Adaptif Koordinasi Rele Proteksi Dengan Pembangkit Tersebar Menggunakan Metode Neural Network-Firefly

Lestari, Destina Surya (2018) Adaptif Koordinasi Rele Proteksi Dengan Pembangkit Tersebar Menggunakan Metode Neural Network-Firefly. Masters thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 07111550010008_Master_Thesis.pdf] Text
07111550010008_Master_Thesis.pdf - Accepted Version

Download (3MB)

Abstract

Penambahan Distributed Generation (DG) ke sistem tenaga memberikan beberapa dampak perubahan pada jaringan distribusi. Dengan penambahan DG, penting untuk memastikan sistem proteksi yang cepat dan andal untuk menghindari pemutusan DG yang tidak disengaja bila terjadi gangguan pada jaringan distribusi. Dampak lain penambahan DG adalah proteksi terhadap sistem perlu dikoordinasikan lagi. Dalam penelitian ini, diusulkan koordinasi proteksi yang adaptif dan optimal menggunakan Algoritma Firefly dan Artificial Neural Network (ANN) untuk mendapatkan koordinasi yang optimal. Penelitian ini diuji pada sistem loop IEEE 9 bus yang dimodifikasi dengan penambahan DG. Optimisasi diuji dalam empat kombinasi kondisi yang berbeda. Optimasi menggunakan algoritma Firefly akan didapatkan nilai Time Dial Setting (TDS), Ipickup, dan total waktu operasi yang paling cepat. Algoritma backpropagation digunakan dalam proses pelatihan ANN. Proses pelatihan menggunakan input ISC maksimum yang diambil berdasarkan kombinasi pembangkitan, lokasi gangguan, dan jenis gangguan. Nilai TDS dan Ipickup hasil optimisasi Firefly digunakan sebagai target pelatihan ANN. Setelah dilakukan pengujian, hasil yang didapat sesuai dengan target data. Hasil kedua metode tersebut telah dibuktikan dengan simulasi ETAP yang menunjukkan bahwa Firefly-ANN adalah metode yang sesuai untuk memodelkan sistem koordinasi relay adaptif dan optimal.
======================================================================================================
The addition of Distributed Generation (DG) to the power system provides some of the impact of changes on the distribution network. With the addition of DG, it is important to ensure a fast and reliable protection system to avoid accidental disconnection of DG when there is disruption to the distribution network. Another impact of the addition of DG is that protection on the system needs to be coordinated again. In this research, it is proposed coordination of protection which is adaptive and optimal used Firefly Algorithm (FA) and Artificial Neural Network (ANN) to obtain optimal coordination. This study is tested on a modified IEEE 9 bus loop system with the addition of DG. Optimization is tested in four different combinations of conditions. Optimization using firefly algorithm will get the value of Time Dial Setting (TDS), Pickup Current (Ipickup) , and total of the fastest operation time. Backpropagation algorithm used in ANN training process. The training process uses the input of ISC max taken based on the combination of generation, the fault location, and the type of fault. The TDS and Ipickup values of FA optimization results are used as ANN training targets. After testing, the results obtained in accordance with the target data. The results of both method have been proved by the ETAP simulation which shows that the FA-ANN is a suiTabel method to model the adaptive and optimal relay coordination system.

Item Type: Thesis (Masters)
Additional Information: RTE 621.319 Les a-1
Uncontrolled Keywords: Koordinasi proteksi adapif, Pembangkit Tersebar (DG), Algoritma Firefly, Artificial Neural Network(ANN) ========================================================= Adaptive Coordination Protection, Distributed Generation (DG), Artificial Neural Network(ANN), Firefly Algorithm
Subjects: L Education > LG Individual institutions (Asia. Africa)
Divisions: Faculty of Industrial Technology > Electrical Engineering > 20101-(S2) Master Thesis
Depositing User: Destina Surya Lestari
Date Deposited: 17 Jun 2021 20:55
Last Modified: 17 Jun 2021 20:55
URI: http://repository.its.ac.id/id/eprint/53984

Actions (login required)

View Item View Item