Peramalan Permintaan Tepung Terigu Di PT.XYZ Menggunakan Metode Artificial Neural Network

Baskoro, Sigit Tri (2018) Peramalan Permintaan Tepung Terigu Di PT.XYZ Menggunakan Metode Artificial Neural Network. Undergraduate thesis, Institut Teknologi Sepuluh Nopember.

[img] Text
05211440000047_Undergraduate_Theses.pdf - Published Version
Restricted to Repository staff only

Download (1MB)

Abstract

Tepung terigu merupakan salah satu kebutuhan pokok masyarakat Indonesia. Tepung terigu memegang peran penting dalam program pemerintah untuk mempertahankan ketahanan pangan Indonesia. Tepung terigu termasuk dalam 11 jenis bahan pokok yang dijaga ketersediaan dan harganya oleh Pemerintah. Ketersediaan tepung perlu diperhatikan setiap harinya untuk mendukung program pemerintah. Dengan tersedianya produksi tepung terigu, dibutuhkan pula tempat penyimpanan tepung terigu yang telah di produksi. Adanya tempat penyimpanan hasil produksi membuat perusahaan harus dapat memaksimalkan penggunaan tempat penyimpanan. Hal ini disebabkan karena penggunaan tempat penyimpanan merupakan tambahan biaya bagi perusahaan. Peramalan terhadap kebutuhan tepung terigu dapat memberikan gambaran kepada pemerintah atau Industri produksi tepung dalam mempersiapkan produksi tepung terigu yang akan dihasilkan serta mempersiapkan gudang penyimpanan tepung terigu sehingga dapat menekan biaya operasional gudang. Artificial Neural Network merupakan tiruan jaringan syaraf manusia yang tersusun atas unit – unit kecil yang memproses data. Arsitektur jaringan syaraf tiruan ini memiliki tiga buah lapisan, yaitu input layer, hidden layer, dan output layer. Dengan mengatur jumlah tiap lapisan, dapat dihasilkan model yang optimal untuk menyelesaikan masalah. Hasil yang didapatkan dari penelitian ini adalah peramalan permintaan tepung terigu dengan menggunakan model terbaik yang telah didapatkan yaitu dengan nilai MAPE sebesar 22% dan tergolong layak untuk dipakai. ============== Wheat flour is one of the basic needs of the people of Indonesia. Wheat flour contribute an important role in government programs to maintain Indonesia's food security. Wheat flour is included in 11 types of basic commodities that are kept available and priced by the Government. The availability of flour needs to be addressed daily to support government programs. With the availability of wheat flour production, it is also necessary place of storage of wheat flour that has been in production. The existence of storage place of production makes the company should be able to maximize the use of storage. This is because the use of storage is an additional cost for the company. Forecasting of wheat flour needs can give an idea to the government or flour production industry in preparing the production of wheat flour to be produced as well as preparing the warehouse of flour storage so as to reduce the warehouse operational costs. Artificial Neural Network is an imitation of human neural network composed of small units that process data. Artificial neural network architecture has three layers, the input layer, hidden layer, and output layer. By adjusting the number of layers, an optimal model can be generated to solve the problem. Artificial Neural Network has been widely used in various fields such as, economics, medicine, engineering, and agriculture. Artificial Neural Network gives users flexibility to suit their needs. The result obtained from this research is forecasting the demand of wheat flour using the best model that has been obtained has a MAPE value of 22%.

Item Type: Thesis (Undergraduate)
Additional Information: RSSI 006.3 Bas p-1
Uncontrolled Keywords: Peramalan, Permintaan Kebutuhan, Artificial Neural Network, Forecasting, Demand Requirement
Subjects: Q Science > QA Mathematics > QA76.87 Neural networks (Computer Science)
T Technology > T Technology (General) > T174 Technological forecasting
Divisions: Faculty of Information and Communication Technology > Information Systems > (S1) Undergraduate Theses
Depositing User: Sigit Tri Baskoro
Date Deposited: 07 Nov 2018 06:39
Last Modified: 07 Nov 2018 06:39
URI: http://repository.its.ac.id/id/eprint/52878

Actions (login required)

View Item View Item