22548/H/ar

MILIK PERPUSTAKAAN

TUGAS AKHIR (KL 1702)

ANALISA PENGARUH INTERNAL PRESSURE DAN INTERNAL TEMPERATUR TERHADAP UPHEAVAL BUCKLE PADA OFFSHORE PIPELINE

RSKe Ges. 544 Sut 9-1 2004

Oleh :

HADI SUTANTO NRP. 4399 100 025

PERPUSTAKAAN ITS Tgi. Terima 1-12-2009 Terima Bari H No. Agenda Prp. 221229

JURUSAN TEKNIK KELAUTAN FAKULTAS TEKNOLOGI KELAUTAN INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2004

ANALISA PENGARUH INTERNAL PRESSURE DAN INTERNAL TEMPERATUR TERHADAP UPHEAVAL BUCKLE PADA OFFSHORE PIPELINE

TUGAS AKHIR

Diajukan Guna Memenuhi Salah Satu Syarat Untuk Menyelesaikan Studi Program Sarjana Pada Jurusan Teknik Kelautan Fakultas Teknologi Kelautan

Institut Teknologi Sepuluh Nopember

Surabaya

Surabaya, 1/ Agustus 2004 Mengetahui / Menyetujui

Dosen Pembimbing I VIK KELAUTAN Dr. Ir. Wisnu Wardana, M.Sc

NIP. 68 001 934

Dosen Pembimbing II

Dr. Ir. Handayanu, M.Sc NIP. 131 782 032

ABSTRAK

Dalam kurun beberapa puluh tahun belakangan ini peningkatan internal pressure dan internal temperatur dalam operasional pipa yang digunakan untuk mentransportasikan minyak dan gas bumi sangat meningkat pesat. Perubahan ini dikombinasikan pula dengan penggunaan pipa dengan diameter kecil. Hal ini berakibat pada meningkatnya kecenderungan pipa mengalami buckle sesuai dengan besarnya gaya aksial yang diterima. Untuk pipa yang dikubur di dalam tanah Upheaval buckling adalah moda buckling yang paling dominan, dimana defleksi pipa akan mengarah ke arah vertikal, pipa akan terlepas dari tanah yang berfungsi sebagai penutup parit. Untuk mengetahui efek dari internal pressure dan internal temperatur ini, sebuah model interaksi internal pressure dan internal temperatur dilakukan dengan menggunakan bantuan sofware MSC Nastran. Dalam penelitian ini yang menjadi variabel adalah internal pressure dan internal temperatur serta kelengkungan awal pipa. Internal pressure akan divareasikan pada interval 70 bars hingga 90 bars dan dan internal temperatur 60 °C hingga 90 °C, beban operasional pipa, juga akan divareasikan amplitudo kelengkungan awal pipa yaitu pipa lurus, 0.1 meter, 0.2 meter, dan 0,3 meter juga akan dilakukan bentuk permodelan permukaan dasar parit yang bergelombang-gelombang. Semua variabel tersebut akan dikombinasikan. Dari hasil ini didapatkan bahwa efek internal pressure dan internal temperatur serta amplitudo kelengkungan awal dapat mengakibatkan upheaval buckle. Pada pipa dengan kelengkungan awal 0.1 meter dengan beban internal pressure 90 bars dan internal temperatur 90 °C dapat mengalami deformasi sebesar 0.47 m. Selain itu didapatkan pula beban operasional yang diijinkan dalam kombinasi amplitudo kelengkungan awal pipa dengan beban operasional pipa. Besarnya tingkat ovalitas pipa pada saat upheaval buckle adalah 0.025%.

Kata kunci : Internal pressure, internal temperatur, upheaval buckle, offshore pipeline

MILIK PERPUSTAKAAR

Kata Pengantar

Puji syukur kehadirat Allah SWT yang telah memberikan rahmat serta hidayah kepada penulis sehingga penulis dapat menyelesaikan Tugas Akhir ini. Tugas Akhir ini berjudul "Analisa Pengaruh Internal Pressure Dan Internal Temperature Terhadap Upheaval Buckle Pada Offshore Pipeline".

Tugas Akhir ini disusun guna untuk memenuhi persyaratan dalam menyelesaikan studi kesarjanaan (S-I) di Jurusan Teknik Kelautan, Fakultas Teknologi Kelautan, Institut Teknologi Sepuluh Nopember, Surabaya.

Penulis menyadari bahwa dalam melakukan penelitian mungkin tidak sempurna dan terdapat kekeliruan-kekeliruan yang tidak di sengaja. Maka dari itu penulis mengharapkan saran yang membangun sehingga dapat tercapai tujuan dari penulisan laporan Tugas Akhir ini.

Dalam penyelesaian penulisan Tugas Akhir ini banyak pihak yang telah berpartisipasi dan memberikan kontribusi berharga. Sehubungan dengan hal tersebut , disampaikan ucapan terimakasih yang sebesar-besarnya kepada:

- Ayahanda dan Ibunda tercinta yang telah memberikan segalanya buat penulis.
- Bapak Dr. Ir. Wisnu Wardana, M.Sc dan Dr. Ir. Handayanu, M.Sc, Ph.D, selaku dosen pembimbing yang telah memberikan bimbingan serta semangat sehingga penulis dapat menyelesaikan Tugas Akhir ini.
- Bapak Ir. Imam Rochani, M.Sc, selaku Ketua Jurusan Teknik Kelautan, FTK – ITS

i.

- Bapak Ir. Hasan Ikhwani, M.Sc yang telah memberikan kesempatan kepada penulis untuk melaksanakan Kerja Praktek di PT Komaritim.
- Bapak Ir. Murdjito, M.Sc. Eng atas referensi buku-buku yang sangat dibutuhkan dalam penyelesaian Tugas Akhir ini.
- Bapak Ir. Rudi W.P, M.T atas waktunya yang diberikan sehingga penulis dapat belajar mengenai program MSC Nastran
- 7. Bapak Ir. J.J Soedjono, M.Sc selaku dosen wali.
- Bapak Ir. A. M. Palkar, dengan kerendahan hati memberikan kesempatan dan membimbing penulis dalam melaksanakan Kerja Praktek di PT Komaritim
- Bapak Ir. Jusuf Sutomo, M.Sc atas segala fasilitas yang telah diberikan dan kesempatan untuk banyak belajar.
- 10. Seluruh Dosen dan karyawan di jurusan Teknik Kelautan
- 11. Kakak-kakakku dan adik-adikku, Pak Lek, Bu Lek, yang telah memberikan semangat dan dorongan kepada penulis.
- Seluruh teman-teman ngajiku (T-96), terimakasih atas dorongan serta nasehatnya.
- Teman-teman angkatan '99: Ragil, Rony, Amin, Fardian, Bagus, Denock, Cecep, Hambali, Qosrul, Sigit serta teman-teman yang lain yang telah mau berbagi ilmu dan keceriaan.
- 14. Semua teman-teman angkatan '98
- 15. Semua teman-teman angkatan '00
- 16. Mas Farid dan Mbak Santi terima kasih atas tempat tinggalnya.
- 17. Seluruh teman-temanku di IIC/12.
- Teman-temanku di Lemlit Mas Wawan, Mbak Vira, Ana, Wildan terima kasih
- Segenap pihak yang telah berpartisipasi dalam penyelesaian Tugas Akhir ini dan tak mungkin disebutkan satu persatu.

ii

Semoga semua kebaikan menjadi amal yang baik dan Allah SWT membalas budi baik Bapak/Ibu/Saudara, dan semoga juga hasil penulisan Laporan Tugas Akhir ini dapat bermanfaat.

DAFTAR ISI

Abs	strak			
Kat	a Per	nganta	r	i
Dat	ftar Is	i		iv
Dat	ftar G	ambar		vii
Dat	ftar T	abel		ix
Da	ftar N	otasi		х
I	PEN	DAHU	LUAN	
	1.1.	Latar b	belakang	I-1
	1.2	Perum	usan Masalah	I-3
	1.3	Tujuar	ſ	I-3
	1.4.	Manfa	at	I-4
	1.5.	Batas	an Masalah	1-4
	1.6.	Sisten	natika Penulisan	I-6
II	TIN	JAUAN	PUSTAKA DAN DASAR TEORI	
	2.1	Tinjau	ian Pustaka	II-1
	2.2	Landa	asan Teori	II-2
		2.2.1	Gaya-gaya yang bekerja pada ketidaksempurnaan	
			Pipa	11-9
		2.2.2	Keadaan sebelum terjadinya upheaval	II-12
		2.2.3	Keadaan upheaval pada pipeline	II-16
		2.2.4	Tegangan yang bekerja pada buried pipeline	II-17

	2.2.4.1 Tegangan Tangensial	II-17
	2.2.4.2 Tegangan aksial (Longitudinal stress)	II-19
2.2.5	Buckling	II-25
2.2.6	Buckling elastis pada kolom lurus akibat beban aksial	II-26
2.2.7	Perhitungan defleksi maksimum pipa	II-33
2.2.8	Buckling Pada Pipa	11-34
2.2.9	Analisa Nonlinear	II-36
2.2.10	0 Tegangan Ijin	II-37
2.2.1	1 Analisa Ovalita	II-38

III METODE PENELITIAN

3.1	Metode Penelitian	III-1
3.2	Diagram Alir Metode Penelitian	111-4

IV ANALISA DAN PEMBAHASAN

4.1	Umum	IV-1
4.2	Pengumpulan Data	IV-2
4.3	Permodelan Struktur	IV-3
4.4	Efek pembebanan pada pipa	IV-8
4.5	Efek Beban Operasional Pada Pipeline	IV-12
	4.5.1 Bentuk Pipa Lurus	IV-12
	4.5.2 Pipa Dengan Kelengkungan Awal	IV-13
	4.5.3 Bentuk Permodelan Pipa Dengan Berbagai	
	Kelengkungan	IV-18

4.6	Analisa Tegangan Equivalen (Vonmisses stress)	IV-22
4.7	Analisa Ovalitas	IV-24
4.8	Validasi Model Finite Elemen Method	IV-25

V KESIMPULAN DAN SARAN

5.1	Kesimpulan	V-1
5.2	Saran	V-2

DAFTAR PUSTAKA

LAMPIRAN

Lampiran I	Peta Lokasi
Lampiran II	Input Data Untuk Permodelan
Lampiran III	Gambar Deformasi Pipa
Lampiran IV	Output Deformasi Pada Permodelan pipa
Lampiran V	Output Tegangan Pada Permodelan pipa

MILLA PERPUSIENRE ANSTITUT TERMOLOAN SEPULUH - NOPENEER -----1 222

DAFTAR GAMBAR

- Gambar 2.1 Tipe konfigurasi ketidaksempurnaan pipa
- Gambar 2.2 Topologi penyangga pipa
- Gambar 2.3 Ketidaksempurnaan awal pada topologi pipa
- Gambar 2.4 Sebelum terjadinya upheaval, ketidaksempurnaan secara detail dari topologi pipa
- Gambar 2.5 Penampang pipa yang dikenai tekanan dari uar dan dalam
- Gambar 2.6 Ilustrasi efek thermal ekspansion pada buried pipeline
- Gambar 2.7 beban internal pressure pada pipa
- Gambar 2.8 Ilustrasi efek internal pressure pada buried pipeline
- Gambar 2.9 panjang efektif kolom dengan pengekang yang berlainan
- Gambar 2.10.a Beban aksial P dan beban transversal ke atas F pada tegangan bentangan
- Gambar 2.10.b Diagram benda bebas untuk balok kolom berdefleksi
- Gambar 3.1 Diagram alir permodelan menggunakan MSC Nastran
- Gambar 3.2 Diagram alir pengerjaan Tugas Akhir
- Gambar 4.1 Permodelan pipa
- Gambar 4.2 Menentukan material properties pipa
- Gambar 4.3 Menentukan propertis pipa
- Gambar 4.4 menentukan ukurun elemen mesh pipa
- Gambar 4.5 Membuat meshing pada pipa

vii

- Gambar 4.6 Pemberian konstrain roll pada ujung pipa
- Gambar 4.7 Pemberian konstrain fix pada ujung pipa
- Gambar 4.8 Pemberian pembebanan pada ujung pipa
- Gambar 4.9 Permodelan struktur pipa dengan menggunakan software nastran
- Gambar 4.10 Ilustrasi pembebanan pressure dan temperatur pada pipa
- Gambar 4.11 Grafik efek pressure dan internal temperatur terhadap displacement pipa
- Gambar 4.12 Grafik efek internal pressure dan internal temperatur terhadap tegangan pada dinding pipa
- Gambar 4.13. Efek internal pressure dan temperatur pada pipa lurus
- Gambar 4.14 Deformasi yang diakibatkan internal pressure dan internal temperature
- Gambar 4.15 Kontur distribusi tegangan pada upheaval buckle pipeline
- Gambar 4.16 Deformasi pada pipa dengan kelengkungan satu panjang gelombang
- Gambar 4.17 Deformasi pada pipa dengan kelengkungan satu setengah panjang gelombang
- Gambar 4.18 Deformasi pipa dengan kelengkungan dua panjang gelombang
- Gambar 4.19 Tegangan yang bekerja pada elemen
- Gambar 4.20 Grafik perbandingan tegangan dan ukuran mesh

DAFTAR TABEL

- Tabel 2.1Faktor untuk cek tegangan equivalent (DNV 1996)
- Tabel 4.1 Deformasi pipa pada tekanan 70 bars
- Tabel 4.2Deformasi pipa pada tekanan 80 bars
- Tabel 4.3Deformasi pipa pada tekanan 90 bars
- Tabel 4.4Efek dari beban operasional pada amplitudo kelengkungan awal0.1 meter
- Tabel 4.5Efek dari beban operasional pada amplitudo kelengkungan awal0.2 meter
- Tabel 4.6Efek dari beban operasional pada amplitudo kelengkungan awal0.3 meter
- Tabel 4.7 Efek vareasi kelengkungan pada pipa
- Tabel 4.8 Ovalitas pipa akibat buckle
- Tabel 4.9 Penentuan ukuran meshing model pipa

DAFTAR NOTASI

- A = Cross section area = Luasan bagian dalam pipa Ap = Luasan metal pipa Am As = Luas penampang = Rasio silinder kolom Cc D = Diameter pipa d_{max} = diameter maksimum d_{min} = diameter minimum = diameter rata-rata drat = Tegangan geser pada puncak kelengkungan Fi F = Gaya berat pipa Fy = Tegangan Yield 1 = Momen Inersia K = Faktor panjang efektif yang tergantung pada pengekang ujung k = Faktor dimensional L = Panjang pipa = Panjang awal pipa yang mengalami kelengkungan awal L = Panjang pipa efektif Le = Momen bending kritis ketika P = 0 Mc Mx = Momen bending
- Mx = Momen pengganggu
- MR = Resultan momen bending

$$n^2 = P/EI$$

P = Tegangan aksial

P_E = Beban kritis

- P_o = Pre-buckling pipe force
- P_u = Tegangan aksial pada saat upheaval
- P_{qi} = Tegangan permisalan
- P_c = Tegangan luar kritis ketika M = 0
- p = Internal pressure
- q = Berat pipa sendiri
- r = Jari-jari girasi
- R_H = Radius horizontal
- R_V = Radius vertikal
- SR = Rasio silinder efektif
- t = Tebal pipa
- ΔT = Perbedaan temperatur
- T_o = Temperatur operasi
- T_I = Temperatur lingkungan
- V_{max} = Defleksi maksimum
- υ =Poisson ratio
- x = Jarak koordinat pipa secara horizontal
- Y = Yield Stress pipa

- α = Koefisien thermal ekspansion
- σ_L = Tegangan longitudinal total
- σ_{LT} = Tegangan longitudinal pengaruh thermal
- σ_{LP} = Tegangan longitudinal pengaruh tekanan
- σ_{LB} = Tegangan longitudinal pengaruh bending
- σ_c = Critical stress
- υ_{om} = Tingi kelengkungan awal pipa
- υ = Displasemen pipa secara vertikal
- ρ = Radius kelengkungan
- η = Faktor untuk cek tegangan equivalent
- τ_{lh} = Tangensial shear stress

 $\theta =$ ovalitas

BAB I. Pendahuluan

BAB I PENDAHULUAN

I.1. LATAR BELAKANG

Dalam industri minyak dan gas bumi, pendistribusian minyak dan gas bumi menggunakan instalasi jalur pipa bawah laut, jalur pipa bawah laut digunakan untuk mendistribusikan minyak dan gas bumi dari suatu fasilitas ke fasilitas yang lainnya. Pada kondisi dan keadaan tertentu hal ini akan memberikan efisiensi yang lebih baik. Untuk itu, investasi yang dihabiskan untuk instalasi pipa bawah laut harus memberikan hasil yang maksimal, dengan kata lain bahwa kelaikan dan keandalan serta *lifetime* dari struktur harus sesuai dengan perencanaan.

Suatu struktur yang berada di dalam lingkungan laut, maka struktur tersebut akan mendapatkan gaya hidrostatik laut tersebut. Begitu juga dengan pipa yang dikubur di dalam tanah di dasar laut akan mendapatkan pengaruh gayagaya hydrostatic, tanah, *internal pressure, internal temperature* dan pengaruh gaya-gaya ini akan mempengaruhi kestabilan struktur pipa tersebut. Kestabilan suatu struktur yang baik akan menyebabkan peningkatan kekuatan dan keandalan struktur. Sehingga investasi yang ditanamkan memberikan hasil yang maksimal.

Pipa bawah laut yang dikubur di dasar laut akan menerima pengaruh beban eksternal dan beban internal yang akan menyebabkan perubahan kedudukan

1-1

pipa. Perubahan kedudukan ini akan menyebabkan perubahan kestabilan pipa dan selanjutnya hal ini akan menyebabkan kegagalan pada sistem perpipaan tersebut. Kegagalan pada offshore pipeline tidak terlepas dari pengaruh adanya gaya tekan pada pipa yang disebabkan oleh *internal pressure* dan *internal pressure* yang ada di dalam pipa dari produk yang ditransportasikan oleh pipa. *Internal pressure dan internal temperatur* ini ditahan oleh gaya gesek memanjang pipa, efek ini akan tertimbun dan terkunci pada arah memanjang dan terkunci di dalam gaya tekan. Pipeline disini bekerja sebagai kolom. Pada titik lemah, pada daerah dimana tanah sebagai penutup atau ketidaksempurnaan pada rute pipa, gaya tahan lateral tidak mampu menahan pipa untuk stabil maka pipa tersebut akan keluar dari *trench*, bukles, pada arah dimana gaya tahannya rendah.

Untuk menjawab permasalahan ini diperlukan data-data mengenai pipa, data internal pressure dan internal temperatur yang bekerja pada pipa tersebut. Dengan adanya data-data tersebut maka dapat diketahui pengaruh dari pembebanan yang diakibatkan oleh internal pressure dan temperatur terhadap phenomena upheaval buckle pada *offshore pipeline*.

Tugas akhir ini mengenai analisa pengaruh *internal pressure* dan *internal temperature* terhadap *upheaval buckle*. Analisa akan dilakukan dengan bantuan *structural software MSC-NASTRAN*. Pipa yang dianalisa merupakan pipa yang dikerjakan oleh PT Komaritim, lokasi pipa di perairan delta sungai Mahakam, Kalimantan Timur.

TUT TERNOLOGI

ULUM - NOPEMBER

I.2 PERUMUSAN MASALAH

Masalah yang akan diangkat pada penulisan Tugas Akhir ini adalah:

- Menganalisa besarnya pengaruh internal pressure dan internal temperature terhadap upheaval buckle pada pipa, dengan membuat suatu pendekatan perhitungan dengan menggunakan model, dengan presurre dan temperatur sedemikian rupa sehingga dapat memberikan akibat terhadap upheaval buckle.
- Menganalisa besarnya internal pressure dan internal temperature dan derajat kemiringan pipa (allowable curvature) yang diijinkan pada saat terjadi upheaval buckle pada pipa.

I.3. TUJUAN

Tujuan penulisan Tugas Akhir ini adalah:

- Untuk mendapatkan seberapa besar pengaruh internal pressure dan internal temperature terhadap upheaval buckle pada pipa. Dengan membuat suatu pendekatan perhitungan dengan menggunakan model, dengan presurre dan temperatur sedemikian rupa sehingga dapat memberikan akibat terhadap upheaval buckle.
- 2. Untuk mendapatkan berapa besarnya *internal pressure dan internal temperature* dan derajat kemiringan pipa (allowable

curvature) yang diijinkan pada saat terjadi *upheaval buckle* pada pipa.

I.4. MANFAAT

Dari penulisan Tugas Akhir ini diharapkan dapat memberikan manfaat antara lain:

- Mendapatkan besarnya pengaruh internal pressure dan internal temperature terhadap upheaval buckle pada pipa.
- Mendapatkan besarnya internal pressure dan internal temperature dan derajat kemiringan pipa (allowable curvature) yang diijinkan pada saat terjadi upheaval buckle pada pipa.

I.5. BATASAN MASALAH

Dalam Tugas Akhir ini dibatasi pada batasan-batasan masalah sebagai berikut.

- 1. Pipa belum mengalami korosi
- 2. Pipa tidak dipengaruhi oleh gaya-gaya hidrodinamis.
- Gaya-gaya yang diakibatkan oleh pengaruh tanah seperti gaya gesek tanah, berat tanah penimbun (cover) tidak diperhitungkan.
- Tegangan sisa yang dialami oleh pipa setelah instalasi tidak diperhitungkan.

 Dalam permodelan ini pipa dianggap berbentuk lingkaran sempurna (tanpa ovalitas awal).

I.6. SISTEMATIKA PENULISAN

Sistematika penulisan yang digunakan dalam penyusunan Tugas Akhir ini adalah sebagai berikut:

BAB I PENDAHULUAN

Pada bab ini akan diterangkan mengenai studi yang dilakukan, permasalahan yang diangkat, tujuan yang hendak dicapai, manfaat, batasan-batasan masalah, metodelogi penyelesian masalah, metode penelitian serta sistematika penulisan laporan tugas akhir.

BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI

Dalam penyelesaian dalam laporan Tugas Akhir ini penulis berpedoman pada beberapa penelitian tentang fenomena upheaval buckle pada pipeline yang pernah dilakukan sebelumnya dan beberapa dasar teori. Dasar teori yang digunakan antara lain mengenai *upheaval buckle phenomena*, teori buckling, teori mengenai pembebanan yang diakibatkan oleh internal pressure dan internal temperatur pada offshore pipeline, analisa nonlinear dan peraturan mengenai kekuatan struktur pipa yang direkomendasikan oleh DNV 1996.

BAB III METODELOGI PENELITIAN

Bab ini menerangkan langkah-langkah yang dilakukan, diawali dengan mengumpulan data, penentuan pembebanan dan langkah dalam melakukan analisa struktur pipa.

BAB IV ANALISA DAN PEMBAHASAN

Bab ini akan membahas respon struktur yang didapat dengan menggunakan *software MSCN Nastran*. Pemeriksaan respon struktur disesuaikan dengan kriteria kekuatan yang direkomendasikan oleh DNV 1996. Kemudian dilakukan analisa.

BAB V KESIMPULAN DAN SARAN

Bab ini berisikan kesimpulan dari pembahasan dan saran penyelesain penelitian lebih lanjut mengenai pipa yang mengalami upheaval buckle.

BAB II

TINJAUAN PUSTAKA DAN LANDASAN TEORI

2.1. Tinjauan Pustaka

Setelah pipa diinstalasi dan dioperasikan pada kondisi dimana temperatur fluida yang dialirkan di dalam pipa lebih besar bila dibandingkan dengan suhu lingkungan maka pipa tersebut akan berusaha untuk bergerak. Jika jalur pipa tidak bebas dalam artian mengalami pengekangan, seperti contoh akibat dari gaya gesek tanah maka pipa akan mengalami beban aksial. Ketika pipa ditanam di dalam tanah pengekangan pada arah vertikal akan lebih kecil bila dibandingkan dengan pengekangan yang diakibatkan oleh tanah pada arah samping (lateral), sehingga pipa akan cenderung bergerak ke arah vertikal atau sepanjang parit dimana pipa diinstalasi tanpa timbunan *(cover)* dan pada bagian yang terlepas ini pipa akan bergerak bebas hingga posisi kesetimbangan dicapai (Guijt, J, Norske,. 1990)

Menurut Beavers et al (1992), Ariman et al (1987) bahwa upheaval beam seperti buckling pada pipeline atau dinding pipa seperti pengerutan yang diakibatkan oleh tekanan dipengaruhi oleh ratio diameter pipa dengan ketebalan pipa, jenis material pipa dan kondisi dari interaksi dari tanah (tebal tanah penutup *trench*, dan kondisi tanah dalam menahan tekanan).

Ketebalan dinding pipa dan kedalaman pipa yang dikubur di dalam tanah akan mengakibatkan menyusutnya pipa akibat tegangan longitudinal, pada dinding pipa yang ditimbun oleh lapisan tanah yang sedikit akan mengkerut seperti beam.

Pengerutan dinding pipa akan sangat berbahaya untuk kelangsungan operasi pipeline. Pengerutan ini akan disebabkan oleh deformasi plastis dari material pipa yang tidak dapat menahan efek dari internal pressure akibat gas atau minyak yang ditransportasikan di dalamnya. Dalam beberapa kasus seperti ledakan, kebakaran dan bencana lain, buckling pada dinding pipa akan menjadi pemicu dari keruntuhan pada pipa yang mengalami tekanan. Dengan kata lain beam yang telah mengalami buckling akan tetap dapat diberi kesempatan untuk terus memompakan fluida, mungkin dengan tekanan pada level yang rendah (Gershtein, M., 1996).

Dalam mendesain suatu pipa, dibutuhkan informasi tentang volume dan laju aliran fluida yang mengalir di dalam pipa tersebut. Ukuran pipa yang ditentukan harus mampu menahan tekanan yang ada dalam aliran fluida. "Kombinasi tegangan pada pipa untuk mendistribusikan minyak atau gas dapat dievaluasi dengan menggunakan *Maximum Shear Stress Equation* atau dengan menggunakan *Maximum Distortional Energy Theory (Von Misses Combined Stress)*". (API 1111 1993).

2.2 Landasan Teori

Instalasi pipa sangat memerlukan teknologi canggih dan investasi biaya yang cukup besar. Kegagalan saluran pipa akan mengakibatkan hilangnya biaya yang cukup besar dan hilangnya produksi selama proses perbaikan berlangsung. Pada saat sekarang ini banyak sekali ditemukan fenomena *upheaval buckle* yang terjadi pada *offshore pipeline*.

Pada akhir-akhir ini perusahaan perminyakan banyak mengoperasikan pipa dengan ukuran yang lebih kecil dimana pipa tersebut mengandung hidrokarbon untuk ditransportasikan dari ladang pengeboran marginal dengan memanfaatkan teknologi satelit, *upheaval buckling* mempunyai arti penting sedemikian rupa sehingga pipa harus di*trenched* dan dikubur untuk melindungi pipa dari kerusakan akibat jangkar atau regulasi pemerintah mengenai pelayaran.

Pipeline yang diinstalasi di dasar laut atau yang diletakkan pada sea bed biasanya tidak sempurna lurus, tetapi mengalami ketidaksempurnaan dalam instalasinya. Tiga tipe perbedaan ketidaksempurnaan tersebut dapat ditinjau sebagai berikut:

Yang pertama ketidaksempurnaan dalam bentuk sinosuidal dirumuskan sebagai berikut:

$$y = \Delta \cdot \frac{1}{2} \cdot \left[\cos\left(\frac{\pi x}{L}\right) + 1 \right]$$
 untuk $-L \le x \le L$ (2.1)

Yang kedua adalah bentuk tumpuan, didefinisikan sebagai berikut:

$$y = \Delta \left[4 \left(\frac{L - |x|}{L} \right)^3 - 3 \left(\frac{L - |x|}{L} \right)^4 \right] \qquad \text{untuk} - L \le x \le L$$
 (2.2)

Opsi ketiga adalah *arbitrary* profile didefinisikan pada titik (x,y) berdasarkan survai data.

Tiga tipe dasar dari ketidaksempurnaan dapat diidentifikasikan dengan mengilustrasikan Gambar 2.1. Pada kasus pertama, pipa dalam keadaan bergelombang secara vertikal. Bentuk tumpuan ini secara jelas merupakan ketidakteraturan pipa secara vertikal yang disebabkan adanya butiran yang ada pada sisi yang lain. Pada kasus ketiga terjadi di mana butiran pasir akan mengisi bagian-bagian yang kosong di bawah pipa yang tertumpu pada kasus yang pertama. Ketidaksempurnaan mula-mula ini dinyatakan dengan amplitudo v_{om} dan di sepanjang panjang gelombang pipa L_o atau L_i .

Bentuk pipa yang melengkung dapat menjadi pemicu terjadinya *upheaval buckle* di mana pipa terangkat, ditahan oleh gaya ke bawah dari berat pipa itu sendiri, tanah penutup yang berada di atas pipa dan gaya hidrostatik. Banyak studi yang menduga bahwa system simetri dan dasar laut atau kekakuan dasar parit, bersama-sama dengan perubahan bentuk yang kecil dan secara linier elastis menurut sifat-sifatnya dapat mengakibatkan upheaval buckle. Meskipun interpretasi temperature dan tekanan yang muncul akibat tekanan aksial yang ada pada unrestrained pipa disebut sebagai *pre-buckling pipe force, P*_o dirumuskan Hobb's (1981):

$$P_{o} = AET\alpha + \frac{ApD}{2t} (0.5 - v)$$
(2.3)

Dimana:

A = Luas permukaan pipa
E = Modulus young
T = Temperatur
υ =Poisson ratio
p = Tekanan fluida di dalam pipa
D = Diameter pipa
t = Ketebalan pipa

Langkah-langkah terjadinya upheaval pipa dapat diilustrasikan seperti pada Gambar 2.2 berikut.

a) Datum(P=0)

Gambar 2.2. Topologi penyangga pada pipa

Gambar 2.2. Topologi penyangga pada pipa (lanjutan)

Data-data yang diperoleh mengacu pada data-data awal yang diadopsi pada saluran pipa yang dioperasikan sehingga dengan cara demikian akan didapatkan lengkungan vertikal yang disebabkan oleh adanya suatu penumpu. Temperatur pipa yang timbul selama proses operasi akan mengakibatkan pengikisan sepanjang pipa yang bekerja di bawah tekanan fluida yang bekerja di dalam pipa P (P < Po).

Panjang gelombang pipa L_o akan mengurangi dan menurunkan beberapa nilai spesifik pada pipa pada saat *upheaval buckle* L_u , lalu saluran pipa akan terangkat ke atas penyangga itu. *Pre upheaval* pada awalnya melibatkan panjangn pipa $L_u < L < L_i$, dengan $L > L_i$ akan terjadi apabila keadaan sangat berpengaruh terhadap terjadinya upheaval buckle.

2.2.1. Gaya-Gaya Yang Bekerja Pada Ketidaksempurnaan Topologi

Secara tepat bentuk pipa yang mengalami buckle dapat digambarkan sebagai berikut:

Gambar 2.3. Ketidaksempurnaan awal pada topologi pipa

Menurut Taylor. N. dan Tran, V. (1993) secara efektif pipa dipengaruhi oleh gaya-gaya yang bekerja pada pipa akibat adanya ketidakteraturan pipa akibat tumpuan pada amplitudo gelombang awal pipa v_{om} dan berat pipa itu sendiri, ditambah dengan berat timbunan tanah di atas pipa. Reaksi yang terjadi meliputi tegangan geser *Fi*, bending moment *Ni*, yang bekerja pada puncak kelengkungan dengan reaksi melintang yang bekerja pada titik lengkung pipa. Dengan kondisi batas :

$$\upsilon_{i}|_{Li/2} = \upsilon_{ix}'|_{Li/2} = \upsilon_{ixx}'|_{Li/2} = \upsilon_{ix}'|_{0} = 0$$
(2.4)

dimana :

$$v_i$$
 = defleksi vertikal awal

$$\dot{\upsilon_{ix}} = \frac{d\upsilon_i}{dx}$$
 dan seterusnya

dari persamaan tersebut menghasilkan momen bending $\left.M_{i}\right|_{x}$, $0\leq x\leq L_{i}/2,$

$$M_i|_x = EIv_{ixx} = -\frac{FiLi}{2} + \frac{qL_i^2}{8} + Fix - \frac{qx^2}{2}$$
 (2.5)

dengan catatan:

$$\upsilon_i |_0 = \upsilon_{om}$$
.

dengan perhitungan sebagai berikut:

$$\upsilon_i = \frac{q}{72EI} \left(2L_1 \left[\frac{L_i}{2} - x \right]^3 - 3 \left[\frac{L_i}{2} - x \right]^4 \right)$$
(2.6)

$$L_{i} = 5.8259 \left(\frac{\upsilon_{om} EI}{4}\right)^{1/4}$$
(2.7)

$$\frac{F_i}{EI} = -v_i'_{xx} |_{o} = \frac{qL_i}{3EI}$$
(2.8)

na dengan
(2.8)

1

HUUUM

bersama dengan

$$\upsilon_{ixx}' = \upsilon_{ixx}' = \frac{-qL_i^2}{24EI}$$

dan

$$M_{i|x} = \frac{q}{12} \left(\frac{L_i}{2} - x \right) (6x - L_i), \quad M_{i|x} \le N_i$$
 (2.10)

(2.9)

dimana :

M _x	: momen bending
Ρ	: tekanan pada saat upheaval
υ _{om}	: tinggi kelengkungan awal pipa
υ	: displasemen pipa secara vertikal
q	: berat pipa sendiri
Li	: panjang pipa yang mengalami kelengkungan awal
Fi	: tegangan geser pada puncak kelengkungan pipa
х	: jarak koordinat pipa secara horizontal

pada keadaan awal ini pipa berada dalam keadaan tidak berisi hidrokarbon.

2.2.2. Keadaan Sebelum Terjadinya Upheaval

Topologi pipa diperoleh pada tekanan aksial awal yang bekerja. Besarnya tekanan aksial adalah konstan sepanjang panjang gelombang pipa $L_u \leq L \leq L_{i,i}$. Besarnya berat pipa sendiri *q*, perlu dipertimbangkan untuk saluran pipa yang berisi hidrokarbon.

(a) Flexural Range Topology Lu (L (L)

(c) Axial Force Distribution

Gambar 2.4. Sebelum terjadinya upheaval, ketidaksempurnaan secara detail dari topologi pipa

Menurut Taylor.N. dan Tran, V. (1993), argumentasi di atas mengacu ke arah di mana adanya hubungan ketidakteraturan *momen-curvature*.

$$\frac{M_x}{EI} = \upsilon'_{xx} - \upsilon'_{ixx}$$
(2.11)

 M_x : Bending momen pada x, $0 \le x \le L/2$

v : Displacement pipa secara vertical

Dengan kondisi batas :

$$\upsilon|_{L/2} = \upsilon'_{x}|_{L/2} = \upsilon'_{xx}|_{L/2} = \upsilon'_{x}|_{0} = 0$$
 (2.12)

Dengan adanya momen bending pada titik di bagian kulit pada kelengkungan melintang sama dengan nol maka momen bending M_x, dapat dirumuskan melalui persamaan berikut:

$$M_{x}|_{L/2} = EIv_{xx}|_{L/2} - EIv_{ixx}|_{L/2} = -EIv_{ixx}|_{L/2}$$
(2.13)

$$M_{x} = P(v_{om} - v) + N + Fx - \frac{qx^{2}}{2}$$
(2.14)

Manipulasi dari persamaan (2.6), (2.11), (2.12), dan (2.14) akan menghasilkan persamaan karakteristik:

$$\frac{L_{i}}{L} = \frac{5.8259}{nL} \left[\frac{\left(4 - \frac{(nL)^{2}}{4}\right) \cos(nL/2) + 2nL\sin(nL/2) - 4 - \frac{(nL)^{2}}{4}}{\cos(nL/2) - 1} \right]^{1/4}$$
(2.15)

dimana $n^2 = P / EI$ (2.16)
$$\upsilon = q(-2\cos n(L/2 - x) + k_1\sin n(L/2 - x) - n^2x^2 + k_2nx + k_3) \quad (2.17)$$

dimana:

$$k_1 = \frac{nL}{3} \left(\frac{L_i}{L} - 3 \right) + \frac{nF}{q}$$
(2.18)

$$k_2 = k_1 + nL$$
 (2.19)

$$k_{3} = \frac{(nL_{i})}{1152} + 2\cos(nL/2) - k_{1}\sin(nL/2)$$
(2.20)

dengan gaya geser pada puncak F, diekspresikan sebagai berikut:

$$\frac{\mathsf{F}}{\mathsf{E}\mathsf{I}} = (-\upsilon_{xxx}|_{0}) - (-\upsilon_{ixxx}|_{0}) \tag{2.21}$$

$$\frac{F}{EI} = \frac{q}{EIn(1 - \cos(nL/2))} \left[2\sin(nL/2) + \left(\frac{nL_i}{3} - nL\right)\cos(nL/2) - \frac{nL_i}{3} \right]$$
(2.22)

Secara umum bending momen diberikan dalam persamaan sebagai berikut:

$$M_{x} = P(v_{om} - v) + \frac{q}{n^{2}} \left(k_{3} + \frac{L_{i}^{2}}{24} - \frac{(nL_{i})^{4}}{1152} - 2 \right) + Fx - \frac{qx^{2}}{2}, \quad M_{x} \le N$$
(2.23)

dimana:

M_x : momen bending

- P : tekanan pada saat upheaval
- vom : tinggi kelengkungan awal pipa
- υ : displasemen pipa secara vertikal
- q : berat pipa sendiri
- Li : panjang pipa yang mengalami kelengkungan awal
- F : tegangan geser pada puncak kelengkungan
- x : jarak koordinat pipa secara horizontal
- n² : P/El

Setelah terbentuk/mapan *buckling force P*, dalam panjang gelombang *L* dan amplitudo $v_m = v|_0$, perlu pencocokan antara keseimbangan pipa secara membujur dalam hubungan *buckle force P* akibat adanya temperature yang bekerja. Hal ini diperlukan untuk mencatat topologi sistem dan distribusi kekuatan di sekitar sumbu axis pipa.

2.2.3 Keadaan Upheaval Pada Pipeline

Di atas telah dinyatakan adanya hubungan antara *moment-curvature* yang berhubungan dengan efek ketidaksempurnaan dari curvature awal. Apabila terjadi penggabungan stress antara persamaan (2.10) dan (2.11), stress berdasarkan perkiraan akan memiliki hubungan $M_i = Elv_{ixx}$ maka solusi yang ideal, menurut Boer, S et al (1986) dan Ju, G.T. & Kyriakides (1988) adalah:

$$P_{u} = 80.76 \frac{EI}{L_{u}^{2}} = P_{qi}$$
(2.24)

$$L_u = 4.5174 \left(\frac{v_{om}EI}{q}\right)^{1/4} = L|_{P_{qi}} = 0.775Li$$
 (2.25)

dimana:

Li	: panjang pipa dengan kelengkungan awal		
Pu	: tekanan pipa pada saat upheaval		
Lu	: panjang pipa pada saat upheaval		
E	: modulus elastisitas pipa		
I	: momen inersia pipa		
$v_{\rm om}$: tinggi kelengkungan awal pipa		
q	: berat pipa sendiri		

Persamaan di atas secara efektif dapat diterapkan dalam model penumpu sebelumnya, ketika pipa dalam keadaan lurus memiliki displacement v_{om} yang di dalam pipa tersebut bekerja beban dalam *q* dan tekanan P_u , hal ini didorong oleh studi yang ideal dimana pipa mengalami gangguan atau didorong kedalam moda buckling pada saat amplitude $v_m |_{P_q} \equiv v_{om} |_{P_q}$.

2.2.4 Tegangan Yang Bekerja Pada Buried Pipeline

Tekanan operasional maupun hidrotest dan kelengkungan yang terbentuk akibat geografis permukaan dasar laut akan mengakibatkan terjadinya

tegangan yang akan mempengaruhi struktur desain dari pipa. Ada dua tegangan yang terjadi karena pengaruh tekanan dan temperatur yaitu tegangan tangensial hoop stress pada dinding pipa dan kedua adalah tegangan aksial (longitudinal stress).

2.2.4.1 Tegangan Tangensial

Tegangan yang bekerja pada dinding pipa dapat berupa gaya tekan dan gaya tarik, tergantung pada besarnya tekanan luar dan tekanan dalam. Formula untuk meghitung hoop stress dapat diturunkan dengan mempertimbangkan statis pada sebuah pipa yang dikenai kedua tekanan, tekanan luar dan tekanan dalam serta mempertimbangkan pipa sebagai membran elemen dan dianggap harga tegangan sepanjang pipa konstan.

Gambar 2.5 Penampang pipa yang dikenai tekanan dari luar dan dalam

Dari diagram bebas di atas untuk elemen gaya (F_I) dapat diekspresikan sebagai (P_I-P₀) Ir∂θsinθ.

Total gaya normal adalah jumlah dari elemen gaya pada setengah lingkaran atau dari 0 hingga π .

$$F_{i} = \int_{0}^{\pi} (P_{i} - P_{o}) \ell r \partial \theta \sin \theta \qquad (2.26)$$

$$F_{i} = (P_{i} - P_{o}) \ell r \int_{0}^{\pi} \sin \theta \partial \theta$$

$$F_{i} = (P_{i} - P_{o}) \ell d \qquad (2.27)$$

dari persamaan (2.27) dan persamaan (2.26) diperoleh:

$$\sigma_{_{H}}=\frac{(P_{_{i}}-P_{_{o}})d}{2t}$$

tetapi pada umumnya rumus yang digunakan adalah rumus barlow, yaitu:

$$\sigma_{\rm H} = \frac{(P_{\rm i} - P_{\rm o})D_{\rm o}}{2t}$$
(2.28)

dimana:

- F₁ : total gaya normal
- P_i : tekanan dalam
- Po : tekanan luar
- Do : diameter luar pipa
- t : tebal pipa

2.2.4.2 Tegangan Aksial (Longitudinal Stress)

Tekanan aksial/tegangan longitudinal pada pipa lepas pantai dipengaruhi oleh internal thermal, tekanan dan pengaruh kelengkungan. Pengaruh tersebut akan menyebabkan terjadinya tegangan longitudinal pengaruh thermal (σ_{LT}), tegangan longitudinal pengaruh tekanan (σ_{LP}), tegangan logitudinal akibat pengaruh kelengkungan (σ_{LB}). Formula tegangantegangan tersebut adalah sebagai berikut:

Tegangan yang diakibatkan oleh internal temperatur

Di dalam tanah pipa akan tertahan dan tidak dapat mengalami pengembangan secara aksial. Sehingga menghasilkan tegangan tekan. Tegangan tekan yang terbentuk di dalam pipa yang panas sama dengan tegangan yang disebabkan oleh gaya yang diperlukan oleh pipa untuk menekan pipa dalam keadaan bebas *(unrestrain)* kembali kebentuk awal seperti pipa sebelum mengalami pemanasan (Grigory C.S. & Smith.Q M., 1996). Seperti diilustrasikan pada gambar 2.6 berikut ini.

Gambar 2.6. Ilustrasi efek thermal ekspansion pada buried pipeline

Tegangan tekan yang ditimbulkan oleh thermal exspansion pada pipa yang terpendam di dalam tanah akibat dari fluida yang ditransportasikannya memiliki suhu lebih besar bila dibandingkan dengan suhu lingkungan dapat dihitung dengan menggunakan persamaan:

$$\sigma_{\rm TE} = -A_{\rm x} \alpha E \Delta T \tag{2.29}$$

Di mana:

A	: Luas permukaan pipa		
Е	: Modulus elastis pipa		
ΔT	: perbedaan temperatur		
ΔT	: T _o -T _I		
To	: temperatur operasi		
Ti	: temperatur lingkungan		
α	: koefisien thermal ekspansion		

Tegangan yang diakibatkan oleh internal pressure

Beban dari internal pressure yang dialami oleh pipa akan menyebabkan stress pada pipa. Pressure yang bekerja akan dinetralkan pada penampang melintang pipa dengan tekanan pada dinding pipa (Smith, Paul .R and Van Laan, T 1987). Ilustrasi ini dapat ditunjukkan pada gambar berikut ini:

Gambar 2.7. Beban internal pressure pada pipa

Dengan tegangan pada penampang melintang pipa sebesar:

$$p(A_p) - (pA_p / A_m)A_m = 0$$
 (2.30)

Dimana:

- p : internal pressure psi (kPa)
- Ap : luasan bagian dalam pipa in² (mm²)
- Am : luasan metal pipa $in^2 (mm^2)$

Tegangan aksial pada pipa yang terpendam di dalam tanah akan mengalami tegangan tarik yang berasal dari efek poison ratio yang diakibatkan oleh internal pressure. Konsep poisson ratio dapat diilustrasikan oleh perentangan sebuah batang (bar) dengan jarak d. Batang tersebut akan menyusut dalam arah 90⁰ ke arah perentangan. Untuk baja penyusutan sama dengan 0,3 kali dari jumlah perentangan, d. Seperti pada efek thermal expansion proses perentangan ini akan ditahan, sehingga tegangan tarik akan terbentuk yang besarnya sama dengan gaya yang ditimbulkan oleh gaya yang diperlukan oleh baja yang telah merentang untuk kembali keposisi semula (Grigory C.S. & Smith.Q M., 1996). Efek internal pressure diilustrasikan pada gambar 2.8.

11-21

Tegangan yang diakibatkan oleh bending stress

Akibat jalur geometri dari topografi di dasar laut, saluran pipa akan mengalami kelengkungan secara horizontal dan arah vertikal yang akan mengakibatkan tegangan longitudinal akibat pengaruh kelengkungan atau bending pada pipa.

Axial stress juga akan muncul dari aksial bending dan pembebanan aksial pada pipeline. Hubungan aksial stress yang terjadi pada pipeline merupakan penjumlahan dari bending stress, *plan strain tensile stress* dan *thermal expansion compression stress*.

Besarnya resultan momen akibat adanya kelengkungan awal pipa tesebut dapat dihitung dengan menggunakan persamaan sebagai berikut:

$$MR = EI \left[\frac{1}{R_{H}^{2}} + \frac{1}{R_{V}^{2}} \right]$$
(2.31)

dimana:

- MR : resultan momen bending
- E : modulus young
- I : momen inersia

Berdasarkan DNV-1976 Apendix B Longitudinal stress akibat bending tersebut dapat dirumuskan sebagai berikut:

$$\sigma_{LB} = \pm \frac{4EI\left[\frac{1}{R_{H}^{2}} + \frac{1}{R_{v}^{2}}\right]^{0.5}}{\pi t (D_{o} - t)^{2}}$$
(2.32)

dimana:

σιΒ	: tegangan aksial/longitudinal stress akibat bending
Do	: diameter dalam
t	: ketebalan pipa
Rн	: radius horizontal
Rv	: radius vertikal

Untuk total longitudinal stress akibat adanya pengaruh thermal, tekanan dan bending adalah sebagai berikut:

$$\sigma_{\rm L} = \sigma_{\rm LT} + \sigma_{\rm LP} + \sigma_{\rm LB} \tag{2.33}$$

σ_L : Tegangan longitudinal total

- σ_{LT} : tegangan longitudinal pengaruh thermal
- σ_{LP} : tegangan longitudinal pengaruh tekanan
- σ_{LB} : tegangan longitudinal pengaruh bending

2.2.5 Buckling

Parameter utama yang digunakan dalam menentukan terjadi/tidaknya buckling dalam hal ini dengan menggunakan tegangan kritis, P_{critis}. Apabila beban yang diterima pipa baik secara aksial ditambah torsional tidak melebihi beban yang sudah ditentukan (P_{crit}), maka sudah tentu pipa yang akan dianalisa tesebut tidak mengalami buckling.

Terdapat dua jenis tipe terjadinya buckling di mana kedua tipe tergantung pada besarnya Rasio Silinder efektif (SR) dan Rasio Silinder kolom (Cc) (Bleich,1952). Rasio silinder kolom (Cc) dapat dihitung dengan menggunakan persamaan :

$$Cc = \pi \left(\frac{2E}{Fy}\right)^{0.5}$$
(2.34)

Untuk perhitungan Slenderness Ratio (Ratio Kerampingan)

$$SR = \frac{KL_E}{r}$$
(2.35)

$$r = \left(\frac{1}{As}\right)^{0.5}$$
(2.36)

$$I = \frac{\pi (D_o^4 - D_i^4)}{32}$$
(2.37)

$$As = \frac{\pi (D_o^2 - D_i^2)}{4}$$
(2.38)

Dimana:

- Do : Outside Diameter
- Di : Inside Diameter
- E : Modulus Elastisitas
- Fy : Tegangan Yield
- r : Jari-jari girasi
- I : Momen Inersia
- As : Luas Penampang
- Le : Panjang pipa efektif
- K : Faktor panjang efektif yang tergantung pada pengekang ujung

Dimana:

K= 1 untuk kedua ujung sendi tergerak lateral

K= 0.5 untuk ujung jepit

- K= 0.7 untuk ujung sendi dan jepit
- K= 2.0 untuk ujung jepit ujung yang lain bebas

2.2.6 Buckling Elastis Pada Kolom Lurus Akibat Beban Aksial

Tinjauan yang akan dibahas adalah tentang kolom elastis dengan cross section area yang konstan, lurus dan sempurna. Kolom tersebut diberikan gaya sebesar P yang dikenakan di natural axis dari pipa tersebut. Gaya yang bekerja secara transversal yang dihasilkan oleh tegangan aksial P, akan menghasilkan momen mx pada point x, secara lebih jelasnya dapat digambarkan seperti berikut. (Popov, 1991).

Gambar 2.9 Panjang efektif kolom dengan pengekang yang berlainan

Maka total bending momen yang didapat adalah:

$$\mathsf{M}_{z} = \mathsf{P}_{v} + \mathsf{m}_{z} \tag{2.39}$$

Dengan mengasumsikan bahwa terjadi sedikit lendutan y, maka persamaan diferensial dari kelengkungan elastik kolom yang terdefleki adalah :

$$\mathsf{EI}\frac{\partial^2 y}{\partial x^2} + \mathsf{P}y + \mathsf{m}x = 0 \tag{2.40}$$

Maka didapatkan suatu teori di mana kasusnya adalah kolom yang bebas berotasi pada ujung-ujungnya. Dan mx disebabkan oleh beban transversal terpusat Q yang bekerja pada kolom dengan catatan:

mx = Qx/2 (2.41)

$$\alpha = \sqrt{\mathsf{P}/\mathsf{EI}} \tag{2.42}$$

Persamaannya adalah :

$$y = \frac{mx}{P} \left[\frac{\sin ax}{ax \cos \frac{\alpha l}{2}} - 1 \right]$$
(2.43)

Persamaan (2.40) dapat diselesaikan dengan menurunkan persamaan (2.39) selama momen pengganggu mx tidak sama dengan nol maka untuk tegangan aksial P yang bernilai kecil, nilai faktor $\cos(\alpha l/2)$ pada persamaan (2.40) hanya sedikit berbeda dari keadaan semula, tetapi untuk P yang meningkat maka nilai dari ($\alpha l/2$) akan mendekati nilai $\pi/2$. Sehinga nilai y akan meningkat sampai nilai αl mendekati nilai π , hal ini akan meningkatkan ambang batas. Kolom tersebut lama kelamaan akan mengalami buckling.

Dengan $\alpha I = I\sqrt{P/EI} = \pi$ maka persamaan Euler untuk batasan kritis P_E untuk beban buckling adalah:

SEPULUM

TE M MOLOUN

NODEMBER

Hadi Sutanto-4399100025

 $\mathsf{P}_{\mathsf{E}} = \frac{\pi^2 \mathsf{EI}}{\mathsf{i}^2}$

(2.44)

untuk kasus di mana momen penyangga hilang mx=0 maka persamaan (2.39) akan menurunkan sehingga nilai y adalah sama dengan nol untuk semua nilai P. Kolom akan selalu dalam keadaan lurus. Disamping penyelesaian yang biasa, ada sistem yang disebut penyelesaian karakteristik.

$$y = C \sin n \frac{nx}{l}$$
(2.45)

termasuk ke dalam ini nilai karakteristik dari $P_E = \frac{n^2 \pi^2 EI}{l^2}$, di mana n adalah interger dari c adalah konstan. Dari persamaan tersebut, nilai paling kecil didapat dengan nilai n=1, P=P_E dan penyelesaian P = 0 dengan hilangnya momen pengganggu maka kolom akan selalu dalam keadaan lurus pada semua nilai dimana P < P_E, sedangkan pada saat nilai P=PE maka kolom akan bengkok membentuk kelengkungan sinusoidal dengan amplitudo adalah C. Sehingga persamaan Euler dapat didefinisikan sehingga beban yang paling kecil yang dapat menjaga kolom tetap membentuk tekukan yang sedikit. Sehingga persamaan Euler dapat didefinisikan sebagai beban yang paling kecil yang dapat menjaga kolom

Untuk struktur yang terbebani secara terpusat akan mempunyai perilaku seperti di bawah ini.

 Jika kolom menderita beban aksial sebesar P yang lebih kecil daripada beban kritis P_E, maka kolom akan selalu lurus.

- Jika ditambahkan momen pengganggu mx, maka struktur tersebut akan melengkung dan persamaan kelengkungannya diberikan pada persamaan (2.40)
- Jika momen mx dihilangkan, maka kolom akan kembali lagi ke bentuk posisi lurus.
- Eksternal force dan internal force dianggap dalam keadaan setimbang.
- Jika beban transversal dihilangkan, adanya lendutan, beban P sama dengan P_E, sedikit momen pengganggu akan cukup untuk meyebabkan lendutan yang cukup besar terhadap kolom, di mana lendutan ini akan kembali ke keadaan semula meskipun momen pengganggu sudah dihilangkan.

Persamaan-persamaan yang digunakan di atas adalah persamaan yang digunakan untuk mendekati nilai yang sebenarnya, untuk mendapatkan nilai yang benar kita dapat melakukan dengan menggunakan persamaan-persamaan sebagai berikut:

$$\frac{\mathsf{EI}}{\rho} = -\mathsf{M}\mathsf{x} \tag{2.46}$$

dimana p adalah radius kelengkungan yang mengalami gangguan aksis dari kolom dan nilai ym untuk lendutan di tengah-tengah kolom tanpa beban transversal adalah:

$$Ym = \frac{2I}{\pi} \sqrt{\frac{P_E}{P}} \left[\sqrt{\frac{P}{P_R} - 1} \right]$$
(2.47)

untuk nilai P>P_E, maka nilai dari Ym adalah imajiner, sehingga tidak ada defleksi yang sebenarnya, dan kolom akan tetap dalam keadaan lurus. Ketika P=P_E maka Ym=0, dan kolom sama sekali tidak mengalami gangguan. Hanya jika dalam keadaan P>P_E akan terjadi lendutan yang dapat diukur besarnya, maka dengan meningkatnya nilai P mendekati nilai P_E akan ada sebab yang mengakibatkan terjadinya defleksi, meskipun nilai P_E hanya sedikit, defleksi akan membahayakan struktur tersebut.

Dari pernyataan tersebut dapat disimpulkan bahwa pada saat P=P_E maka kondisi ini adalah kondisi di mana kolom tersebut dalam keadaan lurus, namun sedikit saja diberikan momen pengganggu pada kolom tersebut akan mengakibatkan lendutan yang besar atau dengan kata lain setelah nilai dari dari beban buckling Euler dicapai perilaku dari kolom menjadi tidak menentu atau secara extrem dapat dikatakan sedikit gangguan pada struktur ini dapat mengakibatkan kegagalan dari struktur tersebut.

Selanjutnya kita lebih menitik beratkan untuk menghitung nilai P_E (beban kritis) pada perilaku dalam kolom tersebut berubah. Untuk lebih detilnya kita menentukan kondisi awal terjadnya buckling tetapi tidak mengindahkan kejadian buckling itu sendiri. Hal ini dilakukan untuk mempermudah analisa yang dilakukan untuk sebuah kolom yang dapat

mengalami kegagalan. Sehingga kita dapat menggunakan persamaan dasar dari persamaan diferensial untuk menghitung nilai-nilai kecil dari defleksi (y).

$$\mathsf{EI}\frac{\partial^2 \mathsf{y}}{\partial \mathsf{x}^2} + \mathsf{P}\mathsf{y} = \mathsf{0} \tag{2.48}$$

Ketika beban kritis sudah tercapai, akan terjadi dua kemungkinan posisi yang dapat menimpa struktur ini, yaitu:

- 1. Bentuk lurus
- keadaan dimana terjadi defleksi yang nilainya kecil sekali (infinitesunaly)

dua keadaan di atas dapat dikatakan sebagai keadaan instabilitas.

Dengan menggunakan persamana (2.44) yang dibagi dengan daerah *cross sectional* dan mengganti momen inersia I dengan Ar², r adalah jarijari girasi maka persamaannya menjadi:

$$\frac{PE}{A} = \frac{\pi^2 E}{(L/r)^2}$$
(2.49)

dimana l/r adalah slenderness ratio.

Persamaan (2.40) hanya berlaku apabila:

 Modulus elastisitas E tidak berubah nilainya seperti sebelum terjadinya buckling

- hanya berlaku selama P_E/A berada di bawah batas elastsitas bahan tersebut pada kelengkungan stress strain
- 3. Kondisi batas harus berada pada batas-batas elastis dari buckling dan batas validitas dari persamaan ini juga tergantung pada slenderness ratio batas yang tergantung dari propertis material kolom tersebut.

Persamaan (2.49) dapat dituliskan menjadi bentuk umum dengan menggunakan simbol σ_c (*Critical Stress*) untuk Pc /A (Pc adalah beban kritis atau beban buckling).

$$\sigma_{\circ} = \frac{\pi^2 \mathsf{E}}{(\mathsf{kL}/\mathsf{r})^2} \tag{2.50}$$

Dimana k adalah faktor dimensional yang diindikasikan dengan pengaruh kondisi akhir sampai beban kritis, kl disebut juga panjang efektif atau panjang dari ujung ke ujung.

2.2.7 Perhitungan Defleksi Maksimum Pipa

Untuk mengetahui berapa besarnya lendutan yang dialami oleh pipa yang disebabkan oleh beban aksial yang diberikan dapat dilihat dengan menggunakan persamaan berikut (Popov, 1991).

Gambar 2.10.a).Beban aksial P dan beban transversal ke atas F pada tengah bentangan b).Diagram bendabebas untuk balok-kolom berdefleksi

Syarat-syarat batas membentuk persamaan defleksi adalah sebagai berikut:

$$EIU'' = M - PU - (F/2)x$$
 (2.51)

$$EIv''+Pv - (F/2)x$$
 (2.52)

Persamaan diferensial yang dipakai adalah:

$$\frac{d^2 V}{dx^2} + \lambda^2 V = -\frac{\lambda^2 F x}{2P}$$
(2.53)

Dengan membagi ruas kanan dengan $\lambda^2 \left(\frac{P}{EI}\right)$ penyelesainnya menjadi

$$\upsilon = C_1 Sin\lambda x + C_2 Cos\lambda x - (F/2P)x \qquad (2.54)$$

Tetapan C1 dan C2 di dapat dari sarat batas $\upsilon(0) = 0$ dan syarat simertri $\upsilon'(L/2) = 0$

Maka:

$$C_2 = 0$$

$$C_{1} = \frac{F}{[2P\lambda Cos(\lambda L / 2)]}$$

Dengan memasukkan syarat batas tersebut maka persamaan yang menentukan defleksi kolom adalah :

$$\upsilon = \frac{F}{2P\lambda} \frac{1}{\cos\lambda L/2} \sin\lambda x - \frac{F}{2P} x$$
(2.55)

Dengan memasukkan nilai x = L/2 dengan asumsi defleksi maksimum yang terjadi di tengah pipa maka persamaan defleksi maksimum pipa adalah:

$$V_{max} = [(F/2P\lambda)](\tan \lambda L/2 - \lambda L/2)$$
(2.56)

dimana :

- V_{max} : defleksi maksimum
- F : gaya berat pipa
- P : beban aksial
- L : panjang pipa

2.2.8 Buckling Pada Pipa

Buckling pada pipa dapat didefinisikan sebagai perataan (flattening) atau berubahnya bentuk pipa menjadi oval. Jika pipa tidak bocor, maka kejadian ini dikatakan *dry buckl*e dan jika pipa bocor dan dipenuhi oleh air dikatakan sebagai *wet buckle*.

DnV (1976) dalam Mousselli (1981) memberikan rumusan dalam menghitung tekanan kritis *buckle* sebagai berikut :

$$P_c = 2 \sigma_e \frac{t}{D} \text{ untuk } \sigma_e \le \frac{2}{3} Y$$
 (2.57)

$$P_{c} = 2Y \frac{t}{D} \left[1 - \frac{1}{3} \left(\frac{2Y}{3\sigma_{e}} \right)^{2} \right] \text{ untuk } \sigma_{e} \ge \frac{2}{3}Y$$
(2.58)

Keterangan :

$$\sigma_{e}$$
 : $\sigma_{e} = E \left(\frac{t}{D-t}\right)^{2}$

Y : Yeild Stress pipa (sama dengan 0.005 strain)

Untuk memprediksi tekanan kegagalan pipa yang terkait dengan beban kombinasi seperti tekanan, gaya aksial dan momen bending, DnV memberikan rumusan berikut ini :

$$\left(\frac{M}{M_c}\right)^{\alpha} + \frac{P}{P_c} = 1$$
(2.59)

Keterangan :

- M_c : Momen bending kritis ketika P = 0
- P_c : Tekanan luar kritis ketika M = 0

$$\alpha = 1 + \frac{300}{D_{t}} \frac{P}{P_{c}}$$

2.2.9 Analisa Nonlinear

Tinjauan dalam melakukan beberapa analysis apakah sebuah struktur tersebut akan mengalami perilaku nonlinear analisis atau tidak bergantung pada perilaku struktur, material dan perilaku lain yang menjadikan sebuah struktur dapat dianalisa secara nonlinear.

Beberapa nonlinear material ditunjukkan oleh perilaku material dalam tegangan yang kecil. Beberapa efek dari nonlinear dapat terjadi secara simultan dalam sebuah analisis. Analisis dapat menjadi statis, *quasi static* (creep) atau transient dynamic.

Perumusan Newton Raphson didasarkan pada *tangent stiffness* yang digunakan untuk menyelesaikan persamaan nonlinear yang disebabkan adanya nonlilnear material. Teknik ini digambarkan pada gambar 2.11. Pada gambar respon yang bernilai *exact* digambarkan melalui garis sambung dan setiap iterasi dari persamaan nonlinear digambarkan dengan garis putus-putus. Itersi ini berlangsung sampai terjadi konverginitas atau banyak iterasi yang ditentukan sebelumnya telah tercapai.

Gambar 2.11. prosedur iterasi dalam analisa nonlinear

2.2.10 Tegangan Ijin

Untuk mengetahui suatu tegangan yang mampu diterima pipa dari beban bending dan gaya aksial pada persamaan (2.33) di atas selama menerima beban internal pressure dan internal temperatur perlu didefinisikan tegangan equivalent *(intensity of stress)*. Tegangan ijin yang diperbolehkan berdasarkan DNV 1996 adalah:

> $σ_e \le η.SMYS$ $σ_t \le η.SMYS$

dimana:

$$\sigma_{e} = \sqrt{\sigma_{h}^{2} + \sigma_{l}^{2} - \sigma_{h}\sigma_{l} + 3.\tau_{lh}^{2}}$$

$$(2.60)$$

σ₁ = Tegangan longitudinal

- η = Faktor untuk cek tegangan equivalent
- τ_{lh} = Tangensial shear stress

Material	Safety class		
requirement	Low	Normal	High
Normal	0.96	0.87	0.77
ulfilling C404	1.00	0.90	0.80

Tabel 2.1 Faktor untuk cek tegangan equivalent (DNV 1996)

Berdasarkan DNV 1996 tegangan yang diterima pipa perlu dibandingkan dengan tegangan ijin. Pada dasarnya perbandingan ini dapat digunakan untuk menentukan batasan tegangan dan tingkat yang membahayakan di daerah kritis pipa pada saat beroperasi.

2.2.11 Ovalitas

Ovalitas pipa adalah kerusakan bentuk penampang melintang geometri pipa. Dalam kejadian ini penampang melintang pipa dapat berubah menjadi bentuk elips. Untuk menilai besarnya ovalitas pada cross section pipeline kita menggunakan pendekatan perhitungan ovalitas berdasarkan teori dinding tipis (Goldenveiser A.L. 1965 dalam Tcherni V.P and Kharionovsky V.V 1996). Kelengkungan pipa dapat mengakibatkan ovalitas pada pipa. Ovalitas pipa dapat dihitung dengan menggunakan persamaan:

$$\theta = \left[(d_{max} - d_{min}) / d_{rat} \right] * 100\%$$
 (2.61)

$$\theta \le 2\%$$
 Berdasarkan DNV 1996

dimana:

θ	: ovalitas
d _{max}	: diameter maksimum
d _{min}	: diameter minimum
d _{rat}	: diameter rata-rata

BAB III METODELOGI PENELITIAN

3.1 Metode Penelitian

Untuk mendapatkan hasil penelitian yang mempunyai validitas, dalam penyusunan Tugas Akhir ini dilakukan dengan metode atau langkahlangkah pelaksanaan penelitian yang terstruktur, selain itu perlu pula didukung dengan pengetahuan yang harus dikuasai mengenai hal yang bersangkutan dengan apa yang akan diteliti tersebut.

Garis besar dari penyusunan Tugas Akhir ini meliputi langkah-langkah sebagai berikut:

1. Identifikasi masalah

Di lapangan marginal field banyak sekali penggunaan pipeline untuk mentrasportasikan hidrokarbon dengan internal pressure dan internal temperatur yang tinggi dari wellhead satu ke wellhead yang lain. Hal ini tentu akan menyebabkan perubahan kedudukan pada pipeline dan akan menyebabkan kegagalan pada struktur pipa. Perubahan kedudukan ini dipicu pula oleh kelengkungan awal yang dialami oleh pipeline sehingga memberi dampak yang cukup berarti terhadap terjadinya upheaval buckle.

2. Studi literature

Studi literatur dilakukan dengan mengambil bahan acuan teori baik dari buku literature, jurnal dan bahan bacaan yang berkaitan dengan pengaruh internal pressure dan internal temperature terhadap upheaval buckle pada pipa.

3. Penyiapan data-data

Data-data yang diperlukan dalam penelitian ini adalah data-data yang berkaitan dengan property material pipa dan besarnya beban yang diterima oleh pipeline yaitu internal pressure dan internal temperature baik pada keadaan normal maupun maksimum yang bekerja pada pipa serta kelengkungan awal (*radius curvature*) dari pipa saat di instalasi.

4. Perangkat lunak

Untuk menganalisa permasalahan yang dialami oleh pipeline ini diperlukan bantuan berupa perangkat lunak untuk memudahkan dalam menganalisa pengaruh yang ditimbulkan oleh internal pressure dan internal temperatur terhadap upheaval buckle pada pipeline. Perangkat lunak yang digunakan dalam penelitian ini adalah software MSC NASTRAN.

5. Membuat permodelan

Permodelan pipeline dibuat sedemikian rupa sehingga dapat mewakili bentuk pipa sesungguhnya. Permodelan ini dibuat sesuai dengan data propertis material beserta ketebalannya yang sudah ada dengan panjang pipa yang telah ditentukan dan juga kelengkungan awal yang bervareasi yaitu pipa lurus ($v_{om} = 0$ m), $v_{om} = 0.1$ m, $v_{om} = 0.2$ m, $v_{om} = 0.3$ m dan dengan panjang pipa bervareasi sesuai dengan kelengkungan awal dari pipa. Model pipa kemudian dimeshing dan diberi konstraint. Meshing ini diperlukan untuk melihat respon yang diterima oleh pipa akibat pembebanan yang diterima oleh pipa tersebut.

6. Analisa

Setelah model dikombinasikan dengan beban yang bekerja, selanjutnya akan diketahui respon yang ditimbulkan oleh beban tersebut. Hasil ini dapat dilihat dalam bentuk gambar deformasi atau berupa print out. Dari hasil ini dapat diteliti apakah internal pressure dan internal temperature serta kelengkungan awal pada pipeline pada kondisi tertentu dapat menyebabkan upheaval bukle pada pipa dan berapa besar tegangan yang diakibatkan oleh internal pressure dan internal temperatur masih diijinkan dalam operasional pipa.

7. Kesimpulan

Dari hasil running program dan juga dari hasil analisa dapat disimpulkan beberapa hal mengenai pengaruh dari internal pressure dan internal temperatur terhadap upheaval buckle.

3.2 Diagram Alir Metodologi Penelitian

Langkah-langkah pengerjaan Tugas Akhir ini dapat disajikan dalam diagram alir (flow chart) berikut ini:

Diagram alir permodelan dengan menggunakan software nastran.

Gambar 3.1 Diagram alir permodelan dengan menggunakan software MSC Nastran

 Langkah-langkah pengerjaan Tugas Akhir ini selengkapnya adalah sebagai berikut :

Gambar 3.2 Diagram alir pengerjaan Tugas Akhir (lanjutan)

BAB IV

ANALISA HASIL DAN PEMBAHASAN

4.1 Umum

Dalam suatu pelaksanaan analisis struktur ada beberapa tahapan yang harus dilakukan yaitu permodelan struktur, analisis struktur, uji laboratorium dan yang terakhir adalah mendapatkan hasil yang diinginkan. Ketiga tahapan tersebut ada yang mutlak harus dilakukan dan ada yang bisa dihilangkan, yang mutlak dilakukan adalah permodelan sedangkan uji laboratorium tidak mutlak untuk dilakukan. Tahapan tersebut dapat dilakukan dengan jalur permodelan yang kemudian dilakukan analisis yang akan didapatkan suatu hasil, begitu pula untuk pelaksanaan dengan menggunakan uji laboratorium. Pemodelan ini dapat juga dilaksanakan analisis dan uji laboratorium

Pada penyelesaian tugas akhir ini, penelitian dilakukan dengan membuat suatu model dan kemudian dianalisis, tanpa menggunakan uji laboratorium. Analisis yang digunakan berdasarkan pada metode elemen hingga (finite element method).

Metode elemen hingga merupakan suatu metode pemodelan dan analisis struktur yang lebih kompleks dan detail. Metode ini menjadikan bentuk

fisik model struktur sebagai suatu sistem linier yang berkesinambungan dengan jalan membagi (*discrete*) bentuk fisik struktur menjadi kelompok elemen yang lebih kecil. Elemen-elemen ini dihubungkan dengan simpul-simpul (*nodes*) sehingga menjadi suatu sistem yang kontinyu. Sebagai acuan perhitungan dalam metode elemen hingga biasanya adalah *displacement method*, yaitu perpindahan dari simpul-simpul yang dianalisis dinyatakan sebagai parameter yang belum diketahui. Struktur pipa yang dianalisis lebih kepada displacemen dan stress yang ditimbulkan akibat beban-beban yang bekerja pada struktur pipa.

4.2 Pengumpulan Data

Struktur pipa dalam tugas akhir ini merupakan struktur pipa, yang berfungsi untuk mendistribusikan gas dari satu platform ke platform lain yang berada pada ladang *(marginal field)* yang dimiliki oleh TOTAL E & P, yang sedang mengalami perbaikan berkaitan dengan phenomena upheaval buckle pada pipa oleh PT Komaritim. Peta lokasi dapat dilihat pada Lampiran I.

Adapun data-data yang dipergunakan dalam pengerjaan Tugas Akhir ini adalah :

Grade	: API 5L X-52		
Diameter luar pipa	: 0.4064 m		

Tebal pipa	: 0.01588 m
Young Modulus	: 207000 MPa
Steel density	: 7850 kg/m ³
Poisson ratio	: 0.3
Linear thermal expansion	: 1.1 x 10⁻⁵ m/m ⁰C
Pressure maksimum pada saat operasi	: 92 barg
Temperatur maksimum pada saat operasi	: 90 °C
Berat jenis fluida	: 65 kg/m ³
Coating thickness (Coaltar enamel 120/5 S)	: 5 mm
Specified minimum yield stress	: 358 MPa

4.3 Permodelan Struktur

Permodelan struktur ini dilakukan sesuai dengan data yang diperoleh. Permodelan struktur ini dilakukan dengan menggunakan bantuan software MSC Nastran. Software ini merupakan software struktur berdasarkan finite elemen method (FEM). Dalam Tugas Akhir ini struktur pipa dimodelkan dengan kelengkungan awal yang berbeda-beda. Pembuatan model struktur dimulai dengan membuat model sesuai dengan geometris struktur pipa yang diinginkan. Pipa dapat dimodelkan dalam bentuk silinder yang mempunyai volume. Bentuk model dapat ditunjukkan pada gambar 4.1 berikut ini.

Pipa dalam model ini berupa pelat *(elemen shell).* Setelah model dibuat, lalu diberikan material propertisnya dengan cara sebagai berikut:

efine Isotropic	Material				
	itle API 5L X-52	Color	105 Palet	te Layer 1	Туре
Stiffness		Limit Stress		Mass Density	12129.5
Youngs Modulus, <u>E</u>	2.07E+11	Tension	0.	Damping, 2C/Co	
Shear Modulus, <u>G</u>	0.	Compression	0.		0.
Poisson's Ratio, n <u>u</u>	0.3	Shear	0.	Reference Temp	
Thermal					0.
Expansion Coeff, <u>a</u>	1.1E-5			Load	Save
Conductivity, <u>k</u>	0.				_
Specific <u>H</u> eat, Cp	0.	Nonli	inear >>	Co	P¥
Heat Generation Fa	ctor 0.	Phase (Change >>	<u>o</u> k	Cancel

Gambar 4.2 Menentukan material properties pipa

 Setelah diberikan material propertis langkah selanjutnya adalah memberikan properti pipa, properti pipa ini meliputi jenis elemen pipa dan ketebalan pipa.

0 1	<u>T</u> itle Prope	rty		Material	1API 5L >	<-52	٣
	Color 110	Palette	Layer 1		Elem/Pr	operty Type	
Property \	/alues		Additional Optio	ns			
Thick	nesses, Tavg or T <u>1</u>	0.01588	<u>B</u> end	Stiffness, 1	2I/T**3 0	L	
	blank or T <u>2</u>	0.	TShear/M	dem Thickn	ess,ts/t 0	ι	
	blank or T $\underline{3}$	0.		B <u>e</u> nding	0Plate M	aterial	-
	blank or T $\underline{4}$	0.	Transve	erse Shear	0Plate M	aterial	-
Nonsi	tructural mass/ <u>a</u> rea	0.	Memb-Ben	d Coupling	0None · I	gnore	*
Stress Re	covery (Default=T/	2]			-		_
	Top <u>Fiber</u>	0.	Loa <u>d</u>	Sav	e	<u>0</u> K	
	Bottom Fiber	0.	0	Сору		Cancel	

Gambar 4.3 Menentukan propertis pipa

 Selanjutnya dilakukan meshing pipa, yaitu pembagian elemenelemen pipa menjadi bagian-bagian yang lebih kecil yang berhingga.

Default Mesh Size	X
Size	
0.065	<u>0</u> K
Min Elem	Cancel
1	

Gambar 4.4 menentukan ukurun elemen mesh pipa

utomes	h Surfac	es					
Node an	d Element	Options					
Node [D	1	CSys	0Basic Rectan	gular	-	Node <u>P</u> aram	Elem Param
Elem ID	1	Property	1Property		•	New Prop	
Mesh Co	ontrol			Elemen	nt Shap	De	
Min Elem	nents <u>B</u> etw	een Boundarie	s 1	All	Triang	les	
Max Eler	ment <u>A</u> spe	ct Ratio	2. :1	• Qu	ads (v	when all internal an	gles are within
✓ Quic	k-Cut bour	daries with mo	re than	- 1	60.	degrees of 90	degrees)
3	0 n	odes.					
Mesh Sn	noothing						
• Lap	lacian	Max Iteration	is 20				
Cen	troidal	Smooth To	0.001	1	-	OK	Cancel

Gambar 4.5 Membuat meshing pada pipa

Setelah diberikan meshing pipa kemudian diberikan boundary condition yaitu dengan memberikan constraint pada ujung-ujung pipa. Constraint ini menunjukkan syarat batas yang digunakan untuk mendefinisikan gerak dari elemen-elemen yang mengalami deformasi. Pada salah satu ujung pipa diberi kondisi fixed agar model tidak bergerak terus setelah menerima beban, sementara pada bagian lain diberi kondisi dimana elemen hanya dapat bergerak berupa roll kearah memanjang pipa.

Create Nodal Constraint	s/DOF				0
Constraint Set 1 c	onstraint				
Color 120 Palette	Laye	1	Coord Sys 0B	Basic Rectangular	*
DOF			X Symmetry	X <u>A</u> ntiSym	
TX ♥ TY ♥ TZ	Fixed	Pinned	VSummetru	VAntiSum	<u>o</u> k
✓ RX ✓ RY ✓ RZ	Free	No Rotation	1 Symmetry	1 Angoym	Cancel
			Z Symmetry	Z AntiSym	

Gb. 4.6 Pemberian konstrain roll pada ujung pipa

reate Nodal Constraints	/DOF				
Constraint Set 1 co	nstraint				
Color 120 Palette	Layer	1	Coord Sys	0Basic Rectangular	-
DOF			<u>⊠</u> Symme	etry X <u>A</u> ntiSym	OK
✓ TX ✓ TY ✓ TZ	Fixed	Pinned	Y Symme	try Y AntiSym	ŪK
✓ RX ✓ RY ✓ RZ	Free	No <u>R</u> otation	Z Symme	etry Z AntiSym	Cancel

Gambar 4.7 Pemberian konstraint fix pada ujung pipa

 Langkah selanjutnya yaitu dengan memberikan beban yang diperoleh dari perhitungan manual dengan menggunakan rumus 2.33.
 Pembebanan pada ujung pipa diaplikasikan dengan menggunakan perintah sebagai berikut:

		-	-			
Color 10 Palette	La	iyer 1		Coord Sys	UBasic Heck	angular 🔹
Force Force Per Length Force Per Node Moment Moment Per Length Moment Per Node Displacement Enforced Rotation Velocity Rotational Velocity Acceleration Rotational Acceleration Pressure	*	Direction Compo Vector Along Norma Norma	Curve I to P I to S	s lane urface <u>V</u> alue -1790706.60	Functi 0None	Method
Temperature Element Temperature		FZ				
Heat Flux Heat Flux Per Length Heat Flux Per Node	-	P	hase	0.	0None	•

Gambar 4.8 Pemberian pembebanan pada ujung pipa

Bentuk model dapat disajikan pada gambar 4.9 berikut:

Gambar 4.9 Permodelan struktur pipa dengan menggunakan software nastran

4.4 Efek Pembebanan Pada Pipa

Beban yang digunakan dalam permodelan struktur pipa ini berupa beban aksial yang diakibatkan oleh internal pressure dan internal temperature. Beban aksial ini dimodelkan sebagai beban merata pada penampang melintang (*cross section*) pipa.

Besarnya beban aksial yang digunakan pada permodelan ini untuk masing-masing analisis berbeda-beda, yaitu dengan mengkombinasikan beban internal pressure antara 70 bars hingga 90 bars dan internal

temperatur 60 °C hingga 90 °C. Aplikasi beban pada permodelan pipeline dapat diilustrasikan pada gambar 4.10 berikut ini:

Gambar 4.10 Ilustrasi pembebanan pressure dan temperatur pada pipa

Dengan adanya pembebanan yang bekerja pada pipeline maka akan diperoleh besarnya deformasi yang dialami oleh pipeline dengan kelengkungan awal tertentu. Pipa yang digunakan dalam model pembebanan ini memiliki amplitudo kelengkungan awal $v_{om} = 0.1$ m. Dengan menggunakan rumus (II.33) akan didapat panjang pipa dengan kelengkungan awal pipa, L_i = 49 m. Deformasi dan tegangan (vonmises) yang diakibatkan oleh pembebanan dan kelengkungan awal 0.1 meter ini dapat disajikan pada tabel 4.1 berikut ini.

Pressure (bars)	Temperature (°C)	Deformasi (m)	Vonmises (Mpa)
70	90	0.275	296.1
70	80	0.223	240.2
70	70	0.171	184.3
70	60	0.119	128.4

Tabel 4.1 Deformasi dan tegangan pipa pada tekanan 70 bars

Pressure (bars)	Temperature (°C)	Deformasi (m)	Vonmises (Mpa)
80	90	0.266	286.5
80	80	0.214	230.6
80	70	0.162	174.7
80	60	0.110	118.8

Tabel 4.2 Deformasi dan tegangan pipa pada tekanan 80 bars

Tabel 4.3 Deformasi dan tegangan pipa pada tekanan 90 bars

Pressure (bars)	Temperature (°C)	Deformasi (m)	Vonmises (Mpa)
90	90	0.257	276.8
90	80	0.206	220.9
90	70	0.154	165.1
90	60	0.102	109.1

Dari hasil running dengan menggunakan bantuan Software Nastran output deformasi dan stress pada dinding pipa dapat dilihat pada Lampiran III. Dan print out output analisis dapat dilihat pada Lampiran IV dan V, juga dapat disajikan ke dalam bentuk grafik pada gambar 4.11 dan gambar 4.12 sebagai berikut:

Gambar 4.11 Grafik efek pressure dan internal temperatur terhadap displacement pipa

Dari hasil ini dapat diketahui bahwa temperatur fluida yang mengalir di dalam pipa sangat berpengaruh terhadap upheaval buckle. Untuk analisa selanjutnya perlu memvariasikaan tinggi kelengkungan awal secara vertikal.

4.5 Beban Operasional Pada Pipa

4.5.1 Bentuk pipa lurus

Pada analisa ini pipa dimodelkan sebagai pipa yang lurus kemudian pipa tersebut diberikan beban secara aksial. Dari hasil runing program pemberian beban aksial pada pipa lurus maka pipa tersebut tidak mengalami displacement/deformasi secara lateral (buckle), hal ini diakibatkan karena tidak adanya momen pengganggu yang bekerja pada pipa tersebut. Deformasi pada pipa lurus dapat ditunjukkan pada gambar 4.13. Hal ini sesuai dengan hukum Euler di mana pada struktur lurus apabila diberikan beban aksial padanya yang besarnya di bawah beban kritis maka struktur kolom tidak mengalami deformasi (buckle). Deformasi pada pipa dapat disajikan dalam gambar berikut ini:

Gambar 4.13. Efek internal pressure dan temperatur pada pipa lurus

4.5.2 Pipa Dengan Kelengkungan Awal

Untuk simulasi kondisi kelengkungan awal yang terjadi pada pipa dengan pembebanan operasional dilakukan dengan menggunakan tiga alternatif yaitu:

- Alternatif I: struktur pipa dengan amplitudo kelengkungan awal 0.1 m dengan sehingga membentuk kelengkungan awal dengan panjang pipa dengan kelengkungan awal L_i = 49 m, kemudian pipa diberikan beban aksial yang diakibatkan oleh beban internal presure dan internal temperature sesuai dengan kondisi operasional pipa di lapangan.
- Alternatif II: Struktur pipa dengan amplitudo kelengkungan awal 0.2 m, panjang kelengkungan awal Li, 58 meter, pipa pada alternatif II ini akan diberikan kondisi yang sama seperti pada alternatif I.

 Alternatif III: Struktur pipa dengan kelengkungan awal 0.3 m, dengan panjang kelengkungan awal Li, 65 meter, pipa pada alternatif II ini juga akan diberikan kondisi yang sama seperti pada alternatif I.

Dengan membuat model dengan kelengkungan awal yang berbeda-beda seperti dipaparkan pada ketiga alternatif di atas, tiap-tiap alternatif diberikan beban yang bervariasi sesuai dengan pembebanan yang terjadi di lapangan yang kemudian akan dapat diketahui berapa besar tingkat perubahan deformasi dan stress pada dinding pipa yang timbul akibat kelengkungan awal, beban internal pressure dan internal temperature tersebut.

Kecenderungan perubahan deformasi pada pipa ini dapat dilihat pada gambar 4.14 di bawah ini dan pada Lampiran III.

Gambar 4.14 Deformasi yang diakibatkan internal pressure dan internal temperature

Gambar 4.15 kontur distribusi tegangan pada upheaval buckle pipeline Hasil dari simulasi ketiga alternatif di atas dapat disajikan dalam tabel di

bawah ini.

 Deformasi dan stress yang terjadi pada pipa dengan kelengkungan awal 0.1 meter.

Tabel 4.4. Efek beban operasional pada amplitudo kelengkungan awal 0.1 meter

Pressure (bar)	Temperatur (deg C)	Displacement (m)	Vonmises (Mpa)
90	75	0.1179	193
100	75	0.1706	183
90	90	0.2574	277
120	105	0.3087	332
90	84	0.2628	283

Sumber Assessment of Upheaval Buckling; Andrew Palmer and Associates dalam Dokument Control PT Komaritim

Dari hasil simulasi (pada tabel 4.4) tersebut dapat diketahui bahwa deformasi yang diakibatkan oleh internal pressure dan internal temperature 120 bars dan 105 °C. Deformasi terbesar yang terjadi pada amplitudo kelengkungan awal 0.1 m pada alternatif I adalah 0.3087 meter dengan tegangan yang diterima oleh dinding pipa sebesar 332 Mpa.

 Deformasi dan stress yang terjadi pada pipa dengan amplitudo kelengkungan awal 0.2 meter.

Pressure (bar)	Temperatur (deg C)	Displacement (m)	Vonmises (Mpa)
90	75	0.4994	262
100	75	0.4745	249
90	90	0.7164	375
120	105	0.8587	449
90	84	0.6296	329

Tabel 4.5. Efek beban operasional pada amplitudo kelengkungan awal 0.2 meter

Sumber Assessment of Upheaval Buckling; Andrew Palmer and Associates dalam Dokument Control PT Komaritim

Untuk pipa dengan kelengkungan awal 0.2 m pada alternatif II dengan beban yang terima sebesar 120 bar, 105 ^oC akan menimbulkan deformasi terbesar yaitu 0.8587 m dan tegangan pada dinding pipa sebesar 449 Mpa.

 Deformasi dan stress yang terjadi pada pipa dengan kelengkungan awal 0.3 meter.

Pressure (bar)	Temperatur (deg C)	Displacement (m)	Vonmises (Mpa)
90	75	0.956	333
100	75	0.908	316
90	90	1.370	478
120	105	1.644	573
90	84	1.205	420

Tabel 4.6. Efek beban operasional pada amplitudo kelengkunga awal 0.3 meter

Sumber Assessment of Upheaval Buckling; Andrew Palmer and Associates dalam Dokument Control PT Komaritim

Untuk pipa dengan kelengkungan awal 0.3 m pada alternatif III deformasi yang ditimbulkan oleh pembebanan sebesar 120 bar, 105 ^oC relatif besar yaitu 1.644 m hal ini berpengaruh pula pada tegangan dinding pipa yaitu sebesar 573 Mpa. Hal ini terjadi akibat kelengkungan awal pipa dan pembebanan yang besar sehingga menjadi pemicu terjadi deformasi pipa dan konsentrasi tegangan pipa yang besar pula.

Besarnya deformasi dan tegangan pada dinding pipa akibat beban operasional selengkapnya dapat dilihat pada Lampiran IV dan V.

4.5.3 Bentuk Permodelan Pipa Dengan Berbagai Kelengkungan

Simulasi permodelan ketidakteraturan dasar parit yang bergelombang untuk simulasi kelengkungan ini divariasikan dengan mengambil kelengkungan awal pada simulasi I pada sub bab 4.5.2. Pada simulasi tersebut tegangan pada dinding pipa $\sigma_e \leq \eta$.SMYS, maka data tinggi kelengkungan awal tersebut dapat dipergunakan untuk permodelan selanjutnya. Pada simulasi ini juga akan dilakukan dengan memvariasikan jumlah puncak dan lembah gelombang. Karena pada analisa ini kita hanya ingin mendapatkan suatu keadaan pipa yang dipengaruhi oleh beban internal pressure dan internal temperature mengalami upheaval buckle maka pada kondisi lembah gelombang, pipa diberi penumpu (*gap elemen*) sehingga pipa tidak dapat melendut ke bawah. Sehingga dari permodelan ini hanya dapat dilihat deformasi pipa yang melendut ke atas saja.

Untuk membuktikan bahwa gap elemen tidak memberikan efek terhadap deformasi pipa secara vertikal, maka perlu dilakukan simulasi gap elemen yang diaplikasikan pada pipa dengan amplitudo kelengkungan awal. Sehingga dapat diketahui apakah gap elemen berpengaruh terhadap deformasi pipa secara vertikal atau tidak. Dari hasil running diketahui bahwa gap elemen tidak berpengaruh terhadap hasil akhir deformasi dan tegangan yang dialami oleh pipa. Hasil simulasi yang berupa perbandingan antara pipa yang diberi gap elemen dan pipa yang tidak diberi gap elemen dapat dilihat pada Lampiran III.

Simulasi permodelan ketidakteraturan dasar parit ini dilakukan dengan menggunakan tiga alternatif yaitu:

- Alternatif I: kelengkungan awal pipa dengan amplitudo 0.1 meter pada posisi puncak gelombang dan pada –0.1 meter pada lembah gelombang.
- Alternatif II: kelengkungan pipa pada alternatif II ini dibuat dengan amplitudo kelengkungan awal 0.1 meter, divariasikan dengan dua puncak gelombang dan satu lembah gelombang.
- Alternatif III: kelengkungan pipa pad alternatif III dibuat dengan amplitudo kelengkungan awal 0.1 meter, divariasikan dengan dua puncak gelombang dan dua lembah gelombang.

Dari hasil runing komputer deformasi yang terjadi pada alternatif I, alternatif II dan alternatif III dapat ditampilkan dalam gambar berikut:

V1		316614752.
	ANALIK PERPUSTANAAN	298630148. 281245544
	SEPULUM - NOPEMBER	245376336
	Weige dash with regist the same divident and state and the grant of the same series of the same series	228191732
		210507128.
		192822524.
()	and a shu dada ka saka sa	175137920
		157463316
		139768712
		122084108.
		104399504.
		86714900.
Y		69030296.
Output Set: Case 2 Time 1		51345692.
Deformed (0.632): T2 Translation Contour: Plate Top VonMises Stress		33661088

Gambar 4.16 Deformasi pada pipa dengan kelengkungan satu panjang gelombang

Gambar 4.17 Deformasi pada pipa dengan kelengkungan satu setengah panjang gelombang

Gambar 4.18 Deformasi pada pipa dengan kelengkungan dua panjang gelombang

Dari hasil ini dapat diketahui bahwa pengaruh ketidakteraturan parit dengan pembebanan menghasilkan deformasi pada pipa. Tegangan dan displacement yang terjadi pada dinding pipa dapat ditampilkan dalam tabel di bawah ini.

Alternatif	Displacement (m)	Vonmises (Mpa)
Alternatif I	0.63	327
Alternatif II	0.58	306
Alternatif III	2.38	445

Tabel 4.7 Efek variasi kelengkungan pada pipa

Dari gambar 4.15, 4.16, dan 4.17 dan tabel 4.7 di atas perbedaan displacement yang terjadi pada alternatif I, alternatif II, dan alternatif III lebih disebabkan oleh panjang pipa yang bebas bergerak. Pada alternatif I puncak gelombang pipa akan bergerak ke atas, karena pada bagian pipa yang membentuk lembah gelombang tidak memiliki konstrain yang cukup untuk menahan pergerakan pipa ke atas maka pada bagian pipa ini akan ikut melendut ke atas sehingga akan menambah amplitudo kelengkungan akhir pipa. Pada pipa yang membentuk lembah gelombang dasar tanah dianggap cukup keras. Karakteristik yang sama juga akan dialami oleh pipa pada alternatif II dan alternatif III, di mana panjang pipa yang membentuk lembah gelombang pipa akan ikut terangkat membentuk amplitudo gelombang akhir pipa sehingga akan dihasilkan suatu deformasi yang lebih besar.

Deformasi pipa dan output pada analisa ini dapat dilihat pada Lampiran III.

4.6 Analisa Tegangan Pada Pipa

Dari hasil simulasi di atas dapat diketahui tegangan ijin yang harus dipenuhi oleh struktur pipa yang diinstalasi agar memenuhi standar yang diperlukan serta aman dalam operasionalnya. Berdasarkan DNV 1996, syarat sebuah pipa dapat beroperasi dengan aman, dengan beban internal pressure dan internal temperature harus memenuhi tegangan equivalen ijin yaitu:

$$\sigma_e \leq \eta.SMYS$$

dimana:

 σ_e = tegangan equivalen

η = faktor untuk tegangan equivalent

SMYS = Specified minimum yield stress

Dari Specified Minimum Yield Stress (SMYS) untuk pipa dengan Grade API 5L X-52 yaitu sebesar 358 Mpa dengan mengalikan dengan faktor untuk cek tegangan equivalent (DNV 1996) sebesar 0.96 (pada tabel 2.1), maka akan didapat tegangan ijin equivalen pipa yaitu sebesar:

$$\sigma_{e} = 0.96 \times 358 \text{ MPa}$$

Dari hasil runing MSC Nastran yang dirangkum pada tabel 4.4 hingga tabel 4.6 di atas maka dapat diketahui besarnya kelengkungan awal pipa dan pembebanan yang diijinkan dalam operasional sebuah pipa.

- 1. Untuk pipa dengan kelengkungan awal pipa lurus tegangan pada dinding pipa sebesar 213 Mpa < σ_e .
- 2. Pipa dengan kelengkungan awal 0.1 meter, tegangan pada dinding pipa sebesar 332 Mpa < σ_e .
- 3. pipa dengan kelengkungan awal 0.2 meter.
 - Pada pembebanan internal pressure 90 bars dan internal temperatur 90 °C tegangan sebesar 375 Mpa > σ_e
 - Pada pembebanan internal pressure 120 bars dan internal temperatur 105 °C tegangan pada dinding pipa sebesar 449 Mpa >_{σe}
- 4. Pipa dengan kelengkungan awal 0.3 meter.
 - Pada pembebanan internal pressure 90 bars dan internal temperatur 90 °C tegangan pada dinding pipa sebesar 478 Mpa
 > σ_e.
 - Pada pembebanan internal pressure 120 bars dan internal temperatur 105 °C tegangan pada dinding pipa sebesar 573 Mpa
 > σ_e.
 - Pada pembebanan internal pressure 90 bars dan internal temperatur 84 °C tegangan pada dinding pipa sebesar 420 Mpa > σ_{e.}

Dari hasil pengelompokkan tegangan di atas dan sesuai dengan peraturan DNV 1996 tentang tegangan equivalen dinding pipa yang diijinkan, maka:

- Pipa lurus sangat dianjurkan karena selama proses operasi pipa lurus tidak mengalami buckle.
- Kelengkungan awal pipa 0.1 dapat dinyatakan aman untuk beroperasi.
- Kelengkungan awal pipa 0.2 dengan pembebanan internal pressure
 90 bars dan internal temperatur 90 °C dan internal pressure 120 bars:
 dan internal temperatur 105 °C dinyatakan tidak aman.
- Kelengkungan awal pipa 0.3 dengan pembebanan internal pressure
 90 bars dan internal temperatur 90 °C , internal pressure 120 bars dan
 internal temperatur 105 °C serta pembebanan internal pressure 90
 bars dan internal temperatur 84 °C dinyatakan tidak aman.

4.7 Analisa Ovalitas

Dalam analisa ovalitas ini pipa yang dianalisa adalah pipa yang memiliki deformasi terbesar pada masing-masing amplitudo kelengkungan awal. Ovalitas pipa akibat buckle dapat disajikan dalam tabel di bawah ini:

Amplitudo awal (m)	Pressure (bars)	Temperatur (oC)	Deformasi (m)	Ovalitas (%)
0.1	120	105	0.3	0.002
0.2	120	105	0.85	0.025
0.2	90	84	0.63	0.018
0.3	120	105	1.64	0.025
0.3	90	75	1.21	0.015

Tabel 4.8 Ovalitas pipa akibat buckle

Dari perhitungan di atas deformasi yang terjadi pada pipa masih dapat dijinkan. Perbedaan tingkat ovalitas pipa bila dibandingkan dengan besarnya deformasi yang terjadi pada pipa sangat dipengaruhi oleh panjang pipa yang melendut. Semakin panjang pipa yang melendut maka akan semakin kecil pula tingkat ovalitas yang dialami oleh pipa.

4.8 Validasi Model Finite Elemen Method

Dalam permodelan metode elemen hingga keakuratan dalam analisa ditentukan oleh ukuran meshing yang ditunjukkan oleh aspek rasio dan bentuk dari elemen. Untuk mengetahui apakah besarnya elemen yang digunakan cukup baik dalam melakukan analisa maka perlu dilakukan validasi dari ukuran meshing.

Perhitungan tegangan pada elemen :

р	: 120 bars	υ	: 0.3
r	: 0.2032	E	: 2.07 x 107
т	: 105°C	D	: 0.4064 m
t	: 0.01588 m	1	: 3.72 x 104

 α : 1.1 x 10⁻⁵ m/m °C

Ambient temperature : 5° C

Tegangan longitudinal:

 $\sigma_T = E\alpha T$

 $= 2.07 \times 10^7 \times 10^{-5} \times (105-5)$ $= 239 \text{ N/mm}^2$

 $\sigma_{\rm h} = {\rm pr}/{\rm 2t}$

= 120 bars x 0.2032 / 0.01588

 $= 78 \text{ N/mm}^{2}$

$$\sigma_{LT} = \sigma_h + \sigma_T$$

= 317 N/mm²

Circumference stress

$$\sigma_{\rm h} = {\rm pr}/t$$

= 120 bars x 0.2032/0.01588

$$\tau_{lh} = -\frac{\sigma_x + \sigma_y}{2} \tan 2\theta$$

$$= 3.4 \text{ N/mm}^2$$

Tegangan Pada Elemen

Jika diambil satu bagian elemen pada nastran maka dapat diketahui

tegangan dengan cara:

Luas elemen (a) : 0.065 m²

Gambar 4.19 Tegangan yang bekerja pada elemen

Untuk menentukan tegangan pada elemen maka:

$$F_{1} = \sigma_{LT} . a \cos \theta = 14.8 \text{ N/mm}^{2} \qquad F_{2} = \tau_{lh} . a \sin \theta = 2.71 \text{ N/mm}^{2}$$

$$F_{3} = \tau_{lh} . a \sin \theta = 1.12 \text{ N/mm}^{2} \qquad F_{4} = \sigma_{LT} . a \sin \theta = 6.14 \text{ N/mm}^{2}$$

$$\Sigma F_{N} = 0 = F_{1} \cos \theta - F_{2} \sin \theta - F_{3} \cos \theta + F_{4} \sin \theta$$
$$= 14.8 \cos \theta - 2.71 \sin \theta - 1.12 \cos \theta + 6.14 \sin \theta$$
$$= 225 \text{ N/mm}^{2}$$

Tegangan Geser

 $\Sigma Fs = 0 = F_1 \sin \theta + F2 \sin \theta - F3 \cos \theta - F4 \cos \theta$ $= 225 \text{ N/mm}^2$

Deformasi pada pelat dapat dicari dengan menggunakan gaya normal pada arah x,y.

Pada arah x dan y regangan yang terjadi adalah:

$$\varepsilon_{x} = \frac{\sigma_{x} - \upsilon \sigma_{y}}{\mathsf{E}}$$

 $\sigma_x {=} \text{ gaya normal arah } x$

σ_y = gaya normal arah y

v = poisson ratio

$$\varepsilon_x = \frac{317 - 0.3.1.57}{2.07 \times 10^{11}}$$

= 6.28 x 10⁻⁵

• Deformasi pada arah x = x' = $x (1 + \varepsilon_x)$

 $= 0.065 (1 + 6.28 \times 10-5)$ $= 6.51 \times 10-2$ Deformasi pada arah x dan y adalah $= 6.51 \times 10^{-2} - 0.065$ $= 6.77 \times 10^{-5}$

Koreksi

Tegangan :

Tegangan teori = $14 \text{ N/mm}^2/0.065 = 225 \text{ N/mm}^2$

Tegangan Nastran = 213 N/mm²

Maka = $\frac{(225 - 213)}{225}$ N/mm²

Tegangan terbesar terjadi pada node dengan ID 25397

Regangan

Regangan teori = 225 N/mm²

Tegangan Nastran = 212 N/mm²

Maka

 $= \frac{(225 - 212)}{225} \text{ N/mm}^2$

= 5,8%

Deformasi

Deformasi teori = 6.77×10^{-5} Deformasi Nastran = 6.5×10^{-5} Maka = $\frac{(6.77 - 6.5)}{6.77}$

Maka

$$= \frac{(6.77 - 6.5)}{6.77}$$

= 4.15 %

Deformasi terbesar terjadi pada node dengan ID 11573

Validasi dari permodelan nastran ini juga dapat dilihat dari grafik 4.20 yang diperoleh dengan memberikan pembebanan pada struktur pipa, sehingga dapat dilihat suatu perbedaan antara ukuran meshing dan tegangan yang terjadi pada dinding pipa.

Ukuran Mesh (m ²)	Tegangan (Mpa)
0.04	187.00
0.05	181.10
0.06	176.30
0.07	173.00
0.08	170.70
0.09	169.00
0.1	168.70

Tabel 4.9 Penentuan ukuran meshing model pipa

Gambar 4.20 Grafik pebandingan tegangan dan ukuran mesh

Berdasarkan perhitungan di atas dan melihat kemampuan komputer dalam melakukan analisa maka dalam pengerjaan tugas akhir ini menggunakan meshing permodelan dengan ukuran 0.065.

BAB V

KESIMPULAN DAN SARAN

5.1 Kesimpulan

Berdasarkan pembahasan dapat disimpulkan sebagai berikut:

- Internal pressure dan internal temperatur serta ketidakteraturan dari permukaan seabed dapat mengakibatkan upheaval buckle pada offshore pipeline.
- Dari tegangan yang dihasilkan dari hasil runing dengan meggunakan program MSC NASTRAN selama proses operasi pipa bahwa:
 - Pipa dengan amplitudo kelengkungan awal 0.1 meter dapat dinyatakan aman.
 - Pada amplitudo kelengkungan awal 0.2 m pipa dinyatakan tidak aman pada beban internal pressure 90 bars dan internal temperatur 90 °C, dan beban internal pressure 120 bars dan internal temperatur 105 °C.
 - Pada pipa dengan amplitudo kelengkungan awal 0.3 meter pipa dapat dioperasikan pada beban internal pressure 90 bars dan internal temperatur 75 °C, dan beban internal pressure 100 bars internal temperatur 75 °C.
- Pipeline yang mengalami upheaval buckle dapat mengalami ovalitas.
 Pada analisa ini ovalitas pipa yang mengalami buckle masih diijinkan.

5.2 Saran

Berdasarkan analisa yang dilakukan dalam Tugas Akhir ini ada beberapa saran dalam penelitian lebih lanjut adalah:

- Untuk analisa phenomena upheaval buckle lebih lanjut sesuai realita di lapangan, maka perlu adanya penyelidikan mengenai pengaruh tanah baik berat cover tanah maupun gaya gesek tanah terhadap phenomena upheaval buckle ini.
- Setelah mengetahui efek internal pressure dan internal temperature terhadap upheaval buckle pada pipeline yang di tanam di dalam tanah maka perlu dicarikan sebuah solusi untuk menanggulangi terjadinya upheaval buckle pada offshore pipeline.
- Pada kondisi riil perlu diperhitungkan juga efek tegangan sisa pipa setelah pipa diinstalasi.

DAFTAR PUSTAKA

API 1111.1993. Design, Construction, Operation, And Maintenance Of Offshore Hydrocarbon Pipelines. API Washington D.C.

DNV 1996. Rules For Submarine Pipeline System

- Grigory, Steve C., and Smith, Marina Q.,1996, "Residual Strength Of 48 Inch Diameter Corroded Pipe Determined By Full Scale Combine Loading Experiment". International pipeline conference, Vol 1. pp 377-382
- Gerstein, Mark., 1996, "Rehabilitation Of Pipeline In Seismic Regions", International Pipeline conference, Vol 2.
- Kharionovsky V.V and Tcherni V.P. 1996, "stress and strain state of a gas pipeline in conditions of stress-corrosion", International Pipeline conference, Vol 1,pp 479-483.
- Mousseli, A. H., 1981, Offshore Pipeline Design, Analysis And Method. Tusla, Oklahoma: Pennwell Publishing company.

Popov E.P., 1996, Mekanika Teknik. Jakarta: Erlangga

- Smith, Paul R. 1987, Piping And Pipe Support System. New York: McGraw Hill Book Company.
- Shell, Norske and Guijjt, J.1990,"Upheaval Buckling Of Offshore Pipelines:Overview And Introduction", Offshore Technology Conference., Paper No. OTC 6487, Houston.
- Taylor, N and Tran, V.C., 1992, "Prop Imperfection Subsea Pipeline Buckling", Marine Structures, Vol 6, pp 325-358.

\$ *******	*****	*******	*****	******	*******	* * * * * * * *	* * * * * * * *	* * * * * * * * *
\$ Writter	by : M	ASC.Nasti	can for Win	ndows				
\$ Version	1 : 4	1.5						
\$ Modelle	er :	7.00						
\$ Transla	ator : N	ASC.Nast	ran					
\$ From Mc	odel : I	:\hADI 1	ASTRAN\pip	pa 2 glb	analisa	\dua glb	.MOD	
\$ Date	: :	Sat Jun :	12 11:07:49	9 2004				
\$ Output	To : I	D:\hADI 1	hASTRAN\pip	pa 2 pjg	g glb ana	lisa\dua	g000	
\$ *******	******	* * * * * * * * *	******	*******	*******	******	*******	* * * * * * * * *
CORD2C	1	0	0.	Ο.	0.	0.	0.	1.+MSC.NC1
+MSC.NC1	1.	0.	1.					
CORD2S	2	0	Ο.	0.	0.	0.	0.	1.+MSC.NC2
+MSC.NC2	1.	0.	1.					
\$ MSC.Nast	ran for	Windows	Load Set	1 : load	1			
FORCE	1	46407	0	118	33390.	0.	0.	
FORCE	1	46408	0	122	27160.	0.	0.	
FORCE	1	46409	0	126	54273.	0.	0.	
\$ MSC.Nast	ran for	Windows	Constrain	t Set 1	: load			
SPC	1	1	123456	0.				
SPC	1	2	123456	0.				
SPC	1	3	123456	0.				
SPC	1	12	23456	0.				
SPC	1	13	23456	0.				
SPC	1	18	23456	0.				

Lampiran II : Input Permodelan

BEGIN BULK ************************* \$ ******* Written by : MSC.Nastran for Windows Ś : 4.5 Version \$ Modeller : 7.00 \$ Translator : MSC.Nastran \$ From Model : C:\Mscn4w45\data\PANJANG GELOMBANG 1,5 \2 L.MOD : Fri Jun 11 21:46:02 2004 Date ******* 1.+MSC.NC1 0. 0. 0. 0. 0 0. CORD2C 1 0. 1. +MSC.NC1 1. 1.+MSC.NC2 0. 0. 0. 0. 0. C 2 CORD2S 0. 1. +MSC.NC2 1. \$ MSC.Nastran for Windows Load Set 1 : load 1. 0.5.82E+18 0. 27320 0 FORCE 0.6.75E+18 0. 27321 0 1. FORCE 0.6.75E+18 0. 27323 0 1. FORCE 1 . . 0. 23456 12 SPC 0. 23456 13 SPC 23456 0. 18 SPC \$ MSC.Nastran for Windows Constraint Set 1 : CONSTRAINT 1 123456 0. SPC 2 123456 0. SPC 0. 3 123456 SPC & MGC Nactron for Windows Property 1 : PROPERTY

Lampiran II : Input Permodelan

(A)

~ *********	****	*******	*******	******	******	*****	*******	*****
S Writton h	7 • N	ISC Nastr	an for W	indows				
e Vencion		1 5	un tot m					
e Medellor		7 00						
moderier	1	ASC Nastr	an					
S Iranstator		·\Mecn/u	A5\data\	Pipa 1 de	lombang\	pipa 1	gelomband	g 2 analisa.MC
S From Model		Eri Jun (14 18.07:	21 2004	a child data g i	Let		
p Date		\MeenAu	45\data\	Pipa 1 de	lombang	pipa 00	0	
> Output IO		********	*******	*******	******	******	* * * * * * * * *	* * * * * * * * * *
P DADM	1	2		AUTO	5	25	PW	YES+
NLPARM 0 (101	0 001	1 E - 7	3	25	4	0.2	0.5+
+ 0.0	5	0.001	1.11	-	20.		20.	
CODD2C	1	0	0.	0.	0.	0.	0.	1.+MSC.NCI
INCC NC1	1	0	1.					
CODD2C	2	0	0.	0.	0.	Ο.	0.	1.+MSC.NC2
LMCC NC2	1	0.	1.					
S MSC Nastran	for	Windows	Load Set	1 : load	1			
FORCE	1	36300	0	112	25271.	0.	Ο.	
FORCE	1	36301	0	113	38662.	0.	Ο.	
FORCE	1	36302	0	116	66548.	Ο.	Ο.	
LOROD	-							
S MSC.Nastran	for	Windows	Constrai	nt Set 1	: constr	caint		
SPC	1	1	123456	0.				<
SPC	1	2	123456	0.				
SPC	1	3	123456	0.				
010								
SPC	1	14	23456	Ο.				
SPC	1	18	23456	Ο.				
and	1	25	23456	0.				

•

Lampiran II: Input Permodelan

BEGIN BULK \$ *******	* * * * * * *	* * * * * * * * *	* * * * * * * * * *	* * * * * * * *	*****	* * * * * * * *	******	* * * * * * * * * *
<pre>\$ Written \$ Version \$ Modelle \$ Transla \$ From Me \$ Date \$ Output</pre>	n by : 1 n : er : ator : 1 odel : : 1 To :	MSC.Nast: 4.5 7.00 MSC.Nast: D:\hADI : Mon Jun (D:\hADI :	can for Wi nASTRAN\in D7 17:23:4 nASTRAN\in	ndows np 0.3\90 13 2004 np 0.3\90)75\9075)75\9075	imp 03.N 000	10D	****
S *******	* * * * * * * *	******	* * * * * * * * * * *					
NT DARM	1	2		AUTO	5	25	PW	YES+
+	0.001	0.001	1.E-7	3	25	4	0.2	0.5+
+	5	0,001			20.		20.	
CORD2C	1	0	Ο.	0.	Ο.	0.	0.	1.+MSC.NC1
+MSC.NC1	1.	Ο.	1.					
CORD2S	2	0	0.	Ο.	Ο.	Ο.	Ο.	1.+MSC.NC2
+MSC.NC2	1.	Ο.	1.					
\$ MSC.Nast	ran for	Windows	Load Set	1 : load	ł			
FORCE	1	23870	0	187	7938.9	0.	0.	
FORCE	1	23871	0	197	7339.3	Ο.	0.	
FORCE	1	23872	0	111	16915.	Ο.	0.	
\$ MSC.Nast SPC	ran for 1	Windows 2 3	Constrain 123456	nt Set 1 0. 0	: constr	aint		
SPC	1	4	123456	0.				

Lampiran II : Input Permodelan

BEGIN BULK	* * * * *	*****	* * * * * * * * * * *	* * * * * * * * * *	* * * * * * *	* * * * * * * *	* * * * * * * * *	* * * * * * * * * * *
<pre>\$ Written 1 \$ Version \$ Modeller \$ Translate \$ From Model</pre>	by : : or : el :	MSC.Nast 4.5 7.00 MSC.Nast D:\bADI	ran for Wi ran nASTRAN\im	ndows	02\90	bars 75	drit\90	bars 75 drit.MOD
\$ Date	:	Sun Jun	06 19:48:4	2 2004	00 (50	barb /o	ar) = (20	Salo to aljettos
\$ Output To \$ *********	O : ****	D:\hADI *******	nASTRAN\im ********	perfection ********	02\90	bars 75 ******	drjt\90 *******	ba000 *****
NLPARM	1	2		AUTO	5	25	PW	YES+
+ 0.	.001	0.001	1.E-7	3	25	4	0.2	0.5+
+	5				20.		20.	
CORD2C	1	0	Ο.	0.	0.	Ο.	Ο.	1.+MSC.NC1
+MSC.NC1	1.	Ο.	1.					
CORD2S	2	0	Ο.	Ο.	0.	Ο.	Ο.	1.+MSC.NC2
+MSC.NC2	1.	0.	1.					
\$ MSC.Nastra	n for	Windows	Load Set	1 : load				
FORCE	1	19835	0	18793	8.9	Ο.	0.	
FORCE	1	19836	0	19733	9.3	Ο.	Ο.	
FORCE	1	19837	0	11169	15.	Ο.	0.	
\$ MSC.Nastra	n for	Windows	Constrain	t Set 1 :	constra	aint		
SPC	1	2	123456	0.				
SPC	1	3	123456	0.				
SPC	1	14	23456	0.				

Lampiran II : Input Permodelan

BEGIN BULK	* * * * * *	* * * * * * * * *	* * * * * * * * *	* * * * * * * * *	******	******	* * * * * * * * *	* * * * * * * * * *
<pre>\$ Written \$ Version \$ Modeller \$ Translat</pre>	by : 1 : r : tor : 1	MSC.Nast 4.5 7.00 MSC.Nast	ran for W ran	indows				
\$ From Mod	del :	D:\hADI I	hASTRAN\i	mperfecti	lon 01\84	bars 9	0 drjt\84	bars 90 drjt.MO
\$ Date \$ Output ! \$ *******	To : .	D:\hADI 1 ****	D6 19:20; nASTRAN\i *******	24 2004 mperfecti *******	ion 01\84	bars 9 ******	0 drjt\84 *******	ba000 *****
S NT DADM	1	2		AUTO	5	25	DW	VEST
+ (0.001	0.001	1 E - 7	3	25	4	0.2	0.5+
+	5	0.001	1.0	5	20.	-	20.	0.01
CORD2C	1	0	0.	0.	0.	0.	0.	1.+MSC.NC1
+MSC.NC1	1.	Ο.	1.					
CORD2S	2	0	Ο.	Ο.	0.	0.	0.	1.+MSC.NC2
+MSC.NC2	1.	0.	1.					
\$ MSC.Nastra	an for	Windows	Load Set	1 : load	£			
FORCE	1	18043	0	114	12541.	0.	0.	
FORCE	1	18044	0	117	71207.	Ο.	0.	
FORCE	1	18045	0	119	99597.	Ο.	Ο.	
\$ MSC.Nastra	an for	Windows	Constrai	nt Set 1	: constr	aint		
SPC	1	1	123456	0.				
SPC	1	2	123456	Ο.				
SPC	1	3	123456	Ο.				

LAMPIRAN III

GAMBAR DEFORMASI PIPA

V1	
	280634624.
	267770163
	manager and the second
	Contrast of the
	216312317
	203447855
	190583394
	151990009
	139125548.
	126261086.
Y	113396625.
—— X	100532163
Output Set Case 2 Time 1	87667702
Deformed(0.257): T2 Translation	74805240
Contour: Plate Top VonMises Stress	

Gambar 7b. Deformasi pipa menggunakan gap elemen

Gambar 5. Deformasi pada pipa dengan kelengkungan dua panjang gelombang

Gambar 6. Gap elemen pipa dengan kelengkungan awal ganda 0.1m dan –0,1 m, pembebanan 90 bars 90 derajat

Gambar 4 Deformasi pada pipa dengan kelengkungan satu setengah panjang gelombang

14			
V1			280634624
			267770163
			216312317
			203447855
			190583394
A CALLER AND AND A CALLER AND A C			139125548.
			126261086
Y			113396625.
X			100532163.
+			87667702
Output Set Case 2 Time 1. Deformed (0.257): T2 Translat Contour: Plate Top VonMises	tion Stress		74503240

Gambar 2. Deformasi pipa dengan kelengkungan awal 0.1m, pembebanan 90 bars 90 derajat

LAMPIRAN IV

OUTPUT DEFORMASI PADA PERMODELAN PIPA

Deformasi pipa akibat pembebanan internal pressure dan internal temperature

Displacemet 90 bars 90 oC LOAD STEP = 1.00000E+00

DISPLACEMENT VECTOR

POTNE TD	TYPE	TT 1	Т2	Т3	R1	R2	R3
11572	G	-2 962038E-02	2.574145E-01	-9.178403E-06	9.011048E-05	5.004873E-07	2.233093E-04
11574	G	-2.961142E-02	2.574168E-01	-2.213158E-05	1.497491E-04	1.309369E-06	2.239492E-04
11575	G	-2.959997E-02	2.574147E-01	-3.695040E-05	1.722530E-04	2.434277E-06	2.244784E-04
11576	G	-2.958859E-02	2.574075E-01	-4.957609E-05	1.698003E-04	3.262804E-06	2.245540E-04
11577	G	-2.963816E-02	2.574169E-01	4.975289E-05	-1.706127E-04	-2.965539E-06	5.531865E-05
11578	G	-2.964089E-02	2.574240E-01	3.706475E-05	-1.738252E-04	-2.369521E-06	5.533190E-05
11570	G	-2.964362E-02	2.574261E-01	2.217768E-05	-1.507019E-04	-1.290747E-06	5.488003E-05
11580	G	-2.964574E-02	2.574237E-01	9.188532E-06	-9.056828E-05	-3.877096E-07	5.404497E-05
11591	G	-2.964656E-02	2.574218E-01	1.793048E-09	-1,138633E-08	-3.493795E-10	5.361107E-05
11592	G	-2.964574E-02	2.574237E-01	-9.189986E-06	9.059969E-05	3.872916E-07	5.404297E-05
11583	G	-2.964362E-02	2.574261E-01	-2.217384E-05	1.507043E-04	1.290822E-06	5.487963E-05
11584	G	-2.964089E-02	2.574240E-01	-3.706117E-05	1.738320E-04	2.370463E-06	5.533220E-05

Displacemet 90 bars 80 oC

LOAD STEP = 1.00000E+00

POINT ID.	TYPE	T1	Τ2	Т3	R1	R2	R3
11574	G	-3.065174E-02	2.664604E-01	-2.290915E-05	1.550101E-04	1.355369E-06	2.318171E-04
11575	G	-3.063988E-02	2.664583E-01	-3.824860E-05	1.783046E-04	2.519799E-06	2.323649E-04
11576	G	-3.062811E-02	2.664509E-01	-5.131786E-05	1.757658E-04	3.377434E-06	2.324431E-04
11577	G	-3.067942E-02	2.664606E-01	5.150079E-05	-1.766067E-04	-3.069726E-06	5.726214E-05
11578	G	-3.068225E-02	2.664680E-01	3.836688E-05	-1.799321E-04	-2.452769E-06	5.727585E-05
11579	G	-3.068508E-02	2.664701E-01	2.295679E-05	-1.559964E-04	-1.336094E-06	5.680811E-05
11580	G	-3.068727E-02	2.664676E-01	9.511306E-06	-9.375016E-05	-4.013313E-07	5.594370E-05
11581	G	-3.068811E-02	2.664656E-01	1.813960E-09	-1.178592E-08	-3.621845E-10	5.549456E-05
TIDOL	0	0.0000000000000000000000000000000000000	2 CCACTER 01	-0 5129038-06	9 378268E-05	4.008976E-07	5.594163E-05

Displacement 90 bars 70 oC

LOAD STEP = 1.00000E+00

DISPLACEMENT VECTOR

POINT TD.	TYPE	T1	Τ2	тЗ	R1	R2	R3
11574	G	-3.168033E-02	2.754022E-01	-2.367792E-05	1.602118E-04	1.400852E-06	2.395963E-04
11575	G	-3.166808E-02	2.753999E-01	-3.953212E-05	1.842881E-04	2.604356E-06	2.401625E-04
11576	G	-3.165591E-02	2.753923E-01	-5.303995E-05	1.816640E-04	3.490771E-06	2.402433E-04
11577	G	-3.170894E-02	2.754023E-01	5.322902E-05	-1.825332E-04	-3.172738E-06	5.918371E-05
11578	G	-3.171187E-02	2.754099E-01	3.965438E-05	-1.859702E-04	-2.535078E-06	5.919788E-05
11579	G	-3.171479E-02	2.754121E-01	2.372717E-05	-1.612312E-04	-1.380930E-06	5.871444E-05
11580	G	-3.171705E-02	2.754095E-01	9.830484E-06	-9.689617E-05	-4.147992E-07	5.782102E-05
11581	G	-3.171793E-02	2.754075E-01	1.879070E-09	-1.218074E-08	-3.745960E-10	5.735681E-05
11582	G	-3.171705E-02	2.754095E-01	-9.832117E-06	9.692978E-05	4.143504E-07	5.781889E-05
11583	G	-3.171479E-02	2.754121E-01	-2.372314E-05	1.612338E-04	1.381010E-06	5.871400E-05
11584	G	-3.171187E-02	2.754099E-01	-3.965062E-05	1.859774E-04	2.536083E-06	5.919819E-05

 $\frac{\text{Displacement 90 bars 60 °C}}{\text{LOAD STEP} = 1.00000E+00}$

POTNT TD	TYPE	Τ1	т2	Т3	R1	R2	R3
11574	G	-1.167821E-02	1.015205E-01	-8.728295E-06	5.905833E-05	5.163911E-07	8.832153E-05
11575	G	-1.167369E-02	1.015197E-01	-1.457257E-05	6.793346E-05	9.600346E-07	8.853024E-05
11576	G	-1.166921E-02	1.015169E-01	-1.955192E-05	6.696617E-05	1.286791E-06	8.856003E-05
11577	G	-1.168876E-02	1.015206E-01	1.962164E-05	-6.728657E-05	-1.169555E-06	2.181668E-05
11578	G	-1.168983E-02	1.015234E-01	1.461767E-05	-6.855353E-05	-9.344968E-07	2.182190E-05
11579	G	-1.169091E-02	1.015242E-01	8.746477E-06	-5.943411E-05	-5.090476E-07	2.164370E-05
11580	G	-1.169175E-02	1.015233E-01	3.623791E-06	-3.571849E-05	-1.529060E-07	2.131436E-05
11581	G	-1.169207E-02	1.015225E-01	7.065165E-10	-4.490347E-09	-1.381225E-10	2.114324E-05
11582	G	-1.169175E-02	1.015233E-01	-3.624365E-06	3.573088E-05	1.527405E-07	2.131357E-05
11583	G	-1.169091E-02	1.015242E-01	-8.744963E-06	5.943504E-05	5.090767E-07	2.164354E-05
11584	G	-1.168983E-02	1.015234E-01	-1.461626E-05	6.855621E-05	9.348674E-07	2.182202E-05

Displacement 80 bars 90 oC

LOAD STEP = 1.00000E+00

DISPLACEMENT VECTOR

POINT ID.	TYPE	Tl	Т2	TЗ	R1	R2	R3
11574	G	-2.364146E-02	2.055190E-01	-1.766966E-05	1.195581E-04	1.045386E-06	1.787988E-04
11575	G	-2.363232E-02	2.055173E-01	-2.950086E-05	1.375250E-04	1.943502E-06	1.792213E-04
11576	G	-2.362323E-02	2.055116E-01	-3.958109E-05	1.355669E-04	2.604990E-06	1.792816E-04
11577	G	-2.366281E-02	2.055191E-01	3.972218E-05	-1.362155E-04	-2.367657E-06	4.416586E-05
11578	G	-2.366499E-02	2.055248E-01	2.959209E-05	-1.387803E-04	-1.891803E-06	4.417644E-05
11579	G	-2.366717E-02	2.055264E-01	1.770641E-05	-1.203189E-04	-1.030520E-06	4.381567E-05
11580	G	-2.366886E-02	2.055245E-01	7.336002E-06	-7.230880E-05	-3.095441E-07	4.314896E-05
11581	G	-2.366951E-02	2.055229E-01	1.402592E-09	-9.089893E-09	-2.795801E-10	4.280254E-05
11582	G	-2.366886E-02	2.055245E-01	-7.337221E-06	7.233388E-05	3.092091E-07	4.314736E-05
11583	G	-2.366717E-02	2.055264E-01	-1.770340E-05	1.203208E-04	1.030579E-06	4.381534E-05
11584	G	-2.366499E-02	2.055248E-01	-2.958929E-05	1.387857E-04	1.892553E-06	4.417667E-05

Displacenment 80 bars 80 oC LOAD STEP = 1.00000E+00

POINT ID.	TYPE	Tl	Т2	Т3	R1	R2	R3
11574	G	-2.467008E-02	2.144610E-01	-1.843846E-05	1.247600E-04	1.090871E-06	1.865782E-04
11575	G	-2.466054E-02	2.144592E-01	-3.078443E-05	1.435087E-04	2.028063E-06	1.870191E-04
11576	G	-2.465107E-02	2.144533E-01	-4.130324E-05	1.414653E-04	2.718331E-06	1.870821E-04
11577	G	-2.469237E-02	2.144611E-01	4.145045E-05	-1.421421E-04	-2.470672E-06	4.608749E-05
		0 1001010 00	0 1446000 01	0.00000000	1 4401060 04	1 0741100 00	1

 $\frac{\text{Displacement 80 bars 70 }^{\circ}\text{C}}{\text{LOAD STEP} = 1.00000\text{E+00}}$

DISPLACEMENT VECTOR

OTNT TD.	TYPE	Τ1	T2	Т3	R1	R2	R3
11574	G	-2.569872E-02	2.234031E-01	-1.920727E-05	1.299620E-04	1.136355E-06	1,943578E-04
11575	G	-2.568879E-02	2.234013E-01	-3.206802E-05	1.494924E-04	2.112624E-06	1.948171E-04
11576	G	-2.567891E-02	2.233951E-01	-4.302542E-05	1.473638E-04	2.831674E-06	1.948826E-04
11577	G	-2.572194E-02	2.234032E-01	4.317877E-05	-1.480689E-04	-2.573689E-06	4.800915E-05
11578	G	-2.572431E-02	2.234094E-01	3.216717E-05	-1,508569E-04	-2.056426E-06	4.802064E-05
11579	G	-2.572667E-02	2.234112E-01	1.924720E-05	-1.307889E-04	-1.120195E-06	4.762848E-05
11580	G	-2.572852E-02	2.234091E-01	7.974365E-06	-7.860107E-05	-3.364802E-07	4.690376E-05
11581	G	-2.572922E-02	2.234074E-01	1.512274E-09	-9.881163E-09	-3.036473E-10	4.652719E-05
11582	G	-2.572852E-02	2.234091E-01	-7.975714E-06	7.862833E-05	3.361165E-07	4.690202E-05
11583	G	-2.572667E-02	2,234112E-01	-1.924395E-05	1.307910E-04	1.120260E-06	4.762813E-05
11584	G	-2.572431E-02	2.234094E-01	-3.216415E-05	1.508628E-04	2.057242E-06	4.802090E-05

Displace	ement 80	bars 60 °C	
LOAD STE	P = 1.0	0000E+00	
PC	TNT TD.	TYPE	Τ1

11574	G	-1.270682E-02	1.104624E-01	-9.497102E-06	6.426017E-05	5.618749E-07	9.610087E-05
11575	G	-1.270191E-02	1.104615E-01	-1.585614E-05	7.391702E-05	1.044594E-06	9.632796E-05
11576	G	-1.269703E-02	1.104585E-01	-2.127407E-05	7.286453E-05	1.400131E-06	9.636037E-05
11577	G	-1.271830E-02	1.104625E-01	2.134989E-05	-7.321314E-05	-1.272569E-06	2.373829E-05
11578	G	-1.271947E-02	1.104655E-01	1.590517E-05	-7.459171E-05	-1.016807E-06	2.374397E-05
11579	G	-1.272064E-02	1.104664E-01	9.516843E-06	-6.466905E-05	-5.538841E-07	2.355007E-05
11580	G	-1.272155E-02	1.104654E-01	3.942952E-06	-3.886457E-05	-1.663737E-07	2.319172E-05
11581	G	-1.272190E-02	1.104646E-01	7.475593E-10	-4.885140E-09	-1.500927E-10	2.300553E-05
11582	G	-1.272155E-02	1.104654E-01	-3.943619E-06	3.887805E-05	1.661940E-07	2.319087E-05
11583	G	-1.272064E-02	1.104664E-01	-9.515237E-06	6.467006E-05	5.539162E-07	2.354989E-05
11584	G	-1.271947E-02	1.104655E-01	-1.590367E-05	7.459462E-05	1.017210E-06	2.374410E-05

Т2

DISPLACEMENT VECTOR Т3

R1

R2

R3

Displacement 70 bars 90 °C LOAD STEP = 1.00000E+00

D	T	S	P	Τ.	A	C	E	M	E	N	T	V	E	C	T	0	R
~	-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		-			dead		-					-			

POINT TD.	TYPE	T1	Τ2	Т3	R1	R2	R3
11574	G	-1.765984E-02	1.535198E-01	-1.319900E-05	8.930828E-05	7.808891E-07	1.335602E-04
11575	G	-1.765301E-02	1.535186E-01	-2.203674E-05	1.027293E-04	1.451769E-06	1.338758E-04
11576	G	-1.764623E-02	1.535143E-01	-2.956653E-05	1.012666E-04	1.945891E-06	1.339209E-04
11577	G	-1.767579E-02	1.535199E-01	2.967190E-05	-1.017511E-04	-1.768607E-06	3.299128E-05
11578	G	-1.767742E-02	1.535241E-01	2.210487E-05	-1.036670E-04	-1.413150E-06	3.299918E-05
11579	G	-1.767905E-02	1.535254E-01	1.322643E-05	-8.987653E-05	-7.697840E-07	3.272969E-05
11580	G	-1.768031E-02	1.535239E-01	5.479879E-06	-5.401367E-05	-2.312250E-07	3.223167E-05
11581	G	-1.768080E-02	1.535228E-01	1.034994E-09	-6.790287E-09	-2.087122E-10	3.197290E-05
11582	G	-1.768031E-02	1.535239E-01	-5.480815E-06	5.403240E-05	2.309750E-07	3.223048E-05
11583	G	-1.767905E-02	1.535254E-01	-1.322421E-05	8.987794E-05	7.698283E-07	3.272945E-05
11584	G	-1.767742E-02	1.535241E-01	-2.210280E-05	1.036710E-04	1.413711E-06	3.299936E-05

Displacemen 70 bars 80 °C

|--|

POINT ID.	TYPE	т1	Т2	Т3	R1	R2	R3
11574	G	-1.868846E-02	1.624618E-01	-1.396779E-05	9.451015E-05	8.263731E-07	1.413396E-04
11575	G	-1.868123E-02	1.624604E-01	-2.332030E-05	1.087129E-04	1.536329E-06	1.416736E-04
11576	G	-1.867406E-02	1.624559E-01	-3.128867E-05	1.071650E-04	2.059232E-06	1.417213E-04
11577	G	-1.870534E-02	1.624619E-01	3.140019E-05	-1.076777E-04	-1.871621E-06	3.491290E-05
11578	G	-1.870706E-02	1.624663E-01	2.339240E-05	-1.097052E-04	-1.495461E-06	3.492126E-05
11570	G	-1.870879E-02	1.624676E-01	1.399683E-05	-9.511150E-05	-8.146209E-07	3.463608E-05
11580	G	-1.871013E-02	1.624661E-01	5.799069E-06	-5.715977E-05	-2.446929E-07	3.410905E-05
11581	G	-1.871064E-02	1.624649E-01	1.102705E-09	-7.185883E-09	-2.207809E-10	3.383520E-05
11582	G	-1.871013E-02	1.624661E-01	-5.800044E-06	5.717959E-05	2.444285E-07	3.410778E-05
11583	G	-1.870879E-02	1.624676E-01	-1.399446E-05	9.511299E-05	8.146679E-07	3.463582E-05

 $\frac{\text{Displacement 70 bars 70 °C}}{\text{LOAD STEP} = 1,00000E+00}$

DISPLACEMENT VECTOR

POINT ID.	TYPE	T1	Т2	TЗ	R1	R2	R3
11574	G	-1.971706E-02	1.714035E-01	-1.473656E-05	9.971191E-05	8.718562E-07	1.491188E-04
11575	G	-1.970943E-02	1.714021E-01	-2.460383E-05	1.146964E-04	1.620888E-06	1.494712E-04
11576	G	-1.970186E-02	1.713974E-01	-3.301077E-05	1.130632E-04	2.172571E-06	1.495215E-04
11577	G	-1.973487E-02	1.714036E-01	3.312843E-05	-1.136042E-04	-1.974634E-06	3.683448E-05
11578	G	-1.973669E-02	1.714084E-01	2.467990E-05	-1.157433E-04	-1.577769E-06	3.684330E-05
11579	G	-1.973850E-02	1.714097E-01	1.476720E-05	-1.003464E-04	-8.594567E-07	3.654242E-05
11580	G	-1.973992E-02	1.714081E-01	6.118246E-06	-6.030580E-05	-2.581604E-07	3.598638E-05
11581	G	-1.974046E-02	1.714069E-01	1.163736E-09	-7.581684E-09	-2.326879E-10	3.569747E-05
11582	G	-1.973992E-02	1.714081E-01	-6,119274E-06	6.032671E-05	2.578819E-07	3.598505E-05
11583	G	-1.973850E-02	1.714097E-01	-1.476470E-05	1.003479E-04	8.595069E-07	3.654215E-05
11584	G	-1.973669E-02	1.714084E-01	-2.467758E-05	1.157478E-04	1.578396E-06	3.684350E-05

 $\frac{\text{Displacemen 70 bars 60 }^{\circ}\text{C}}{\text{LOAD STEP} = 1.00000\text{E+00}}$

POINT ID.	TYPE	Tl	Τ2	Т3	R1	R2	R3
11574	G	-1.373543E-02	1.194043E-01	-1.026589E-05	6.946198E-05	6.073583E-07	1.038802E-04
11575	G	-1.373012E-02	1.194033E-01	-1.713969E-05	7.990055E-05	1.129154E-06	1.041256E-04
11576	G	-1.372484E-02	1.194000E-01	-2.299619E-05	7.876287E-05	1.513471E-06	1.041607E-04
11577	G	-1.374784E-02	1.194044E-01	2.307814E-05	-7.913970E-05	-1.375583E-06	2.565988E-05
11578	G	-1.374910E-02	1.194076E-01	1.719267E-05	-8.062985E-05	-1.099116E-06	2.566603E-05
11579	G	-1.375037E-02	1.194086E-01	1.028722E-05	-6.990396E-05	-5.987205E-07	2.545643E-05
11580	G	-1.375135E-02	1.194075E-01	4.262127E-06	-4.201063E-05	-1.798414E-07	2.506908E-05
11581	G	-1.375173E-02	1.194066E-01	8.040624E-10	-5.281268E-09	-1.620783E-10	2.486781E-05
11582	G	-1.375135E-02	1.194075E-01	-4.262856E-06	4.202520E-05	1.796475E-07	2.506815E-05

Internal Pressure dan Internal Temperatur Pada Beban Operasional

Beban operasional pada amplitudo kelengkungan awal 0.3 meter

90 bars 75 °C

LOAD STEP = 1.00000E+00

DISPLACEMENT VECTOR

DOTHE TO	MVDE	TT 1	Τ2	T3	R1	R2	R3
POINT ID.	LIFE		0 500000000	1 0670525-05	-4 249061E-04	8.049250E-06	4.324059E-04
12645	G	-3.248695E-02	9.36384IE-01	1.90/0526-05	4.2490011 04	D DOCEASE OC	1 2550005-04
12646	G	-3.250955E-02	9.563671E-01	-9.974108E-07	-3.887081E-04	3.006545E-06	4.3550906-04
12617	G	-3 252736E-02	9.563434E-01	-8.509643E-06	-2.411502E-04	-3.084282E-07	4.408565E-04
12047	0	-3 253426E-02	9 563316E-01	-5.905663E-09	-1.437057E-08	-1.217597E-09	4.437651E-04
12648	G	-3.2354205 02	0. 50000100 01	0 502259F-06	2 412539E-04	3.052362E-07	4.408495E-04
12649	G	-3.252736E-02	9.3634336-01	0.3033305-00	2.4120000 01	0.0002050 00	1 2550625-04
12650	G	-3.250955E-02	9.563671E-01	9.852004E-07	3.887063E-04	-3.009395E-06	4.3330036-04
10001	C	-2 2486958-02	9 563841E-01	-1.968280E-05	4.249098E-04	-8.050282E-06	4.324047E-04
12021	G	-3.2400330-02	0.50000110 01	4 1075405 05	2 0060018-04	-1 128552E-05	4.320032E-04
12652	G	-3.246468E-02	9.563885E-01	-4.18/5496-05	3.0909916-04	1.1200021 00	
12653	G	-3.248848E-02	9.564054E-01	4.114103E-05	-3.869401E-04	1.143004E-05	7.497024E-05
12000	0	0.0400545.00	0 5640115-01	1 913738F-05	-4.201705E-04	8.317524E-06	7.529409E-05
12654	G	-3.249254E-02	9.0040116-01	1.9191900 00	1.202/004 01		

90 bars 84 °C

LOAD STEP = 1.00000E+00

DOTHE TO	TYPE	(T T	Τ2	T3	R1	R2	R3
POINT ID.	1 I E L	4 0004575-02	1 2056868+00	-1.257470E-06	-4.900417E-04	3.790232E-06	5.490433E-04
12646	G	-4.0904576-02	1.20500000100	1.2011100 00	2 040165E 04	-2 999991E-07	5 557849E-04
12647	G	-4.100703E-02	1,205656E+00	-1.072809E-05	-3.040105E-04	-3.0009016-07	5.5570452 04
12648	G	-4.101574E-02	1.205641E+00	-7.485074E-09	-1.811027E-08	-1.541144E-09	5.594518E-04
10640	C	-4 100703E-02	1.205656E+00	1.072009E-05	3.041472E-04	3.848618E-07	5.557761E-04
12049	G	-4.100/051 02	1.0050000000	1 2410068-06	A 900396E-04	-3 793838E-06	5.490399E-04
12650	G	-4.098457E-02	1.2056866+00	1.2419906-00	4.9003906 04	5.155666E 00	E AFIOORE OV
12651	G	-4.095608E-02	1.205707E+00	-2.481402E-05	5.356810E-04	-1.014884E-05	5.451298E-04
10050	0	-4 092802E-02	1.205713E+00	-5,279220E-05	4.912912E-04	-1.422750E-05	5.446237E-04
TZODZ	9	4.0920020 02	1 2057245100	5 196610F-05	-4 878129E-04	1.440976E-05	9.451449E-05

90 bars 90 °C LOAD STEP = 1.00000E+00DISPLACEMENT VECTOR R3 R2 R1 T3 Т2 T1 TYPE POINT ID. 6.247320E-04 1.371896E+00 -1.429995E-06 -5.575967E-04 4.312642E-06 12646 G -4.663453E-02 6.324030E-04 -4.425677E-07 -1.220619E-05 -3.459268E-04 1.371862E+00 -4.666007E-02 12647 G 6.365753E-04 -2.060856E-08 -1.748325E-09 -7.693290E-09 1.371845E+00 -4.666999E-02 12648 G 6.323929E-04 4.379855E-07 1.219874E-05 3.460756E-04 1.371862E+00 -4.666007E-02 12649 G 6.247281E-04 5.575942E-04 -4.316734E-06 1.414035E-06 -4.663453E-02 1.371896E+00 12650 G 6.202790E-04 -1.154780E-05 -2.823394E-05 6.095276E-04 1.371921E+00 -4.660210E-02 12651 G 6.197031E-04 -1.618873E-05 5.590184E-04 -6.006908E-05 1.371927E+00 -4.657017E-02 12652 G 1.075438E-04 -5.550606E-04 1.639622E-05 5.901705E-05 1.371951E+00 12653 G -4.660431E-02 1.080084E-04 -6.027291E-04 1.193134E-05 1.371945E+00 2.745311E-05 -4.661014E-02 12654 G

100	bars	75 °C	
	LOAD	STEP =	1.00000E+00

DISPLACEMENT VECTOR

DOTNE TD	TYPE	771	Т2	Т3	R1	R2	R3
POINT ID.	TILD	0 0000160 00	0 0070775-01	-8 085736E-06	-2.291384E-04	-2.930584E-07	4.188973E-04
12647	G	-3.090716E-02	9.08/0//E-01	-0.003/301 00	2.2010012 00	1 1562425 00	4 2166108-04
12648	G	-3.091372E-02	9.086965E-01	-5.572598E-09	-1.365388E-08	-1.156343E-09	4.2100106-04
12010	0	2 0007168-02	9 087077E-01	8.079842E-06	2.292370E-04	2.900267E-07	4.188906E-04
12649	G	-3.090716E-02	9.0070776-01	0.0790128 00	2 6024495 04	2 9595055-06	4 138135E-04
12650	G	-3.089023E-02	9.087301E-01	9.361662E-07	3.0934486-04	-2.0393036-00	4.1001000 04
10051	C	-3 086876F-02	9.087463E-01	-1.870235E-05	4.037449E-04	-7.649305E-06	4.108665E-04
12651	G	-3.0000706-02	5.0074051 01	2 0700000 05	2 2020010-04	-1 072340E-05	4.104850E-04
12652	G	-3.084761E-02	9.087505E-01	-3.9/8962E-05	3.702001E-04	-1.0723406 03	1.1010000 05
10650	0	-3 087022E-02	9.087665E-01	3.909182E-05	-3.676665E-04	1.086071E-05	7.123596E-05
12000	G	5.0070220 02	0 000 CO 100 01	1 0104100 05	-2 002416E-04	7 903227E-06	7.154368E-05

120 bars 105 °C

LOAD STEP = 1.00000E+00

Beban operasional pada amplitudo kelengkungan awal 0.2 meter 90 bars 75 $^{\circ}\mathrm{C}$

LOAD STEP = 1.00000E+00

DISPLACEMENT VECTOR

44000 04
44095-04
.5736E-04
10432E-06
4016E-06
13854E-06
)6171E-06
1189E-06
)4726E-06

90 bars 84 °C

LOAD STEP = 1.00000E+00

DISPLACEMENT VECTOR

DOTHE TO	TYPE	T 1	т2	T3	Rl	R2	R3
POINT ID.	TIFE	2 0651295-02	6 205000E-01	-2.781756E-05	3.310293E-04	5.864156E-06	2.917761E-04
11694	G	-3.0651366-02	0.29590000 01	4 6026105 05	2 110570F-04	7 9077718-06	2 919433E-04
11695	G	-3.063667E-02	6.295894E-01	-4.683619E-03	3.1193706-04	1.3011111 00	2.0024005 06
11696	G	-3.067353E-02	6.295991E-01	4.729522E-05	-3.132938E-04	-6.8/439/E-06	-3.883489E-06
11000	0	2 0673188-02	6 295996E-01	2.816299E-05	-3.339816E-04	-5.746463E-06	-3,686295E-06
11097	G	-3.00/3105-02	C.2000000 01	0 0727248 06	-2 005234E-04	-2 468699E-06	-5.274565E-06
11698	G	-3.067278E-02	6.295903E-01	9.0727246-00	-3.0032341 04	1.0000010.07	0 0047015-06
11699	G	-3.067243E-02	6.295751E-01	-1.156637E-06	-1.848062E-04	1.909821E-07	-9.084781E-00
11700	G	-3 067228E-02	6.295671E-01	-8.543369E-10	-1.462399E-08	5.723548E-10	-1.143600E-05
11100	G	0.0072200 02	C 205751E-01	1 156104E-06	1.848820E-04	-1.900921E-07	-9.082959E-06
11701	G	-3.06/2436-02	0.295/516-01	1.1001010 00	1.0.000000		
Leve 75 00							

 $\frac{100 \text{ bars } 75 ^{\circ}\text{C}}{\text{LOAD STEP}} = 1.00000\text{E+00}$

DISPLACEMENT VECTOR

TO TO P1 P2 P3

120 bars 105 °C

LOAD STEP = 1.00000E+00

DISPLACEMENT VECTOR

POTNE TD	TYPE	T1	Т2	TЗ	R1	R2	R3
11694	G	-4.180745E-02	8.587396E-01	-3.794212E-05	4.515128E-04	7.998553E-06	3.979727E-04
11695	G	-4.178738E-02	8.587388E-01	-6.388288E-05	4.254988E-04	1.078597E-05	3.982008E-04
11696	G	-4.183766E-02	8.587519E-01	6.450918E-05	-4.273221E-04	-9.376450E-06	-5.296950E-06
11697	G	-4.183718E-02	8.587527E-01	3.841346E-05	-4.555396E-04	-7.837986E-06	-5.027985E-06
11698	G	-4.183663E-02	8.587399E-01	1.237499E-05	-4.099038E-04	-3.367227E-06	-7.194331E-06
11699	G	-4.183615E-02	8.587191E-01	-1.577514E-06	-2.520694E-04	2.604880E-07	-1.239134E-05
11700	G	-4.183595E-02	8.587083E-01	-1.065669E-09	-1.994367E-08	7.747264E-10	-1.559831E-05
11701	G	-4.183615E-02	8.587191E-01	1.576986E-06	2,521728E-04	-2,592860E-07	-1.238885E-05

Beban Operasional pada kelengkungan awal 0.1 meter

90 bars 75 °C

LOAD STEP = 1.00000E+00

DISPLACEMENT VECTOR

POTNE TD	TYPE	ΨI	Т2	T3	Rl	R2	R3
11577	G	-2.066932E-02	1.795196E-01	3.469708E-05	-1.189833E-04	-2.068134E-06	3.857860E-05
11578	G	-2.067122E-02	1.795246E-01	2.584851E-05	-1.212237E-04	-1.652478E-06	3.858784E-05
11570	G	-2.067313E-02	1.795260E-01	1.546644E-05	-1.050978E-04	-9.001532E-07	3.827271E-05
11580	G	-2.067460E-02	1.795243E-01	6.407955E-06	-6.316129E-05	-2.703853E-07	3.769034E-05
11581	G	-2.067517E-02	1.795230E-01	1.228197E-09	-7.940139E-09	-2.446869E-10	3.738775E-05
11582	G	-2.067460E-02	1.795243E-01	-6.409013E-06	6.318319E-05	2.700917E-07	3.768895E-05
11583	G	-2.067313E-02	1.795260E-01	-1.546381E-05	1.050994E-04	9.002037E-07	3.827243E-05
11584	G	-2.067122E-02	1.795246E-01	-2.584606E-05	1.212285E-04	1.653133E-06	3.858804E-05
+ + +							

90 bars 84 $^{\circ}C$

LOAD STEP = 1.00000E+00

Deformasi pada permodelan pipa bergelombang

Displacemen dua gelombang LOAD STEP = 1.00000E+00

DISPLACEMENT VECTOR

D	TIME TO	TYPE	T1	Т2	T3	R1	R2	R3
PU	DINI ID.	TIPD	-1 222260F-01	2 386778E+00	1.903673E-05	-3.313880E-04	-3.882553E-06	6.814447E-05
	29182	G	1 22222006 01	2.3067612+00	A A76744E-07	-2 199989E-04	-2.358156E-07	6.488428E-05
	29183	G	-1.2222966-01	2.3867616+00	4.4/0/445-0/	1 20772000 00	2 2527775 00	6 221195F-05
	29184	G	-1.222311E-01	2.386750E+00	2.005//9E-08	1.207728E-08	-3.253777E-00	0.2211056-05
	29185	G	-1.222296E-01	2.386761E+00	-4.080452E-07	2.199686E-04	1.707246E-07	6.488425E-05
	29186	G	-1.222260E-01	2.386778E+00	-1.899729E-05	3.313920E-04	3.816338E-06	6.814393E-05

Displacemen 1,5 panjang gelombang LOAD STEP = 1.00000E+00

DISPLACEMENT VECTOR

POINT ID.	TYPE	Tl	Т2	тз	R1	R2	R3
27978	ନ ନ ନ ନ ନ	-1.120482E-01	5.790082E-01	-4.339871E-05	1.444332E-04	7.116589E-06	1.742511E-04
27979		-1.121080E-01	5.790156E-01	4.344237E-05	-1.457391E-04	-7.664206E-06	-2.177971E-05
27980		-1.121065E-01	5.790236E-01	2.830302E-05	-1.265717E-04	-1.065965E-05	-1.868078E-05
27981		-1.121050E-01	5.790253E-01	1.241496E-05	-7.794068E-05	-8.147062E-06	-1.391519E-05
27982		-1.121043E-01	5.790244E-01	-1.797623E-09	7.197562E-09	8.256226E-10	-1.152678E-05
27983		-1.121050E-01	5.790253E-01	-1.241580E-05	7.793627E-05	8.145845E-06	-1.391485E-05

Displacement 1 gelombang LOAD STEP = 1.00000E+00

DOTNE TD	TYPE	T 1	Т2	T3	R1	R2	R3
POINT ID.	TIFD	-2 1567628-02	6 247067E-01	8.450931E-06	-7.765958E-05	4.846228E-06	6.236497E-03
11285	G	-3.136762E-02	0.2470076 01	0.10000100 00	1 0055250 00	C 2250758 10	C 224016E-02
11286	G	-3.166525E-02	6.247052E-01	6.732912E-09	-1.025575E-08	6.235975E-10	0.234910E-03
11287	G	-3.156761E-02	6.247067E-01	-8.442136E-06	7.768802E-05	-4.848912E-06	6.236497E-03
11288	G	-3.131516E-02	6.247084E-01	-2.032907E-05	1.330309E-04	-6.849367E-06	6.239673E-03
						E 2200220 0/	C 040040E 000

LAMPIRAN V

OUTPUT TEGANGAN PADA PERMODELAN PIPA

0

Vonmises 90 bars 90 °C 0 LOAD STEP =

LOAD STEP = 1.00000E+00

STRESSES IN QUADRILATERAL ELEMENTS (QUADR)

ELEMENT ID	GRID-ID	FIBRE DISTANCE	STRESSES NORMAL-X	IN ELEMENT COO NORMAL-Y	ORD SYSTEM SHEAR-XY	PRINCIP	AL STRESSES (ZER MAJOR	O SHEAR) MINOR	VON MISES
10316	CEN/4	-7.940000E-03 7.940000E-03	-2.872715E+05 8.564183E+05	-2.841988E+08 -2.763287E+08	2.383525E+04 2.047610E+05	0.0048 0.0423	-2.872695E+05 - 8.565696E+05 -	2.841988E+08 2.763289E+08	2.840552E+08 2.767582E+08
	11748	-7.940000E-03 7.940000E-03	-6.231542E+05 5.205356E+05	-2.885157E+08 -2.806457E+08	3.913218E+05 5.722476E+05	0.0779 0.1166	-6.226223E+05 - 5.217002E+05 -	2.885162E+08 2.806468E+08	2.882054E+08 2.809081E+08
	11749	-7.940000E-03 7.940000E-03	3.270080E+05 1.470698E+06	-2.798391E+08 -2.719691E+08	4.527630E+05 6.336888E+05	0.0926 0.1328	3.277397E+05 - 1.472166E+06 -	2.798398E+08 2.719706E+08	2.800038E+08 2.727096E+08
	11758	-7.940000E-03 7.940000E-03	4.531744E+04 1.189007E+06	-2.798853E+08 -2.720154E+08	-3.434448E+05 -1.625191E+05	-0.0703 -0.0341	4.573880E+04 - 1.189104E+06 -	2.798858E+08 2.720155E+08	2.799086E+08 2.726119E+08
	11757	-7.940000E-03	-9.060451E+05 2.376446E+05	-2.885636E+08 -2.806937E+08	-4.042321E+05 -2.233064E+05	-0.0805 -0.0455	-9.054771E+05 - 2.378221E+05 -	2.885642E+08 2.806938E+08	2.881125E+08 2.808128E+08

$\frac{\text{Von mises 90 bars 80}^{\circ}\text{C}}{\text{LOAD STEP} = 1.00000\text{E+00}}$

0	ELEMENT ID 10316	GRID-ID CEN/4	FIBRE DISTANCE -7.940000E-03 7.940000E-03	STRESSES NORMAL-X -2.973640E+05 8.865063E+05	IN ELEMENT COO NORMAL-Y -2.941833E+08 -2.860368E+08	RD SYSTEM SHEAR-XY 2.467264E+04 2.119547E+05	PRINCIP ANGLE 0.0048 0.0423	AL STRESSES (ZER MAJOR -2.973619E+05 - 8.866629E+05 -	O SHEAR) MINOR 2.941833E+08 2.860370E+08	VON MISES 2.940348E+08 2.864813E+08
		11748	-7.940000E-03 7.940000E-03	-6.450471E+05 5.388233E+05	-2.986519E+08 -2.905054E+08	4.050699E+05 5.923520E+05	0.0779 0.1166	-6.444965E+05 - 5.400288E+05 -	2.986525E+08 2.905066E+08	2.983308E+08 2.907770E+08
		11749	-7.940000E-03 7.940000E-03	3.384966E+05 1.522367E+06	-2.896705E+08 -2.815240E+08	4.686697E+05 6.559518E+05	0.0926	3.392540E+05 - 1.523887E+06 -	2.896713E+08 2.815255E+08	2.898411E+08 2.822906E+08

Von missis 90 bar 70 °C LOAD STEP = 1.00000E+00

STRESSES IN QUADRILATERAL ELEMENTS (QUADR)

	ELEMENT ID	GRID-ID	FIBRE DISTANCE	STRESSES NORMAL-X	IN ELEMENT CO NORMAL-Y	ORD SYSTEM SHEAR-XY	PRINCIP ANGLE	AL STRESSES (ZER MAJOR	O SHEAR) MINOR	VON MISES
0	10316	CEN/4	-7.940000E-03 7.940000E-03	-3.073428E+05 9.162551E+05	-3.040553E+08 -2.956355E+08	2.550059E+04 2.190673E+05	0.0048 0.0423	-3.073406E+05 - 9.164169E+05 -	3.040553E+08 2.956356E+08	3.039018E+08 2.960949E+08
		11748	-7.940000E-03 7.940000E-03	-6.666932E+05 5.569047E+05	-3.086739E+08 -3.002540E+08	4.186630E+05 6.122298E+05	0.0779 0.1166	-6.661241E+05 - 5.581508E+05 -	3.086745E+08 3.002553E+08	3.083419E+08 3.005347E+08
		11749	-7.940000E-03 7.940000E-03	3.498557E+05 1.573454E+06	-2.993911E+08 -2.909712E+08	4.843970E+05 6.779638E+05	0.0926 0.1328	3.506385E+05 - 1.575025E+06 -	2.993919E+08 2.909728E+08	2.995674E+08 2.917635E+08
		11758	-7.940000E-03 7.940000E-03	4.848371E+04 1.272082E+06	-2.994406E+08 -2.910207E+08	-3.674409E+05 -1.738741E+05	-0.0703 -0.0341	4.893452E+04 - 1.272185E+06 -	2.994410E+08 2.910208E+08	2.994655E+08 2.916590E+08
		11757	-7.940000E-03 7.940000E-03	-9.693493E+05 2.542485E+05	-3.087252E+08 -3.003053E+08	-4.324753E+05 -2.389085E+05	-0.0805 -0.0455	-9.687416E+05 - 2.544384E+05 -	3.087258E+08 3.003055E+08	3.082426E+08 3.004328E+08

Von mises 90 bars 60 °C

LOAD STEP = 1.00000E+00

	ELEMENT ID	GRID-ID	FIBRE DISTANCE	STRESSES NORMAL-X	IN ELEMENT COC NORMAL-Y	ORD SYSTEM SHEAR-XY	PRINCIP ANGLE	AL STRESSES (ZI MAJOR	ERO SHEAR) MINOR	VON MISES
0	10316	CEN/4	-7.940000E-03 7.940000E-03	-1.132947E+05 3.377559E+05	-1.120829E+08 -1.089791E+08	9.400195E+03 8.075403E+04	0.0048	-1.132939E+05 3.378156E+05	-1.120829E+08 -1.089791E+08	1.120262E+08 1.091484E+08
		11748	-7.940000E-03 7.940000E-03	-2.457608E+05 2.052898E+05	-1.137854E+08 -1.106816E+08	1.543303E+05 2.256841E+05	0.0779 0.1166	-2.455510E+05 2.057492E+05	-1.137856E+08 -1.106820E+08	1.136630E+08 1.107851E+08
		11749	-7.940000E-03 7.940000E-03	1.289661E+05 5.800167E+05	-1.103635E+08 -1.072597E+08	1.785616E+05 2.499154E+05	0.0926 0.1328	1.292546E+05 5.805958E+05	-1.103638E+08 -1.072603E+08	1.104285E+08 1.075518E+08
		11750	7 0400007 03	1 7070308:04	1 1020175100	1 3544948405	-0.0702	1 0020567+04	-1 1030105109	1 1030008109

0

Vommisses 80 bar 90 °C LOAD STEP = 1.00000E+00

STRESSES IN QUADRILATERAL ELEMENTS (QUADR)

ELEMENT		FIBRE	STRESSES	IN ELEMENT COO	ORD SYSTEM	PRINCIP	AL STRESSES (Z	ERO SHEAR)	
ID	GRID-ID	DISTANCE	NORMAL-X	NORMAL-Y	SHEAR-XY	ANGLE	MAJOR	MINOR	VON MISES
10316	CEN/4	-7.940000E-03 7.940000E-03	-2.293547E+05 6.837558E+05	-2.269014E+08 -2.206181E+08	1.902983E+04 1.634791E+05	0.0048 0.0423	-2.293530E+05 6.838765E+05	-2.269014E+08 -2.206182E+08	2.267868E+08 2.209609E+08
	11748	-7.940000E-03 7.940000E-03	-4.975200E+05 4.155904E+05	-2.303480E+08 -2.240647E+08	3.124274E+05 4.568767E+05	0.0779 0.1166	-4.970954E+05 4.165202E+05	-2.303484E+08 -2.240656E+08	2.301003E+08 2.242742E+08
	11749	-7.940000E-03 7.940000E-03	2.610799E+05 1.174190E+06	-2.234207E+08 -2.171374E+08	3.614814E+05 5.059307E+05	0.0926 0.1328	2.616641E+05 1.175363E+06	-2.234213E+08 -2.171386E+08	2.235523E+08 2.177286E+08
	11758	-7.940000E-03 7.940000E-03	3.618098E+04 9.492914E+05	-2.234576E+08 -2.171743E+08	-2.742029E+05 -1.297536E+05	-0.0703 -0.0341	3.651740E+04 9.493686E+05	-2.234580E+08 -2.171744E+08	2.234762E+08 2.176506E+08
	11757	-7.940000E-03	-7.233773E+05 1.897331E+05	-2.303863E+08 -2.241030E+08	-3.227349E+05 -1.782856E+05	-0.0805 -0.0455	-7.229238E+05 1.898748E+05	-2.303868E+08 -2.241031E+08	2.300262E+08 2.241981E+08

Vonmisses 80 bars 80 °C

LOAD STEP = 1.00000E+00

	ELEMENT ID	GRID-ID	FIBRE DISTANCE	STRESSES NORMAL-X	IN ELEMENT COON NORMAL-Y	RD SYSTEM SHEAR-XY	PRINCIP. ANGLE	AL STRESSES (ZE MAJOR	RO SHEAR) MINOR	VON MISES
0	10316	CEN/4	-7.940000E-03 7.940000E-03	-2.393337E+05 7.135055E+05	-2.367737E+08 -2.302170E+08	1.985780E+04 1.705920E+05	0.0048 0.0423	-2.393320E+05 7.136316E+05	-2.367737E+08 -2.302172E+08	2.366542E+08 2.305748E+08
		11748	-7.940000E-03 7.940000E-03	-5.191668E+05 4.336724E+05	-2.403703E+08 -2.338136E+08	3.260209E+05 4.767551E+05	0.0779 0.1166	-5.187237E+05 4.346428E+05	-2.403707E+08 -2.338146E+08	2.401118E+08 2.340322E+08
1		11749	-7.940000E-03	2.724393E+05 1.225279E+06	-2.331416E+08 -2.265849E+08	3.772093E+05 5.279434E+05	0.0926	2.730489E+05 1.226502E+06	-2.331422E+08 -2.265861E+08	2.332789E+08 2.272019E+08

0

Von mises 80 bars 70 °C

LOAD STEP = 1.00000E+00

STRESSES IN QUADRILATERAL ELEMENTS (QUADR)

ELEMENT ID	GRID-ID	FIBRE DISTANCE	STRESSES NORMAL-X	IN ELEMENT CO NORMAL-Y	ORD SYSTEM SHEAR-XY	PRINCIP ANGLE	PAL STRESSES (Z MAJOR	ERO SHEAR) MINOR	VON MISES
10316	CEN/4	-7.940000E-03 7.940000E-03	-2.493130E+05 7.432558E+05	-2.466462E+08 -2.398161E+08	2.068579E+04 1.777050E+05	0.0048	-2.493112E+05 7.433871E+05	-2.466462E+08 -2.398163E+08	2.465217E+08 2.401888E+08
	11748	-7.940000E-03 7.940000E-03	-5.408139E+05 4.517548E+05	-2.503928E+08 -2.435627E+08	3.396147E+05 4.966338E+05	0.0779 0.1166	-5.403523E+05 4.527656E+05	-2.503932E+08 -2.435637E+08	2.501235E+08 2.437904E+08
	11749	-7.940000E-03 7.940000E-03	2.837990E+05 1.276368E+06	-2.428627E+08 -2.360326E+08	3.929373E+05 5.499565E+05	0.0926 0.1328	2.844340E+05 1.277642E+06	-2.428633E+08 -2.360338E+08	2.430056E+08 2.366752E+08
	11758	-7.940000E-03 7.940000E-03	3.932943E+04 1.031898E+06	-2.429028E+08 ~2.360727E+08	-2.980638E+05 -1.410447E+05	-0.0703 -0.0341	3.969513E+04 1.031982E+06	-2.429032E+08 -2.360728E+08	2.429230E+08 2.365905E+08
	11757	-7.940000E-03 7.940000E-03	-7.863252E+05 2.062435E+05	-2.504344E+08 -2.436043E+08	-3.508191E+05 -1.937999E+05	-0.0805 -0.0455	-7.858322E+05 2.063976E+05	-2.504349E+08 -2.436044E+08	2.500429E+08 2.437077E+08

 $\frac{\text{Von mises 80 bars 60 °C}}{\text{LOAD STEP} = 1.00000E+00}$

0	ELEMENT ID 10316	GRID-ID CEN/4	FIBRE DISTANCE -7.940000E-03 7.940000E-03	STRESSES NORMAL-X -1.232736E+05 3.675053E+05	IN ELEMENT COC NORMAL-Y ~1.219551E+08 ~1.185779E+08	RD SYSTEM SHEAR-XY 1.022816E+04 8.786682E+04	PRINCIP ANGLE 0.0048 0.0423	AL STRESSES (ZI MAJOR -1.232728E+05 3.675703E+05	ERO SHEAR) MINOR -1.219551E+08 -1.185780E+08	VON MISES 1.218935E+08 1.187622E+08
		11748	-7.940000E-03 7.940000E-03	-2.674073E+05 2.233717E+05	-1.238076E+08 -1.204304E+08	1.679236E+05 2.455623E+05	0.0779 0.1166	-2.671790E+05 2.238715E+05	-1.238078E+08 -1.204309E+08	1.236744E+08 1.205430E+08
		11749	-7.940000E-03 7.940000E-03	1.403254E+05 6.311044E+05	~1.200843E+08 ~1.167071E+08	1.942892E+05 2.719279E+05	0.0926 0.1328	1.406393E+05 6.317346E+05	-1.200846E+08 -1.167077E+08	1.201550E+08 1.170249E+08

Lampiran V : Output Tegangan

 $\frac{\text{Vonmises 70 bars 90 °C}}{\text{LOAD STEP} = 1.00000E+00}$

-(A)

STRESSES IN QUADRILATERAL ELEMENTS (QUADR)

	ELEMENT ID	GRID-ID	FIBRE DISTANCE	STRÉSSES NORMAL-X	IN ELEMENT COO NORMAL-Y	RD SYSTEM SHEAR-XY	PRINCIP. ANGLE	AL STRESSES (ZE MAJOR	RO SHEAR) MINOR	VON MISES
0	10316	CEN/4	-7,940000E-03 7,940000E-03	-1.713247E+05 5.107560E+05	-1.694922E+08 -1.647986E+08	1.421502E+04 1.221166E+05	0.0048 0.0423	-1.713235E+05 5.108463E+05	-1.694922E+08 -1.647987E+08	1.694066E+08 1.650548E+08
		11748	-7.940000E-03 7.940000E-03	-3.716406E+05 3.104402E+05	-1.720668E+08 -1.673732E+08	2.333790E+05 3.412805E+05	0.0779 0.1166	-3.713233E+05 3.111348E+05	-1.720671E+08 -1.673739E+08	1.718817E+08 1.675297E+08
		11749	-7.940000E-03 7.940000E-03	1.950231E+05 8.771039E+05	-1.668922E+08 -1.621986E+08	2.700216E+05 3.779232E+05	0.0926 0.1328	1.954595E+05 8.779797E+05	-1.668926E+08 -1.621995E+08	1.669904E+08 1.626403E+08
		11758	-7.940000E-03 7.940000E-03	2.702669E+04 7.091074E+05	-1.669198E+08 -1.622262E+08	~2.048258E+05 -9.692415E+04	-0.0703 -0.0341	2.727799E+04 7.091651E+05	-1.669200E+08 -1.622263E+08	1.669336E+08 1.625820E+08
		11757	-7.940000E-03 7.940000E-03	-5.403528E+05 1.417280E+05	-1.720954E+08 -1.674018E+08	-2.410785E+05 -1.331769E+05	-0.0805 -0.0455	-5.400141E+05 1.418338E+05	-1.720957E+08 -1.674019E+08	1.718263E+08 1.674729E+08

Vonmises 70 bars 80 °C

LOAD STEP = 1.00000E+00

	ELEMENT ID	GRID-ID	FIBRE DISTANCE	STRESSES IN ELEMENT CO NORMAL-X NORMAL-Y	ORD SYSTEM SHEAR-XY	PRINCIP. ANGLE	AL STRESSES (ZI MAJOR	ERO SHEAR) MINOR	VON MISES
0	10316	CEN/4	-7.940000E-03 7.940000E-03	-1.813038E+05 -1.793645E+08 5.405057E+05 -1.743976E+08	1.504299E+04 1.292294E+05	0.0048 0.0423	-1.813025E+05 5.406011E+05	-1.793645E+08 -1.743976E+08	1.792739E+08 1.746686E+08
		11748	-7.940000E-03 7.940000E-03	-3.932872E+05 -1.820890E+08 3.285222E+05 -1.771221E+08	2.469724E+05 3.611589E+05	0.0779 0.1166	-3.929515E+05 3.292573E+05	-1.820893E+08 -1.771228E+08	1.818932E+08 1.772877E+08
		11749	-7.940000E-03 7.940000E-03	2.063825E+05 -1.766130E+08 9.281919E+05 -1.716461E+08	2.857494E+05 3.999358E+05	0.0926 0.1328	2.068442E+05 9.291187E+05	-1.766135E+08 -1.716470E+08	1.767170E+08 1.721134E+08
					A STATE STATE STATE		0.000000000	1 7004055100	1 7665608408

Lampiran V : Output Tegangan

	LUAD STE	SP = 1.00	STRESS	ES IN QU	JADRILA	FERAL EL	EMENT	S (QUADR)	
	ELEMENT ID	GRID-ID	FIBRE DISTANCE	STRESSES NORMAL-X	IN ELEMENT COO NORMAL-Y	ORD SYSTEM SHEAR-XY	PRINCIP ANGLE	AL STRESSES (ZE MAJOR	RO SHEAR) MINOR	VON MISES
D	10316	CEN/4	-7.940000E-03 7.940000E-03	-1.912826E+05 5.702547E+05	-1.892366E+08 -1.839963E+08	1.587094E+04 1.363421E+05	0.0048	-1.912813E+05 5.703554E+05	-1.892366E+08 -1.839964E+08	1.891410E+08 1.842822E+08
		11748	-7.940000E-03 7.940000E-03	-4.149334E+05 3.466038E+05	-1.921110E+08 -1.868707E+08	2.605656E+05 3.810368E+05	0.0779 0.1166	-4.145793E+05 3.473793E+05	-1.921114E+08 -1.868715E+08	1.919044E+08 1.870454E+08
		11749	-7.940000E-03 7.940000E-03	2.177416E+05 9.792788E+05	-1.863337E+08 -1.810933E+08	3.014768E+05 4.219480E+05	0.0926 0.1328	2.182288E+05 9.802567E+05	-1.863341E+08 -1.810943E+08	1.864434E+08 1.815864E+08
		11758	-7.940000E-03 7.940000E-03	3.017507E+04 7.917123E+05	-1.863645E+08 -1.811241E+08	-2.286862E+05 -1.082150E+05	-0.0703 -0.0341	3.045564E+04 7.917767E+05	-1.863647E+08 -1.811242E+08	1.863800E+08 1.815214E+08
		11757	-7.940000E-03 7.940000E-03	-6.032992E+05 1.582380E+05	-1.921430E+08 -1.869027E+08	-2.691620E+05 -1.486908E+05	-0.0805 -0.0455	-6.029210E+05 1.583562E+05	-1.921434E+08 -1.869028E+08	1.918426E+08 1.869820E+08

Vonmises 70 bars 60 °C

LOAD STEP = 1.00000E+00

	ELEMENT ID	GRID-ID	FIBRE DISTANCE	STRESSES NORMAL-X	IN ELEMENT COO NORMAL-Y	ORD SYSTEM SHEAR-XY	PRINCIP ANGLE	AL STRESSES (Z) MAJOR	ERO SHEAR) MINOR	VON MISES
0	10316	CEN/4	-7.940000E-03 7.940000E-03	-1.332526E+05 3.972547E+05	~1.318273E+08 -1.281767E+08	1.105612E+04 9.497958E+04	0.0048	-1.332516E+05 3.973248E+05	-1.318273E+08 -1.281768E+08	1.317607E+08 1.283759E+08
		11748	-7.940000E-03 7.940000E-03	-2.890537E+05 2.414535E+05	-1.338297E+08 -1.301791E+08	1.815169E+05 2.654404E+05	0.0779 0.1166	-2.888070E+05 2.419937E+05	-1.338299E+08 -1.301797E+08	1.336858E+08 1.303008E+08
		11749	-7.940000E-03 7.940000E-03	1.516846E+05 6.821918E+05	-1.298050E+08 -1.261545E+08	2.100168E+05 2.939402E+05	0.0926 0.1328	1.520240E+05 6.828730E+05	-1.298053E+08 -1.261551E+08	1.298814E+08 1.264980E+08
		11758	-7.940000E-03	2.102076E+04	-1.298265E+08	~1.593089E+05	-0.0703	2.121621E+04	-1.298267E+08	1.298373E+08

0

Tegangan yang terjadi pada elemen pipa

Pembebanan operasional dengan amplitudo kelengkungan awal 0.3 meter

90 bars 75 °C LOAD STEP = 1.00000E+00

STRESSES IN QUADRILATERAL ELEMENTS (QUADR)

ELEMENT ID	GRID-ID	FIBRE DISTANCE	STRESSES NORMAL-X	IN ELEMENT CO NORMAL-Y	ORD SYSTEM SHEAR-XY	PRINCIP ANGLE	AL STRESSES (ZE MAJOR	ERO SHEAR) MINOR	VON MISES
11066	CEN/4	-7.940000E-03 7.940000E-03	-2.464455E+06 2.590982E+06	-3.499588E+08 -3.321152E+08	-1.056456E+05 -2.327309E+05	-0.0174 -0.0398	-2.464423E+06 2.591144E+06	-3.499589E+08 -3.321154E+08	3.487332E+08 3.334185E+08
	12815	-7.940000E-03 7.940000E-03	-3.686416E+06 1.369022E+06	-3,591056E+08 -3,412620E+08	8.357812E+05 7.086959E+05	0.1347 0.1185	-3.684451E+06 1.370488E+06	-3.591075E+08 -3.412634E+08	3.572796E+08 3.419507E+08
	12816	-7.940000E-03 7.940000E-03	-1.795408E+06 3.260030E+06	-3.410624E+08 -3.232188E+08	5.331174E+05 4.060321E+05	0.0900 0.0713	-1.794570E+06 3.260535E+06	-3.410632E+08 -3.232193E+08	3.401695E+08 3.248618E+08
	12825	-7.940000E-03 7.940000E-03	-1.242495E+06 3.812943E+06	-3.408121E+08 -3.229685E+08	-1.047072E+06 -1.174158E+06	-0.1767 -0.2059	-1.239266E+06 3.817162E+06	-3.408154E+08 -3.229727E+08	3.401974E+08 3.248981E+08
	12824	-7.940000E-03 7.940000E-03	-3.133503E+06 1.921935E+06	-3,588553E+08 -3,410117E+08	-7.444086E+05 -8.714939E+05	-0.1199 -0.1456	-3.131945E+06 1.924149E+06	-3.588569E+08 -3.410139E+08	3.573012E+08 3.419801E+08

90 bars 84 °C

LOAD STEP = 1.00000E+00 STRESSES IN QUADRILATERAL ELEMENTS (QUADR)

	ELEMENT ID	GRID-ID	FIBRE DISTANCE	STRESSES NORMAL-X	IN ELEMENT COOP NORMAL-Y	RD SYSTEM SHEAR-XY	PRINCIPA ANGLE	L STRESSES (ZI MAJOR	ERO SHEAR) MINOR	VON MISES
0	11066	CEN/4	-7.940000E-03 7.940000E-03	-3.106923E+06 3.266435E+06	-4.411908E+08 - -4.186955E+08 -	-1.331867E+05 -2.934023E+05	-0.0174 -0.0398	-3.106883E+06 3.266639E+06	-4.411909E+08 -4.186957E+08	4.396457E+08 4.203386E+08
		12815	-7.940000E-03 7.940000E-03	-4.647441E+06 1.725917E+06	-4.527221E+08 -4.302268E+08	1.053664E+06 8.934484E+05	0.1347 0.1185	-4.644963E+06 1.727765E+06	-4.527245E+08 -4.302286E+08	4.504200E+08 4.310951E+08

Lampiran V : Output Tegangan

90 bars 90 °C

LO	AD STEP =	1.00000E	+00 STRESS	ES IN QU	JADRILA	FERAL EL	EMENT	S (QUAD	R)	
	ELEMENT ID	GRID-ID	FIBRE DISTANCE	STRESSES NORMAL-X	IN ELEMENT COO NORMAL-Y	ORD SYSTEM SHEAR-XY	PRINCIP ANGLE	AL STRESSES (Z MAJOR	ERO SHEAR) MINOR	VON MISES
0	11066	CEN/4	-7.940000E-03 7.940000E-03	-3.535230E+06 3.716731E+06	-5.020115E+08 -4.764150E+08	-1.515472E+05 -3.338495E+05	-0.0174 -0.0398	-3.535184E+06 3.716963E+06	-5.020115E+08 -4.764153E+08	5.002533E+08 4.782846E+08
		12815	-7.940000E-03 7.940000E-03	-5.288117E+06 1.963844E+06	-5.151323E+08 -4.895359E+08	1.198918E+06 1.016615E+06	0.1347 0.1185	-5.285297E+06 1.965947E+06	-5.151351E+08 -4.895380E+08	5.125129E+08 4.905239E+08
		12816	-7.940000E-03 7.940000E-03	-2.575490E+06 4.676471E+06	-4.892496E+08 -4.636532E+08	7.647499E+05 5.824476E+05	0.0900 0.0713	-2.574288E+06 4.677196E+06	-4.892508E+08 -4.636539E+08	4.879687E+08 4.660101E+08
		12825	-7.940000E-03 7.940000E-03	-1.782343E+06 5.469618E+06	-4.888906E+08 -4.632942E+08	-1.502012E+06 -1.684314E+06	-0.1767 -0.2059	-1.777712E+06 5.475669E+06	-4.888952E+08 -4.633002E+08	4,880088E+08 4,660622E+08
		12824	-7.940000E-03 7.940000E-03	-4.494970E+06 2.756991E+06	~5.147733E+08 -4.891769E+08	-1.067844E+06 -1.250147E+06	-0.1199 -0.1456	-4.492735E+06 2.760168E+06	-5.147756E+08 -4.891801E+08	5.125440E+08 4.905660E+08

100 bars 75 °C

LOAD STEP = 1.00000E+00

	ELEMENT ID	GRID-ID	FIBRE DISTANCE	STRESSES NORMAL-X	IN ELEMENT COO NORMAL-Y	ORD SYSTEM SHEAR-XY	PRINCIP ANGLE	AL STRESSES (ZI MAJOR	ERO SHEAR) MINOR	VON MISES
0	11066	CEN/4	-7.940000E-03 7.940000E-03	-2.341700E+06 2.461925E+06	-3.325273E+08 -3.155725E+08	-1.003833E+05 -2.211385E+05	-0.0174 -0.0398	-2.341670E+06 2.462078E+06	-3.325273E+08 -3.155726E+08	3.313627E+08 3.168108E+08
		12815	-7.940000E-03 7.940000E-03	-3.502794E+06 1.300830E+06	-3.412184E+08 -3.242636E+08	7.941507E+05 6.733956E+05	0.1347 0.1185	-3.500927E+06 1.302223E+06	-3.412203E+08 -3.242650E+08	3.394834E+08 3.249180E+08
		12816	-7.940000E-03 7.940000E-03	-1.705978E+06 3.097647E+06	-3.240740E+08 -3.071191E+08	5.065627E+05 3.858075E+05	0.0900 0.0713	-1.705182E+06 3.098127E+06	-3.240748E+08 -3.071196E+08	3,232255E+08 3,086804E+08
		10005	7 9400008-03	-1 1906068+06	-3 238362E+08	~9.949174E+05	-0.1767	-1.177538E+06	-3.238392E+08	3.232521E+08

Lampiran V : Output Tegangan

<u>120 bars 105 °C</u> LOAD STEP =	1.00000E	+00 STRESS	ES IN QU	JADRILAJ	TERAL EL	EMENT	S (QUAD	R)	
ELEMENT ID	GRID-ID	FIBRE DISTANCE	STRESSES NORMAL-X	IN ELEMENT COO NORMAL-Y	ORD SYSTEM SHEAR-XY	PRINCIP ANGLE	AL STRESSES (2 MAJOR	ERO SHEAR) MINOR	VON MISES
0 11066	CEN/4	-7.940000E-03 7.940000E-03	-4.237738E+06 4.455307E+06	-6.017694E+08 -5.710866E+08	-1.816621E+05 -4.001909E+05	-0.0174 -0.0398	-4.237683E+06 4.455585E+06	-6.017695E+08 -5.710868E+08	5.996618E+08 5.733276E+08
	12815	-7.940000E-03 7.940000E-03	-6.338953E+06 2.354093E+06	-6.174976E+08 -5.868147E+08	1.437162E+06 1.218634E+06	0.1347 0.1185	-6.335573E+06 2.356613E+06	-6.175010E+08 -5.868173E+08	6.143577E+08 5.879991E+08
	12816	-7.940000E-03 7.940000E-03	-3.087282E+06 5.605763E+06	-5.864716E+08 -5.557887E+08	9.167182E+05 6.981893E+05	0.0900 0.0713	-3.085842E+06 5.606631E+06	-5.864730E+08 -5.557896E+08	5.849361E+08 5.586140E+08
	12825	-7.940000E-03 7.940000E-03	-2.136524E+06 6.556521E+06	-5.860412E+08 -5.553584E+08	-1.800487E+06 -2.019015E+06	-0.1767 -0.2059	-2.130972E+06 6.563775E+06	-5.860468E+08 -5.553656E+08	5.849842E+08 5.586764E+08
	12824	-7.940000E-03 7.940000E-03	-5.388195E+06 3.304850E+06	-6.170673E+08 -5.863844E+08	-1.280042E+06 -1.498571E+06	-0.1199 -0.1456	-5.385516E+06 3.308659E+06	-6.170700E+08	6.143949E+08 5.880495E+08

Pembebanan operasional pada amplitudo kelengkungan awal 0,2 meter

90 bars 75 °C

LOAD STEP = 1.00000E+00

	ELEMENT ID	GRID-ID	FIBRE DISTANCE	STRESSES IN ELEMENT COO NORMAL-X NORMAL-Y	ORD SYSTEM SHEAR-XY	PRINCIPA ANGLE	AL STRESSES (ZEI MAJOR	RO SHEAR) MINOR	VON MISES
0	10266	CEN/4	-7.940000E-03 7.940000E-03	-1.299332E+06 -2.724078E+08 1.356985E+06 -2.608508E+08	7.057527E+04 1.502921E+05	0.0149 0.0328	-1.299313E+06 - 1.357071E+06 -	-2.724079E+08 -2.608508E+08	2.717605E+08 2.615320E+08
		11867	-7.940000E-03 7.940000E-03	-1.743120E+06 ~2.782535E+08 9.131971E+05 ~2.666964E+08	4.930528E+05 5.727696E+05	0.1022 0.1226	-1,742241E+06 9.144230E+05	-2.782544E+08 -2.666976E+08	2.773874E+08 2.671560E+08

90 bars 84°C

LOAD STEP = 1.00000E+00

STRESSES IN QUADRILATERAL ELEMENTS (QUADR)

ELEMENT ID	GRID-ID	FIBRE DISTANCE	STRESSES IN ELEMENT COO NORMAL-X NORMAL-Y	ORD SYSTEM SHEAR-XY	PRINCIP. ANGLE	AL STRESSES (ZE MAJOR	TRO SHEAR MINOR	VON MISES
102.66	CEN/4	-7.940000E-03 7.940000E-03	-1.638059E+06 -3.434226E+08 1.710742E+06 -3.288529E+08	8.897377E+04 1.894723E+05	0.0149 0.0328	-1.638036E+06 1.710851E+06	-3.434228E+38 -3.288530E+38	3.426068E+08 3.297117E+08
	11867	-7.940000E-03 7.940000E-03	-2.197540E+06 -3.507924E+08 1.151262E+06 -3.362224E+08	6.215884E+05 7.220869E+05	0.1022 0.1226	-2.196432E+06 1.152807E+06	-3.507935E+08 -3.362240E+08	3.497004E+08 3.368019E+08
	11868	-7.9400003-03 7.9400003-03	-6.258641E+05 -3.358475E+08 2.722938E+06 -3.212775E+08	8.696456E+05 9.701441E+05	0.1486 0.1716	-6.236080E+05 2.725842E+06	-3.358498E+08 -3.212804E+08	3.355384E+08 3.226520E+08
	11877	-7.9400003-03 7.9400005-03	-1.078463E+06 -3.36053.E+08 2.270339E+06 -3.214832E+08	~4.436484E+05 ~3.431499E+05	-0.0759 -0.0607	-1.077875E+06 2.270703E+06	-3.360537E+08 -3.214835E+08	3.35516.E+08 3.226249E+08
	11876	-7.940000E-03	-2.650095E+06 -3.509980E+08 6.987070E+05 -3.364280E+08	-6.917283E+05 -5.912298E+05	-0.1138 -0.1005	-2.648721E+06 6.997439E+05	-3.509993E+38 -3.364290E+38	3.496825E+08 3.367795E+08

100 bars 75 °C

	LOAD STE	P = 1.00	00006+00							
	ELEMENT ID	GRID-ID	S T R E S S FIBRE DISTANCE	ES IN QU STRESSES NORMAL-X	A D R I L A T IN ELEMENT CC NOFMAL-Y	SHEAR-XY	E M E N T PRINCI ANGLE	S (QUAD) PAL STRESSES (2 MAJOR	() ERO SHEAR) MINOR	VON MISES
0	102.66	CEN/4	-7.940000E-03 7.940000E-03	-1.234612E+06 1.289393E+06	~2.588391E+08 -2.478577E+08	6.705989E+04 1.428060E+05	0.0149 0.0328	-1.234594E+06 1.289475E+06	-2.588392E+38 -2.478578E+38	2.58224.E+08 2.485050E+08
		11867	-7.940000E-03 7.940000E-03	-1.656294E+06 8.677104E+05	-2.643936E+08 -2.534122E+08	4_684936E+05 5_442398E+05	0.1022 0.1226	-1.655459E+06 8.688753E+05	-2.643944E+38 -2.534133E+38	2.635706E+08 2.538489E+08
		11868	-7.940000E-03 7.940000E-03	-4.717162E+05 2.052289E+06	-2.531296E+08 -2.421481E+08	6.554553E+05 7.312014E+05	0.1486 0.1716	-4.700153E+05 2.054473E+06	-2.531313E+08 -2.421503E+08	2.528966E+08 2.43184LE+08
		11077	7 9400002-03	-9 1284158415	-2 532846E+08	-3.343795E+05	-0.0759	-8.123986E+05	-2.532850E+08	2.528798E+08

Lampiran V : Output Tegangan

120 bars 105 °C

```
LOAD STEP = 1.00000E+00
```

STRESSES IN QUADRILATERAL ELEMENTS (QUADR)

ELEMENT ID	GRID-ID	FIBRE DISTANCE	STRESSES NORMAL-X	IN ELEMENT CO NORMAL-Y	ORD SYSTEM SHEAR-XY	PRINCIP ANGLE	AL STRESSES (ZERO MAJOR	SHEAR) MINOR	VON MISES
10266	CEN/4	-7.940000E-03 7.940000E-03	-2.234257E+D6 2.333395E+D6	-4.684171E+08 -4.485442E+08	1.213572E+05 2.584338E+05	0.0149 0.0328	-2.234226E+06 -4 2.333543E+06 -4	.684172E+08 .485443E+08	4.673040E+08 4.497156E+08
	11867	-7.940000E-03 7.940000E-03	-2.997370E+06 1.570282E+06	-4.784690E+08 -4.585960E+08	8.478258E+05 9.849023E+05	0.1022 0.1226	-2.995858E+06 -4 1.572390E+06 -4	.784705E+08 .585981E+08	4.769796E+08 4.593863E+08
	11868	-7.940000E-03 7.940000E-03	-8.536573E+05 3.713995E+06	-4.580846E+08 -4.382117E+08	1.186167E+06 1.323244E+06	0.1486 0.1716	-8.505801E+05 -4 3.717957E+06 -4	.580877E+08 .382156E+08	4.576630E+08 4.400864E+08
	11877	-7.940000E-03 7.940000E-03	-1.470986E+06 3.096666E+06	-4.583651E+08 -4.384922E+08	~6.051215E+05 -4.680449E+05	~0.0759 ~0.0607	-1.470185E+06 -4 3.097162E+06 -4	.583659E+08 .384927E+08	4.576326E+08 4.400494E+08
	11876	-7.940000E-03 7.940000E-03	-3.614639E+06 9.530128E+05	-4.787493E+08 -4.588764E+08	-9.434939E+05 -8.064174E+05	~0.1138 ~0.1005	-3.612766E+06 -4 9.544269E+05 -4	.787512E+08 .588778E+08	4.769551E+08 4.593558E+08

Pembebanan operasional pada amplitudo kelengkungan awal 0,1 meter

90 bars 75 °C

LOAD STEP = 1.00000E+00

STRESSES IN QUADRILATERAL ELEMENTS (QUADR)

	ELEMENT ID	GRID-ID	FIBRE DISTANCE	STRESSES NORMAL-X	IN ELEMENT COO NORMAL-Y	RD SYSTEM SHEAR-XY	PRINCIP ANGLE	AL STRESSES (Z) MAJOR	ERO SHEAR) MINOR	VON MISES
0	10316	CEN/4	-7.940000E-03 7.940000E-03	-2.003398E+05 5.972564E+05	~1.981970E+08 ~1.927085E+08	1.662244E+04 1.427980E+05	0.0048	-2.003385E+05 5.973618E+05	-1.981970E+08 -1.927086E+08	1.980969E+08 1.930080E+08
		11748	-7.940000E-03	-4.345806E+05	-2.012075E+08	2.729034E+05	0.0779	-4.342097E+05	-2.012079E+08	2,009912E+08

G

90 bars 84 °C

LOAD STEP = 1.00000E+00

STRESSES IN QUADRILATERAL ELEMENTS (QUADR)

ELEMENT ID	GRID-ID	FIBRE DISTANCE	STRESSES NORMAL-X	IN ELEMENT COO NORMAL-Y	DRD SYSTEM SHEAR-XY	PRINCIP. ANGLE	AL STRESSES (Z MAJOR	ERO SHEAR) MINOR	VON MISES
10316	CEN/4	-7.940000E-03 7.940000E-03	-2.933721E+05 8.746054E+05	-2.902341E+08 -2.821970E+08	2.434143E+04 2.091093E+05	0.0048 0.0423	-2.933700E+05 8.747599E+05	-2.902341E+08 -2.821971E+08	2.900875E+08 2.826355E+08
	11748	-7.940000E-03 7.940000E-03	-6.363877E+05 5.315898E+05	-2.946427E+08 -2.866056E+08	3.996321E+05 5.844000E+05	0.0779 0.1166	-6.358445E+05 5.327793E+05	-2.946432E+08 -2.866068E+08	2.943258E+08 2.868735E+08
	11749	-7.940000E-03 7.940000E-03	3.339525E+05 1.501930E+06	-2.857819E+08 -2.777447E+08	4.623780E+05 6.471459E+05	0.0926 0.1328	3.346997E+05 1.503430E+06	-2.857826E+08 -2.777462E+08	2.859501E+08 2.785010E+08
	11758	-7.940000E-03 7.940000E-03	4.627981E+04 1.21425?E+06	-2.858291E+08 -2.777920E+08	~3.507383E+05 ~1.659704E+05	-0.0703 -0.0341	4.671013E+04 1.214355E+06	-2.858295E+08 -2.777921E+08	2.858529E+08 2.784012E+08
	11757	-7.940000E-03 7.940000E-03	-9.252862E+05 2.426913E+05	-2.946917E+08 -2.866546E+08	-4.128165E+05 -2.280486E+05	-0.0805 -0.0455	-9.247061E+05 2.428725E+05	-2.946923E+08 -2.866547E+08	2.942310E+08 2.867763E+08

100 bars 75 °C

	ELEMENT ID	GRID-ID	FIBRE DISTANCE	STRESSES NORMAL-X	IN ELEMENT COO NORMAL-Y	RD SYSTEM SHEAR-XY	PRINCIP ANGLE	AL STRESSES (ZI MAJOR	ERO SHEAR; MINOR	VON MISES
D	10316	CEN/4	-7.940000E-03 7.940000E-03	-1.903609E+05 5.675068E+05	-1.883247E+08 -1.831096E+08	1.579447E+04 1.356852E+05	0.0048 0.0423	-1.903595E+05 5.676071E+05	-1.883247E+08 -1.831097E+08	1.882296E+08 1.833942E+08
		11748	-7.940000E-03 7.940000E-03	-4.129340E+05 3.44933?E+05	-1.911853E+08 -1.859703E+08	2.593100E+05 3.792007E+05	0.0779 0.1166	-4.125816E+05 3.457054E+05	-1.911857E+08 -1.859710E+08	1.909797E+08 1.861441E+08
		11749	-7.940000E-03	2.166924E+05 9.745600E+05	-1.854358E+08 -1.802207E+08	3.000241E+05 4.199148E+05	0.0926 0.1328	2.171772E+05 9.755332E+05	-1.854363E+08 -1.802217E+08	1.855449E+08 1.807114E+08

120 bars 105 °C

LOAD STEF = 1.00000E+00

STRESSES IN QUADRILATERAL ELEMENTS (QUADR)

ELEMENT ID	GRID-ID	FIBRE DISTANCE	STRESSES NOFMAL-X	IN ELEMENT CO NORMAL-Y	ORD SYSTEM SHEAR-XY	PRINCIP	AL STRESSES (ZE MAJOR	RO SHEAR) MINOR	VON MISES
10316	CEN/4	-7.940000E-03 7.940000E-03	-3.444930E+05 1.027008E+06	-3.408083E+08 -3.313707E+08	2.358300E+04 2.455473E+05	0.0048 0.0423	-3.444907E+05 1.027190E+06	-3.408083E+08 -3.313708E+08	3.406362E+08 3.318856E+08
	11748	-7.940000E-03 7.940000E-03	-7.472803E+05 6.242210E+05	-3.459851E+08 -3.365475E+08	4_692692E+05 6_362335E+05	0.0779 0.1166	-7.466424E+05 6.256177E+05	-3.459857E+08 -3.365489E+08	3.456130E+08 3.368621E+08
	11749	-7.940000E-03 7.940000E-03	3.921448E+05 1.763646E+06	-3.355802E+08 -3.261426E+08	5_429489E+05 7_599131E+05	0.0926 0.1328	3.930222E+05 1.765407E+06	-3.35581.E+08 -3.261444E+08	3,357778E+08 3.270307E+08
	11758	-7.940000E-03 7.940000E-03	5.434422E+04 1.425846E+06	-3.356357E+08 -3.261981E+08	~4.118556E+05 ~1.948913E+05	~0.0703 -0.0341	5.484952E+04 1.425961E+06	-3.356362E+08 -3.261982E+08	3.356636E+08 3.269135E+08
	11757	-7.940000E-03	-1.086520E+06 2.849810E+05	-3.460426E+08	-4_347511E+05 -2_677868E+05	-0.0805 -0.0455	-1.085839E+06 2.851939E+05	-3.460433E+08 -3.366052E+08	3.455017E+08 3.367479E+08

Tegangan yang dihasilkan pada permodelan bergelombang

Von mises pipa dua panjang gelombang

LOAD STEP = 1.00000E+00

STRESSES IN QUADRILATERAL ELEMENTS (QUADR)

0	ELEMENT ID 31069	GRID-ID CEN/4	FIBRE DISTANCE -7.940000E-03 7.940000E-03	STRESSES NORMAL-X -1.318217E+08 1.559047E+08	IN ELEMENT COO NORMAL-Y -3.848593E+08 -3.436053E+08	DRD SYSTEM SHEAR-XY 2.350072E+06 -2.492158E+07	PRINCIP ANGLE 0.5321 -2.8492	AL STRESSES (ZI MAJOR -1.317999E+08 1.571450E+08	ERO SHEAR) MINOR -3.848812E+08 -3.448457E+08	VON MISES 3.387882E+08 4.447514E+08
		36980	-7.940000E-03 7.940000E-03	-1.426001E+08 1.451263E+08	-3.995178E+08 -3.582638E+08	1.692069E+07 -1.035096E+07	3.7519 -1.1775	-1.414905E+08 1.453390E+08	-4.006274E+08 -3.584766E+08	3.519047E+08 4.491431E+08
		36981	-7.940000E-03 7.940000E-03	-1.427591E+08 1.449673E+08	-3.953776E+08 -3.541236E+08	~1.250115E+07 -3.977280E+07	-2.8262 -4.5278	-1.421420E+08 1.481169E+08	-3.959947E+08 -3.572732E+08	3.474603E+08 4.500011E+08
		36988	-7.940000E-03 7.940000E-03	-1.210433E+08 1.666831E+08	-3.702008E+08 -3.289469E+08	-1.222055E+07 -3.949220E+07	-2.8013 -4.5273	-1.204454E+08 1.698101E+08	-3.707988E+08 -3.320739E+08	3.276245E+08 4.421516E+08
		36987	-7.940000E-03 7.940000E-03	-1.208843E+08 1.668421E+08	-3.743411E+08 -3.330871E+08	1.720129E+07 -1.007036E+07	3.8649 -1.1535	-1.197222E+08 1.670448E+08	-3.755031E+08 -3.332899E+08	3.322348E+08 4.412035E+08

Vonmis	ses pipa	satu	seter	ngah	i pa	anja	ang	geld	omba	ang																				
I	LOAD STEP	=	1.0000	00E+	+00																									
				S 1	C R	E :	5 S	ES	1	[N	Q	U I	AI	R	IL	A	ΤE	RAI	(I	E L	Ε	М	EN	T S	(QU.	ADI	5)		
EI	LEMENT			FI	BRE	3				STRE	SSES	II	NE	ELEN	ENT	co	ORD	SYSTE	M			P	RIN	CIPAL	STR	ESSE	s (ZI	IRO	SHEAR)	

ID 28597	GRID-ID CEN/4	DISTANCE -7.940000E-03 7.940000E-03	NORMAL-X 6.172649E+06 -9.921584E+05	NORMAL-Y -2.923060E+08 -3.069180E+08	SHEAR-XY -2.615698E+05 4.957113E+05	ANGLE -0.0502 0.0928	MAJOR 6.172879E+06 -9.913552E+05	MINOR -2.923062E+08 -3.069188E+08	VON MISES 2.954411E+08 3.064243E+08
	34091	-7.940000E-03 7.940000E-03	1.036788E+07 3.203071E+06	-2.944128E+08 -3.090248E+08	-4.574091E+06 -3.816810E+06	-0.8596 -0.7003	1.043651E+07 3.249723E+06	-2.944815E+08 -3.090714E+08	2.998360E+08 3.107090E+08

.

vonmises pipa satu panjang gelombang

LOAD STE	SP = 1.00	STRESS	ES IN QUAD	RILATERA	AL ELEMEN	TS (QUADI	R)	
ELEMENT ID	GRID-ID	FIBRE DISTANCE	STRESSES IN EL NORMAL-X NO	EMENT COORD SYS RMAL-Y SHE	STEM PRINC EAR-XY ANGLE	IPAL STRESSES (ZI MAJOR	ERO SHEAR) MINOR	VON MISES
656	CEN/4	-7.940000E-03 7.940000E-03	-5.033903E+07 -2.48 -8.325410E+07 -3.61	2980E+08 4.979 1749E+08 1.500	9618E+05 0.144 0359E+06 0.309	1 -5.033778E+07 3 -8.324600E+07	-2.482992E+08 -3.611830E+08	2.273490E+08 3.275912E+08
	971	-7.940000E-03 7.940000E-03	-8.610450E+07 -2.53 -1.190196E+08 -3.66	8839E+08 2.449 7608E+08 3.45	9126E+06 0.836 1524E+06 0.798	51 -8.606875E+07 50 -1.189715E+08	-2.539196E+08 -3.668088E+08	2.236704E+08 3.241345E+08
	972	-7.940000E-03 7.940000E-03	-7.847902E+07 -2.40 -1.113941E+08 -3.53	8378E+08 4.752 7147E+08 5.754	2296E+06 1.675 4693E+06 1.359	2 -7.834004E+07 -1.112575E+08	-2.409768E+08 -3.538513E+08	2.129057E+08 3.134013E+08
	981	-7.940000E-03 7.940000E-03	-1.457356E+07 -2.42 -4.748863E+07 -3.55	7121E+08 -1.45 5890E+08 -4.50	3203E+060.364 3053E+050.083	19 -1.456430E+07 18 -4.748797E+07	-2.427214E+08 -3.555897E+08	2.357768E+08 3.343843E+08
	980	-7.940000E-03	-2.219903E+07 -2.55 -5.511410E+07 -3.68	7582E+08 -3.75 6350E+08 -2.75	6372E+06 -0.921 3974E+06 -0.503	.2 -2.213863E+07 32 -5.508991E+07	-2.558186E+08 -3.686592E+08	2.454991E+08 3.444345E+08