Evaluasi Keandalan Manusia pada Ruang Kemudi Mobil Listrik Ezzy Dengan Metode HEART

Muhammad, Reza Akbar (2018) Evaluasi Keandalan Manusia pada Ruang Kemudi Mobil Listrik Ezzy Dengan Metode HEART. Undergraduate thesis, Institut Teknologi Sepuluh Nopember.

[img] Text
02411340000128-Undergraduate_Theses.pdf - Published Version
Restricted to Repository staff only

Download (2MB) | Request a copy

Abstract

Mobil Listrik Nasional atau MOLINA merupakan riset teknologi Nasional di bidang otomotif. Institut Teknologi Sepuluh Nopember (ITS) Surabaya adalah salah satu dari perguruan tinggi negeri di Indonesia yang mengembangkan proyek Molina. Salah satu proyek Molina ITS adalah mobil listrik Ezzy yang saat ini dalam tahap pengembangan. Ruang kemudi merupakan salah satu bagian mobil yang belum pernah dievaluasi sehingga perlu dilakukan evaluasi. Faktor manusia memegang peranan penting pada interaksi antara pengemudi dengan mobil. Sedangkan manusia memiliki peluang untuk menyebabkan kesalahan atau error. Evaluasi keandalan pada desain mobil perlu dilakukan untuk memitigasi terjadinya human error. Untuk mengurangi human error, ruang kemudi harus dirancang agar pengendara dapat mengatur eye-off road timing, pola dan frekuensi mengemudi. Penelitian ini melakukan evaluasi keandalan manusia pada proses mengemudi di ruang kemudi mobil listrik Ezzy. Analisa keandalan manusia dilakukan dengan menggunakan metode Human Error Assessment and Reduction Technique (HEART). Setelah dilakukan perhitungan nilai human error probability kemudian dilanjutkan dengan perhitungan nilai keandalan manusia pada proses mengemudi mobil listrik Ezzy. Terdapat 6 subtask yang memiliki nilai keandalan manusia di bawah 80%, seperti menekan tombol maju dan mundur dengan nilai keandalan 75%, memegang stir kemudi dengan nilai keandalan 76%, menginjak pedal rem dan gas dengan nilai masing-masing 74% dan 75%, serta melihat speedometer dan indikator baterai dengan nilai masing-masing 53% dan 41%. Pada aspek kritis tersebut dilakukan rancangan perbaikan untuk meningkatkan keandalan manusia pada saat mengemudi di ruang kemudi mobil listrik Ezzy. ============= National Electric Car or MOLINA is a national technology research in the automotive field. Sepuluh Nopember Institute of Technology (ITS) Surabaya is one of the state universities in Indonesia that developed the Molina project. One of Molina ITS project is Ezzy electric car which is currently in development stage. The steering room is one part of the car that has never been evaluated so it needs to be evaluated. Human factors play an important role in the interaction between the driver and the car. While humans have a chance to cause mistakes or errors. Evaluation of reliability in car design needs to be done to mitigate the occurrence of human error. To reduce human error, the steering wheel should be designed so that the rider can adjust the eye-off road timing, driving pattern and frequency. This study evaluates human reliability in the driving process in the electric car space of Ezzy. Analysis of human reliability is done by using Human Error Assessment and Reduction Technique (HEART) method. After the calculation of human error probability value then continued with the calculation of the value of human reliability in the driving process of electric cars Ezzy. There are 6 subtasks that have human reliability values below 80%, such as pushing forward and backward buttons with 75% reliability value, holding steering wheel with reliability value of 76%, stepping on brake and gas pedals with grades respectively 74% and 75% and see the speedometer and battery indicator with the value of 53% and 41% respectively. In this critical aspect, there is an improved design to improve human reliability while driving in the electric car space of Ezzy.

Item Type: Thesis (Undergraduate)
Uncontrolled Keywords: Molina, Cockpit, Human Reliability, Human Error, HEART, uang Kemudi, Keandalan Manusia
Subjects: T Technology > TS Manufactures > TS171 Product design
T Technology > TS Manufactures > TS173 Reliability of industrial products
Divisions: Faculty of Industrial Technology > Industrial Engineering > (S1) Undergraduate Theses
Depositing User: Muhammad Reza Akbar
Date Deposited: 22 Nov 2018 05:58
Last Modified: 22 Nov 2018 05:58
URI: http://repository.its.ac.id/id/eprint/53029

Actions (login required)

View Item View Item