sebagai berikut:

$$\ln(y_{1_{it}}) = \alpha_{0i} + \beta_1 X_{1_{it}} + \beta_2 X_{2_{it}} + \beta_3 X_{3_{it}} + \beta_4 X_{4_{it}} + \beta_5 X_{5_{it}} + \beta_6 X_{6_{it}} + \beta_7 X_{7_{it}} + \beta_8 X_{8_{it}} + \varepsilon$$

Tanda dari masing-masing parameter adalah sebagai berikut:

- a. $\alpha_{0i} > 0$ karena α_{0i} menunjukkan persentase penduduk miskin di Kabupaten/Kota ke-*i* ketika variabel prediktor bernilai nol, sehingga besarnya α_{0i} tidak mungkin negatif
- b. Tanda yang diharapkan dari $\beta_1, \beta_3, \beta_5, \beta_7$, dan β_8 adalah negatif ($\beta_1 < 0, \beta_3 < 0, \beta_5 < 0, \beta_7 < 0$, dan $\beta_8 < 0$). Hal ini berdasarkan uraian pada subbab sebelumnya yang menunjukkan bahwa variabel X_1, X_3, X_5, X_7 , dan X_8 memiliki hubungan yang berbanding terbalik dengan persentase penduduk miskin.
- c. Tanda yang diharapkan dari β_2 , β_4 , dan β_6 adalah positif $(\beta_2 > 0, \beta_4 > 0, \text{dan } \beta_6 > 0)$. Hal ini berdasarkan uraian pada subbab sebelumnya yang menunjukkan bahwa variabel X_2 , X_4 , dan X_6 memiliki hubungan yang berbanding lurus dengan persentase penduduk miskin.

4.3.1.2 Pemilihan Metode Estimasi Model Persentase Penduduk Miskin

Metode estimasi model regresi data panel terdiri dari tiga metode, yaitu CEM, FEM, dan REM. Sebelum dilakukan pemodelan, maka terlebih dahulu dilakukan pengujian untuk mengetahui metode estimasi terbaik. Terdapat tiga pengujian yaitu Uji Statistik F, Uji *Hausman*, dan Uji *Lagrange Multiplier*. Namun, tidak semua pengujian perlu dilakukan. Hal ini bergantung pada hasil pengujian sebelumnya.

Statistik uji yang digunakan dalam pengujian untuk memilih antara metode CEM dan FEM adalah statistik uji F. Hasil pengujian pada Lampiran 15 akandisajikan melalui Tabel 4.2.

Tabel 4.2 Uji Statistik F untuk Model Persentase Penduduk Miskin dengan Semua Variabel Prediktor

Variabel Respon	Fhitung	Ftabel	P-value	Keputusan
ln Y ₁	25,497	1,451	0,000	Tolak H0

Pengujian dikatakan signifikan jika nilai F hitung lebih besar dibanding F tabel pada taraf signifikansi α dengan deraiat bebas n-1 dan nT-n-k yang memberikan kesimpulan bahwa metode estimasi yang sesuai adalah model FEM. Pada taraf signifikansi 0,05 dengan derajat bebas 37 dan 296 didapatkan nilai F tabel sebesar 1,451. Berdasarkan Tabel 4.2 dapat diketahui bahwa pengujian menunjukkan keputusan Tolak H₀.Sehingga metode estisesuai **FEM** lebih dibandingkan metode masi CEM.Karena menunjukkan keputusan Tolak H₀pada pengujian statistik F, perlu diuji kembali menggunakan uji Hausman.Jika keputusan pada pengujian statistik F menunjukkan keputusan Gagal Tolak H₀ maka dilanjutkan pengujian Lagrange Multiplier. Dalam hal ini, pengujian Lagrange Multiplier tidak perlu dilakukan sebab hasil pengujian menunjukkan keputusan Tolak H₀.

Uji *Hausman* dilakukan untuk mengetahu metode estimasi yang sesuai antara REM dan FEM. Hasil pengujian pada Lampiran 15 dapat dilihat melalui Tabel 4.3.

Schida variaber i rediktor					
Variabel Respon	W	Chi- Square	P-value	Keputusan	
ln Y ₁	15,339	15,51	0,0529	Gagal Tolak H0	

Tabel 4.3 Uji *Hausman* untuk Model Persentase Penduduk Miskin dengan Semua Variabel Prediktor

Hasil uji *Hausman* dikatakan signifikan jika nilai statistik uji *W* lebih besar dibanding *Chi-Square* pada taraf signifikansi α dengan derajat bebas *k*. Taraf signifikansi yang digunakan adalah sebesar 0,05, sehingga dengan derajat bebas 8 didapatkan nilai *Chi-Square* sebesar 15,51. Tabel 4.3 menunjukkan bahwa didapatkan keputusan Gagal Tolak H₀ yang artinya model estimasi yang sesuai adalah model REM. Sehingga metode estimasi untuk pemodelan persentase penduduk miskin di Kabupaten/Kota Jawa Timur tahun 2005-2013 dengan semua variabel prediktor adalah metode estimasi *Random Effect Model* (REM).

4.3.1.3 Estimasi Model Persentase Penduduk Miskin

Model regresi data panel untuk pemodelan persentase penduduk miskin di Kabupaten/Kota Jawa Timur tahun 2005-2013 dengan semua variabel prediktor menggunakan model REM (Lampiran 16) adalah sebagai berikut:

$$\begin{array}{ll} \ln \left(\hat{y}_{1_{it}} \right) &= 6,219 - 0,0267X_{1_{it}} + 0,0105X_{2_{it}} - 0,0015X_{3_{it}} \\ &+ 0,0003X_{4_{it}} - 0,0163X_{5_{it}} + 0,0057X_{6_{it}} - 0,0243X_{7_{it}} \\ &- 0,0038X_{8_{it}} \end{array}$$

Adapun komponen *random error* untuk masing-masing Kabupaten/Kota disajikan melalui Tabel 4.4

Tabel 4.4 Random Error Tiap Kabupaten/Kota untuk Model Persentase Penduduk Miskin dengan Semua Variabel Prediktor

No	Kab/Kota	$\hat{oldsymbol{arepsilon}}_{i}$	No	Kab/Kota	$\hat{oldsymbol{arepsilon}}_{i}$
1	Pacitan	0,068062	20	Magetan	0,02427
2	Ponorogo	-0,23098	21	Ngawi	0,022049
3	Trenggalek	0,028904	22	Bojonegoro	0,175495
4	Tulungagung	0,043652	23	Tuban	0,250175
5	Blitar	-0,12772	24	Lamongan	0,085487

Tabel 4.4 Random Error Tiap Kabupaten/Kota untuk Model Persentase Penduduk Miskin dengan Semua Variabel Prediktor (Lanjutan)

No	Kab/Kota	$\hat{oldsymbol{arepsilon}}_i$	No	Kab/Kota	$\hat{oldsymbol{arepsilon}}_i$
6	Kediri	0,14898	25	Gresik	0,405715
7	Malang	-0,13324	26	Bangkalan	0,243354
8	Lumajang	-0,18302	27	Sampang	-0,23141
9	Jember	-0,30476	28	Pamekasan	0,11788
10	Banyuwangi	-0,27196	29	Sumenep	0,178585
11	Bondowoso	-0,21248	30	Kota Kediri	0,754003
12	Situbondo	-0,36832	31	Kota Blitar	-0,14398
13	Probolinggo	0,077583	32	Kota Malang	-0,36463
14	Pasuruan	0,043878	33	Kota Probolinggo	0,384943
15	Sidoarjo	-0,02782	34	Kota Pasuruan	-0,00368
16	Mojokerto	0,144051	35	Kota Mojokerto	-0,07814
17	Jombang	0,186885	36	Kota Madiun	-0,34669
18	Nganjuk	0,138146	37	Kota Surabaya	-0,03598
19	Madiun	0,064556	38	Kota Batu	-0,52186

Model yang telah didapatkan memiliki nilai koefisien determinasi sebesar 61,23 persen. Tanda pada masing-masing koefisien regresi telah sesuai dengan yang diharapkan. Dimana tanda positif terdapat pada variabel X_2 , X_4 , dan X_6 . Sedangkan tanda negatif terdapat pada variabel X_1 , X_3 , X_5 , X_7 , dan X_8 .

4.3.1.4 Pengujian Asumsi Residual Model Persentase Penduduk Miskin

Sebelum dilakukan interpretasi, perlu dilakukan pengujian asumsi residual. Pengujian asumsi residual disajikan sebagai berikut:

a. Residual Identik

Statistik uji yang digunakan dalam pengujian asumsi identik adalah *Breusch-Pagan*. Adapun hasil pengujian pada Lampiran 17 dapat dilihat melalui Tabel 4.5.

Tabel 4.5 Hasil Pengujian Residual Identik untuk Model Persentase Penduduk Miskin dengan Semua Variabel Prediktor

_		Wilsiam dengan bem	aa variaberried	iktor
	Statistik Uji	Chi-Square	P-Value	Keputusan
	214,72	15,15	0,000	Tolak H ₀

Berdasarkan Tabel 4.5 didapatkan kesimpulan bahwa residual belum memenuhi asumsi identik. Hal ini berdasarkan nilai statistik uji *Breusch-Pagan* sebesar 214,72 lebih besar dibandingkan dengan nilai *Chi-Square* dengan derajat bebas 8 yaitu sebesar 15,51. Sehingga diperoleh keputusan Tolak H₀yang artinya terdapat kasus heteroskedastisitas pada model yang terbentuk.

b. Residual Independen

Pada pengujian asumsi independen statistik uji yang digunakan adalah statistik uji *Durbin-Watson*. Hasil pengujian pada Lampiran 17 disajikan melalui Tabel 4.6.

Tabel 4.6 Hasil Pengujian Residual Independen untuk Model Persentase Penduduk Miskin dengan Semua Variabel Prediktor

d	dL	dU	Keputusan
0,827	1,775	1,871	Tolak H ₀

Nilai statistik uji *Durbin-Watson* yang dihasilkan adalah sebesar 0,827.Nilai ini lebih kecil dibandingkan batas bawah (dL) dan batas atas (dU) tabel *Durbin-Watson*.Hasil pengujian yang telah tersaji pada Tabel 4.6 memberikan keputusan Tolak H_0 .Dapat disimpulkan bahwa residual belum memenuhi asumsi independen yang artinya terjadi kasus autokorelasi pada model yang terbentuk.

c. Residual Berdistribusi Normal

Statistik uji yang digunakan pada pengujian residual berdistribusi normal adalah *Kolmogorov-Smirnov*. Adapun hasil pengujian pada Lampiran 18 disajikan pada Tabel 4.7.

Tabel 4.7 Hasil Pengujian Residual Berdistribusi Normal untuk Model Persentase Penduduk Miskin dengan Semua Variabel Prediktor

Kolmogorov-Smirnov	P-Value	Keputusan
0,831	0,494	Gagal Tolak H ₀

Tabel 4.7 memberikan informasi bahwa nilai statistik uji *Kolmogorov-Smirnov* yang dihasilkan adalah sebesar 0,831 dengan p-value sebesar 0,514. Jika dibandingkan dengan $\alpha = 0,05$ maka nilai p-value lebih besar dari α yang menunjukkan bahwa residual telah memenuhi asumsi berdistribusi normal.

4.3.1.5 Pengujian Signifikansi Parameter Model Persentase Penduduk Miskin

Pengujian signifikansi parameter dilakukan secara serentak maupun parsial yang akan disajikan sebagai berikut:

a. Pengujian Serentak

Hasil pengujian secara serentak pada Lampiran 16 dapat dilihat melalui Tabel4.8.

Tabel 4.8 Pengujian Serentak untuk Model Persentase Penduduk Miskin dengan Semua Variabel Prediktor

Fhitung	Ftabel	P-Value	Keputusan
65,737	1,413	0,000	Tolak H ₀

Berdasarkan Tabel 4.8 didapatkan informasi bahwa hasil pengujian serentak memberikan keputusan Tolak H₀ yang artinya minimal terdapat satu variabel prediktor yang signifikan terhadap model.Hal ini berdasarkan hasil Fhitung yang lebih besar dibandingkan nilai Ftabel. Nilai Fhitung sebesar 65,737 dengan *p-value* =0. Sedangkan dengan derajat bebas 45 dan 296 didapatkan nilai Ftabel sebesar 1,413.

b. Pengujian Parsial

Pengujian secara parsial bertujuan untuk mengetahui variabel prediktor mana sajakah yang berpengaruh secara signifikan. Adapun hasil pengujian pada Lampiran 16 akandisajikan melalui Tabel 4.9.

	Senial Variabel Fedicol					
Variabel	thitung	P-Value	Keputusan			
X_1	-5,7029	0,0000	Tolak H ₀			
X_2	5,0725	0,0000	Tolak H ₀			
X_3	-0,6887	0,4915	Gagal Tolak H ₀			
X_4	0,2883	0,7733	Gagal Tolak H ₀			
X_5	-4,8747	0,0000	Tolak H ₀			
X_6	6,3761	0,0000	Tolak H ₀			
X_7	-2,5032	0,0128	Tolak H ₀			
X_8	-6,0380	0,0000	Tolak H ₀			

Tabel 4.9 Pengujian Parsial untuk Model Persentase Penduduk Miskin dengan Semua Variabel Prediktor

Statistik uji yang digunakan pada pengujian parsial adalah statistik uji t. Pengujian dikatakan signifikan jika nilai |thitung|>t-tabel.Pada derajat bebas 296 didapatkan nilai t-tabel sebesar 1,650.Berdasarkan Tabel 4.9 didapatkan informasi bahwa dari 8 variabel, 2 variabel diantaranya diperoleh keputusan Gagal Tolak H₀. Sehingga dapat disimpulkan bahwa variabel X₃ dan X₄pada taraf signifikansi 0,05 tidak berpengaruh secara signifikan terhadap model.

4.3.2 Pemodelan Persentase Penduduk Miskin dengan Variabel Prediktor yang Signifikan

Berdasarkan hasil pengujian parsial yang memberikan informasi bahwa terdapat dua variabel yang tidak signifikan, maka perlu dilakukan pemodelan persentase penduduk miskin kembali tanpa mengikutsertakan variabel yang tidak signifikan ke dalam model.

4.3.2.1 Pemilihan Metode Estimasi Model Persentase Penduduk Miskin

Pada pemodelan dengan variabel prediktor yang signifikan, dilakukan kembali pemilihan metode estimasi model regresi data panel.Hasil pengujian statistik F untuk pemilihan antara metode CEM dan FEM pada Lampiran 19 disajikan melalui Tabel 4.10.

Tabel 4.10 Uji Statistik F untuk Model Persentase Penduduk Miskin dengan Variabel Signifikan

Variabel Respon	Fhitung	Ftabel	P-value	Keputusan
ln Y ₁	25,622	1,451	0,000	Tolak H0

Pada taraf signifikansi 0,05 dengan derajat bebas 37 dan 298 didapatkan nilai F tabel sebesar 1,451. Berdasarkan Tabel 4.10 pengujian menunjukkan keputusan Tolak H₀.Sehingga metode estimasi FEM lebih sesuai dibandingkan metode estimasi CEM.

Pengujian dilanjutkan dengan uji *Hausman* dengan hasil pengujian pada Lampiran 19 dapat dilihat melalui Tabel 4.11.

Tabel 4.11 Uji *Hausman* untuk Model Persentase Penduduk Miskin dengan Variabel Signifikan

Variabel Respon	W	Chi- Square	P-value	Keputusan
ln Y ₁	15,718	12,59	0,0153	Tolak H0

Taraf signifikansi yang digunakan adalah sebesar 0,05, sehingga dengan derajat bebas 6 didapatkan nilai *Chi-Square* sebesar 12,59. Tabel 4.11 menunjukkan bahwa didapatkan keputusan Tolak H₀ yang artinya model estimasi yang sesuai adalah model FEM. Sehingga metode estimasi untuk pemodelan persentase penduduk miskin di Kabupaten/Kota Jawa Timur tahun 2005-2013 dengan variabel prediktor yang signifikan adalah metode estimasi *Fixed Effect Model* (FEM).

4.3.2.2 Estimasi Model Persentase Penduduk Miskin

Model regresi data panel untuk pemodelan persentase penduduk miskin di Kabupaten/Kota Jawa Timur tahun 2005-2013 dengan variabel prediktor yang signifikan menggunakan model FEM (Lampiran 20) adalah sebagai berikut:

$$\begin{array}{ll} \ln \left(\hat{y}_{1_{it}} \right) &= \hat{\alpha}_i - 0.0333 X_{1_{it}} + 0.0105 X_{2_{it}} - 0.0162 X_{5_{it}} \\ &+ 0.0063 X_{6_{it}} - 0.0053 X_{8_{it}} \end{array}$$

Adapun nilai intersep untuk masing-masing Kabupaten/Kota disajikan melalui Tabel 4.12.

Tabel 4.12 Nilai Intersep Tiap Kabupaten/Kota untuk Model Persentase Penduduk Miskin dengan Variabel Signifikan

No	Kab/Kota	$\widehat{\alpha}_i$	No	Kab/Kota	$\widehat{\alpha}_i$
1	Pacitan	6,5649	20	Magetan	6,5280
2	Ponorogo	6,2199	21	Ngawi	6,4856
3	Trenggalek	6,5466	22	Bojonegoro	6,5849
4	Tulungagung	6,5750	23	Tuban	6,7297
5	Blitar	6,3823	24	Lamongan	6,5558
6	Kediri	6,6909	25	Gresik	6,9624
7	Malang	6,3740	26	Bangkalan	6,7443
8	Lumajang	6,3139	27	Sampang	6,1460
9	Jember	6,1594	28	Pamekasan	6,5722
10	Banyuwangi	6,2140	29	Sumenep	6,6423
11	Bondowoso	6,2199	30	Kota Kediri	7,6599
12	Situbondo	6,0607	31	Kota Blitar	6,4156
13	Probolinggo	6,5389	32	Kota Malang	6,2234
14	Pasuruan	6,5518	33	Kota Probolinggo	6,9396
15	Sidoarjo	6,5631	34	Kota Pasuruan	6,5673
16	Mojokerto	6,6876	35	Kota Mojokerto	6,5007
17	Jombang	6,7168	36	Kota Madiun	6,2193
18	Nganjuk	6,6457	37	Kota Surabaya	6,6094
19	Madiun	6,5642	38	Kota Batu	5,9835

Nilai koefisien determinasi dari model yang telah didapatkan adalah sebesar 92,85persen. Tanda pada masing-masing koefisien regresi telah sesuai dengan yang diharapkan. Dimana tanda positif terdapat pada variabel X_2 dan X_6 . Sedangkan tanda negatif terdapat pada variabel X_1 , X_5 , dan X_8

4.3.2.3 Pengujian Asumsi Residual Model Persentase Penduduk Miskin

Pengujian asumsi residual disajikan sebagai berikut:

a. Residual Identik

Statistik uji yang digunakan dalam pengujian asumsi identik adalah *Breusch-Pagan*. Adapun hasil pengujian pada Lampiran 21 dapat dilihat melalui Tabel 4.13.

Tabel 4.13 Hasil Pengujian Residual Identik untuk Model Persentase Penduduk Miskin dengan Variabel Signifikan

_		Wiiskiii uciigaii v	ariaber Siginitikan	
	Statistik Uji	Chi-Square	P-Value	Keputusan
	13,539	11,07	0,019	Tolak H ₀

Berdasarkan Tabel 4.6 didapatkan kesimpulan bahwa residual belum memenuhi asumsi identik. Hal ini berdasarkan nilai statistik uji *Breusch-Pagan* sebesar 13,539 lebih besar dibandingkan dengan nilai *Chi-Square* dengan derajat bebas 5 yaitu sebesar 11,07. Sehingga diperoleh keputusan Tolak H₀yang artinya terdapat kasus heteroskedastisitas pada model yang terbentuk.

b. Residual Independen

Pada pengujian asumsi independen statistik uji yang digunakan adalah statistik uji *Durbin-Watson*. Hasil pengujian pada Lampiran 20 disajikan melalui Tabel 4.14.

Tabel 4.14 Hasil Pengujian Residual Independen untuk Model Persentase Penduduk Miskin dengan Variabel Signifikan

		8	
d	dL	dU	Keputusan
0,964	1,793	1,852	Tolak H ₀

Nilai statistik uji Durbin-Watson yang dihasilkan adalah sebesar 0,964.Nilai ini lebih kecil dibandingkan batas bawah (dL) dan batas atas (dU) tabel Durbin-Watson.Hasil pengujian yang telah tersaji pada Tabel 4.14 memberikan keputusan Tolak H_0 .Dapat disimpulkan bahwa residual belum memenuhi asumsi independen yang artinya terjadi kasus autokorelasi pada model yang terbentuk.

c. Residual Berdistribusi Normal

Statistik uji yang digunakan pada pengujian residual berdistribusi normal adalah *Kolmogorov-Smirnov*. Adapun hasil pengujian pada Lampiran 22 disajikan melalui Tabel 4.15.

Tabel 4.15 Hasil Pengujian Residual Berdistribusi Normal untuk Model Persentase Penduduk Miskin dengan Variabel Signifikan

Kolmogorov-Smirnov	P-Value	Keputusan
1,062	0,210	Gagal Tolak H ₀

Tabel 4.15 memberikan informasi bahwa nilai statistik uji Kolmogorov-Smirnov yang dihasilkan adalah sebesar 1,062 dengan p-value sebesar 0,514. Jika dibandingkan dengan a = 0,05 maka nilai p-value lebih besar dari a yang menunjukkan bahwa residual telah memenuhi asumsi berdistribusi normal.

4.3.2.4 Pengujian Signifikansi Parameter Model Persentase Penduduk Miskin

Pengujian signifikansi parameter dilakukan secara serentak maupun parsial yang akan disajikan sebagai berikut:

a. Pengujian Serentak

Hasil pengujian secara serentak pada Lampiran 20 dapat dilihat melalui Tabel4.16.

Tabel 4.16 Pengujian Serentak untuk Model Persentase Penduduk Miskin dengan Variabel Signifikan

_				
	Fhitung	Ftabel	P-Value	Keputusan
	92,404	1,425	0,000	Tolak H ₀

Berdasarkan Tabel 4.16 didapatkan informasi bahwa hasil pengujian serentak memberikan keputusan Tolak H₀ yang artinya minimal terdapat satu variabel prediktor yang signifikan terhadap model.Hal ini berdasarkan hasil Fhitung yang lebih besar dibandingkan nilai Ftabel. Nilai Fhitung sebesar 92,404 dengan *p-value* =0. Sedangkan dengan derajat bebas 42 dan 299 didapatkan nilai Ftabel sebesar 1,425.

b. Pengujian Parsial

Pengujian secara parsial bertujuan untuk mengetahui variabel prediktor mana sajakah yang berpengaruh secara signifikan. Adapun hasil pengujian pada Lampiran 20 disajikan melalui Tabel 4.17.

Tabel 4.17 Pengujian Parsial untuk Model Persentase Penduduk Miskin dengan Variabel Signifikan

Variabel	thitung	P-Value	Keputusan
X_1	-6,0379	0,0000	Tolak H ₀
X_2	4,9790	0,0000	Tolak H ₀
X_5	-4,6302	0,0000	Tolak H ₀
X_6	7,4323	0,0000	Tolak H ₀
X_8	-7,9987	0,0000	Tolak H ₀

Pada derajat bebas 299 didapatkan nilai t-tabel sebesar 1,650. Berdasarkan Tabel 4.17 didapatkan informasi bahwa semua variabel memberikan keputusan Tolak $\rm H_0$. Sehingga pada taraf signifikansi 0,05, semua variabel berpengaruh secara signifikan terhadap model.

Berdasarkan uraian yang telah dijabarkan model estimasi yang sesuai untuk pemodelan persentase penduduk miskin menurut Kabupaten/Kota di Jawa Timur tahun 2005-2013 dengan variabel prediktor yang signifikan adalah sebagai berikut:

$$\ln(\hat{y}_{1_{it}}) = \hat{\alpha}_i - 0.0333X_{1_{it}} + 0.0105X_{2_{it}} - 0.0162X_{5_{it}} + 0.0063X_{6_{it}} - 0.0053X_{8_{it}}$$

Untuk memudahkan dalam interpretasi, maka pemodelan persentase penduduk miskin dapat dituliskan sebagai berikut:

$$\hat{y}_{1_{it}} = \exp(\hat{\alpha}_i - 0.0333X_{1_{it}} + 0.0105X_{2_{it}} - 0.0162X_{5_{it}} + 0.0063X_{6_{it}} - 0.0053X_{8_{it}})$$

Interpretasi dari model yang telah didapatkan adalah setiap penambahan satu persen angka melek huruf, maka akan memperkecil persentase penduduk miskin sebesar 100%*(e^{0,0333}-1) = 3,38 persen dengan asumsi variabel lain tetap. Setiap penambahan satu persen penduduk yang tidak mendapat akses air bersih, maka akan memperbesar persentase penduduk miskin sebesar 100%*

 $(e^{0.0105}-1)=1,06$ persen dengan asumsi variabel lain tetap. Setiap penambahan satu persen tingkat partisipasi angkatan kerja, maka akan memperkecil persentase penduduk miskin sebesar $100\%*(e^{0.0162}-1)=1,63$ persen dengan asumsi variabel lain tetap. Setiap penambahan satu persen penduduk yang bekerja di sektor pertanian, maka akan memperbesar persentase penduduk miskin sebesar $100\%*(e^{0.0063}-1)=0,63$ persen dengan asumsi variabel lain tetap. Setiap penambahan satu juta rupiah PDRB per kapita ADHB, maka akan memperkecil persentase penduduk miskin sebesar $100\%*(e^{0.0053}-1)=0,53$ persen dengan asumsi variabel lain tetap.

4.4 Pemodelan Indeks Kedalaman Kemiskinan Kabupaten/Kota Jawa Timur

Pemodelan regresi data panel untuk variabel respon indeks kedalaman kemiskinan di Jawa Timur akan dilakukan berdasarkan model dengan semua variabel prediktor masuk ke dalam model dan model dengan variabel prediktor yang signifikan.

4.4.1 Pemodelan Indeks Kedalaman Kemiskinan dengan Semua Variabel Prediktor

Pada bagian ini, beberapa hal yang akan dibahas adalah spesifikasi model, pemilihan metode estimasi model regresi data panel, estimasi model, pengujian asumsi residual dari model yang telah terbentuk, serta pengujian signifikansi parameter.

4.4.1.1 Spesifikasi Model Indeks Kedalaman Kemiskinan

Model regresi untuk variabel respon ideks kedalaman kemiskinan di Kabupaten/Kota Jawa Timur tahun 2005-2013 adalah sebagai berikut:

$$\begin{split} \ln \big(y_{2_{it}} \big) &= \alpha_{0i} + \beta_1 X_{1_{it}} + \beta_2 X_{2_{it}} + \beta_3 X_{3_{it}} + \beta_4 X_{4_{it}} + \beta_5 X_{5_{it}} \\ &+ \beta_6 X_{6_{it}} + \beta_7 X_{7_{it}} + \beta_8 X_{8_{it}} + \varepsilon \end{split}$$

Model yang digunakan adalah model *inverse semilogarith-mic*. Transformasi *ln* pada variabel respon dilakukan untuk me-

menuhi asumsi residual berdistribusi normal. Adapun tanda dari masing-masing parameter adalah sebagai berikut:

- a. $\alpha_{0i} > 0$ karena α_{0i} menunjukkan indeks kedalaman kemiskinan di Kabupaten/Kota ke-*i* ketika variabel prediktor bernilai nol, sehingga besarnya α_{0i} tidak mungkin negatif
- b. Tanda yang diharapkan dari $\beta_1, \beta_3, \beta_5, \beta_7$, dan β_8 adalah negatif ($\beta_1 < 0, \beta_3 < 0, \beta_5 < 0, \beta_7 < 0$, dan $\beta_8 < 0$). Hal ini berdasarkan uraian pada subbab sebelumnya yang menunjukkan bahwa variabel X_1, X_3, X_5, X_7 , dan X_8 memiliki hubungan yang berbanding terbalik dengan indeks kedalaman kemiskinan.
- c. Tanda yang diharapkan dari β_2 , β_4 , dan β_6 adalah positif $(\beta_2 > 0, \beta_4 > 0, \text{dan } \beta_6 > 0)$. Hal ini berdasarkan uraian pada subbab sebelumnya yang menunjukkan bahwa variabel X_2 , X_4 , dan X_6 memiliki hubungan yang berbanding lurus dengan indeks kedalaman kemiskinan.

4.4.1.2 Pemilihan Metode Estimasi Model Indeks Kedalaman Kemiskinan

Statistik uji yang digunakan dalam pengujian untuk memilih antara metode CEM dan FEM adalah statistik uji F. Hasil pengujian pada Lampiran 23 disajikan melalui Tabel 4.18.

Tabel 4.18 Uji Statistik F untuk Model Indeks Kedalaman Kemiskinan dengan Semua Variabel Prediktor

Variabel Respon	Fhitung	Ftabel	P-value	Keputusan
ln Y ₂	9,916	1,451	0,000	Tolak H0

Pada taraf signifikansi 0,05 dengan derajat bebas 37 dan 296 didapatkan nilai F tabel sebesar 1,451. Berdasarkan Tabel 4.18 dapat diketahui bahwa pengujian menunjukkan keputusan Tolak H₀.Sehingga metode estimasi FEM lebih sesuai dibandingkan metode estimasi CEM.

Uji *Hausman* dilakukan untuk mengetahui metode estimasi yang sesuai antara REM dan FEM. Hasil pengujian pada Lampiran 23 dapat dilihat melalui Tabel 4.19.

Seniua Variabel Flediktor				
Variabel Respon	W	Chi- Square	P-value	Keputusan
ln Y ₁	24,135	15,51	0,0022	Tolak H ₀

Tabel 4.19 Uji *Hausman* untuk Model Indeks Kedalaman Kemiskinan dengan Semua Variabel Prediktor

Taraf signifikansi yang digunakan adalah sebesar 0,05, sehingga dengan derajat bebas 8 didapatkan nilai *Chi-Square* sebesar 15,51. Tabel 4.19 menunjukkan bahwa didapatkan keputusan Tolak H₀ yang artinya model estimasi yang sesuai adalah model FEM. Sehingga metode estimasi untuk pemodelan indeks kedalaman kemiskinan di Kabupaten/Kota Jawa Timur tahun 2005-2013 dengan semua variabel prediktor adalah metode estimasi *Fixed Effect Model* (FEM).

4.4.1.3 Estimasi Model Indeks Kedalaman Kemiskinan

Pengujian pemilihan metode estimasi model regresi panel yang telah dilakukan, memberikan informasi bahwa model estimasi yang sesuai untuk variabel respon indeks kedalaman kemiskinan menurut Kabupaten/Kota di Jawa Timur tahun 2005-2013 adalah model FEM dengan efek *cross section*. Berikut akan disajikan model regresi data panel untuk variabel respon indeks kedalaman kemiskinan dengan model FEM efek *cross section*(Lampiran 24):

$$\begin{array}{ll} \ln \left(\hat{y}_{2_{it}} \right) &= \hat{\alpha}_{i} - 0.0518 X_{1_{it}} + 0.0088 X_{2_{it}} - 0.0085 X_{3_{it}} \\ &+ 0.0005 X_{4_{it}} - 0.0183 X_{5_{it}} + 0.0081 X_{6_{it}} - 0.0408 X_{7_{it}} \\ &- 0.0066 X_{8_{it}} \end{array}$$

Adapun nilai intersep untuk masing-masing Kabupaten/Kota disajikan melalui Tabel 4.20.

Tabel 4.20 Nilai Intersep Tiap Kabupaten/Kota untuk Model Indeks Kedalaman Kemiskinan dengan Semua Variabel Prediktor

No	Kab/Kota	$\widehat{\alpha}_i$	No	Kab/Kota	$\widehat{\alpha}_i$
1	Pacitan	7,5395	20	Magetan	7,349465
2	Ponorogo	7,0281	21	Ngawi	7,230133
3	Trenggalek	7,5958	22	Bojonegoro	7,56755
4	Tulungagung	7,4752	23	Tuban	7,591759
5	Blitar	7,3456	24	Lamongan	7,412907
6	Kediri	7,6292	25	Gresik	8,192955
7	Malang	7,2385	26	Bangkalan	7,48684
8	Lumajang	7,0109	27	Sampang	6,529415
9	Jember	6,7474	28	Pamekasan	7,273557
10	Banyuwangi	7,0382	29	Sumenep	7,279193
11	Bondowoso	6,7698	30	Kota Kediri	9,007919
12	Situbondo	6,7089	31	Kota Blitar	7,592541
13	Probolinggo	7,1498	32	Kota Malang	7,453194
14	Pasuruan	7,4536	33	Kota Probolinggo	8,040763
15	Sidoarjo	7,7208	34	Kota Pasuruan	7,705974
16	Mojokerto	7,6526	35	Kota Mojokerto	7,614508
17	Jombang	7,7044	36	Kota Madiun	7,345512
18	Nganjuk	7,5558	37	Kota Surabaya	7,954248
19	Madiun	7,4647	38	Kota Batu	7,076166

Model yang telah didapatkan memiliki nilai koefisien determinasi sebesar 83,20 persen. Tanda pada masing-masing koefisien regresi telah sesuai dengan teori ekonomi.Dimana tanda positif terdapat pada variabel X_2 , X_4 , dan X_6 .Sedangkan tanda negatif terdapat pada variabel X_1 , X_3 , X_5 , X_7 , dan X_8 .

4.4.1.4 Pengujian Asumsi Residual Model Indeks Kedalaman Kemiskinan

Sebelum dilakukan interpretasi, perlu dilakukan pengujian asumsi residual. Pengujian asumsi residual disajikan sebagai berikut:

a. Residual Identik

Statistik uji yang digunakan dalam pengujian asumsi identik adalah *Breusch-Pagan*. Adapun hasil pengujian (Lampiran 25) dapat dilihat melalui Tabel 4.21.

Tabel 4.21 Hasil Pengujian Residual Identik untuk Model Indeks Kedalaman Kemiskinan dengan Semua Variabel Prediktor

Statistik Uji	Chi-Square	P-Value	Keputusan
9,674	15,15	0,289	Gagal Tolak H ₀

Berdasarkan Tabel 4.21 didapatkan kesimpulan bahwa residual telah memenuhi asumsi identik. Hal ini berdasarkan nilai statistik uji *Breusch-Pagan* sebesar 9,674 lebih kecil dibandingkan dengan nilai *Chi-Square* dengan derajat bebas 8 yaitu sebesar 15,51. Sehingga diperoleh keputusan Gagal Tolak H₀ yang artinya tidak terdapat kasus heteroskedastisitas pada model yang terbentuk.

b. Residual Independen

Pengujian yang digunakan untuk uji residual independen adalah *run test* dimana statistik uji yang digunakan adalah statistik uji normal baku. Hasil pengujian (Lampiran 26) disajikan melalui Tabel 4.22.

Tabel 4.22 Hasil Pengujian Residual Independen untuk Model Indeks Kedalaman Kemiskinan dengan Semua Variabel Prediktor

Zhitung	Ztabel	P-Value	Keputusan
-1,526	1,96	0,127	Gagal Tolak H ₀

Nilai statistik uji normal bakuyang dihasilkan adalah sebesar -1,526. Hasil pengujian dikatakan terjadi autokorelasi jika nilai |Zhitung|>Ztabel pada taraf signifikansi α . Berdasarkan Tabel 4.22 dapat diketahui bahwa pada taraf signifikansi 0,05 nilai

|Zhitung|<Ztabel. Sehingga dapat disimpulkan bahwa tidak terjadi autokorelasi pada model yang terbentuk.

c. Residual Berdistribusi Normal

Statistik uji yang digunakan pada pengujian residual berdistribusi normal adalah *Kolmogorov-Smirnov*. Adapun hasil pengujian (Lampiran 27) disajikan pada Tabel 4.23.

Tabel 4.23 Hasil Pengujian Residual Berdistribusi Normal untuk Model Indeks Kedalaman Kemiskinan dengan Semua Variabel Prediktor

Kolmogorov-Smirnov	P-Value	Keputusan
0,907	0,382	Gagal Tolak H ₀

Tabel 4.23 memberikan informasi bahwa nilai statistik uji Kolmogorov-Smirnov yang dihasilkan adalah sebesar 0,907 dengan p-value sebesar 0,382. Jika dibandingkan dengan a = 0,05 maka nilai p-value lebih besar dari a yang menunjukkan bahwa residual telah memenuhi asumsi berdistribusi normal.

4.4.1.5 Pengujian Signifikansi Parameter Model Indeks Kedalaman Kemiskinan

Pengujian signifikansi parameter dilakukan secara serentak maupun parsial yang akan disajikan sebagai berikut:

a. Pengujian Serentak

Hasil pengujian secara serentak (Lampiran 24) dapat dilihat melalui Tabel 4.24.

Tabel 4.24 Pengujian Serentak untuk Model Indeks Kedalaman Kemiskinan dengan Semua Variabel Prediktor

Fhitung	Ftabel	P-Value	Keputusan
32,568	1,413	0,000	Tolak H ₀

Berdasarkan Tabel 4.24 didapatkan informasi bahwa hasil pengujian serentak memberikan keputusan Tolak H₀ yang artinya minimal terdapat satu variabel prediktor yang signifikan terhadap model.Hal ini berdasarkan hasil Fhitung yang lebih besar dibandingkan nilai Ftabel. Nilai Fhitung sebesar 32,568 dengan *p-value* =0. Sedangkan dengan derajat bebas 45 dan 296 didapatkan nilai Ftabel sebesar 1.413.

b. Pengujian Parsial

Pengujian secara parsial bertujuan untuk mengetahui variabel prediktor mana sajakah yang berpengaruh secara signifikan. Adapun hasil pengujian (Lampiran 24) disajikan melalui Tabel 4.25.

Tabel 4.25 Pengujian Parsial untuk Model Indeks Kedalaman Kemiskinan dengan Semua Variabel Prediktor

	dengan Semaa variaber i rediktor					
Variabel	thitung	P-Value	Keputusan			
X_1	-4,576687	0,0000	Tolak H ₀			
X_2	2,152086	0,0322	Tolak H ₀			
X_3	-1,987882	0,0477	Tolak H ₀			
X_4	0,290908	0,7713	Gagal Tolak H ₀			
X_5	-2,770691	0,0059	Tolak H ₀			
X_6	4,571619	0,0000	Tolak H ₀			
X_7	-2,096928	0,0368	Tolak H ₀			
X_8	-4,924026	0,0000	Tolak H ₀			

Statistik uji yang digunakan pada pengujian parsial adalah statistik uji t. Pengujian dikatakan signifikan jika nilai |thitung|>t-tabel.Pada derajat bebas 296 didapatkan nilai t-tabel sebesar 1,650.Berdasarkan Tabel 4.25 didapatkan informasi bahwa dari 8 variabel, terdapat 1 variabel yang di-peroleh keputusan Gagal Tolak H₀. Sehingga dapat disimpulkan bahwa variabel X₄ pada taraf signifikansi 0,05 tidak berpengaruh secara signifikan terhadap model.

4.4.2 Pemodelan Indeks Kedalaman Kemiskinan dengan Variabel Prediktor yang Signifikan

Berdasarkan hasil pengujian parsial yang memberikan informasi bahwa terdapat satu variabel yang tidak signifikan, maka perlu dilakukan pemodelan indeks kedalaman kemiskinankembali tanpa mengikutsertakan variabel yang tidak signifikan ke dalam model. Proses pemodelan dengan variabel signifikan adalah dengan mengeluarkan variabel prediktor yang tidak signifikan dalam model secara satu persatu hingga didapatkan model dengan variabel yang signifikan.

4.4.2.1 Pemilihan Metode Estimasi Model Indeks Kedalaman Kemiskinan

Pada pemodelan dengan variabel prediktor yang signifikan, dilakukan kembali pemilihan metode estimasi model regresi data panel.Hasil pengujian statistik F untuk pemilihan antara metode CEM dan FEM (Lampiran 28) disajikan melalui Tabel 4.10.

Tabel 4.26 Uji Statistik F untuk Model Indeks Kedalaman Kemiskinan dengan Variabel Signifikan

Variabel Respon	Fhitung	Ftabel	P-value	Keputusan
ln Y ₂	10,926	1,451	0,000	Tolak H0

Pada taraf signifikansi 0,05 dengan derajat bebas 37 dan 297 didapatkan nilai F tabel sebesar 1,451. Berdasarkan Tabel 4.26 pengujian menunjukkan keputusan Tolak H₀.Sehingga metode estimasi FEM lebih sesuai dibandingkan metode estimasi CEM.

Pengujian dilanjutkan dengan uji *Hausman* dengan hasil pengujian (Lampiran 28) dapat dilihat melalui Tabel 4.27.

Tabel 4.27 Uji *Hausman* untuk Model Indeks Kedalaman Kemiskinan dengan Variabel Signifikan

Variabel Respon	W	Chi- Square	P-value	Keputusan
ln Y ₂	29,314	14,07	0,0001	Tolak H0

Taraf signifikansi yang digunakan adalah sebesar 0,05, sehingga dengan derajat bebas 7 didapatkan nilai *Chi-Square* sebesar 14,07. Tabel 4.27 menunjukkan bahwa didapatkan keputusan Tolak H₀ yang artinya model estimasi yang sesuai adalah model FEM. Sehingga metode estimasi untuk pemodelan indeks kedalaman kemiskinan di Kabupaten/Kota Jawa Timur tahun 2005-2013 dengan variabel prediktor yang signifikan adalah metode estimasi *Fixed Effect Model* (FEM).

4.4.2.2 Estimasi Model Indeks Kedalaman Kemiskinan

Model regresi data panel untuk pemodelan indeks kedalaman kemiskinan di Kabupaten/Kota Jawa Timur tahun 2005-2013 dengan variabel prediktor yang signifikan menggunakan model FEM (Lampiran 29).

$$\begin{array}{ll} \ln \left(\hat{y}_{2_{it}} \right) &= \hat{\alpha}_{i} - 0.0522X_{1_{it}} + 0.0087X_{2_{it}} - 0.0086X_{3_{it}} \\ &- 0.0184X_{5_{it}} + 0.0082X_{6_{it}} - 0.0409X_{7_{it}} \\ &- 0.0066X_{8_{it}} \end{array}$$

Adapun nilai intersep untuk masing-masing Kabupaten/Kota disajikan melalui Tabel 4.29.

Tabel 4.28 Nilai Intersep Tiap Kabupaten/Kota untuk Model Indeks Kedalaman Kemiskinan dengan Variabel Signifikan

No	Kab/Kota	$\widehat{\alpha}_i$	No	Kab/Kota	$\widehat{\alpha}_i$
1	Pacitan	7,5958	20	Magetan	7,397511
2	Ponorogo	7,0765	21	Ngawi	7,275258
3	Trenggalek	7,6495	22	Bojonegoro	7,62054
4	Tulungagung	7,5265	23	Tuban	7,643061
5	Blitar	7,3943	24	Lamongan	7,461831
6	Kediri	7,6790	25	Gresik	8,243152
7	Malang	7,2953	26	Bangkalan	7,554361
8	Lumajang	7,0613	27	Sampang	6,595916
9	Jember	6,8116	28	Pamekasan	7,337543
10	Banyuwangi	7,0927	29	Sumenep	7,348334
11	Bondowoso	6,8319	30	Kota Kediri	9,060541
12	Situbondo	6,7674	31	Kota Blitar	7,647772
13	Probolinggo	7,2092	32	Kota Malang	7,508577
14	Pasuruan	7,5110	33	Kota Probolinggo	8,097148
15	Sidoarjo	7,7743	34	Kota Pasuruan	7,762017
16	Mojokerto	7,7055	35	Kota Mojokerto	7,668497
17	Jombang	7,7554	36	Kota Madiun	7,39857
18	Nganjuk	7,6084	37	Kota Surabaya	8,00932
19	Madiun	7,5117	38	Kota Batu	7,127309

Koefisien determinasi yang dihasilkan dari model yang terbentuk adalah sebesar 83,19 persen. Tanda pada masing-masing koefisien regresi telah sesuai dengan teori ekonomi.Dimana tanda

positif terdapat pada variabel X_2 dan X_6 . Sedangkan tanda negatif terdapat pada variabel X_1 , X_3 , X_5 , X_7 , dan X_8 .

4.4.2.3 Pengujian Asumsi Residual Model Indeks Kedalaman Kemiskinan

Pengujian asumsi residual disajikan sebagai berikut:

a. Residual Identik

Statistik uji yang digunakan dalam pengujian asumsi identik adalah *Breusch-Pagan*. Adapun hasil pengujian (Lampiran 30) dapat dilihat melalui Tabel 4.29.

Tabel 4.29 Hasil Pengujian Residual Identik untuk Model Indeks Kedalaman Kemiskinan dengan Variabel Signifikan

_		riemskinan dengar	i variaber bigiiirikai	<u> </u>
	Statistik Uji	Chi-Square	P-Value	Keputusan
	9,498	14,07	0,219	Gagal Tolak H ₀

Berdasarkan Tabel 4.29 didapatkan kesimpulan bahwa residual telah memenuhi asumsi identik. Hal ini berdasarkan nilai statistik uji *Breusch-Pagan* sebesar 9,498 lebih kecil dibandingkan dengan nilai*Chi-Square* dengan derajat bebas 7 yaitu sebesar 14,07. Sehingga diperoleh keputusan Gagal Tolak H₀yang artinya tidak terdapat kasus heteroskedastisitas pada model yang terbentuk.

b. Residual Independen

Pengujian yang digunakan untuk uji residual independen adalah *run test* dimana statistik uji yang digunakan adalah statistik uji normal baku. Hasil pengujian (Lampiran 31) disajikan melalui Tabel 4.30.

Tabel 4.30 Hasil Pengujian Residual Independen untuk Model Indeks Kedalaman Kemiskinan dengan Variabel Signifikan

Guita	nan mananan a	engun turtueer s	-B
Zhitung	Ztabel	P-Value	Keputusan
-1,554	1,96	0,120	Gagal Tolak H ₀

Nilai statistik uji normal bakuyang dihasilkan adalah sebesar -1,554. Hasil pengujian dikatakan terjadi autokorelasi jika nilai |Zhitung| > Ztabel pada taraf signifikansi α . Berdasarkan Tabel 4.30 dapat diketahui bahwa pada taraf signifikansi 0,05 nilai

|Zhitung|<Ztabel. Sehingga dapat disimpulkan bahwa tidak terjadi autokorelasi pada model yang terbentuk.

c. Residual Berdistribusi Normal

Statistik uji yang digunakan pada pengujian residual berdistribusi normal adalah *Kolmogorov-Smirnov*. Adapun hasil pengujian (Lampiran 32) disajikan pada Tabel 4.31.

Tabel 4.31 Hasil Pengujian Residual Berdistribusi Normal untuk Model Indeks Kedalaman Kemiskinan dengan Semua Variabel Prediktor

Troduction resident configuration and the configuration of the configura				
Kolmogorov-Smirnov	P-Value	Keputusan		
0,907	0,382	Gagal Tolak H ₀		

Tabel 4.31 memberikan informasi bahwa nilai statistik uji Kolmogorov-Smirnov yang dihasilkan adalah sebesar 0,907 dengan p-value sebesar 0,382. Jika dibandingkan dengan a = 0,05 maka nilai p-value lebih besar dari a yang menunjukkan bahwa residual telah memenuhi asumsi berdistribusi normal.

4.4.2.4 Pengujian Signifikansi Parameter Model Indeks Kedalaman Kemiskinan

Pengujian signifikansi parameter dilakukan secara serentak maupun parsial yang akan disajikan sebagai berikut:

a. Pengujian Serentak

Hasil pengujian secara serentak (Lampiran 29) dapat dilihat melalui Tabel 4.32.

Tabel 4.32 Pengujian Serentak untuk Model Indeks Kedalaman Kemiskinan dengan Variabel Signifikan

Eh:4	E4abal	D 1/-1	V
Fhitung	Ftabel	P-Value	Keputusan
33,410	1,417	0,000	Tolak H ₀

Berdasarkan Tabel 4.32 didapatkan informasi bahwa hasil pengujian serentak memberikan keputusan Tolak H₀ yang artinya minimal terdapat satu variabel prediktor yang signifikan terhadap model.Hal ini berdasarkan hasil Fhitung yang lebih besar dibandingkan nilai Ftabel. Nilai Fhitung sebesar 33,410 dengan *p-value* =0. Sedangkan dengan derajat bebas 44 dan 297 didapatkan nilai Ftabel sebesar 1,417.

b. Pengujian Parsial

Pengujian secara parsial bertujuan untuk mengetahui variabel prediktor mana sajakah yang berpengaruh secara signifikan. Adapun hasil pengujian (Lampiran 29) disajikan melalui Tabel 4.33.

Tabel 4.33 Pengujian Parsial untuk Model Indeks Kedalaman Kemiskinan dengan Variabel Signifikan

Variabel	thitung	P-Value	Keputusan
X_1	-4,642294	0,0000	Tolak H ₀
\mathbf{X}_2	2,143214	0,0329	Tolak H ₀
X_3	-2,022041	0,0441	Tolak H ₀
X_5	-2,798272	0,0055	Tolak H ₀
X_6	4,745879	0,0000	Tolak H ₀
X_7	-2,108325	0,0358	Tolak H ₀
X_8	-4,930063	0,0000	Tolak H ₀

Statistik uji yang digunakan pada pengujian parsial adalah statistik uji t. Pengujian dikatakan signifikan jika nilai |thitung|>t-tabel.Pada derajat bebas 297 didapatkan nilai t-tabel sebesar 1,650.Berdasarkan Tabel 4.33 didapatkan informasi bahwa semua variabel memberikan keputusan Tolak H₀. Sehingga pada taraf signifikansi 0,05, semua variabel berpengaruh secara signifikan terhadap model.

Berdasarkan uraian yang telah dijabarkan model estimasi yang sesuai untuk variabel respon indeks kedalaman ke-miskinan menurut Kabupaten/Kota di Jawa Timur tahun 2005-2013 dengan variabel prediktor yang signifikan adalah sebagai berikut:

$$\begin{array}{ll} \ln \left(\hat{y}_{2it} \right) &= \hat{\alpha}_i - 0.0522 X_{1it} + 0.0087 X_{2it} - 0.0086 X_{3it} \\ &- 0.0184 X_{5it} + 0.0082 X_{6it} - 0.0409 X_{7it} \\ &- 0.0066 X_{8it} \end{array}$$

atau dapat dituliskan sebagai berikut:

$$\hat{y}_{2_{it}} = \exp(\hat{\alpha}_i - 0.0522X_{1_{it}} + 0.0087X_{2_{it}} - 0.0086X_{3_{it}} - 0.0184X_{5_{it}} + 0.0082X_{6_{it}} - 0.0409X_{7_{it}} - 0.0066X_{8_{it}})$$

Interpretasi dari model yang telah didapatkan adalah setiap penambahan satu persen angka melek huruf, maka akan memperkecil indeks kedalaman kemiskinan sebesar 100%*(e^{0,0522}-1) = 5,36 persen dengan asumsi variabel lain tetap. Setiap penambahan satu persen penduduk yang tidak mendapat akses air bersih, maka akan memperbesar indeks kedalaman kemiskinan $100\%*(e^{0.00\$7}-1) = 0.87$ persen dengan asumsi variabel lain tetap. Setiap penambahan satu persen angka partisipasi sekolah usia menengah, maka akan memperkecil indeks kedalaman kemiskinan sebesar $100\%*(e^{0.0086}-1) = 0.86$ persen dengan asumsi variabel lain tetap. Setiap penambahan satu persen tingkat partisipasi angkatan kerja, maka akan memperkecil indeks kedalaman kemiskinan sebesar $100\%*(e^{0.0184}-1) = 1.86$ persen dengan asumsi variabel lain tetap. Setiap penambahan satu persen penduduk yang bekerja di sektor pertanian, maka akan memperbesar indeks kedalaman kemiskinan sebesar $100*\%(e^{0.0082}-1) = 0.82$ persen dengan asumsi variabel lain tetap. Setiap penambahan satu persen laju pertumbuhan ekonomi, maka akan memperkecil indeks kedalaman kemiskinan sebesar $100\%*(e^{0.0409}-1) = 4.17$ persen dengan asumsi variabel lain tetap. Setiap penambahan satu juta rupiah PDRB per kapita ADHB, maka akan memperkecil indeks kedalaman kemiskinan sebesar $100\%*(e^{0,0066}-1) = 0.66$ persen dengan asumsi variabel lain tetap.

4.5 Pemodelan Indeks Keparahan Kemiskinan Kabupaten/Kota Jawa Timur

Pemodelan regresi data panel untuk variabel respon indeks keparahan kemiskinan di Jawa Timur akan dilakukan berdasarkan model dengan semua variabel prediktor masuk ke dalam model dan model dengan variabel prediktor yang signifikan.

4.5.1 Pemodelan Indeks Keparahan Kemiskinan dengan Semua Variabel Prediktor

Pemodelan dengan semua prediktor meliputi beberapa hal, antara lain, spesifikasi model, pemilihan metode estimasi model regresi data panel, estimasi model, pengujian asumsi residual dari model yang telah terbentuk, serta pengujian signifikansi parameter.

4.5.1.1 Spesifikasi Model Indeks Keparahan Kemiskinan

Model regresi untuk variabel respon ideks keparahan kemiskinan di Kabupaten/Kota Jawa Timur tahun 2005-2013 adalah sebagai berikut:

$$\ln(y_{3_{it}}) = \alpha_{0i} + \beta_1 X_{1_{it}} + \beta_2 X_{2_{it}} + \beta_3 X_{3_{it}} + \beta_4 X_{4_{it}} + \beta_5 X_{5_{it}} + \beta_6 X_{6_{it}} + \beta_7 X_{7_{it}} + \beta_8 X_{8_{it}} + \varepsilon$$

Model yang digunakan adalah model *inverse semilogarith-mic*.Transformasi *ln* pada variabel respon dilakukan untuk memenuhi asumsi residual berdistribusi normal. Adapun tanda dari masing-masing parameter adalah sebagai berikut:

- a. $\alpha_{0i} > 0$ karena α_{0i} menunjukkan indeks keparahan kemiskinan di Kabupaten/Kota ke-*i* ketika variabel prediktor bernilai nol, sehingga besarnya α_{0i} tidak mungkin negatif
- b. Tanda yang diharapkan dari $\beta_1, \beta_3, \beta_5, \beta_7$, dan β_8 adalah negatif ($\beta_1 < 0, \beta_3 < 0, \beta_5 < 0, \beta_7 < 0$, dan $\beta_8 < 0$). Hal ini berdasarkan uraian pada subbab sebelumnya yang menunjukkan bahwa variabel X_1, X_3, X_5, X_7 , dan X_8 memiliki hubungan yang berbanding terbalik dengan indeks keparahan kemiskinan.
- c. Tanda yang diharapkan dari β_2 , β_4 , dan β_6 adalah positif $(\beta_2 > 0, \beta_4 > 0, \text{dan } \beta_6 > 0)$. Hal ini berdasarkan uraian pada subbab sebelumnya yang menunjukkan bahwa variabel X_2 , X_4 , dan X_6 memiliki hubungan yang berbanding lurus dengan indeks keparahan kemiskinan.

4.5.1.2 Pemilihan Metode Estimasi Model Indeks Keparahan Kemiskinan

Statistik uji yang digunakan dalam pengujian untuk memilih antara metode CEM dan FEM adalah statistik uji F. Hasil pengujian (Lampiran 33) disajikan melalui Tabel 4.34.

Tabel 4.34 Uji Statistik F untuk Model Indeks Keparahan Kemiskinan dengan Semua Variabel Prediktor

Variabel Respon	Fhitung	Ftabel	P-value	Keputusan
ln Y ₃	6,209	1,451	0,000	Tolak H0

Pada taraf signifikansi 0,05 dengan derajat bebas 37 dan 296 didapatkan nilai F tabel sebesar 1,451. Berdasarkan Tabel 4.34 dapat diketahui bahwa pengujian menunjukkan keputusan Tolak H₀.Sehingga metode estimasi FEM lebih sesuai dibandingkan metode estimasi CEM.

Uji *Hausman* dilakukan untuk mengetahui metode estimasi yang sesuai antara REM dan FEM. Hasil pengujian (Lampiran 33)dapat dilihat melalui Tabel 4.35.

Tabel 4.35 Uji *Hausman* untuk Model Indeks Keparahan Kemiskinan dengan Semua Variabel Prediktor

Variabel Respon	W	Chi- Square	P-value	Keputusan
ln Y ₃	23,601	15,51	0,0027	Tolak H ₀

Taraf signifikansi yang digunakan adalah sebesar 0,05, sehingga dengan derajat bebas 8 didapatkan nilai *Chi-Square* sebesar 15,51. Tabel 4.20 menunjukkan bahwa didapatkan keputusan Tolak H₀ yang artinya model estimasi yang sesuai adalah model FEM. Sehingga metode estimasi untuk pemodelan indeks ke-parahan kemiskinan di Kabupaten/Kota Jawa Timur tahun 2005-2013 dengan semua variabel prediktor adalah metode estimasi *Fixed Effect Model* (FEM).

4.5.1.3 Estimasi Model Indeks Keparahan Kemiskinan

Berdasarkan pengujian pemilihan metode estimasi model regresi panel yang telah dilakukan, diperoleh hasil bahwa model estimasi yang sesuai untuk variabel respon indeks keparahan kemiskinan menurut Kabupaten/Kota di Jawa Timur tahun 2005-2013 adalah model FEM dengan efek *cross section*. Adapun model yang dihasilkan adalah sebagai berikut (Lampiran 34):

$$\begin{array}{ll} \ln \left(\hat{y}_{3_{it}} \right) &= \hat{\alpha}_{i} - 0.0637X_{1_{it}} + 0.0086X_{2_{it}} - 0.0126X_{3_{it}} \\ &+ 0.0006X_{4_{it}} - 0.0234X_{5_{it}} + 0.0099X_{6_{it}} - 0.085X_{7_{it}} \\ &- 0.0071X_{8_{it}} \end{array}$$

Adapun nilai intersep untuk masing-masing Kabupaten/Kota disajikan melalui Tabel 4.36

Tabel 4.36Nilai Intersep Tiap Kabupaten/Kota untuk Model Indeks Keparahan Kemiskinan dengan Semua Variabel Prediktor

No	Kab/Kota	$\widehat{\alpha}_i$	No	Kab/Kota	$\widehat{\alpha}_i$
1	Pacitan	8,125083	20	Magetan	7,775444
2	Ponorogo	7,474277	21	Ngawi	7,640088
3	Trenggalek	8,239098	22	Bojonegoro	8,211301
4	Tulungagung	7,983806	23	Tuban	8,114511
5	Blitar	7,937709	24	Lamongan	7,894951
6	Kediri	8,194759	25	Gresik	8,932121
7	Malang	7,775767	26	Bangkalan	7,957874
8	Lumajang	7,386582	27	Sampang	6,71659
9	Jember	7,103522	28	Pamekasan	7,684201
10	Banyuwangi	7,543111	29	Sumenep	7,654038
11	Bondowoso	7,150601	30	Kota Kediri	9,837292
12	Situbondo	7,083048	31	Kota Blitar	8,349723
13	Probolinggo	7,522412	32	Kota Malang	8,213257
14	Pasuruan	8,03508	33	Kota Probolinggo	8,728034
15	Sidoarjo	8,46405	34	Kota Pasuruan	8,460002
16	Mojokerto	8,257348	35	Kota Mojokerto	8,298864
17	Jombang	8,299833	36	Kota Madiun	8,036729
18	Nganjuk	8,108081	37	Kota Surabaya	8,827658
19	Madiun	8,007297	38	Kota Batu	7,71362

Model yang telah didapatkan memiliki nilai koefisien determinasi sebesar 74,47 persen. Tanda pada masing-masing koefisien regresi telah sesuai dengan teori ekonomi.Dimana tanda

positif terdapat pada variabel X_2 , X_4 , dan X_6 .Sedangkan tanda negatif terdapat pada variabel X_1 , X_3 , X_5 , X_7 , dan X_8 .

4.5.1.4 Pengujian Asumsi Residual Model Indeks Keparahan Kemiskinan

Sebelum dilakukan interpretasi, perlu dilakukan pengujian asumsi residual. Pengujian asumsi residual disajikan sebagai berikut:

a. Residual Identik

Statistik uji yang digunakan dalam pengujian asumsi identik adalah *Breusch-Pagan*. Adapun hasil pengujian (Lampiran 35) dapat dilihat melalui Tabel 4.37.

Tabel 4.37 Hasil Pengujian Residual Identik untuk Model Indeks Keparahan Kemiskinan dengan Semua Variabel Prediktor

Statistik Uji	Chi-Square	P-Value	Keputusan
12,768	15,15	0,120	Gagal Tolak H ₀

Berdasarkan Tabel 4.37 didapatkan kesimpulan bahwa residual telah memenuhi asumsi identik. Hal ini berdasarkan nilai statistik uji *Breusch-Pagan* sebesar 12,768 lebih kecil dibandingkan dengan nilai *Chi-Square* dengan derajat bebas 8 yaitu sebesar 15,51. Sehingga diperoleh keputusan Gagal Tolak H₀yang artinya tidak terdapat kasus heteroskedastisitas pada model yang terbentuk.

b. Residual Independen

Pada pengujian asumsi independen statistik uji yang digunakan adalah statistik uji *Durbin-Watson*. Hasil pengujian (Lam-piran 34) disajikan melalui Tabel 4.38.

Tabel 4.38 Hasil Pengujian Residual Independen untuk Model Indeks Keparahan Kemiskinan dengan Semua Variabel Prediktor

d	dL	dU	Keputusan
1,928	1,775	1,871	Gagal Tolak H ₀

Nilai statistik uji Durbin-Watson yang dihasilkan adalah sebesar 1,928.Nilai ini lebih besar dibandingkan batas bawah (dL) dan batas atas (dU) tabel Durbin-Watson. Hasil pengujian yang

telah tersaji pada Tabel 4.38 memberikan keputusan Gagal Tolak H_0 .Dapat disimpulkan bahwa residual telah memenuhi asumsi independen yang artinya tidak terjadi kasus autokorelasi pada model yang terbentuk.

c. Residual Berdistribusi Normal

Statistik uji yang digunakan pada pengujian residual berdistribusi normal adalah *Kolmogorov-Smirnov*. Adapun hasil pengujian (Lampiran 36) disajikan pada Tabel 4.39.

Tabel 4.39 Hasil Pengujian Residual Berdistribusi Normal untuk Model Indeks Keparahan Kemiskinan dengan Semua Variabel Prediktor

r		
Kolmogorov-Smirnov	P-Value	Keputusan
0,818	0,514	Gagal Tolak H ₀

Tabel 4.39 memberikan informasi bahwa nilai statistik uji Kolmogorov-Smirnov yang dihasilkan adalah sebesar 0,818 dengan p-value sebesar 0,514. Jika dibandingkan dengan a = 0,05 maka nilai p-value lebih besar dari a yang menunjukkan bahwa residual telah memenuhi asumsi berdistribusi normal.

4.5.1.5 Pengujian Signifikansi Parameter Model Indeks Keparahan Kemiskinan

Pengujian signifikansi parameter dilakukan secara serentak maupun parsial yang akan disajikan sebagai berikut:

a. Pengujian Serentak

Hasil pengujian secara serentak (Lampiran 34) dapat dilihat melalui Tabel 4.40.

Tabel 4.40 Pengujian Serentak untuk Model Indeks Keparahan Kemiskinan dengan Semua Variabel Prediktor

Fhitung	Ftabel	P-Value	Keputusan
19,186	1,413	0,000	Tolak H ₀

Berdasarkan Tabel 4.40 didapatkan informasi bahwa hasil pengujian serentak memberikan keputusan Tolak H₀ yang artinya minimal terdapat satu variabel prediktor yang signifikan terhadap model.Hal ini berdasarkan hasil Fhitung yang lebih besar dibandingkan nilai Ftabel. Nilai Fhitung sebesar 19,186 dengan

p-value =0. Sedangkan dengan derajat bebas 45 dan 296 didapatkan nilai Ftabel sebesar 1,413.

b. Pengujian Parsial

Pengujian secara parsial bertujuan untuk mengetahui variabel prediktor mana sajakah yang berpengaruh secara signifikan. Adapun hasil pengujian (Lampiran 34) disajikan melalui Tabel 4.41.

Tabel 4.41 Pengujian Parsial untuk Model Indeks Keparahan Kemiskinan dengan Semua Variabel Prediktor

Variabel	thitung	P-Value	Keputusan
X_1	-3,858163	0,0001	Tolak H ₀
X_2	1,440308	0,1508	Gagal Tolak H ₀
X_3	-2,025561	0,0437	Tolak H ₀
X_4	0,202152	0,8399	Gagal Tolak H ₀
X_5	-2,421132	0,0161	Tolak H ₀
X_6	3,851053	0,0001	Tolak H ₀
X_7	-2,997472	0,003	Tolak H ₀
X_8	-3,673793	0,0003	Tolak H ₀

Statistik uji yang digunakan pada pengujian parsial adalah statistik uji t. Pengujian dikatakan signifikan jika nilai |thitung|>t-tabel.Pada derajat bebas 296 didapatkan nilai t-tabel sebesar 1,650.Berdasarkan Tabel 4.41 didapatkan informasi bahwa dari 8 variabel, 2 variabel diantaranya diperoleh keputusan Gagal Tolak H₀. Sehingga dapat disimpulkan bahwa variabel X₂ dan X₄pada taraf signifikansi 0,05 tidak berpengaruh secara signifikan terhadap model.

4.5.2 Pemodelan Indeks Keparahan Kemiskinan dengan Variabel Prediktor yang Signifikan

Berdasarkan hasil pengujian parsial yang memberikan informasi bahwa terdapat dua variabel yang tidak signifikan, maka perlu dilakukan pemodelan indeks keparahan kemiskinan kembali tanpa mengikutsertakan variabel yang tidak signifikan ke dalam model. Proses pemodelan dengan variabel signifikan adalah dengan mengeluarkan variabel prediktor yang tidak signifikan

dalam model secara satu persatu hingga didapatkan model dengan variabel yang signifikan.

4.5.2.1 Pemilihan Metode Estimasi Model Indeks Keparahan Kemiskinan

Pada pemodelan dengan variabel prediktor yang signifikan, dilakukan kembali pemilihan metode estimasi model regresi data panel.Hasil pengujian statistik F untuk pemilihan antara metode CEM dan FEM (Lampiran 37) disajikan melalui Tabel 4.42.

Tabel 4.42 Uji Statistik F untuk Model Indeks Keparahan Kemiskinan dengan Variabel Signifikan

Variabel Respon	Fhitung	Ftabel	P-value	Keputusan
ln Y ₃	6,674	1,451	0,000	Tolak H0

Pada taraf signifikansi 0,05 dengan derajat bebas 37 dan 298 didapatkan nilai F tabel sebesar 1,451. Berdasarkan Tabel 4.42 pengujian menunjukkan keputusan Tolak H₀.Sehingga metode estimasi FEM lebih sesuai dibandingkan metode estimasi CEM.

Pengujian dilanjutkan dengan uji *Hausman* dengan hasil pengujian (Lampiran 37) dapat dilihat melalui Tabel 4.43.

Tabel 4.43 Uji *Hausman* untuk Model Indeks Kparahan Kemiskinan dengan Variabel Signifikan

Variabel Respon	W	Chi- Square	P-value	Keputusan
ln Y ₃	25,0099	12,59	0,0001	Tolak H0

Taraf signifikansi yang digunakan adalah sebesar 0,05, sehingga dengan derajat bebas 6 didapatkan nilai *Chi-Square* sebesar 12,59. Tabel 4.43 menunjukkan bahwa didapatkan keputusan Tolak H₀ yang artinya model estimasi yang sesuai adalah model FEM. Sehingga metode estimasi untuk pemodelan indeks kedalaman kemiskinan di Kabupaten/Kota Jawa Timur tahun 2005-2013 dengan variabel prediktor yang signifikan adalah metode estimasi *Fixed Effect Model* (FEM).

4.5.2.2 Estimasi Model Indeks Keparahan Kemiskinan

Model regresi data panel untuk pemodelan indeks keparahan kemiskinan di Kabupaten/Kota Jawa Timur tahun 2005-2013 dengan variabel prediktor yang signifikan menggunakan model FEM adalah sebagai berikut (Lampiran 38):

$$\ln(\hat{y}_{3_{it}}) = \hat{\alpha}_i - 0.0702X_{1_{it}} - 0.0149X_{3_{it}} - 0.0229X_{5_{it}} + 0.0103X_{6_{it}} - 0.0849X_{7_{it}} - 0.0073X_{8_{it}}$$

Adapun nilai intersep untuk masing-masing Kabupaten/Kota disajikan melalui Tabel 4.44.

Tabel 4.44 Nilai Intersep Tiap Kabupaten/Kota untuk Model Indeks Keparahan Kemiskinan dengan Variabel Signifikan

No	Kab/Kota	$\widehat{\alpha}_i$	No	Kab/Kota	$\widehat{\alpha}_i$
1	Pacitan	9,1208	20	Magetan	8,555706
2	Ponorogo	8,2533	21	Ngawi	8,3973
3	Trenggalek	9,2106	22	Bojonegoro	8,974976
4	Tulungagung	8,7970	23	Tuban	8,863702
5	Blitar	8,7558	24	Lamongan	8,760799
6	Kediri	8,9858	25	Gresik	9,795073
7	Malang	8,5589	26	Bangkalan	8,706661
8	Lumajang	8,1408	27	Sampang	7,519236
9	Jember	7,8814	28	Pamekasan	8,45852
10	Banyuwangi	8,3700	29	Sumenep	8,419694
11	Bondowoso	7,9186	30	Kota Kediri	10,68474
12	Situbondo	7,8485	31	Kota Blitar	9,201313
13	Probolinggo	8,3118	32	Kota Malang	9,041752
14	Pasuruan	8,8203	33	Kota Probolinggo	9,505054
15	Sidoarjo	9,2902	34	Kota Pasuruan	9,270666
16	Mojokerto	9,0733	35	Kota Mojokerto	9,12421
17	Jombang	9,1005	36	Kota Madiun	8,863746
18	Nganjuk	8,8908	37	Kota Surabaya	9,654648
19	Madiun	8,7771	38	Kota Batu	8,516648

Koefisien determinasi yang dihasilkan dari model yang terbentuk adalah sebesar 74,29 persen. Tanda pada masing-masing koefisien regresi telah sesuai dengan teori ekonomi.Dimana tanda positif terdapat pada variabel X_6 .Sedangkan tanda negatif terdapat pada variabel X_1 , X_3 , X_5 , X_7 , dan X_8 .

4.5.2.3 Pengujian Asumsi Residual Model Indeks Keparahan Kemiskinan

Pengujian asumsi residual disajikan sebagai berikut:

a. Residual Identik

Statistik uji yang digunakan dalam pengujian asumsi identik adalah *Breusch-Pagan*. Adapun hasil pengujian (Lampiran 39) dapat dilihat melalui Tabel 4.45.

Tabel 4.45 Hasil Pengujian Residual Identik untuk Model Indeks Keparahan Kemiskinan dengan Variabel Signifikan

_		Ttermonian dengar	T Turidoer bigiiirika	
	Statistik Uji	Chi-Square	P-Value	Keputusan
	12,538	12,59	0,051	Gagal Tolak H ₀

Berdasarkan Tabel 4.45 didapatkan kesimpulan bahwa residual telah memenuhi asumsi identik. Hal ini berdasarkan nilai statistik uji *Breusch-Pagan* sebesar 12,538 lebih kecil dibandingkan dengan nilai *Chi-Square* dengan derajat bebas 6 yaitu sebesar 12,59. Sehingga diperoleh keputusan Gagal Tolak H₀yang artinya tidak terdapat kasus heteroskedastisitas pada model yang terbentuk.

b. Residual Independen

Pada pengujian asumsi independen statistik uji yang digunakan adalah statistik uji *Durbin-Watson*. Hasil pengujian (Lam-piran 38) disajikan melalui Tabel 4.46.

Tabel 4.46 Hasil Pengujian Residual Independen untuk Model Indeks Keparahan Kemiskinan dengan Variabel Signifikan

	paranan Kennskinan der	igaii variaberi	Jigiiiikaii
d	dL	dU	Keputusan
1,898	1,787	1,858	Gagal Tolak H ₀

Nilai statistik uji Durbin-Watson yang dihasilkan adalah sebesar 1,898.Nilai ini lebih besar dibandingkan batas bawah (dL)

dan batas atas (dU) tabel *Durbin-Watson*. Hasil pengujian yang telah tersaji pada Tabel 4.46 memberikan keputusan Gagal Tolak H_0 . Dapat disimpulkan bahwa residual telah memenuhi asumsi independen yang artinya tidak terjadi kasus autokorelasi pada model yang terbentuk.

c. Residual Berdistribusi Normal

Statistik uji yang digunakan pada pengujian residual berdistribusi normal adalah *Kolmogorov-Smirnov*. Adapun hasil pengujian (Lampiran 40) disajikan pada Tabel 4.47.

Tabel 4.47 Hasil Pengujian Residual Berdistribusi Normal untuk Model Indeks Keparahan Kemiskinan dengan Semua Variabel Prediktor

Kolmogorov-Smirnov	P-Value	Keputusan
0,790	0,561	Gagal Tolak H ₀

Tabel 4.47 memberikan informasi bahwa nilai statistik uji Kolmogorov-Smirnov yang dihasilkan adalah sebesar 0,790 dengan p-value sebesar 0,514. Jika dibandingkan dengan a = 0,05 maka nilai p-value lebih besar dari a yang menunjukkan bahwa residual telah memenuhi asumsi berdistribusi normal.

4.5.2.4 Pengujian Signifikansi Parameter Model Indeks Keparahan Kemiskinan

Pengujian signifikansi parameter dilakukan secara serentak maupun parsial yang akan disajikan sebagai berikut:

a. Pengujian Serentak

Hasil pengujian secara serentak (Lampiran 38) dapat dilihat melalui Tabel 4.48.

Tabel 4.48 Pengujian Serentak untuk Model Indeks Keparahan Kemiskinan dengan Variabel Signifikan

_		acingan vari	doer biginirkan	
	Fhitung	Ftabel	P-Value	Keputusan
_	20,023	1,421	0,000	Tolak H ₀

Berdasarkan Tabel 4.48 didapatkan informasi bahwa hasil pengujian serentak memberikan keputusan Tolak H_0 yang artinya minimal terdapat satu variabel prediktor yang signifikan terhadap model.Hal ini berdasarkan hasil Fhitung yang lebih besar dibandingkan nilai Ftabel. Nilai Fhitung sebesar 20,023 dengan

p-value=0. Sedangkan dengan derajat bebas 43 dan 298 didapatkan nilai Ftabel sebesar 1,421.

b. Pengujian Parsial

Pengujian secara parsial bertujuan untuk mengetahui variabel prediktor mana sajakah yang berpengaruh secara signifikan. Adapun hasil pengujian (Lampiran 38) disajikan melalui Tabel 4.49.

Tabel 4.49 Pengujian Parsial untuk Model Indeks Keparahan Kemiskinan dengan Variabel Signifikan

Variabel	thitung	P-Value	Keputusan
X_1	-4,423888	0,0000	Tolak H ₀
X_3	-2,466331	0,0142	Tolak H ₀
X_5	-2,381457	0,0179	Tolak H ₀
X_6	4,084765	0,0001	Tolak H ₀
X_7	-2,993386	0,0030	Tolak H ₀
X_8	-3,762169	0,0002	Tolak H ₀

Statistik uji yang digunakan pada pengujian parsial adalah statistik uji t. Pengujian dikatakan signifikan jika nilai |thitung|>t-tabel.Pada derajat bebas 298 didapatkan nilai t-tabel sebesar 1,650.Berdasarkan Tabel 4.49 didapatkan informasi bahwa semua variabel memberikan keputusan Tolak H₀. Sehingga pada taraf signifikansi 0,05, semua variabel berpengaruh secara signifikan terhadap model.

Berdasarkan uraian yang telah dijabarkan model estimasi yang sesuai untuk variabel respon indeks keparahan kemiskinan menurut Kabupaten/Kota di Jawa Timur tahun 2005-2013 dengan variabel prediktor yang signifikan adalah sebagai berikut:

$$\begin{array}{ll} \ln \left(\hat{y}_{3_{it}} \right) &= \hat{\alpha}_i - 0.0702 X_{1_{it}} - 0.0149 X_{3_{it}} - 0.0229 X_{5_{it}} \\ &+ 0.0103 X_{6_{it}} - 0.0849 X_{7_{it}} - 0.0073 X_{8_{it}} \end{array}$$

Dalam memudahkan interpretasi, maka model regresi data panel untuk indeks keparahan kemiskinan dapat dituliskan sebagai berikut:

$$\hat{y}_{3_{it}} = \exp(\hat{\alpha}_i - 0.0702X_{1_{it}} - 0.0149X_{3_{it}} - 0.0229X_{5_{it}} + 0.0103X_{6_{it}} - 0.0849X_{7_{it}} - 0.0073X_{8_{it}})$$

Interpretasi dari model yang telah didapatkan adalah setiap penambahan satu persen angka melek huruf, maka akan memperkecil indeks keparahan kemiskinan sebesar 100%*(e^{0,0702}-1) = 7,27 persen dengan asumsi variabel lain tetap. Setiap penambahan satu persen angka partisipasi sekolah usia menengah, maka akan memperkecil indeks keparahan kemiskinan sebesar 100%*(e^{0,0149}-1) = 1,5 persen dengan asumsi variabel lain tetap. Setiap penambahan satu persen tingkat partisipasi angkatan kerja, maka akan memperkecil indeks keparahan kemiskinan sebesar 100%*(e^{0,0229}-1) = 2,31 persen dengan asumsi variabel lain tetap. Setiap penambahan satu persen penduduk yang bekerja di sektor pertanian, maka akan memperbesar indeks keparahan kemiskinan sebesar $100\%*(e^{0.0103}-1) = 1,04$ persen dengan asumsi variabel lain tetap. Setiap penambahan satu persen laju pertumbuhan ekonomi, maka akan memperkecil indeks keparahan kemiskinan $100\%*(e^{0.0849}-1) = 8,86$ persen dengan asumsi variabel lain tetap. Setiap penambahan satu juta rupiah PDRB per kapita ADHB, maka akan memperkecil indeks keparahan kemiskinan sebesar $100\%*(e^{0.0073}-1) = 0.73$ persen dengan asumsi variabel lain tetap.

(Halaman ini sengaja dikosongkan)

BAB V KESIMPULAN DAN SARAN

5.1 Kesimpulan

Berdasarkan analisis dan pembahasan maka kesimpulan dari penelitian adalah sebagai berikut:

- Hasil deskripsi menunjukkan bahwa Kabupaten Gresik, Kota Probolinggo, dan Kabupaten di Pulau Madura memiliki kemiskinan yang lebih tinggi tingkat dibandingkan Kabupaten/Kota lainnva faktor-faktor dengan mempengaruhi adalah angka melek huruf, persentase penduduk tanpa akses air bersih, angka partisipasi sekolah usia menengah, persentase penduduk tanpa akses kesehatan, tingkat partisipasi angkatan kerja, persentase penduduk yang bekerja di sektor pertanian, laju pertumbuhan ekonomi, dan PDRB per kapita ADBH. Selain itu, meskipun ekonomi tinggi, namun masih terdapat beberapa Kabupaten/Kota yang tertinggal.
- 2. Pemodelan persentase penduduk miskin Kabupaten/Kota di Jawa Timur dengan regresi data panel menghasilkan model terbaik adalah dengan metode estimasi FEM dengan efek *cross section* serta terdapat 5 (lima) variabel prediktor yang berpengaruh signifikan yaitu angka melek huruf, penduduk tanpa akses air bersih, tingkat partisipasi angkatan kerja, penduduk yang bekerja di sektor pertanian, serta PDRB per kapita ADBH.
- 3. Pada indeks kedalaman kemiskinan, metode estimasi terbaik adalah metode FEM dengan efek *cross section* dimana variabel yang berpengaruh secara signifikan adalah angka melek huruf, penduduk tanpa akses air bersih, angka partisipasi sekolah usia menengah, tingkat partisipasi angkatan kerja, penduduk yang bekerja di sektor pertanian, laju pertumbuhan ekonomi serta PDRB per kapita ADBH.
- 4. Variabel yang berpengaruh signifikan terhadap indeks keparahan kemiskinan adalah adalah angka melek huruf,

angka partisipasi sekolah usia menengah, tingkat partisipasi angkatan kerja, penduduk yang bekerja di sektor pertanian, laju pertumbuhan ekonomi serta PDRB per kapita ADBH, dengan metode estimasi terbaik adalah metode FEM dengan efek *cross section*.

5.1 Saran

Saran bagi penelitian selanjutnya hendaknya dilakukan penanggulangan pada asumsi residual yang belum terpenuhi. Selain itu, untuk mendapatkan pemodelan yang lebih baik dapat dilakukan dengan pemodelan secara *multivariate* atau dengan *seemingly unrelated regression* (SUR).

DAFTAR PUSTAKA

- Badan Pusat Statistik. (2008). *Analisis dan Penghitungan Tingkat Kemiskinan Tahun 2008*. Jakarta: Badan Pusat Statistik.
- Baltagi, B. H. (2005). *Econometric Analysis of Panel Data* (3rd ed.). England: John Willey & Sons, Ltd.
- Bank Dunia. (2011). Analisis Keuangan Publik Jawa Timur 2011. Mengoptimalkan Pengelolaan Keuangan Daerah untuk Pertumbuhan yang Inklusif. Jakarta: Bank Dunia.
- Daniel, W. W. (1989). *Statistika Nonparametrik Terapan*. Alex Tri Kantjono W (Trans.). Jakarta: PT. Gramedia Pustaka Utama.
- Draper, N. R., & Smith, H. (1998). *Applied Regression Analysis* (3rd ed.). New York: John Willey & Sons, Inc.
- Efendi, H. S. (2014). Penerapan Regresi Panel dalam Mengetahui Pengaruh Profitabilitas Terhadap Dividend Payout Ratio (DPR) pada Perusahaan Manufaktur. Skripsi, Universitas Brawijaya, Malang.
- Greene, W. H. (2003). *Econometric Analysis* (5th ed.). New Jersey: Pearson Education, Inc.
- Gujarati, D. N. (2004). *Basic Econometrics* (4th ed.). New York: McGraw-Hill.
- Hanum, D. (2014). *Studi tentang SUR untuk Data Panel dengan Model Gravitasi*. Tesis, Institut Teknologi Sepuluh Nopember, Surabaya.
- Hermanto, T., & Fitriani, R. (2014). Perbandingan Regresi Panel Satu Arah dan Regresi Panel Dua Arah dengan Asumsi Slope Konstan dan Intersep Bervariasi (Studi Kasus pada Laju Inflasi dan Faktor yang Mempengaruhi). Skripsi, Universitas Brawijaya, Malang.
- Kuncoro, S. (2014). Analisis Pengaruh Pertumbuhan Ekonomi, Tingkat Pengangguran, dan Pendidikan Terhadap Tingkat Kemiskinan di Provinsi Jawa Timur Tahun 2009-2011. Skripsi, Universitas Muhammadiyah, Surakarta

- Munajat. (2009). Membernaskan Pembangunan Pertanian Sebagai Solusi Mengakar dalam Mengatasi Kemiskinan. *Agronobis*, 1, 12-18.
- Murray, M. P. (2006). *Econometrics: A Modern Introduction*. Boston: Pearson Addison Wesley.
- Permatasari, E. O. (2013). Pendekatan Boosting Multivariate Adaptive Regression Spline (Boosting MARS) untuk Klasifikasi Kemiskinan di Propinsi Jawa Timur. Tesis, Institut Teknologi Sepuluh Nopember, Surabaya.
- Saleh, S. (2002). Faktor-Faktor Penentu Tingkat Kemiskinan Regional di Indonesia. *Jurnal Ekonomi Pembangunan*, 7(2), 87-102.
- Sembodo, H. (2014). Pemodelan Regresi Panel pada Pendapatan Asli Daerah (PAD) dan Dana Alokasi Umum (DAU) Terhadap Belanja Daerah (Kasus Pada Kabupaten/Kota di Jawa Timur dengan Tingkat Pertumbuhan Ekonomi Rendah). Skripsi, Universitas Brawijaya, Malang.
- Sita, E. D. A. A. (2014). Pendekatan Multivariate Adaptive Regression SPLINES (MARS) pada Pemodelan Penduduk Miskin di Indonesia Tahun 2008-2012. Tesis, Institut Teknologi Sepuluh Nopember, Surabaya.
- Suryawati, C. (2004). Memahami Kemiskinan Secara Multidimensional. *Jurnal Manajemen Pem-bangunan dan Kebijakan*, 8(2), 121-129.
- Wini, H. (2010). Analisis Faktor-Faktor yang Mempengaruhi Jumlah Penduduk Miskin di Wilayah Pemekaran Tingkat Kabupaten. Skripsi, Universitas Atma Jaya, Yogyakarta.

LAMPIRAN
Lampiran 1 Data Pengamatan (dalam persen)

Kabupaten Kota	Tahun	Y1	Y2	Y3	X1	X2	X3	 X8*)
1	2005	24.25	4.99	1.49	83.92	30.04	88.73	3.25
1	2006	25.39	3.53	0.82	89.19	30.01	95.15	3.83
1	2007	23.31	3.69	0.89	91.54	42.99	92.23	4.32
1	2008	21.17	5.94	2	91.54	26.56	90.89	4.98
1	2009	19.01	3.48	0.9	91.56	27.47	92.63	5.53
1	2010	19.5	3.01	0.76	91.58	16.5	95.65	6.19
1	2011	18.13	2.59	0.59	91.6	36.04	91.37	6.88
1	2012	17.29	2.12	0.42	91.63	30.62	90.34	7.72
1	2013	16.66	2.49	0.55	91.67	28.56	93.62	8.81
2	2005	17.6	3.74	1.12	79.49	6.84	94.94	4.34
2	2006	18.45	2.83	0.72	80.46	15.31	96.18	5.10
2	2007	18.23	2.24	0.45	84.93	20.1	97.84	5.78
2	2008	16.62	4.38	1.34	84.93	6.64	94.74	6.66
2	2009	14.63	2.05	0.46	85.72	5.26	90.48	7.52
2	2010	13.22	1.94	0.43	85.73	3.26	93.36	8.70
2	2011	12.29	1.52	0.29	87.32	1.6	96.78	9.78
2	2012	11.76	1.69	0.38	88.99	5.86	97.68	11.01
2	2013	11.87	1.67	0.36	89.37	2.95	97.04	12.38
:	:	:	÷	÷	÷	÷	÷	:
38	2005	9.85	1.58	0.29	94.9	1.77	90.21	8.29
38	2006	11.61	2	0.52	94.9	1.4	91.74	10.39
38	2007	9.71	1.58	0.43	97.3	1.62	93.82	11.73
38	2008	6.18	1.61	0.47	97.3	1.47	93.86	13.58
38	2009	4.81	0.78	0.21	97.78	0.43	94.23	15.09
38	2010	5.08	0.7	0.18	98.26	0.82	92.97	17.06
38	2011	4.74	0.52	0.1	98.27	1.66	96.99	19.18
38	2012	4.47	0.65	0.13	98.32	0.22	96.02	21.50
38	2013	4.748	0.48	0.07	93.37	0	97.63	24.64

^{*)} satuan dalam juta rupiah

Lampiran 2 Rata-Rata Kemiskinan dan Faktor-Faktor yang Berpengaruh di Jawa Timur Tahun 2005-2013 (dalam Persen)

Tahun	X1	X2	X3	X4	X5	X6
2005	85,80	11,01	83,90	22,50	69,17	53,98
2006	87,10	11,28	85,98	18,80	70,41	52,83
2007	87,42	10,94	86,42	18,05	68,99	62,67
2008	87,43	9,15	86,29	17,56	69,31	55,63
2009	87,80	6,85	88,02	27,27	69,25	60,18
2010	88,34	6,27	88,82	24,48	69,08	60,44
2011	88,52	6,58	90,04	21,98	68,04	40,47
2012	89,28	5,44	91,71	15,95	69,57	40,07
2013	90,49	5,00	92,87	13,60	69,78	38,25

Tahun	X7	X8*)	Y1	Y2	Y3
2005	5,46	10,24	19,95	3,53	0,99
2006	5,49	12,48	21,09	3,94	1,09
2007	5,91	14,63	19,98	3,91	1,15
2008	5,79	16,81	18,19	3,96	1,15
2009	5,05	17,77	16,22	2,83	0,88
2010	6,40	20,14	14,87	2,36	0,59
2011	6,86	22,76	13,85	2,00	0,46
2012	6,93	25,56	13,08	1,93	0,44
2013	6,66	28,97	12,73	2,07	0,50

^{*)} satuan dalam juta rupiah

Lampiran 3 Karakteristik Persentase Penduduk Miskin (dalam persen)

Kabupaten/Kota	Rata- Rata	Deviasi Standar	Nilai Min- imum	Nilai Maksimum
Pacitan	20,52	3,17	16,66	25,39
Ponorogo	14,963	2,799	11,76	18,45
Trenggalek	18,69	4,27	13,5	24,74
Tulungagung	12,98	4,12	9,03	19,44
Blitar	13,655	2,721	10,529	17,91
Kediri	16,516	2,373	13,172	19,28
Malang	13,807	2,264	11,04	17,1
Lumajang	16,06	3,31	12,09	20,09
Jember	15,33	3,08	11,63	18,57
Banyuwangi	12,765	2,664	9,571	16,64
Bondowoso	20,31	4,11	15,23	26,23
Situbondo	16,091	1,655	13,591	18,51
Probolinggo	25,714	2,968	21,123	30,13
Pasuruan	15,95	4,08	11,22	21,67
Sidoarjo	9,21	3,17	6,44	14,02
Mojokerto	13,43	2,274	10,71	16,9
Jombang	16,62	4,97	11,12	24,07
Nganjuk	18,39	4,94	13,22	25,83
Madiun	17,37	3,69	12,4	22,66
Magetan	14,499	2,538	11,5	18,27
Ngawi	19,81	3,6	15,38	25,31

Lampiran 3 (Lanjutan)

Kabupaten/Kota	Rata- Rata	Deviasi Standar	Nilai Min- imum	Nilai Maksimum
Bojonegoro	21,76	4,82	15,95	28,38
Tuban	23,35	5,1	17,16	30,52
Lamongan	20,73	3,75	16,12	25,79
Gresik	19,19	4,36	13,89	25,19
Bangkalan	29,18	3,78	23,14	33,53
Sampang	33,8*)	5,22	26,97*)	41,03*)
Pamekasan	25,68	5,99*)	18,45	34,14
Sumenep	27,5	5,15	21,13	34,86
Kota Kediri	10,838	2,43	8,14	13,85
Kota Blitar	9,052	2,248	6,75	12,02
Kota Malang	6,23	1,016	4,853	7,42
Kota Probolinggo	17,93	3,4	10,92	23,29
Kota Pasuruan	10,239	2,285	7,568	13,71
Kota Mojokerto	8,373	1,827	6,48	10,72
Kota Madiun	6,534	1,311	4,997	9,11
Kota Surabaya	7,137	0,827	5,971	8,23
Kota Batu	6,8	2,786	4,47	11,61

Lampiran 4 Karakteristik Indeks Kedalaman Kemiskinan

Kabupaten/Kota	Rata- Rata	Deviasi Standar	Nilai Minimum	Nilai Maksimum
Pacitan	3,538	1,235	2,12	5,94
Ponorogo	2,451	1,003	1,52	4,38
Trenggalek	3,443	1,458	1,758	5,85
Tulungagung	1,837	0,686	1,07	2,84
Blitar	2,307	0,656	1,57	3,53
Kediri	2,691	0,755	1,73	4,03
Malang	2,346	0,848	1,33	4,07
Lumajang	2,731	1,439	1,165	5,73
Jember	2,319	1,007	1,244	4,68
Banyuwangi	2	0,611	1,3	2,92
Bondowoso	3,272	1,124	2,047	5,21
Situbondo	2,68	0,587	2,083	3,73
Probolinggo	4,248	0,573	3,341	4,81
Pasuruan	2,701	0,981	1,56	4,19
Sidoarjo	1,516	0,814	0,8	3,09
Mojokerto	1,98	0,656	1,29	3,04
Jombang	2,769	1,386	1,335	5,57
Nganjuk	3,045	1,219	1,83	5,04
Madiun	2,95	1,138	1,529	4,48
Magetan	2,105	0,719	1,045	3,31
Ngawi	3,113	1,038	1,828	5,17

Lampiran 4 (Lanjutan)

Kabupaten/Kota	Rata- Rata	Deviasi Standar	Nilai Minimum	Nilai Maksimum
Bojonegoro	3,792	1,057	2,46	5,36
Tuban	4,098	1,522	2,26	6,49
Lamongan	3,243	1,129	1,92	4,68
Gresik	3,57	1,538	1,99	6,88
Bangkalan	5,795	1,792*)	3,58	8,43*)
Sampang	6,168*)	1,507	4,325*)	8,33
Pamekasan	4,489	1,657	2,26	7,21
Sumenep	4,641	1,24	2,95	6,16
Kota Kediri	1,738	0,518	0,82	2,36
Kota Blitar	1,494	0,526	0,75	2,39
Kota Malang	1,071	0,344	0,481	1,55
Kota Probolinggo	3,205	1,017	1,22	5,14
Kota Pasuruan	1,716	0,58	0,99	2,65
Kota Mojokerto	1,276	0,478	0,81	2,25
Kota Madiun	0,965	0,313	0,68	1,68
Kota Surabaya	1,259	0,373	0,673	2,01
Kota Batu	1,1	0,583	0,478	2

Lampiran 5 Karakteristik Indeks Keparahan Kemiskinan

Kabupaten/Kota	Rata- Rata	Deviasi Standar	Nilai Minimum	Nilai Maksimum
Pacitan	0,935	0,503	0,42	2
Ponorogo	0,616	0,372	0,29	1,34
Trenggalek	0,977	0,604	0,351	2,15
Tulungagung	0,3964	0,1708	0,2	0,66
Blitar	0,6037	0,249	0,35	1,13
Kediri	0,6822	0,2609	0,34	1,11
Malang	0,606	0,301	0,25	1,27
Lumajang	0,722	0,573	0,179	2,01
Jember	0,56	0,344	0,221	1,4
Banyuwangi	0,484	0,1828	0,27	0,81
Bondowoso	0,849	0,368	0,502	1,52
Situbondo	0,6721	0,2252	0,44	1,07
Probolinggo	1,0522	0,1665	0,8095	1,25
Pasuruan	0,702	0,335	0,31	1,31
Sidoarjo	0,4078	0,2909	0,14	0,87
Mojokerto	0,4727	0,224	0,24	0,85
Jombang	0,706	0,471	0,278	1,76
Nganjuk	0,774	0,386	0,41	1,44
Madiun	0,785	0,425	0,304	1,39
Magetan	0,4668	0,2229	0,161	0,87
Ngawi	0,756	0,366	0,356	1,57

Lampiran 5 (Lanjutan)

Kabupaten/Kota	Rata- Rata	Deviasi Standar	Nilai Minimum	Nilai Maksimum
Bojonegoro	0,992	0,346	0,6	1,63
Tuban	1,098	0,576	0,4	2,15
Lamongan	0,771	0,331	0,36	1,2
Gresik	0,971	0,597	0,41	2,39
Bangkalan	1,693*)	$0,74^{*)}$	0,81	$2,79^{*)}$
Sampang	1,625	0,575	$0,966^{*)}$	2,66
Pamekasan	1,169	0,561	0,39	2,19
Sumenep	1,186	0,438	0,56	1,89
Kota Kediri	0,4501	0,1517	0,14	0,62
Kota Blitar	0,3954	0,1783	0,12	0,68
Kota Malang	0,2799	0,118	0,0693	0,44
Kota Probolinggo	0,871	0,411	0,21	1,77
Kota Pasuruan	0,4668	0,2375	0,19	0,85
Kota Mojokerto	0,3005	0,1427	0,1444	0,6
Kota Madiun	0,2227	0,0787	0,11	0,37
Kota Surabaya	0,3463	0,1593	0,1265	0,68
Kota Batu	0,2661	0,1697	0,0652	0,52

Lampiran 6 Karakteristik Angka Melek Huruf (dalam persen)

Kabupaten/Kota	Rata- Rata	Deviasi Standar	Nilai Minimum	Nilai Maksimum
Pacitan	90,471	2,582	83,92	91,67
Ponorogo	85,22	3,39	79,49	89,37
Trenggalek	92,365	0,872	90,19	93,07
Tulungagung	92,888	2,012	89,23	94,92
Blitar	91,046	1,879	86,2	92,12
Kediri	92,131	1,271	89,3	92,97
Malang	89,138	1,929	84,42	91,22
Lumajang	85,748	1,973	80,5	86,63
Jember	82,964	0,982	80,55	83,79
Banyuwangi	86,729	1,125	84,7	88,44
Bondowoso	76,602	2,826	74,3	81,22
Situbondo	77,504	1,893	72,6	78,62
Probolinggo	78,53	1,884	75	80,95
Pasuruan	89,036	1,987	85,1	91,71
Sidoarjo	97,52	0,231*)	97,29	97,91
Mojokerto	93,664	0,985	91,94	94,47
Jombang	92,084	2,016	88,16	94,45
Nganjuk	90,088	1,487	86,46	91,16
Madiun	87,768	2,3	83,16	90,04
Magetan	90,343	0,61	89,8	91,42
Ngawi	84,377	1,988	80,91	85,99

ket : *) menunjukkan nilai terendah

Lampiran 6 (Lanjutan)

Kabupaten/Kota	Rata- Rata	Deviasi Standar	Nilai Minimum	Nilai Maksimum
Bojonegoro	84,356	1,126	81,4	85,13
Tuban	84,809	2,074	79,4	86
Lamongan	87,135	1,49	84,71	89,09
Gresik	94,518	1,15	92,6	96,38
Bangkalan	81,938	2,678	74,8	82,93
Sampang	65,684*)	2,573	61,8*)	$69,47^{*)}$
Pamekasan	81,059	2,025	79,45	84,48
Sumenep	78,127	1,586	73,9	78,75
Kota Kediri	97,306	0,402	96,8	97,86
Kota Blitar	96,964	0,642	95,37	97,48
Kota Malang	97,278	0,745	95,9	98,38
Kota Probolinggo	91,586	1,646	88,7	92,66
Kota Pasuruan	96,246	0,565	95,6	97,12
Kota Mojokerto	96,896	0,648	95,29	97,58
Kota Madiun	97,417	0,814	96	98,15
Kota Surabaya	97,747	0,737	96,48	98,4
Kota Batu	96,712	1,837	93,37	98,32

ket:*) menunjukkan nilai terendah

Lampiran 7 Karakteristik Penduduk Tanpa Akses Air Bersih (dalam Persen)

Kabupaten/Kota	Rata- Rata	Deviasi Standar	Nilai Minimum	Nilai Maksimum
Pacitan	29,87*)	7,14	16,5*)	42,99
Ponorogo	7,54	6,15	1,6	20,1
Trenggalek	25,79	5,99	15,9	33,37
Tulungagung	5,38	3,7	1,37	12,12
Blitar	8,97	3,26	4,87	15,76
Kediri	3,941	1,97	1,06	7,16
Malang	6,57	3,42	2,91	12
Lumajang	6,839	2,803	3,19	11,68
Jember	10,13	3,41	6,68	15,08
Banyuwangi	12,48	4,91	5,69	19,65
Bondowoso	13,67	6,72	6,54	26,28
Situbondo	12,51	3,7	6,79	18,81
Probolinggo	16,77	6,11	7,56	27,01
Pasuruan	6,5	4,53	1,42	14,68
Sidoarjo	1,048	1,016	0	2,71
Mojokerto	4,107	2,439	1,57	8,69
Jombang	4,2	3,84	0,84	11,2
Nganjuk	4,563	2,668	1,14	8,48
Madiun	4,497	2,691	0,85	8,7
Magetan	3,552	1,661	0,75	5,94
Ngawi	6,52	3,41	2,52	12,4

104

Lampiran 7 (Lanjutan)

Kabupaten/Kota	Rata- Rata	Deviasi Standar	Nilai Minimum	Nilai Maksimum
Bojonegoro	6,579	2,674	2,59	9,44
Tuban	5,24	2,018	2,48	8,37
Lamongan	15,96	6,13	5,12	23,79
Gresik	9,11	5,4	1,69	17,78
Bangkalan	8,97	5,31	2,53	16,69
Sampang	27,58	11,67*)	14,46	53,33*)
Pamekasan	10,89	5,79	2,02	22,13
Sumenep	10,8	3,41	5,09	15,99
Kota Kediri	0,577	0,848	0	2,35
Kota Blitar	4,589	2,119	0,18	7,35
Kota Malang	1,599	1,297	0,39	4,1
Kota Probolinggo	0,507	0,673	0	1,91
Kota Pasuruan	1,023	0,955	0	3,26
Kota Mojokerto	1,369	2,04	0	6,22
Kota Madiun	0,696	0,631	0	2,04
Kota Surabaya	0,312	0,311	0	0,8
Kota Batu	1,043	0,684	0	1,77

Lampiran 8 Karakteristik Angka Partisipasi Sekolah Usia Menengah (dalam Persen)

Kabupaten/Kota	Rata- Rata	Deviasi Standar	Nilai Minimum	Nilai Maksimum
Pacitan	92,29	2,255	88,73	95,653
Ponorogo	95,449	2,381	90,477	97,84
Trenggalek	90,41	3,22	84,37	94,53
Tulungagung	93,04	3,36	87,29	97,43
Blitar	88,899	2,626	85,28	93,48
Kediri	91,046	1,802	88,3	94,48
Malang	83,13	4,13	76,65	87,96
Lumajang	80,4	7,85	67,68	88,84
Jember	80,45	5,33	74,13	90,93
Banyuwangi	87,53	4,91	80,07	94,57
Bondowoso	81,72	8,02	66,54	92,01
Situbondo	84,36	5,61	73,61	92,41
Probolinggo	76,13	8,26	62,18	87,73
Pasuruan	83,98	5,19	72,97	89,41
Sidoarjo	96,801	1,614	94,65	98,82
Mojokerto	94,246	2,889	89,91	98,23
Jombang	92,493	1,978	89,745	95,101
Nganjuk	90,03	4,7	82,51	96,15
Madiun	93,09	4,15	88,03	99,24
Magetan	96,486	2,017	92,85	99,04
Ngawi	91,56	3,33	87,62	96,43

106

Lampiran 8 (Lanjutan)

Kabupaten/Kota	Rata- Rata	Deviasi Standar	Nilai Minimum	Nilai Maksimum
Bojonegoro	90,49	3,83	85,79	96,75
Tuban	87,26	4,82	80,12	94,11
Lamongan	94,294	2,878	90,64	98,42
Gresik	94,17	1,635	91,98	97,41
Bangkalan	74,24**)	8,99*)	59,14**)	84,87**)
Sampang	74,58	8,92	60,4	88,42
Pamekasan	86,02	5,51	78,35	92,72
Sumenep	87,02	4,61	76,89	92,87
Kota Kediri	95,87	2,064	92,63	100
Kota Blitar	95,613	2,281	92,306	100
Kota Malang	93,327	1,918	90,166	96,32
Kota Probolinggo	91,87	4,34	83,84	98,73
Kota Pasuruan	92,15	3,55	87,7	97,57
Kota Mojokerto	96,202	1,677	93,858	99,22
Kota Madiun	97,43	1,416	95,65	100
Kota Surabaya	93,774	2,287	90,86	97,69
Kota Batu	94,164	2,413	90,21	97,63

Lampiran 9 Karakteristik Penduduk Tanpa Akses Kesehatan (dalam Persen)

Kabupaten/Kota	Rata- Rata	Deviasi Standar	Nilai Minimum	Nilai Maksimum
Pacitan	19,16	9,32	9,05	40,03
Ponorogo	10,89	8,55	0	30,89
Trenggalek	13,5	7,81	3,54	28,04
Tulungagung	5,52	3,7	0	10,26
Blitar	5,97	4,62	0	14,89
Kediri	6,256	2,471	3,36	11,31
Malang	22,84	10	7,63	43,67
Lumajang	15,74	9,7	0	28,07
Jember	41,35	10,38	19,78	58,75
Banyuwangi	17,44	7,23	3,48	31,4
Bondowoso	40,95	7	30,93	50,84
Situbondo	33,4	17,03	4,13	50,67
Probolinggo	35,8	12,72	14,19	50,41
Pasuruan	21,92	6,7	10,62	32,31
Sidoarjo	2,449	1,489	0	4,63
Mojokerto	6,49	5,69	0	14,34
Jombang	6,03	4,17	0	13,47
Nganjuk	14,14	19,96*)	0	65,65
Madiun	4,24	3,71	0	10,64
Magetan	4,382	2,209	0	7,24
Ngawi	5,366	2,102	3,27	8,87

Lampiran 9 (Lanjutan)

Kabupaten/Kota	Rata- Rata	Deviasi Standar	Nilai Minimum	Nilai Maksimum
Bojonegoro	19,57	7,65	8,24	28,7
Tuban	16,04	7,05	7,83	24,73
Lamongan	7,71	4,84	3,58	19,25
Gresik	2,979	1,479	0	4,87
Bangkalan	51,12	8,92	40,5	67,89
Sampang	58,88*)	9,99	42,68	72,71*)
Pamekasan	43,77	17,07	13,58	61,29
Sumenep	53,08	6,12	47,24*)	65,88
Kota Kediri	1,77	3,15	0	9,37
Kota Blitar	5,74	8,74	0	26,05
Kota Malang	5,77	8,27	0	26,67
Kota Probolinggo	14,15	5,05	3,17	21,43
Kota Pasuruan	8,32	9,38	0	27,27
Kota Mojokerto	1,89	4,52	0	13,84
Kota Madiun	1,057	1,594	0	4,12
Kota Surabaya	4,19	3,66	0	12,11
Kota Batu	4,39	5,04	0	13,88

Lampiran 10 Karakteristik Tingkat Partisipasi Angkatan Kerja (dalam Persen)

Kabupaten/Kota	Rata- Rata	Deviasi Standar	Nilai Minimum	Nilai Maksimum
Pacitan	80,41	3,67*)	73,91	83,74
Ponorogo	72,141	2,599	67,12	75,7
Trenggalek	75,03	3	70,09	77,65
Tulungagung	72,808	1,606	70,57	75,85
Blitar	70,064	1,704	68,38	73,551
Kediri	67,961	1,424	65,36	69,81
Malang	69,35	1,633	66,943	72,24
Lumajang	65,106	1,662	61,893	67,346
Jember	66,819	1,778	64,303	69,05
Banyuwangi	70,634	2,647	65,352	73,45
Bondowoso	69,608	1,642	67,437	71,48
Situbondo	70,031	2,493	65,9	72,83
Probolinggo	72,46	2,304	67,81	75,42
Pasuruan	70,314	1,636	66,35	71,97
Sidoarjo	67,141	1,922	63,2	70,198
Mojokerto	68,977	1,81	66,424	70,76
Jombang	66,525	1,862	64,178	69,11
Nganjuk	67,522	1,569	65,55	69,641
Madiun	68,352	1,249	66,44	69,861
Magetan	74,237	2,79	71,5	78,75
Ngawi	69,059	2,907	65,3	73,173

110

Lampiran 10 (Lanjutan)

Kabupaten/Kota	Rata- Rata	Deviasi Standar	Nilai Minimum	Nilai Maksimum
Bojonegoro	68,158	2,182	64,822	72,994
Tuban	67,785	1,867	65,2	70,006
Lamongan	68,362	2,338	63,681	71,67
Gresik	65,155	1,661	63,067	67,6
Bangkalan	68,309	2,113	64,75	70,612
Sampang	72,718	2,542	67,67	76,537
Pamekasan	75,001	2,49	70,58	77,972
Sumenep	75,724	1,814	73,36	78,758
Kota Kediri	65.979	1.412	64.178	67.69
Kota Blitar	64.836	1.841	60.54	66.534**)
Kota Malang	63.743	2.57	60.47	68.724
Kota Probolinggo	63.811	2.465	58.46	67.709
Kota Pasuruan	64.919	2.809	60.96	69.131
Kota Mojokerto	67.319	2.718	62.98	71.407
Kota Madiun	62.91**)	3.66	56.65**)	66.63
Kota Surabaya	64.359	2.213	61.77	67.865
Kota Batu	68.475	2.284	65.84	72.644

Lampiran 11 Karakteristik Pekerja Sektor Pertanian (dalam Persen)

Kabupaten/Kota	Rata- Rata	Deviasi Standar	Nilai Minimum	Nilai Maksimum
Pacitan	75,47	7,63	64,99*)	84,89
Ponorogo	69,31	11,85	53,91	80,71
Trenggalek	66,31	10,13	46,3	78,09
Tulungagung	38,31	11,38	20,27	51,82
Blitar	53,8	10,55	32,34	62,28
Kediri	44,54	14,78*)	19,23	56,9
Malang	51,33	11,3	32,85	66,83
Lumajang	55,05	11,09	39,85	67,44
Jember	54,24	9,99	37,7	64,99
Banyuwangi	45,6	12,81	26,82	59,48
Bondowoso	55,8	12,06	35,86	69,59
Situbondo	56,78	12,01	36,84	71,9
Probolinggo	60,24	14,12	41,93	73,48
Pasuruan	43,3	8,61	31,22	54,62
Sidoarjo	12,31	3,04	8,46	19,43
Mojokerto	27,87	7,03	17,26	37,29
Jombang	33,58	10,98	17,8	48,44
Nganjuk	52,56	10,23	39,54	67,34
Madiun	47,96	8,88	33,98	58,42
Magetan	57,52	12,99	39,22	74,06
Ngawi	61,45	14,58	38,92	76,28

112

Lampiran 11 (Lanjutan)

Kabupaten/Kota	Rata- Rata	Deviasi Standar	Nilai Minimum	Nilai Maksimum
Bojonegoro	63,25	7,63	53,39	74,19
Tuban	54,99	13,74	34,97	75,86
Lamongan	55,42	10,45	40,59	69,24
Gresik	36,7	6,52	28,21	45,1
Bangkalan	63,62	10,51	46,76	77,61
Sampang	74,6	12,68	56,79	88,89*)
Pamekasan	75,83*)	10,77	57,34	86,67
Sumenep	67,01	10,79	52,1	81,18
Kota Kediri	9,11	4,8	3,37	19,8
Kota Blitar	10,278	2,99	6,97	17,07
Kota Malang	4,78	4,84	0	14,64
Kota Probolinggo	17,8	6,99	9,23	33,13
Kota Pasuruan	8,09	4,87	0,94	17,1
Kota Mojokerto	3,01	2,171	0,55	7,21
Kota Madiun	5,5	5,08	0	16,25
Kota Surabaya	1,432	1,472	0	4,16
Kota Batu	42,15	14	23,1	70,59

Lampiran 12 Karakteristik Laju Pertumbuhan Ekonomi (dalam Persen)

Kabupaten/Kota	Rata- Rata	Deviasi Standar	Nilai Minimum	Nilai Maksimum
Pacitan	5,554	1,066	3,97	6,77
Ponorogo	5,63	0,714	4,55	6,67
Trenggalek	5,603	0,884	4,36	6,72
Tulungagung	6,149	0,681	5,22	6,99
Blitar	5,832	0,532	5,05	6,44
Kediri	5,299	1,238	3,27	6,99
Malang	6,158	0,944	5,02	7,56
Lumajang	5,65	0,655	5,04	6,51
Jember	6,21	0,766	5,02	7,27
Banyuwangi	6,129	0,792	5,06	7,29
Bondowoso	5,72	0,505	5	6,47
Situbondo	5,796	0,685	5,02	6,87
Probolinggo	5,874	0,662	4,75	6,67
Pasuruan	6,352	0,721	5,02	7,29
Sidoarjo	6,07	0,971	4,41	7,23
Mojokerto	6,301	0,926	5,03	7,29
Jombang	6,113	0,68	5,04	6,99
Nganjuk	6,112	0,511	5,18	6,73
Madiun	5,497	0,877	4,25	6,58
Magetan	5,561	0,742	4,75	6,67
Ngawi	5,666	0,881	4,43	6,98

114

Lampiran 12 (Lanjutan)

Kabupaten/Kota	Rata- Rata	Deviasi Standar	Nilai Minimum	Nilai Maksimum
Bojonegoro	8,778	2,512*)	5,3	13,01
Tuban	6,483	0,713	5,03	7,24
Lamongan	6,312	0,719	5,31	7,22
Gresik	6,964	0,604	5,96	7,88
Bangkalan	5,314	0,834	4,37	6,45
Sampang	5,006	0,88	3,84	6,19**)
Pamekasan	5,526	0,704	4,65	6,43
Sumenep	4,983**)	1,223	3,31	6,49
Kota Kediri	5,143	2,039	1,58**)	7,93
Kota Blitar	6,35	0,493	5,31	6,84
Kota Malang	6,522	0,799	5,2	7,71
Kota Probolinggo	6,394	0,56	5,02	6,96
Kota Pasuruan	6,137	0,482	5,02	6,59
Kota Mojokerto	6,206	0,766	5,03	7,19
Kota Madiun	6,659	1,023	5,22	8,07
Kota Surabaya	6,996	0,793	5,17	7,76
Kota Batu	7,29	0,794	5,9	8,26

Lampiran 13 Karakteristik PDRB Per Kapita ADHB (dalam Persen)

Kabupaten/Kota	Rata- Rata	Deviasi Standar	Nilai Minimum	Nilai Maksimum
Pacitan	5,722**)	1,848	3,245**)	8,809
Ponorogo	7,917	2,752	4,337	12,377
Trenggalek	7,925	2,885	3,432	12,481
Tulungagung	15,22	4,82	8,85	23,11
Blitar	10,21	3,07	6,2	15,23
Kediri	9,653	2,99	5,353	14,566
Malang	12	3,94	6,83	18,67
Lumajang	12,75	4	7,29	19,27
Jember	10	3,31	5,47	15,48
Banyuwangi	14,09	4,94	7,83	22,41
Bondowoso	8,68	2,933	3,925	13,272
Situbondo	11,86	3,62	7,14	17,78
Probolinggo	12,6	3,88	7,62	19,02
Pasuruan	9,57	3,05	5,63	14,65
Sidoarjo	27,68	7,83	18,15	41,09
Mojokerto	16,36	5,69	7,47	25,46
Jombang	10,86	3,55	5,97	16,68
Nganjuk	9,99	3,23	5,52	15,3
Madiun	9,66	3,14	5,26	14,82
Magetan	11	3,57	6,27	16,94
Ngawi	8,173	2,66	4,629	12,529

116

Lampiran 13 (Lanjutan)

Kabupaten/Kota	Rata- Rata	Deviasi Standar	Nilai Minimum	Nilai Maksimum
Bojonegoro	15,74	7,56	6,69	26,7
Tuban	15,49	5,44	7,19	24,19
Lamongan	9,2	3,4	4,49	14,84
Gresik	29,72	10,49	15,99	46,67
Bangkalan	7,722	2,238	4,629	11,42
Sampang	6,15	1,656	3,64	8,799
Pamekasan	5,798	1,761	3,311	8,675**)
Sumenep	10,06	3,01	6,37	15,17
Kota Kediri	198,8	64,6*)	121,2	306,5
Kota Blitar	13,96	4,75	6,46	21,38
Kota Malang	34,33	10,92	19,45	52,09
Kota Probolinggo	20,1	6	11,53	29,81
Kota Pasuruan	13,08	3,92	7,9	19,37
Kota Mojokerto	21,41	6,62	12,81	32,16
Kota Madiun	26,24	10,41	8,39	42,09
Kota Surabaya	68,98	23,37	36,76	108,33
Kota Batu	15,72	5,38	8,29	24,64

^{**)} menunjukkan nilai terendah

Lampiran 14 Output Uji Multikolinearitas

S = 3.91970 R - Sq = 71.7% R - Sq(adj) = 71.1%

```
The regression equation is
PO = 63.9 - 0.341 ANGKA MELEK HURUF + 0.177 TAMPA AIR BERSIH - 0.0298 APS
  + 0.0474 TANPA ARSES KESEHATAN - 0.256 TPAK
 + 0.100 PEKERJA SEKTOR PERTANIAN - 0.573 LAJU PERTUMBUHAN EKONOMI
 + 0.00234 PDRB PER KAPITA
Predictor
                        Coef SE Coef
                                         T
                       63.891 6.584 9.70 0.000
Constant
                      -0,34062 0.05727 -5.95 0.000 4.053
ANGRA MELEK HURUF
                     0.17731 0.03585 4.95 0.000 1.954
TANPA AIR BERSIH
APS
                     -0.02977 0.04537 -0.66 0.512 2.610
TANPA AKSES KESEHATAN 0,04741 0.02045 2.32 0.021 2,963
                     -0.25580 0.06745 -3.79 0.000 1.905
TPAR
PERERJA SEKTOR PERTANIAN 0.10030 0.01537 6.52 0.000 3.164
LAJU PERTUMBUHAN EKONOMI -0.5727 0.2034 -2.82 0.005 1.155
PDRB PER KAPITA 0.002343 0.007048 0.33 0.740 1.238
```

Lampiran 15 Pemilihan Metode Estimasi Model Persentase Penduduk Miskin dengan Semua Variabel Prediktor

Uji Statistik F

Redundant Fixed Effects Tests Equation: Untitled Test cross-section fixed effects			
Effects Test	Statistic	d.f.	Prob.
Cross-section F Cross-section Chi-square	25.497025 489.749159	(37,296) 37	0.0000 0.0000

Uji Hausman

Correlated Random Effects - Hausma Equation: Untitled Test cross-section random effects	an Test		
Test Summary	Chi-Sq. Statis- tic	Chi-Sq. d.f.	Prob.
Cross-section random	15.339451	8	0.0529
_			-

Lampiran 16 Pemodelan Persentase Penduduk Miskin dengan Semua Variabel Prediktor

Model REM

Dependent Variable: YTRANS

Method: Panel EGLS (Cross-section random effects)

Date: 01/01/16 Time: 00:06

Sample: 2005 2013 Periods included: 9

Cross-sections included: 38

Total panel (balanced) observations: 342

Swarry, and Arora estimator of component variances						
Variable	Coefficient	Std. Error	t-Statistic	Prob.		
X1	-0.026732	0.004687	-5.702950	0.0000		
X2	0.010519	0.002074	5.072503	0.0000		
X3	-0.001506	0.002186	-0.688690	0.4915		
X4	0.000284	0.000984	0.288315	0.7733		
X5	-0.016328	0.003350	-4.874657	0.0000		
X6	0.005684	0.000892	6.376061	0.0000		
X7	-0.024285	0.009702	-2.503177	0.0128		
X8	-0.003770	0.000624	-6.037976	0.0000		
С	6.218896	0.461920	13.46316	0.0000		
	Effects Sp	ecification				
			S.D.	Rho		
Cross-section random			0.239795	0.7591		
ldiosyncratic random			0.135096	0.2409		
	Weighted	Statistics				
R-squared	0.612295	Mean depend	ent <u>var</u>	0.498236		
Adjusted R-squared	0.602980	S.D. depende	nt var	0.216755		
S.E. of regression	0.136576	Sum squared	resid	6.211467		
F-statistic	65.73745	Durbin-Watso	n stat	0.826645		
Prob(F-statistic)	0.000000					
Unweighted Statistics						
R-squared	0.639557	Mean depend	ent var	2.699492		
Sum squared <u>resid</u>	27.46480	Durbin-Watso	n stat	0.186955		

Lampiran 17 Pengujian Asumsi Residual Identik Model Persentase Penduduk Miskin dengan Semua Variabel Prediktor

```
Regression Analysis: rho c9 versus X1, X2, X3, X4, X5,
X6, X7, X8
The regression equation is
rho c9 = 2.75 + 0.0144 X1 + 0.0204 X2 + 0.0125 X3 +
0.0107 X4 - 0.0829 X5
        + 0.00917 \times 6 + 0.0270 \times 7 + 0.0337 \times 8
Predictor
                     SE Coef
                                  Т
                                         Ρ
             Coef
Constant
             2.753
                       2.013 1.37 0.173
           0.01440 0.01751 0.82 0.412
Х1
Х2
           0.02036 0.01096 1.86 0.064
ХЗ
           0.01246 0.01387 0.90 0.370
X4
          0.010713 0.006254 1.71 0.088
Х5
          -0.08289 0.02063 -4.02 0.000
Х6
          0.009173 0.004702
                             1.95 0.052
x7
          0.02703 0.06220 0.43 0.664
X8
          0.033667 0.002155 15.62 0.000
S = 1.19864  R-Sq = 47.3\%  R-Sq(adj) = 46.0\%
Analysis of Variance
Source
                DF
                         SS
                                 MS
Regression
                8 429.444
                             53.681
                                     37.36 0.000
Residual Error
               333 478.433
                             1.437
Total
               341 907.877
```

Lampiran 18 Pengujian Asumsi Residual Berdistribusi Normal Model Persentase Penduduk Miskin dengan Semua Variabel Prediktor

One-Sample Kolmogorov-Smirnov Test

5		VAR00001
N	-	342
Normal Parameters ^a	Mean	.0000
	Std. Deviation	.28380
Most Extreme Differences	Absolute	.045
	Positive	.045
	Negative	023
Kolmogorov-Smirnov Z		.831
Asymp. Sig. (2-tailed)		.494

a. Test distribution is Normal.

Lampiran 19 Pemilihan Metode Estimasi Model Persentase Penduduk Miskin dengan Variabel Prediktor Signifikan

Uji Statistik F

Statistic	d.f.	Prob.
25.621595 489.264999	(37,298) 37	0.0000 0.0000
	25.621595	25.621595 (37,298)

Uji Hausman

Correlated Random Effects - Hausman Test				
Equation: Untitled				
Test cross-section random effects				
	Chi-Sq. Statis-			
Test Summary	tic	Chi-Sq. d.f.	Prob.	
Cross-section random	15.718520	6	0.0153	

Lampiran 20 Pemodelan Persentase Penduduk Miskin dengan Variabel Signifikan

Model FEM

Dependent Variable: YTRANS Method: Panel Least Squares Date: 01/01/16 Time: 00:21

Sample: 2005 2013 Periods included: 9

Cross-sections included: 38

Total panel (balanced) observations: 342

Variable	Coefficient	Std. Error	t-Statistic	Prob.
X1	-0.033277	0.005511	-6.037863	0.0000
X2	0.010503	0.002109	4.979043	0.0000
X5	-0.016218	0.003503	-4.630215	0.0000
X6	0.006327	0.000851	7.432330	0.0000
X8	-0.005307	0.000663	-7.998654	0.0000
С	6.517359	0.520797	12.51420	0.0000
	Effects Spe	ecification		
Cross-section fixed (d	lummy variable	es)		
R-squared	0.928468	Mean deper	ndent var	2.699492
Adjusted R-squared	0.918421	S.D. depend		0.472707
S.E. of regression	0.135015	Akaike info	criterion	-1.049763
Sum squared resid	5.450509	Schwarz crit	erion	-0.567608
Log likelihood	222.5094	Hannan-Qui	nn criter.	-0.857686
F-statistic	92.40413	Durbin-Wats	on stat	0.963913
Prob(F-statistic)	0.000000			

Lampiran 21 Pengujian Asumsi Residual Identik Model Persentase Penduduk Miskin dengan Semua Variabel Prediktor

```
Regression Analysis: RHO C12 versus X1, X2, X5, X6,
X8
The regression equation is
RHO C12 = 1.71 + 0.0310 \times 1 + 0.0254 \times 2 - 0.0537 \times 5 +
0.00084 \times 6 + 0.00012 \times 8
Predictor
              Coef
                      SE Coef
                                   Т
Constant
              1.713
                        2.091
                                0.82 0.413
X1
           0.03097 0.01658
                              1.87 0.063
X2
           0.02542
                     0.01354
                               1.88 0.061
Х5
          -0.05365 0.02462 -2.18 0.030
           0.000844 0.005901 0.14 0.886
Х6
X8
           0.000120 0.002733
                                0.04 0.965
S = 1.52366  R-Sq = 3.4%  R-Sq(adj) = 1.9%
Analysis of Variance
Source
                 DF
                          SS
                                 MS
                                        F
                                     2.33
Regression
                 5
                      27.078
                              5.416
                              2.322
Residual Error
                336
                     780.040
Total
                341
                     807.118
```

Lampiran 22 Pengujian Asumsi Residual Berdistribusi Normal Model Persentase Penduduk Miskin dengan Variabel Signifikan

One-Sample Kolmogorov-Smirnov Test

		VAR00002
N	•	342
Normal Parameters ^a	Mean	.0000
	Std. Deviation	.12643
Most Extreme Differences	Absolute	.057
	Positive	.057
	Negative	036
Kolmogorov-Smirnov Z		1.062
Asymp. Sig. (2-tailed)		.210

a. Test distribution is Normal.

Lampiran 23 Pemilihan Metode Estimasi Model Indeks Kedalaman Kemiskinan dengan Semua Variabel Prediktor

Uji Statistik F

Statistic	d.f.	Prob.
9.916194 275.742109	(37,296) 37	0.0000 0.0000
	9.916194	9.916194 (37,296)

Uji Hausman

Correlated Random Effects - Hausman Test Equation: FE_CS_TRANS Test cross-section random effects			
Test Summary	Chi-Sq. Statis- tic	Chi-Sq. d.f.	Prob.
Cross-section random	24.135056	8	0.0022

Lampiran 24 Pemodelan Indeks Kedalaman Kemiskinan dengan Semua Variabel Prediktor

Model FEM

Dependent Variable: YTRANSFORM

Method: Panel Least Squares Date: 01/01/16 Time: 00:39

Sample: 2005 2013 Periods included: 9

Cross-sections included: 38

Total panel (balanced) observations: 342

	- ## · ·			
Variable	Coefficient	Std. Error	t-Statistic	Prob.
X1	-0.051831	0.011325	-4.576687	0.0000
X2	0.008785	0.004082	2.152086	0.0322
Х3	-0.008486	0.004269	-1.987882	0.0477
X4	0.000552	0.001898	0.290908	0.7713
X5	-0.018329	0.006615	-2.770691	0.0059
X6	0.008096	0.001771	4.571619	0.0000
X7	-0.040772	0.019444	-2.096928	0.0368
X8	-0.006566	0.001334	-4.924026	0.0000
С	7.435090	0.998598	7.445526	0.0000
Effects Specification				
Cross-section fixed (d	lummy variabl	es)		
R-squared	0.831969	Mean deper	ndent var	0.865903
Adjusted R-squared	0.806424	S.D. depend		0.575608
S.E. of regression	0.253252	Akaike info	criterion	0.215691
Sum squared resid	18.98442	Schwarz criterion		0.731484
Log likelihood	9.116842	Hannan-Quinn criter.		0.421169
F-statistic	32.56848	Durbin-Wats	son stat	1.697722
Prob(F-statistic)	0.000000			
	•	-	-	•

Lampiran 25 Pengujian Asumsi Residual Identik Model Indeks Kedalaman Kemiskinan dengan Semua Variabel Prediktor

```
Regression Analysis: rho C1 versus X1, X2, X3, X4, X5,
X6, X7, X8
The regression equation is
rho C1 = 0.72 + 0.0275 \times 1 + 0.0137 \times 2 - 0.0140 \times 3 -
0.00271 X4 - 0.0166 X5
        + 0.00039 \times 6 + 0.0161 \times 7 + 0.00355 \times 8
Predictor
                     SE Coef
                                         Ρ
               Coef
                        2.643 0.27 0.786
Constant
             0.719
            0.02749 0.02299 1.20 0.233
X1
X2
           0.01366 0.01439
                               0.95 0.343
Х3
           -0.01405 0.01821 -0.77 0.441
X4
          -0.002711 0.008209 -0.33 0.741
Х5
           -0.01665 0.02708 -0.61 0.539
Х6
           0.000390 0.006172 0.06 0.950
X7
           0.01607 0.08165 0.20 0.844
           0.003547 0.002829 1.25 0.211
X8
S = 1.57346  R-Sq = 2.3%  R-Sq(adj) = 0.0%
Analysis of Variance
Source
                DF
                         SS
                                MS
                                      F
Regression
                8 19.348 2.418 0.98 0.454
Residual Error
               333 824.436 2.476
Total
               341 843.784
```

Lampiran 26 Pengujian Asumsi Residual Independen Model Indeks Kedalaman Kemiskinan dengan Semua Variabel Prediktor

Run Test

Runs Test 2

	VAR00001
	V/11100001
Test Value ^a	.0000
Cases < Test Value	184
Cases >= Test Value	158
Total Cases	342
Number of Runs	157
Z	-1.526
Asymp. Sig. (2-tailed)	.127

a. Mean

Lampiran 27 Pengujian Asumsi Residual Berdistribusi Normal Model Indeks Kedalaman Kemiskinan dengan Semua Variabel Prediktor

One-Sample Kolmogorov-Smirnov Test

	-	\/A D00004
	-	VAR00001
N		342
Normal Parameters ^a	Mean	.0000
	Std. Deviation	.23595
Most Extreme Differences	Absolute	.049
	Positive	.049
	Negative	041
Kolmogorov-Smirnov Z		.907
Asymp. Sig. (2-tailed)		.382

a. Test distribution is Normal.

Lampiran 28 Pemilihan Metode Estimasi Model Indeks Kedalaman Kemiskinan dengan Variabel Signifikan

Uji Statistik F

Redundant Fixed Effects Tests Equation: FE03 Test cross-section fixed effects			
Effects Test	Statistic	d.f.	Prob.
Cross-section F Cross-section Chi-square	10.452730 285.180693	(37,297) 37	0.0000 0.0000

Uji Hausman

Correlated Random Effects - Haus Equation: FE03 Test cross-section random effects	man Test		
Test Summary	Chi-Sq. Statis- tic	Chi-Sq. d.f.	Prob.
Cross-section random	29.313810	7	0.0001

Lampiran 29 Pemodelan Indeks Kedalaman Kemiskinan dengan Variabel Signifikan

Model FEM

Dependent Variable: YTRANSFORM

Method: Panel Least Squares Date: 01/01/16 Time: 00:47

Sample: 2005 2013 Periods included: 9

Cross-sections included: 38

Total panel (balanced) observations: 342

Variable	Coefficient	Std. Error	t-Statistic	Prob.
X1	-0.055362	0.011379	-4.865364	0.0000
X2	0.008361	0.004125	2.027042	0.0436
Х3	-0.009518	0.004300	-2.213521	0.0276
X4	0.000877	0.001916	0.457585	0.6476
X6	0.007584	0.001781	4.258088	0.0000
X7	-0.042429	0.019652	-2.159070	0.0316
X8	-0.006701	0.001348	-4.972997	0.0000
С	6.609144	0.963719	6.857958	0.0000
	Effects Spe	ecification		
Cross-section fixed (dummy variables)				
R-squared	0.827611	Mean depende	nt var	0.865903
Adjusted R-squared	0.802072	S.D. dependen	t var	0.575608
S.E. of regression	0.256083	Akaike info crit	erion	0.235447
Sum squared resid	19.47678	Schwarz criteri	on	0.740028
Log likelihood	4.738510	Hannan-Quinn	criter.	0.436458
F-statistic	32.40570	Durbin-Watson	stat	1.674988
Prob(F-statistic)	0.000000			

Lampiran 30 Pengujian Asumsi Residual Identik Model Indeks Kedalaman Kemiskinan dengan Variabel Signifikan

```
Regression Analysis: rho C2 versus X1, X2, X3, X5, X6,
X7, X8
The regression equation is
rho C2 = 0.24 + 0.0308 \times 1 + 0.0142 \times 2 - 0.0111 \times 3 -
0.0187 \times 5 + 0.00054 \times 6
         + 0.0164 X7 + 0.00348 X8
Predictor
             Coef
                    SE Coef
                                 Т
Constant
            0.241
                       2.195 0.11 0.913
X1
           0.03085 0.02000
                             1.54 0.124
X2
          0.01423 0.01437
                              0.99 0.323
ХЗ
          -0.01108 0.01698
                             -0.65 0.514
          -0.01871 0.02673 -0.70 0.484
Х5
Х6
         0.000538 0.006152 0.09 0.930
Х7
                             0.20 0.841
          0.01636 0.08160
X8
          0.003478 0.002826 1.23 0.219
S = 1.57279 R-Sq = 2.2% R-Sq(adj) = 0.2%
Analysis of Variance
                                      F
Source
                                MS
                DF
                         SS
                 7
                     18.996 2.714 1.10 0.365
Regression
Residual Error 334 826.204
                             2.474
               341 845.201
Total
```

Lampiran 31 Pengujian Asumsi Residual Independen Model Indeks Kedalaman Kemiskinan dengan Variabel Signifikan

Run Test

Runs Test 2

	VAR00003
Test Value ^a	.0000
Cases < Test Value	182
Cases >= Test Value	160
Total Cases	342
Number of Runs	157
z	-1.554
Asymp. Sig. (2-tailed)	.120

a. Mean

Lampiran 32 Pengujian Asumsi Residual Berdistribusi Normal Model Indeks Kedalaman Kemiskinan dengan Variabel Signifikan

One-Sample Kolmogorov-Smirnov Test

5		VAR00003
N	-	342
Normal Parameters ^a	Mean	.0000
	Std. Deviation	.23598
Most Extreme Differences	Absolute	.050
	Positive	.050
	Negative	044
Kolmogorov-Smirnov Z		.916
Asymp. Sig. (2-tailed)		.371

a. Test distribution is Normal.

Lampiran 33 Pemilihan Metode Estimasi Model Indeks Keparahan Kemiskinan dengan Semua Variabel Prediktor

Uji Statistik F

Redundant Fixed Effects Tests Equation: FETRANS Test cross-section fixed effects			
Effects Test	Statistic	d.f.	Prob.
Cross-section F Cross-section Chi-square	6.209391 196.465859	(37,296) 37	0.0000

Uji Hausman

Correlated Random Effects - Hausm Equation: FETRANS Test cross-section random effects	nan Test		
Test Summary	Chi-Sq. Statis- tic	Chi-Sq. d.f.	Prob.
Cross-section random	23.600642	8	0.0027
		•	-

Lampiran 34 Pemodelan Indeks Keparahan Kemiskinan dengan Semua Variabel Prediktor

Model FEM

Dependent Variable: YTRANSFORM

Method: Panel Least Squares Date: 01/01/16 Time: 01:00

Sample: 2005 2013 Periods included: 9

Cross-sections included: 38

Total panel (balanced) observations: 342

Variable	Coefficient	Std. Error	t-Statistic	Prob.	
X1	-0.063725	0.016517	-3.858163	0.0001	
X2	0.008575	0.005954	1.440308	0.1508	
Х3	-0.012611	0.006226	-2.025561	0.0437	
X4	0.000560	0.002769	0.202152	0.8399	
X5	-0.023359	0.009648	-2.421132	0.0161	
X6	0.009947	0.002583	3.851053	0.0001	
X7	-0.085000	0.028357	-2.997472	0.0030	
X8	-0.007145	0.001945	-3.673793	0.0003	
С	7.993099	1.456401	5.488256	0.0000	
Effects Specification					
Cross-section fixed (d	lummy variabl	es)			
R-squared	0.744687	Mean deper	ndent var	-0.548355	
Adjusted R-squared	0.705873	S.D. depend		0.681044	
S.E. of regression	0.369354	Akaike info		0.970432	
Sum squared resid	40.38103	Schwarz crit	terion	1.486226	
Log likelihood	-119.9439	Hannan-Qui	nn criter.	1.175910	
F-statistic	19.18582	Durbin-Wats	son stat	1.928421	
Prob(F-statistic)	0.000000				

Lampiran 35 Pengujian Asumsi Residual Identik Model Indeks Keparahan Kemiskinan dengan Semua Variabel Prediktor

```
Regression Analysis: RHO C9 versus X1, X2, X3, X4,
X5, X6, X7, X8
The regression equation is
RHO C9 = 0.20 + 0.0161 \times 1 + 0.0039 \times 2 - 0.0169 \times 3 -
0.00605 X4 + 0.0080 X5
         -0.00242 \times 6 + 0.0681 \times 7 + 0.00458 \times 8
Predictor
               Coef
                     SE Coef
                                   Т
                                          Ρ
Constant
              0.203
                        2.690 0.08 0.940
            0.01615 0.02340 0.69 0.491
Х1
X2
           0.00392 0.01464
                               0.27 0.789
X3
           -0.01694 0.01853 -0.91 0.361
X4
          -0.006053 0.008355 -0.72 0.469
Х5
            0.00801 0.02756
                               0.29 0.772
Х6
          -0.002417 0.006281 -0.38 0.701
Х7
            0.06811 0.08310 0.82 0.413
          0.004576 0.002879 1.59 0.113
X8
S = 1.60135  R-Sq = 2.9\%  R-Sq(adj) = 0.6\%
Analysis of Variance
Source
                DF
                         SS
                                MS
                             3.192
Regression
                8
                     25.537
                                   1.24 0.272
               333 853.921 2.564
Residual Error
                341 879.459
Total
```

Lampiran 36 Pengujian Asumsi Residual Berdistribusi Normal Model Indeks Keparahan Kemiskinan dengan Semua Variabel Prediktor

One-Sample Kolmogorov-Smirnov Test

	_	P2_FE1
N		342
Normal Parameters ^a	Mean	.0000
	Std. Deviation	.34412
Most Extreme Differ-	Absolute	.044
ences	Positive	.044
	Negative	041
Kolmogorov-Smirnov Z		.818
Asymp. Sig. (2-tailed)		.514

a. Test distribution is Normal.

Lampiran 37 Pemilihan Metode Estimasi Model Indeks Keparahan Kemiskinan dengan Variabel Signifikan

Uji Statistik F

Redundant Fixed Effects Tests Equation: FE04 Test cross-section fixed effects			
Effects Test	Statistic	d.f.	Prob.
Cross-section F Cross-section Chi-square	6.674423 206.433685	(37,298) 37	0.0000 0.0000

Uji Hausman

Correlated Random Effects - Hausman Test Equation: FE04 Test cross-section random effects			
Test Summary	Chi-Sq. Statis- tic	Chi-Sq. d.f.	Prob.
Cross-section random	25.009934	6	0.0003
	·		·

Lampiran 38 Pemodelan Indeks Keparahan Kemiskinan dengan Variabel Signifikan

Model FEM

Dependent Variable: YTRANSFORM

Method: Panel Least Squares Date: 01/01/16 Time: 01:10

Sample: 2005 2013 Periods included: 9

Cross-sections included: 38

Total panel (balanced) observations: 342

Variable	Coefficient	Std. Error	t-Statistic	Prob.
X1	-0.070175	0.015863	-4.423888	0.0000
Х3	-0.014855	0.006023	-2.466331	0.0142
X5	-0.022917	0.009623	-2.381457	0.0179
X6	0.010294	0.002520	4.084765	0.0001
X7	-0.084868	0.028352	-2.993386	0.0030
X8	-0.007306	0.001942	-3.762169	0.0002
С	8.800528	1.330584	6.614036	0.0000
Effects Specification				
Cross-section fixed (dummy variables)				
R-squared	0.742884	Mean deper	ndent var	-0.548355
Adjusted R-squared	0.705783	S.D. depend		0.681044
S.E. of regression	0.369410	Akaike info	criterion	0.965775
Sum squared resid	40.66627	Schwarz crit	erion	1.459143
Log likelihood	-121.1476	Hannan-Qui	nn criter.	1.162319
F-statistic	20.02346	Durbin-Wats	on stat	1.897574
Prob(F-statistic)	0.000000			
	•	·	•	•

Lampiran 39 Pengujian Asumsi Residual Identik Model Indeks Kedalaman Kemiskinan dengan Variabel Signifikan

```
Regression Analysis: RHO C12 versus X1, X3, X5, X6,
X7, X8
The regression equation is
RHO C12 = -0.67 + 0.0248 \times 1 - 0.0127 \times 3 + 0.0028 \times 5 -
0.00141 \times 6 + 0.0632 \times 7
          + 0.00448 X8
Predictor
                      SE Coef
               Coef
                        2.223 -0.30 0.764
Constant
            -0.668
X1
            0.02482 0.02016
                               1.23 0.219
Х3
           -0.01270 0.01682 -0.76 0.451
Х5
            0.00279 0.02558
                               0.11 0.913
Х6
           -0.001412 0.006150 -0.23 0.819
Х7
           0.06325 0.08240 0.77 0.443
X8
           0.004478 0.002860 1.57 0.118
S = 1.59250  R-Sq = 2.9\%  R-Sq(adj) = 1.1\%
Analysis of Variance
Source
                DF
                         SS
                                MS
                                       F
Regression
                6
                     25.076
                             4.179 1.65 0.133
Residual Error
               335 849.583
                             2.536
Total
                341 874.660
```

Lampiran 40 Pengujian Asumsi Residual Berdistribusi Normal Model Indeks Kedalaman Kemiskinan dengan Variabel Signifikan

One-Sample Kolmogorov-Smirnov Test

		P2_FE2
N		342
Normal Parameters ^a	Mean	.0000
	Std. Deviation	.34533
Most Extreme Differences	Absolute	.043
	Positive	.040
	Negative	043
Kolmogorov-Smirnov Z		.790
Asymp. Sig. (2-tailed)		.561

a. Test distribution is Normal.

Lampiran 41 Output FEM dengan Minitab

Pemodelan Persentase Penduduk Miskin dengan Variabel Signifikan

```
The regression equation is
In V = 5.9E - 0.0333 X1 + 0.0105 X2 - 0.0162 X5 + 0.00633 X6 - 0.00531 X8
    + 0.581 Kabupaten/Kota 1 + 0.23e Kabupaten/Kota 2
        + 0.563 Rabupaten/Rota 3 + 0.591 Rabupaten/Rota 4
       + 0.339 Kabupaten/Rota 5 + 0.707 Kabupaten/Rota 6 + 0.330 Kabupaten/Rota 1 + 0.330 Kabupaten/Rota 0
        - 0.176 Kabupaten/Rota 9 + 0.230 Kabupaten/Rota 19
       - 9.236 Mahupaten/Rota 11 - 0.077 Kabupaten/Bota 12
+ 0.555 Kabupaten/Rota 13 + 0.568 Kabupaten/Rota 14
+ 0.580 Kabupaten/Rota 15 - 0.704 Kabupaten/Rota 16
        + 5,793 Rabupaten/Rota 17 + 0.662 Rabupaten/Rota 18
        - 0.581 Kabupaten/Rota 19 + 0.540 Rabupaten/Rota 20
        - 0.502 Eabupaten/Rota 21 + 0.601 Kabupaten/Rota 22
        + 8,746 Sabupaten/Rota 23 + 0.572 Sabupaten/Rota 24
       = 9,979 Kanupaten/Kota 25 + 0,761 Kabupaten/Kota 26 + 9,162 Kabupaten/Kota 27 + 0,589 Kabupaten/Kota 28
       + 0,659 Kabupaten/Kota 29 + 1,68 Kabupaten/Kota 30
        + 0.432 Mabupaten/Nota 31 + 0.240 Mabupaten/Bota 32
        - 0.950 Babupaten/Rota 33 + 0.584 Babupaten/Rota 34
        - 9.517 Kabupaten/Bota 35 + 0.236 Kabupaten/Kota 38
        + 0,636 Rebupaten/Note 57
```

Pemodelan Indeks Kedalaman Kemiskinan dengan Semua Variabel Prediktor

```
al soliaupe quieserpei edT
In(Y) = 7.08 - 0.0518 \times 1 + 0.00079 \times 2 - 0.00849 \times 3 + 0.00055 \times 4 - 0.0183 \times 5
        + 0.00810 XE = 0.040E XT = 0.00657 XB + 0.463 Kabupaten/Nota 1
        - U.D48 Rabupaten/Esta 2 - U.520 Rabupaten/Rota 3
         + 0.399 Habupaten/Esta # + 0.269 Habupaten/Rota 5
         + 0.553 Kabupaten/Kota 6 + 0.162 Kabupaten/Rota
        - 0.065 Kabupaten/Kata 8 - 0.329 Kabupaten/Kota 9
        - 0.033 Kabupaten/Esta 16 - 6.306 Kabupaten/Rota 11
        - 0.367 Kahupaten/Rota 12 + 0.076 Kahupaten/Rota 13
        + 0.377 Rabupaten/Kota 14 + 0:645 Kapupaten/Sota 15
         * 0.576 Kabupaten/Nota 16 * 0.628 Kabupaten/Nota 17
         + 0.480 Kabupaten/Rota 18 - 0.388 Kabupaten/Rota 19

    0,275 Rabupaten/Rota 20 + 0,154 Rabupaten/Rota 21
    0,491 Rabupaten/Rota 22 + 0.516 Rabupaten/Rota 23

        + 0.337 Kabupatan/Enta 24 + 1.12 Habupaten/Rota 25

    0.411 Kahupaten/Kota 16 - 0.347 Kabupaten/Kota 17

         + 0.197 Kabupaten/Rota 26 + 0.263 Rabupaten/Rota 29
        + 1.93 Kabupaten/Kota 30 + 5.516 Kabupaten/Kota 31
+ 0.377 Kabupaten/Kota 32 + 0.965 Kabupaten/Kota 33
         + 0.630 Kabupaten/Sota 34 + 0.538 Kabupaten/Sota 35
         * 0.269 Kabupaten/Nets 36 * 0.578 Babupaten/Rota 37
```

Lampiran 41 (Lanjutan)

Pemodelan Indeks Kedalaman Kemiskinan dengan Variabel Signifikan

```
\ln(z) = 7.15 - 0.0522 \text{ ml} + 0.00272 \text{ ml} - 0.00859 \text{ ml} - 0.0164 \text{ ms} + 0.00820 \text{ ml}
          0.0409 X7 - 0.0065E X9 + 0.468 Rabupaten/Rota 1
          - 0.051 Rahupaten/Rota 2 * 0.522 Habupaten/Rota
         ■ 0.399 Kabupaten/Kota 4 = 0.267 Kabupaten/Rota 3
         * 0.552 Bahupaten/Rota 6 * 0.166 Bahupaten/Rota 7 - 0.666 Bahupaten/Bota 8 - 0.316 Bahupaten/Bota 9
          - 0.035 Kabupaten/Rota 10 - 0.295 Kabupaten/Kota 11
          - 0.160 Kabupaten/Rota 12 = 0.082 Kabupaten/Rota 13
          + 0,384 Rabupaten/Rota_14 + 0,647 Rabupaten/Rota_15

= 0.578 Rabupaten/Rota_16 = 0,628 Rabupaten/Rots_17

    0.481 Rabupaten/Rota 15 + 0.384 Rabupaten/Rota 19
    0.270 Rabupaten/Rota 20 - 0.148 Rabupaten/Rota 21

          + 0.493 Rabupaten/Rota 22 + 0.516 Eabupaten/Ents 23
          + 0.335 Kabupaten/Rots 24 + 1.12 Kabupaten/Rots 25
          - 0.427 Rabupaten/Rota 26 - 0.531 Rabupaten/Rota 27
          * 0.210 Rabupaten/Note_28 + 0.221 Rabupaten/Mote_29
          * 1.53 Kabupaten/Kota 30 * 0.520 Kabupaten/Kota 31

    9.381 Kabupaten/Kota 32 + 0.970 Kabupaten/Kota 53
    0.639 Kabupaten/Kota 34 + 0.541 Kabupaten/Kota 35

          + 0.271 Kabupaten/Rota 36 + 0.882 Kabupaten/Rota 37
```

Pemodelan Indeks Keparahan Kemiskinan dengan Semua Variabel Prediktor

```
The regression equation is
In(Y) = 7.71 - 0.0637 X1 + 0.00857 X2 - 0.0126 X3 + 0.00096 X4 - 0.0234 X5
        + 0.00995 X6 - 0.0850 X7 - 0.00715 X9 + 0.411 Eabupaten/Rota 1
        - 0.239 Kabupaten/Kota 2 + 0.525 Kabupaten/Kota I
        + 0.270 Rabupaten/Rota 4 + 0.224 Rabupaten/Rota 5
        - 0.481 Habupaten/Hota 6 + 0.062 Habupaten/Hota 7
        - 0.327 Rabupaten/Rots 8 - 0.610 Kabupaten/Rots 9
        - 0.171 Kabupaten/Rota 10 - 0.563 Mabupaten/Rota 11
        - 0.631 Kabupaten/Rota 12 - 0.181 Rabupaten/Rota 13
        + 0.321 Rabupaten/Rota 14 - 0.750 Kabupaten/Rota 15
        - 0.544 Rabupaten/Rota 16 + 0.586 Eabupaten/Rota 17
        - 0.394 Rabupaten/Rota 18 + 0.194 Rabupaten/Rota 19
        - 0.062 Kabupaten/Kota 20 - 0.074 Kabupaten/Kota 21
        - 0.498 Kabupaten/Kota 22 + 0.401 Kabupaten/Kota 23
+ 0.181 Kabupaten/Kota 24 + 1.22 Kabupaten/Kota 25
        + 0.244 Kabupaten/Rota 26 - 0.997 Kabupaten/Rota 27
        - 0.029 Rabupaten/Kota 28 - 0.060 Kabupaten/Rota 29
        - 2.12 Habupaten/Rota 30 + 0.636 Rabupaten/Rota 31
        - 0.500 Rabupaten/Rota 32 + 1.01 Rabupaten/Rota 33
        - 0.746 Kabupaten/Sota 34 + 0.585 Sabupaten/Sota 35
        + 0.323 Kabupaten/Rota 36 + 1.11 Kabupaten/Rota 37
```

Lampiran 41 (Lanjutan)

Pemodelan Indeks Keparahan Kemiskinan dengan Variabel Signifikan

```
The regression aquation is

In (X) = 8.51 - 0.0702 X1 - 0.0149 X3 - 0.0229 X5 + 0.0103 X6 - 0.0649 X7 - 0.00731 X6 + 0.604 Kapupaten/Kota 1 - 0.263 Kabupaten/Kota 2 + 0.694 Kabupaten/Kota 3 + 0.280 Kabupaten/Kota 4 - 0.239 Kabupaten/Kota 5 + 0.469 Kabupaten/Kota 6 - 0.042 Kabupaten/Kota 7 - 0.376 Kabupaten/Kota 6 - 0.042 Kabupaten/Rota 9 - 0.147 Kabupaten/Kota 10 - 0.596 Kabupaten/Kota 11 - 0.666 Kabupaten/Kota 12 - 0.205 Kabupaten/Kota 13 + 0.304 Kabupaten/Kota 14 - 0.774 Kabupaten/Kota 13 + 0.304 Kabupaten/Kota 14 - 0.774 Kabupaten/Kota 15 + 0.551 Fabupaten/Kota 18 - 0.260 Kabupaten/Kota 17 + 0.374 Kabupaten/Kota 20 - 0.119 Kabupaten/Kota 19 + 0.039 Kabupaten/Kota 20 - 0.119 Kabupaten/Kota 21 + 0.458 Fabupaten/Kota 22 + 0.347 Kabupaten/Kota 23 + 0.284 Fabupaten/Kota 24 + 1.28 Kabupaten/Kota 23 + 0.284 Fabupaten/Kota 26 - 0.997 Kabupaten/Kota 27 - 0.058 Kabupaten/Kota 28 - 0.097 Kabupaten/Kota 31 + 0.525 Fabupaten/Kota 32 + 0.936 Kabupaten/Kota 35 + 0.754 Kabupaten/Kota 32 + 0.938 Kabupaten/Kota 35 + 0.938 Kabupaten/Kota 34 + 0.608 Kabupaten/Kota 35 + 0.357 Kabupaten/Kota 34 + 0.608 Kabupaten/Kota 35 + 0.387 Kabupaten/Kota 36 + 1.14 Kabupaten/Kota 37
```

BIODATA PENULIS

Terlahir dengan nama Nur Fajriyah, penulis vang lebih akrab dipanggil merupakan ketuiuh Eva anak sekaligus terakhir dari pasangan Muchamad Chudori dan Hidavatur Rosvidiyah. Lahir bertepatan dengan hari kemerdekaan Republik Indonesia, vaitu 17 Agustus 1994 di kota Gresik. Penulis memulai jenjang pendidikan yang pertama di MINU Salafivah Gresik (2000-2006).

Setelah lulus dari Madrasah Ibtidaiyah, penulis melanjutkan pendidikan di SMP Negeri 2 Gresik (2006-2009), dan di SMA Negeri 1 Gresik (2009-2012). Setelah menyelesaikan wajib belajar 12 tahun, di tahun 2012, penulis diterima di Institut Teknologi Sepuluh Nopember Surabaya melalui jalur SNMPTN Tulis dan resmi tercatat sebagai mahasiswi Jurusan Statistika dengan NRP 1312100071.

Selama kuliah, penulis aktif dalam kegiatan organisasi. Di tahun pertama, penulis menjadi *volunteer* di BSO IECC ITS Mengajar. Di tahun kedua, penulis menjadi Staff HRD Divisi *Professional Statistics* (Pst). Pada tahun ketiga penulis menjabat sebagai Wakil Ketua Divisi PSt HIMASTA ITS. Selain itu, penulis juga pernah menjadi Asisten Dosen untuk Mata Kuliah Pengantar Metode Statistik dan Komputasi Statistik. Prestasi yang pernah diraih oleh penulis selama kuliah adalah mengikuti Program Kreatifitas Mahasiswa bidang Kewirausahaan yang akhirnya mengantarkan penulis untuk mendapatkan medali perak PIMNAS 28 yang diselenggarakan di Universitas Halu Oleo, Kendari.

Penulis menerima segala kritikan, masukan, dan saran yang bersifat membangun demi meningkatkan manfaat Tugas Akhir ini. Oleh karena itu, penulis akan dengan senang hati membantu terkait dengan metode dan ilmu statistik. Kritik, saran, maupun pertanyaan dapat pembaca kirimkan melalui email: nurfajriyah17@gmail.com.