

TUGAS AKHIR - TF 141581

DESAIN SOLAR CHARGE CONTROLLER (SCC) DENGAN ALGORITMA INCREMENTAL CONDUCTANCE PADA BUOYWEATHER

KADEK SUNANTARA WIPAYANA NRP. 0231 14 40000 098

Dosen Pembimbing Dr. Ir. Syamsul Arifin, MT Murry Raditya, ST, MT

Departemen Teknik Fisika Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember Surabaya 2018

TUGAS AKHIR - TF141581

DESAIN SOLAR CHARGE CONTROLLER (SCC) DENGAN ALGORITMA INCREMENTAL CONDUCTANCE PADA BUOYWEATHER

KADEK SUNANTARA WIPAYANA NRP. 0231 14 40000 098

Dosen Pembimbing Dr. Ir. Syamsul Arifin, MT Murry Raditya, ST, MT

DEPARTEMEN TEKNIK FISIKA Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember Surabaya 2018

FINAL PROJECT - TF141581

DESIGN OF SOLAR CHARGE CONTROLLER (SCC) WITH INCREMENTAL CONDUCTANCE ALGORITHM FOR BUOYWEATHER

KADEK SUNANTARA WIPAYANA NRP. 0231 14 40000 098

Supervisor Dr. Ir. Syamsul Arifin, MT Murry Raditya, ST, MT

DEPARTMENT OF ENGINEERING PHYSICS Faculty of Industrial Technology Sepuluh Nopember Institute of Technology Surabaya 2018

PERNYATAAN BEBAS PLAGIASI

Saya yang bertanda tangan dibawah ini: Nama : Kadek Sunantara Wipayana NRP : 023114410000098 Departemen : Teknik Fisika FTI-ITS dengan ini menyatakan bahwa tugas akhir saya yang berjudul **"DESAIN SOLAR CHARGE CONTROLLER (SCC) DENGAN ALGORITMA INCREMENTAL CONDUCTANCE PADA BUOYWEATHER"** adalah bebas plagiasi. Apabila pernyataan ini terbukti tidak benar, maka saya bersedia menerima sanksi sesuai ketentuan yang berlaku.

Demikian surat pernyataan ini saya buat dengan sebenarbenarnya.

> Surabaya, Juli 2018 Yang membuat pernyataan,

Kadek Sunantara Wipayana

TUGAS AKHIR

DESAIN SOLAR CHARGE CONTROLLER (SCC) DENGAN ALGORITMA INCREMENTAL CONDUCTANCE PADA BUOYWEATHER

Oleh : Prov

Kadek Sunantara Wipayana NRP. 0231 14 40000 098

Surabaya, Juli 2018

Mengetahui/Menyetujui

Pembimbing I

Dr. Ir. Syamsul Arifin, MT NIP. 19630907 198903 1 004

Murry Raditya, ST, MT NIP. 1988201711055

DESAIN SOLAR CHARGE CONTROLLER (SCC) DENGAN ALGORITMA INCREMENTAL CONDUCTANCE PADA BUOYWEATHER

TUGAS AKHIR

Diajukan Untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Teknik pada

Bidang Studi Rakayasa Instrumentasi dan Kontrol Program Studi S-1 Departemen Teknik Fisika Fakultas Teknologi Industri Institut Teknolgi Sepuluh Nopember

> Oleh : Kadek Sunantara Wipayana NRP. 0231 14 40000 098

Disetujui Oleh Tim Penguji Tugas Akhir :

DESAIN SOLAR CHARGE CONTROLLER (SCC) DENGAN ALGORITMA INCREMENTAL CONDUCTANCE PADA BUOYWEATHER

Nama Mahasiswa	: Kadek Sunantara Wipayana
NRP	: 0231 14 40000 098
Departemen	: Teknik Fisika FTI-ITS
Dosen Pembimbing	: Dr. Ir. Syamsul Arifin, MT
0	Murry Raditya, ST, MT

Abstrak

Pembuatan desain dari sistem catu daya *photovoltaic* (PV) menggunakan solar charge controller (SCC) dengan algoritma incremental conductance (INC) dan baterai valve regulated lead acid (VRLA) pada Buoyweather Station Type II telah dilakukan dalam penelitian ini. Algoritma INC mencari titik daya maksimum modul PV pada berbagai kondisi yang diimplentasikan secara digital menggunakan mikrokontroler. Proteksi overcharging dan overdischarging dapat dilakukan dengan mengendalikan kedua solid state relay. Hasil desain dan penjejakan daya maksimum diverifikasi secara simulasi dan eksperimen. Perbedaan penjejakan nilai daya maksimum secara simulasi dan eksperimen dipengaruhi oleh pemodelan modul PV yang digunakan. Perbandingan kapasitas daya charging antara algoritma yang diterapkan dengan teknik constant voltage charging telah dilakukan. Hari otonomi dan efisiensi sistem dibahas pada penelitain ini. Desain SCC dapat sukses mengendalikan daya listrik ke beban instrumen selama berada pada perairan.

Kata kunci : Buoyweather, Incremental conductance, Solar charge controller

DESIGN OF SOLAR CHARGE CONTROLLER (SCC) WITH INCREMENTAL CONDUCTANCE ALGORITHM FOR BUOYWEATHER

Name	: Kadek Sunantara Wipayana
NRP	: 0231 14 40000 098
Department	: Teknik Fisika FTI-ITS
Supervisor	: Dr. Ir. Syamsul Arifin, MT
-	Murry Raditya, ST, MT

Abstract

The design of a photovoltaic (PV) power supply system using a solar charge controller (SCC) with an incremental conductance (INC) algorithm and a valve regulated lead acid (VRLA) battery in Buoyweather Station Type II was conducted in this study. The INC algorithm looks for the maximum power point of the PV module under various conditions that are implemented digitally using a microcontroller. overcharging and overdischarging protection can be done by controlling both solid state relays. The charge controlling and maximum power tracking results are verified by simulation and experiment. The difference in simulated and experimental maximum power value tracking is influenced by the modeling of the PV module used. Comparison of charging power capacity between algorithm applied with constant voltage charging technique has been done. Days of autonomy and system efficiency are discussed in this study. SCC design can successfully control electrical power to the instrument load while in the water.

Keywords: Buoyweather, Incremental conductance, Solar charge controller

KATA PENGANTAR

Puji syukur kehadirat Tuhan Yang Maha Esa atas rahmat dan karunia-Nya sehingga tugas akhir yang berjudul " **DESAIN** SOLAR CHARGE CONTROLLER (SCC) DENGAN ALGORITMA INCREMENTAL CONDUCTANCE PADA BUOYWEATHER" dapat diselesaikan dengan baik. Tugas akhir ini dikerjakan sebagai salah satu syarat kelulusan pada Jurusan Teknik Fisika, FTI, ITS. Tugas akhir ini tidak akan terwujud tanpa bantuan, dukungan, doa serta dorongan semangat dari semua pihak. Oleh karena itu, terima kasih saya ucapkan kepada :

- 1. Bapak Agus Muhammad Hatta, ST, M.Si, Ph.D selaku Ketua Departemen Teknik Fisika FTI-ITS dan dosen wali atas bimbingan dan arahannya selama ini.
- 2. Dr. Ir. Syamsul Arifin, MT dan Murry Raditya, ST, MT selaku dosen pembimbing yang telah sabar dalam memberikan dukungan, bimbingan dan arahan sehingga Tugas Akhir ini dapat diselesaikan dengan baik.
- 3. Andi Rahmadiansah, ST, MT dan Prof. Dr. Ir. Aulia Siti Aisjah, M.T. serta Dr. Suyanto, ST, MT. selaku dosen yang telah memberikan memberikan saran, tanggapan, dan bantuannya terhadap penelitian ini sehingga Tugas Akhir ini dapat disempurnakan.
- 4. Kedua orangtua serta seluruh keluarga atas dukungan, doa, serta semangat tiada henti sehingga tugas akhir ini dapat diselesaikan dengan baik dan tepat waktu.
- 5. Teman-teman tim Buoyweather Station Type II.
- 6. Teman-teman F49 sebagai keluarga terdekat yang selalu memberikan dukungan dan kebahagiaan selama 4 tahun perkuliahan ini.
- 7. Administrator Laboratorium Fisis, Laboratorium Rekayasa Bahan, dan Laboratorium Simulasi dan Komputasi atas segala bantuan dan fasilitas yang disediakan selama ini.
- 8. Seluruh dosen Teknik Fisika ITS yang telah membagikan ilmunya semasa perkuliahan.
- 9. Semua pihak yang tidak dapat disebutkan satu persatu.

Untuk dapat meningkatkan kualitas pada tulisan tugas akhir ini, penulis mengharapkan kritik dan saran yang membangun dan perbaikan lebih lanjut. Semoga tugas akhir ini dapat memberikan manfaat bagi penulis dan pembaca.

Surabaya, Juli 2018

Penulis

DAFTAR ISI

JUDUL TUGAS AKHIR	i
FINAL PROJECT TITLE	iii
PERNYATAAN BEBAS PLAGIASI	V
LEMBAR PENGESAHANError! Bookmark not de	fined.
LEMBAR PERSETUJUANError! Bookmark not de	fined.
ABSTRAK	xi
ABSTRACT	xiii
KATA PENGANTAR	XV
DAFTAR ISI	xvii
DAFTAR GAMBAR	xix
DAFTAR TABEL	xxii
BAB I PENDAHULUAN	1
1.1 Latar Belakang	1
1.2 Perumusan Masalah	2
1.3 Tujuan Penelitian	2
1.4 Batasan Masalah	3
BAB II TINJAUAN PUSTAKA	5
2.1 Photovoltaic	5
2.2 Maximum Power Point Tracking (MPPT)	10
2.3 Algoritma MPPT Incremental Conductance (INC)	12
2.4 Buck Converter	15
2.5 Buoy Laut	19
2.6 Baterai Valve Regulated Lead Acid (VRLA)	20
2.7 Solar Charge Controller	21
2.8 Arduino Nano	27

BAB III METODOLOGI PENELITIAN
3.1 Diagram Alir
3.2 Simulasi Sistem Solar Charge Controller32
3.3 Perancangan Sistem PV Dengan Incremental Conductance
3.4 Perancangan Sistem Solar Charger Controller52
BAB IV ANALISA DATA DAN PEMBAHASAN57
4.1 Simulasi Sistem Solar Charger Controller Berbasis Algoritma Incremental Conductance
4.2 Realisasi Sistem Solar Charge Controller Berbasis Algoritma Incremenal Conductance
4.3 Uji Perbandingan Sistem SCC Memakai Teknik Charge Regulation-INC & Teknik Constant Voltage
4.4 Uji Otonomi Sistem SCC dengan Algorimta INC Pada Beban Lampu 5W 12V78
4.5 Uji Sistem SCC Dengan Algorimta INC Pada Buoyweather Station Type II81
BAB V KESIMPULAN85
5.1 Kesimpulan85
5.2 Saran
DAFTAR RUJUKAN

DAFTAR GAMBAR

Gambar 2.1 Rangkaian ekuivalen PV6
Gambar 2.2 Kurva karakteristik <i>P-V</i> dan <i>I-V</i> tentang perubahan
(a-b) radiasi matahari; (c-d) temperatur permukaan sel9
Gambar 2.3 Penjejakan garis beban R _{eq} pada kurva <i>I-V</i> 12
Gambar 2.4 Dasar metode incremental conductance dalam
karakteristik kurva P-V14
Gambar 2.5 Algoritma MPPT incremental conductance dengan
direct method15
Gambar 2.6 Rangkaian ekuivalen buck converter (a) secara ideal
dalam operasi CCM, b) saat switch ON dan dioda posisi OFF, dan
c) saat <i>switch OFF</i> dan dioda posisi ON
Gambar 2.7 Desain wahana apung Buoyweather Station Type II
Gambar 2.8 Tegangan charging baterai lead acid pada variasi
state of charge24
Gambar 2.9 Voltase dan arus baterai pada proses <i>charging</i> dengan
empat fase <i>charge</i> 25
Gambar 2.10 Konsep teknik charging regulation
Gambar 2.11 Arduino Nano28
Gambar 3.1 Flowchart metodologi penelitian 31
Gambar 3.2 Diagram blok sistem catu daya pada Buoyweather
Station Type II
Gambar 3.3 Desain rangkaian simulasi karakteristik modul PV35
Gambar 3.4 Interface pada Simulink Matlab untuk pemodelan
modul PV
Gambar 3.5 Racangan desain simulasi buck converter
Gambar 3.6 Diagram blok sistem pengendalian sistem PV oleh
INC
Gambar 3.7 Rancangan desain sistem PV dengan INC42
Gambar 3.8 Diagram blok pengendalian arus pada sistem SCC
dengan teknik charging regulation44
Gambar 3.9 Desain simulasi sistem SCC45
Gambar 3.10 Flowchart sistem SCC
Gambar 3.11 Modul sensor arus ACS712-5A 49

Gambar 3.12 Modul sensor teganan voltage divider
Gambar 3.13 Modul Konverter XL401650
Gambar 3.14 Rangkaian sistem PV52
Gambar 3.15 Blok diagram (a) tahap daya sistem isolated
converter DC-DC; (b) kontrol tegangan sistem isolated converter
DC-DC
Gambar 3.16 Blok diagram DC-DC solid state relay (Arar, 2017)
Gambar 3.17 Rangkaian sistem solar charge controller
Gambar 4.1 Hasil pengujian akurasi pemodelan trial & error58
Gambar 4.2 Kurva karakteristik (a) I-V dan (b) P-V pemodelan
modul PV secara trial & error pada radiasi yang berbeda59
Gambar 4.3 Kurva karakteristik (a) I-V dan (b) P-V pemodelan
modul PV secara trial & error pada suhu yang berbeda60
Gambar 4.4 Hasil penjejakan incremenetal conductance pada (a)
radiasi 1000 ke 800 W/m ² (b) suhu 35 ke 25° C
Gambar 4.5 Hasil sistem SCC dengan INC saat charging 65
Gambar 4.6 Hasil pengujian sensor arus
Gambar 4.7 Hasil pengujian sensor tegangan
Gambar 4.8 Realisasi sistem SCC70
Gambar 4.9 Respon sistem SCC dalam (a) tegangan PV dan
baterai; (b) arus PV dan baterai71
Gambar 4.10 Hasil penjejakan daya maksimum oleh algoritma
INC (a) secara aktual dan (b) simulasi73
Gambar 4.11 Respon sistem SCC dengan INC dalam (a) tegangan
pv dan baterai; (b) arus PV dan baterai75
Gambar 4.12 Perbandingan respon sistem SCC dengan INC &
constant voltage dalam (a) arus & tegangan baterai (b) daya masuk
ke baterai77
Gambar 4.13 Respon sistem SCC (a) saat <i>charging</i> dan (b) saat
<i>discharging</i> beban lampu 5 W 12 V
Gambar 4.14 Respon sistem SCC pada Buoyweather Station Type
II di perairan
Gambar 4.15 Realisasi Sistem SCC Pada Buoyweather Station
Type II

DAFTAR TABEL

Tabel 2.1 Spesifikasi Arduino Nano (Arduino, 2018)
Tabel 3.1 Hasil pengkuran akurasi Ise pada pemodelan modul PV
dari datasheet 36
Tabel 3.2 Hasil pengukuran akurasi V_{oc} pada pemodelan modul
PV dari datasheet
Tabel 3.3 Spesifikasi modul PV 50 Wp datasheet dan hasil trial
& error
Tabel 3.4 Spesifikasi desain buck converter 39
Tabel 3.5 Spesifikasi instrumen pada Buoyweather Station Type
II
Tabel 3.6 Nilai variabel sistem SCC 48
Tabel 3.7 Spesifikasi modul konverter XL401650
Tabel 3.8 Spesifikasi isolated converter DC/DC DKW5-12S12
Tabel 3.9 Spesifikasi solid state relay DC-DC G3NA-D210B.55
Tabel 4.1 Hasil simulasi desain buck converter61
Tabel 4.2 Hasil simulasi penjejakan algoritma incremental
conductance
Tabel 4.3 Hasil pengujian konverter buck XL4016
Tabel 4.4 Hasil pengujian terhadap sistem SCC 81

DAFTAR SIMBOL

η	efisiensi konverter (%)
Δi_{Lmax}	ripple arus induktor maksimum (A)
α	junction material factor dari dioda
С	kapasitas nominal baterai (Ah)
C _{min}	nilai Kapasitor Minumum (F)
CC	constant current
CCM	continuous conduction mode
CV	constant voltaget
CVM	constant voltage method
Cons	konstanta pencarian step
D	duty cycle (%)
D(k)	<i>duty cycle</i> pada saat ke-k (%)
D(k – 1)	<i>duty cycle</i> pada saat ke- <i>k</i> -1 (%)
dI/dV	konduktansi inkremental dari modul photovoltaic
DCM	discontinuous conduction mode
DOD	deep of discharge (%)
DOP	deep cycle performance (%)
D _{max}	nilai <i>duty cycle</i> maksimal (%)
D_{min}	nilai <i>duty cycle</i> minimal (%)
e _{IC}	small marginal error pada algoritma incremental
	conductance
ESR	equivalent series resistor (ohm)
fs	Frekuensi switching pada konverter (Hz)
G	radiasi matahari (W/m ²)
G _{STC}	radiasi matahari (W/m ²) pada <i>standard test condition</i>
GND	ground
Ι	arus keluaran modul <i>photovoltaic</i> (A)
I/V	konduktansi sesaat dari modul photovoltaic (A)
I-V	current-voltage
Id	arus yang mengalir pada dioda (A)
I _{MP}	arus modul <i>photovoltaic</i> saat daya maksimum (A)
Io	arus saturasi dioda saat bias reverse (A)
I _{Omin}	arus keluaran konverter mininal (A)
Ipv	arus keluaran modul <i>photovoltaic</i> (A)
I _{SC}	arus short circuit (A)
~ ~	

I _{SC-STC}	arus short circuit pada standard test condition (A)
I _{TC}	arus kecil <i>trickle</i> (A)
INC	incremental conductance
K	konstanta boltzman (1,3806.10 ⁻²³ J.K ⁻¹)
Κ _I	koefisien temperature arus <i>short circuit</i> (A/ ⁰ C)
Kv	koefisien temperature tegangan open circuit
Ĺ	induktor yang digunakan (H)
L_{min}	nilai induktor minimal (H)
MPPT	maximum power point tracking
N_S	jumlah sell tersusun seri pada modul PV
P-V	power-voltage
P _{MAX}	daya maksimum yang terjadi pada modul
	photovoltaic
PV	photovoltaic
PWM	Pulse width modulator
q	muatan electron (1,6021765 X 10 ⁻¹⁹ C)
r_{C}	ESR kapasitor yang dipakai (ohm)
r_{Cmax}	ESR maksimum kapasitor (ohm)
R_{eq}	resistansi ekuivalen modul photovoltaic (Ohm)
R _{opt}	resistansi optimal modul photovoltaic (Ohm)
Rs	hambatan seri (Ohm)
R_P	hambatan <i>shunt</i> (Ohm)
SCC	solar charge controller
SOC	state of charge (%)
STC	standard test condition
Т	temperatur <i>p-n junction</i> (K)
T_{off}	lama waktu duty cycle bernilai low (detik)
T_{on}	lama waktu <i>duty cycle</i> bernilai <i>high</i> (detik)
T_{STC}	temperatur (K) pada standard test condition
V _{CHGENB}	tegangan ambang batas discharge (V)
V _{FLOAT}	tegangan <i>float</i> (V)
V_{in}	tegangan masukan konverter (V)
V_{MP}	tegangan modul <i>photovoltaic</i> saat daya maksimum (V)
V_O	tegangan keluaran konverter yang diperlukan (V)
Voc	tegangan open circuit (V)

V _{OC-STC}	tegangan open circuit (V) pada standard condition	test
Vout	tegangan keluaran konverter (V)	
V_r	tegangan <i>ripple</i> (V)	
VRLA	valve regulated lead acid	

BAB I PENDAHULUAN

1.1 Latar Belakang

Faktor cuaca merupakan salah satu hal yang mempengaruhi aktivitas manusia sehari-hari. Keadaan cuaca yang tidak baik dapat membahayakan manusia dalam melakukan aktivitasnya. Stasiun cuaca perlu didirikan untuk kepentingan tersebut dalam mendapatkan data cuaca secara kontinyu, sehingga dapat memprediksi cuaca yang akan terjadi. Stasiun cuaca perlu dipasang diseluruh tempat, seperti laut untuk mengambil data cuaca di laut. Hal tersebut dapat berguna sebagai penentu kelayakan pelayaran transportasi laut atau sebagai pendeteksi terjadi bencana alam seperti tsunami. Salah satu jenis stasiun cuaca yang mendeteksi cuaca di perairan adalah buoy laut. Sudah terdapat 22 buoy laut sudah tersebar di wilayah perairan Indonesia sejak tahun 2004, akan tetapi saat ini tidak mampu beroperasi karena kerusakan sensor akibat karat dan biaya perawatan yang mahal (BNPB, 2017). Pembuatan buoy laut jenis "Buoyweather Station Type II" oleh Departemen Teknik Fisika Institut Teknologi Sepuluh Nopember mempunyai biaya perbaikan lebih murah, sehingga bisa dijadikan pertimbangan dalam menambah stasiun cuaca di seluruh perairan Indonesia.

Stasiun cuaca buoyweather ini terdiri dari dua sistem terpisah, yaitu sistem pertama buoy terletak di laut sebagai pengambil data cuaca dan sistem kedua terletak di darat sebagai penghasil perkiraan cuaca yang akan datang. Sistem pada buoy yang terletak di laut terdiri dari berberapa perangkat instrumen yang memerlukan suplai catu daya untuk beroperasi 24 jam. Sistem ini hanya dapat memberikan catu daya jika terdapat radiasi matahari yang mengarah ke sel photovoltaic (PV), sehingga perlu ditambahkan baterai sebagai catu daya alternatif saat tidak ada radiasi matahari. Arus dan tegangan yang ditambahkan (charging) ke baterai atau diambil (discharging) dari baterai perlu dibatasi untuk mencegah pengisian dan pemakaian berlebih akan berdampak muatan pada baterai yang pada pengurangan kinerja dan umur baterai (Ishengoma & Norum, 2002). Solar charge controller (SCC) merupakan perangkat yang akan membatasi arus dan tegangan saat ditambah atau diambil pada baterai tersebut.

Sebagian besar SCC biasanya mengatur tegangan PV agar sesuai dengan tegangan operasi *charging* pada baterai. Hal tersebut dapat mebuat proses *charging* tidak pada daya maksimum yang dapat terjadi pada kondisi tertentu, sehingga tingkat efisiennya kurang. Efisiensi SCC dengan teknik MPPT akan lebih besar karena dapat menghasilkan daya keluaran maksimum pada panel PV di setiap kondisi dengan mengendalikan konverter (Salas, Olías, Barrado, & Lázaro, 2006). Oleh karena itu, sebuah teknik MPPT yang menggunakan algoritma *incremental conductance* (INC) akan diterapkan pada perancangan SCC untuk meningkatkan efisiensi sumber energi yang menuju baterai pada Buoyweather Station Type II dalam keperluan pengambilan data cuaca di laut.

1.2 Perumusan Masalah

Permasalahan dalam tugas akhir ini antara lain:

- 1. Apakah desain sistem *solar charge controller* (SCC) mampu mengendalikan daya listrik ke baterai dan beban instrumen pada Buoyweather Station Type II?
- 2. Bagaimana pengaruh sistem *solar charge controller* (SCC) dengan algoritma *incremental conductance (INC)* saat kondisi *charging* terhadap kapasitas baterai?

1.3 Tujuan Penelitian

Tujuan penelitian dalam pengerjaan tugas akhir ini ada dua macam, yaitu:

- 1. Mampu membuat sistem *solar charge controller* (SCC) yang dapat mengendalikan daya listrik ke baterai dan beban pada Buoyweather Station Type II.
- 2. Mengetahui pengaruh sistem *solar charge controller* (SCC) dengan algoritma *incremental conductance (INC)* saat kondisi *charging* terhadap kapasitas baterai.

1.4 Batasan Masalah

Pada penelitian ini, ada beberapa batasan yang digunakan dalam penelitian tersebut, yaitu:

- 1. Faktor radiasi matahari dan suhu modul PV saja yang diasumsikan dapat mempengaruhi karakteristik modul PV.
- 2. Jenis baterai yang digunakan adalah *valve regulated lead acid* (VRLA).
- 3. Pengendalian *incremental conductance* dan *charging* menggunakan DC-DC converter jenis *buck*.

BAB II TINJAUAN PUSTAKA

Penelitian mengenai SCC pada Buoyweather Station Type II sudah pernah dilakukan sebelumnya menggunakan teknik MPPT dengan menggabungkan control voltage method (CVM) dan logika fuzzy, serta memakai buck converter (Desraino, 2016). Pada penelitian tersebut berhasil menerapkan metode logika fuzzy sebagai penentu besar variabel duty cycle pada buck converter, sehingga efisiensi daya didapatkan meningkat. Namun pada penelitian tersebut SCC yang dibuat masih belum bisa mengendalikan charging dan discharging pada baterai. Dalam penelitian ini, desain SCC yang baru akan dirancang untuk mengendalikan kondisi saat discharging dari baterai dan kondisi charging ke baterai. Selain itu, penelitian ini mengkaji peningkatkan kapasitas baterai saat charging dengan menggunakan algoritma incremental conductance.

2.1 Photovoltaic

Sel PV terbuat dari dua tipe semikonduktor, yaitu tipe-p dan tipe-n. Semikonduktor tipe-p memiliki hole atau muatan positif akibat terdapat atom yang kerkurangan elektron, sedangkan semikonduktor tipe-n mempunyai elektron bebas atau muatan negatif akibat terdapat atom yang kelebihan elektron. Gabungan kedua tipe semikonduktor ini akan membentuk permukaan yang disebut dengan *p-n junction*. Pada *p-n junction* terdapat depletion *layer* akibat berpindahnya elektron bebas dari tipe-n ke tipe-p dan *hole* dari tipe-p ke tipe-n, sehingga timbul medan listrik pada *p-n* junction. Ketika energi foton dari cahaya matahari yang memiliki energi lebih besar dari energi eksitasi dari semikonduktor, maka akan terjadi pemisahan elektron dan hole. Arus akan timbul proposional dengan radiasi yang terjadi akibat perpindahan elektron dan hole yang terpisah tadi oleh medan eletrik tersebut (Walker, 2001). Secara teori, arus yang dihasilkan oleh modul photovoltaic dapat dimodelkan sesuai dengan rangkaian elektronik ekuivalen.

Gambar 2.1 Rangkaian ekuivalen PV (Ismail, Moghavvemi, & Mahlia, 2013).

Rangkaian pada Gambar 2.1 merupakan hasil pendekatan secara elektrik dengan satu dioda yang dapat merepresentasikan modul photovoltaic (PV). Rangkaian ekuivalen di atas juga merupakan model umum dari panel PV yang tediri dari sumber arus (I_{ph}) , dioda, resistor parallel (R_P) yang menggambarkan keluaran arus, dan resistor seri (Rs) yang mendeskripsikan resistansi internal. Saat terjadi efek photovoltaic, maka muncul arus I_{ph} dari sumber arus sesuai dengan intensitas yang diterima. Kemudian, arus yang dihasilkan akan mengalir menuju dioda sehingga terjadi forward bias. Hambatan shunt merupakan hambatan disusun pararel yang bernilai ribuan ohm sehingga arus akan dominan mengalir pada hambatan Rs. Arus keluaran modul PV adalah sebesar I_{PV} dengan tegangan sebesar V_{PV} saat diberi beban. persamaan 2.1 sampai Pada 2.4 merupakan penyerderhanaan dari rangkaian tersebut (Ismail et al., 2013).

$$I = I_{pv} - I_d - \frac{(V + IR_S)}{R_P}$$
(2.1)

$$I_d = I_o \left[exp\left(\frac{q(V+IR_S)}{\alpha N_S KT}\right) - 1 \right]$$
(2.2)

dimana G_{STC} adalah radiasi matahari yang digunakan pada *standart test condition* (STC) yang tertera pada *datasheet*, Ns adalah jumlah cell seri, α adalah *junction material factor*, dan *q* adalah muatan electron. *I* adalah arus keluaran dari modul *photovoltaic*, I_d adalah arus yang mengalir pada dioda, I_{SC-STC} adalah arus *short circuit* pada
STC, T_{STC} adalah arus suhu panel yang digunakan pada STC. Selain itu *V* adalah tegangan keluaran modul *photovoltaic*, *K* adalah konstanta boltzman (1.3806.10-23 J.K⁻¹), *T* adalah temperatur panel dalam satuan kelvin, *G* radiasi yang mengenai panel dengan satuan mengkikuti G_{STC} .

Pada *datasheet* modul PV memberikan V_{OC-STC} , I_{SC-STC} , tegangan saat daya maksimum (V_{MP}), arus saat daya maksimum (IMP), daya maksimum (P_{MAX}), koefisien temperature tegangan *open circuit* (K_V), dan koefisien temperature arus *short circuit* (K_I) pada pengujian STC di kondisi G_{STC} dan T_{STC} . R_P adalah hambatan shunt yang terhubung secara pararel. Biasanya hambatan ini bernilai sangat besar, sehingga sering diabaikan dalam pemodelan. Persamaan 2.3 - 2.5 berturut-turut menjabarkan nilai arus yang dihasilkan saat terjadi efek *photovoltaic* (I_{pv}), arus saturasi dioda saat bias *reverse* (I_o), dan R_P (Sumathi, 2015).

$$I_{pv} = \left(I_{SC-STC} \frac{R_P + R_S}{R_P} + K_I (T - T_{STC})\right) \frac{G}{G_{STC}}$$
(2.3)

$$I_{o} = \frac{I_{SC-STC} + K_{I}(T - T_{STC})}{exp\left(\frac{q(V_{OC-STC} + K_{V}(T - T_{STC}))}{aN_{S}KT} - 1\right)}$$
(2.4)

$$R_P = \frac{V_{MP} + I_{MP}R_S}{V_{MP}I - V_{MP}I_o exp\left(\frac{q(V_{MP} + I_{MP}R_S)}{\alpha N_S KT}\right) + V_{MP}I_o - P_{MAX}}$$
(2.5)

Hambatan *Rs* adalah hambatan yang tersusun secara seri dan nilainya biasanya sangat kecil. Persamaan 2.6 menjabarkan nilai *Rs* yang dapat memberikan hubungan yang lebih akurat antara daya maksimum dengan tegangan *open circuit* (Walker, 2001).

$$R_{s} = \frac{V_{OC-STC} - V_{MP}}{I_{MP}} - \frac{1}{\frac{q}{\alpha N_{S}KT} exp\left(\frac{qV_{OC-STC}}{\alpha N_{S}KT}\right)}$$
(2.6)

Sel surya yang disusun secara pararel dan seri disebut sebagai modul PV. Energi listrik yang dihasilkan dari modul PV

bergantung pada kondisi lingkungan, seperti tingkat radiasi matahari dan temperature. Setiap jenis modul PV memiliki karakteristik yang berbeda terhadap daya listrik yang dihasilkan setiap perubahan kondisi sesuai pada persamaan di atas tersebut. Karakteristik ini dapat diketahui dengan melakukan pemodelan dari *datasheet* yang diberikan oleh perusahaan pembuat modul PV. Sangat penting untuk mengetahui karakteristik modul PV yang digunakan untuk menyesuaikan kebutuhan beban yang diperlukan.

2.1.1 Karakteristik Photovoltaic

Dalam aplikasinya, hal yang paling diperhatikan di dalam modul *photovoltaic* (PV) adalah besar daya keluaran. Daya keluaran ini diperlukan dalam mendesain kebutuhan beban dalam sistem nantinya. Karakteristik daya yang dihasilkan oleh sel PV memberikan bentuk kurva *non-linear* yang sangat besar dipengaruhi oleh factor perubahan iklim. Modul PV juga memberikan karakteristik yang sama seperti sel PV dalam pergantian kondisi iklim tersebut. Faktor yang paling berpengaruh terhadap daya keluaran *photovoltaic* adalah radiasi matahari, perubahan temperatur, dan impedansi beban (Salas et al., 2006).

Pada umumnya modul PV tersusun atas sel PV yang terangkai seri. Setiap modul memiliki karakteristik yang ditunjukan pada spesifikasinya. Dari spesifikasi ini yang membuat jenis modul PV beragam. Spesifikasi yang paling berpengaruh dalam pembuatan karakteristik pada berbagai jenis modul PV antara lain dapat dilihat dari nilai tegangan *open circuit* (V_{OC}), arus *short circuit* (I_{SC}), besar daya maksimum, tegangan saat daya maksimum, dan arus saat daya maksimum. Semakin besar daya yang dapat dihasilkan, maka semakin banyak jumlah sel yang ada pada modul PV. Semakin kecil daya yang dihasilkan, maka semakin sedikit jumlah sel PV pada modul PV tersebut. Banyak manufaktur hanya menunjukan spesifikasi modul PV berdasarkan *standart test condition* (STC), yaitu pada radiasi 1000 W/m² dan suhu panel 25^oC.

Gambar 2.2 Kurva karakteristik *P-V* dan *I-V* tentang perubahan (a-b) radiasi matahari; (c-d) temperatur permukaan sel (Salas et al., 2006).

Pengaruh kedua besaran faktor tersebut ditunjukkan pada Gambar 2.2 dengan kurva karakteristik P-V dan I-V. Pada gambar ditunjukan keluaran daya *Maximum Power Point* (MPP) modul PV yang mengalami perubahan akibat perubahan radiasi matahari dan temperatur permukaan PV. Gambar 2.2(a-b) menunjukan penurunan nilai radiasi matahari nilai temperatur yang tetap menyebabkan titik MPP menurun. Pada Gambar 2.2(c-d) menunjukan penurunan temperatur dengan radiasi tetap menyebabkan semakin meningkatnya titik MPP.

Berdasarkan kurva tersebut dapat diketahui bahwa pengaruh kenaikan radiasi matahari dapat meningkatkan nilai arus *short circuit* modul PV yang berakibat pada meningkatkan daya

maksimum yang dihasilkan modul, sementara tegangan *open circuit* modul meningkat dengan nilai relatif kecil. Pengaruh kenaikan temperatur sel akan berakibat pada penurunan daya maksimum akibat terjadi penurunan tegangan *open circuit* modul yang signifikan, sementara arus *short circuit* modul meningkat dengan nilai relatif kecil. Dari pengaruh tersebut, perlu dilakukan suatu upaya untuk menjaga modul PV agar tetap bekerja pada titik maksimum untuk menghasilkan daya maksimumnya dengan menggunakan teknik *maximum power point tracking* (MPPT).

2.2 Maximum Power Point Tracking (MPPT)

Untuk menghasilkan daya maksimum pada modul, maka diperlukan suatu metode yang disebut dengan *Maximum Power Point Tracking* (MPPT). Dengan kata lain MPPT merupakan metode dengan algoritma tertentu untuk mencari titik daya maksimum atau *maximum power point* (MPP) dari sebuah sumber energi terbarukan pada setiap kondisi iklim yang terjadi. Penerapan MPPT dapat dilakukan secara mekanik dan elektrik. Pencarian daya maksimum secara mekanik dilakukan dengan cara mencari arah pancaran sinar matahari dengan *solar tracker*. Secara elektrik, digunakan komponen konverter dan berdasarkan persamaan (2.7) digunakan untuk mencari letak MPP dengan cara merubah *duty cycle*.

 $D(k) = D(k-1) \pm Cons$ (2.7)

Dimana D(k) dan D(k - 1) adalah *duty cycle* pada saat ke-k dan saat k-1 kali *sampling* secara instan. *Cons* adalah konstanta pencarian *step*. Tanda dari step *Cons* mengartikan arah pencarian algoritma program (Pandey, Thakur, & Mukerjee, 2011). *Duty cycle* sendiri merupakan gelombang kotak atau pulsa yang dikeluarkan oleh *pulse width modulator* (PWM). Gelombang kotak menunjukan kondisi *ON* dan *OFF*. Gelombang bernilai *high* atau memiliki tegangan tertentu ketika *ON* dan bernilai *low* atau tegangannya nol ketika *OFF*. *Duty cycle* sendiri merepresentasikan lama waktu sinyal bernilai *ON* dalam satu fasa gelombang. Semakin lama waktu *ON*, maka semakin besar nilainya. Besar *duty cycle* nantinya digunakan pada konverter dalam mengubah tegangan dari PV menjadi suatu nila tegangan yang dapat memberikan nilai daya maksimum melalui *power switch* pada konverter. Tegangan PV berubah akibat resistansi ekuivalen (R_{eq}) pada modul PV berubah. MPPT akan merubah R_{eq} tersebut agar sama dengan nilai resistansi optimalnya (R_{opt}), dimana resistansi optimal dibuat dalam persamaan berikut (Kolsi, Samet, & Amar, 2014).

$$R_{opt} = \frac{V_{MP}}{I_{MP}} \tag{2.8}$$

Saat resistansi ekuivalen mencapai optimal, maka akan tercapai juga tegangan dan arus pada titik MPP. Pada Gambar 2.3 ditunjukan penjejakan garis beban dari Req. Saat kondisi short*circuit* nilai Req adalah nol dan saat kondisi *open-circuit* nilai Req tak berhingga. Garis beban haruslah memotong titik MPP pada kurva I-V untuk mendpatkan titik kerja modul PV dengan daya maksimum. Terdapat banyak metode untuk menerapkan algoritma MPPT. Metode MPPT dapat diklasifikasikan menjadi metode berdasarkan pengukuran arus dan tegangan modul PV (direct), database suatu nilai parameter saat kondisi tertentu (indirect), dan kecerdasan buatan (Salas et al., 2006). Metode berdasarkan pengukuran arus dan tegangan modul PV antara lain seperti Perturbation and Observation (P&O) dan Incremental Conditional (IC), sedangkan metode berdasarkan kecerdasan buatan seperti Logika Fuzzy, Artificial Neural Network, dan Adaptive Neuro-Fuzzy Inference System (ANFIS), dan lain-lain. Metode lainnya yang berdasarkan database suatu parameter antara lain seperti open circuit method, shor circuit method, dan lainnya. Beberapa metode tersebut nantinya akan digunakan untuk mengendalikan besar duty cycle menuju konverter agar tercapai Ront. Pada penelitian ini akan digunakan algoritma Incremental Conductance karena keunggulannya dapat mendeteksi titik MPP dengan cepat saat terjadi perubahan kondisi yang cepat juga (Hussein, Muta, Hoshino, & Osakada, 1995).

Gambar 2.3 Penjejakan garis beban R_{eq} pada kurva *I-V* (Kolsi et al., 2014)

2.3 Algoritma MPPT Incremental Conductance (INC)

Dalam metode *Incremental Conductance* (INC), sebuah algoritma pengontrol dengan mengukur perubahan pada arus dan tegangan yang dihasilkan PV untuk memprediksi titik kerja pada PV pada kondisi tertentu. Metode ini menggunakan perubahan incremental pada konduktansi (dI/dV) dari modul PV untuk menghitung tanda perubahan daya terhadap perubahan tegangan (dP/dV). Metode ini mencari titik daya maksimum dengan membandingkan konduktansi inkremental ($\Delta I/\Delta V$) terhadap konduktansi sesaat dari PV (I/V). Bila perbandingan konduktansi inkremental sama dengan konduktansi sesaat PV, maka tegangan outputnya merupakan tengangan pada titik MPP. Pengendali mempertahankan tegangan dan prosesnya kembali berulang menyesuaikan karateristik PV pada perubahan kondisi iklim (Hussein et al., 1995).

Metode INC didasarkan pada pengamatan bahwa pada titik daya maksimum akan memiliki kemiringan bernilai nol yang dijelaskan pada persamaan berikut.

$\frac{dP}{dV} = 0$	(2.9)
---------------------	-------

Diketahui bahwa daya adalah hasil perkalian arus dan tegangan. Menggunakan rumus penurunan daya terhadap voltase akan didapatkan persamaan seperti berikut.

$$\frac{dI}{dV} + \frac{I}{V} = 0 \tag{2.10}$$

Pada kenyataanya, kemiringan pada titik MPP tidak pasti bernilai nol tetapi terdeteksi bernilai sangat kecil yang dapat disebut sebagai *small marginal error*. Nilai dari *error* bergantung pada sensitivitas yang diperlukan dari MPPT, maka persamaan 2.10 dapat diformulasikan kembali menjadi persamaan yang ditunjukan pada 2.11 sampai dengan 2.13 di bawah ini (Radjai, Rahmani, Mekhilef, & Gaubert, 2014).

$$\frac{dI}{dV} + \frac{I}{V} = e_{IC} \cong 0 \quad (at MPP) \tag{2.11}$$

$$\frac{dI}{dV} + \frac{I}{V} = e_{IC} > 0 \quad (left MPP) \tag{2.12}$$

 $\frac{dl}{dV} + \frac{l}{V} = e_{IC} < 0 \quad (right MPP)$ (2.13)

Persamaan 2.11 sampai 2.13 menunjukan e_{IC} adalah nilai error antara konduktansi sesaat dengan konduktansi incremental. Nilai dari e_{IC} dipilih dengan prosedur trial and error (Azadeh Safari & Mekhilef, 2011). Semakin besar nilainya maka semakain cepat konvergern menuju MPP serta menghasilkan osilasi steady *state*, sedangkan semakin kecil nilanya maka semakin lama konvergen ke MPP serta osislasi steady state akan lebih kecil (Radjai et al., 2014). Secara teori, osilasi steady state dapat dihilangkan jika nial error adalah nol, tetapi hal ini sulit ditemukan karena keterbatasan resolusi dari pengimplementasian digitalnya (De Brito, Galotto, Sampaio, De Azevedo Melo, & Canesin, 2013). Saat nilai error mendekati nol menandakan modul PV berkerja pada titik MPP. Apabila nilai error lebih besar dari nol atau lebih kecil dari nol secara berturut-turut menandakan modul PV bekerja di sisi kiri atau kanan titik MPP.

Gambar 2.4 Dasar metode *incremental conductance* dalam karakteristik kurva *P-V*

Terdapat metode INC yang menambahkan algoritma perubahan step sehingga disebut sebagai variable step (Liu, Duan, Liu, Liu, & Kang, 2008). Metode variable step berupa penamban suatu nilai ke duty cycle. Nilai tersebut merupakan perkalian suatu factor skala yang berubah bergantung dari jarak dari titik MPP dengan perubahan daya terhadap tegangan (dP/dV). Hal ini dapat mempercepat respon transien saat terjadi perubahan kondisi. Logika fuzzy juga pernah dilakukan untuk menentukan variable step dan didapatkan nilai efisiensi dan pelacakan titik MPP yang lebih baik dari metode yang menggunakan faktor skala (Radjai et al., 2014). Namun metode fuzzy membuthkan data dari seorang pakar yang dapat membuat aturan rule base dan tingkat keefisienannya bergantung dari aruan dan perancangannya tersebut (Esram & Chapman, 2007). Suatu metode direct dengan fixed step dapat diterapkan juga secara digital dan dapat mendeteksi titik MPP dengan algoritma yang lebih sederhana pada semua jenis konverter (A. Safari & Mekhilef, 2011). Teknik penggunaan secara *direct* dan variasi *step* menggunakan *fuzzy* juga pernah dilakukan dengan konverter jenis cuk (Radjai et al., 2014). Penggunaan secara indirect juga pernah dilakukan dengan bantuan kontrol PI dengan nilai error adalah hasil selisih setpoint dP/dV yang bernilai nol dengan nilai dP/dV yang terdeteksi (De Brito et al., 2013).

Gambar 2.5 Algoritma MPPT *incremental conductance* dengan *direct method* (Radjai et al., 2014).

Algoritma pada Gambar 2.5 menunjukan bahwa penambahan dan pengurangan oleh *fixed step duty cycle* (Δd) menuju konverter dapat digunakan untuk memperoleh titik daya maksimum di modul PV. Saat daya yang terdeteksi berada pada sebelah kiri titik MPP, maka akan terjadi penambahan oleh *fixed step duty cycle*. Begitu juga saat daya yang terdeteksi berada pada sebelah kanan titik MPP, maka terjadi pengurangan oleh *fixed step duty cycle*. Tidak akan ada penambahan atau pengurangan *duty cycle* jika titik MPP tercapai atau hal ini dapat ditunjukan dengan perbedaan nilai arus atau nilai *error* sama dengan nol.

2.4 Buck Converter

Buck converter atau *step-down* converter merupakan salah satu jenis topologi yang berfungsi untuk mengkonversi tegangan DC tinggi menjadi tegangan DC yang lebih rendah. Kerja dari konverter diatur pada komponen *power switch*. Jenis *power switch* yang sering digunakan adalah MOSFET atau IGBT, selain itu juga bisa digunakan IC seperti LM2569, XL4005, XL4016, dan masih banyak lainnya. Adapun dikenal dengan istilah *Pulse Width Modulation* (PWM) dalam proses pembuatan nilai *duty cycle* (D) dalam mengendalikan frekuensi kerja *switch* tersebut. Pada persamaan 2.14 mendefinisikan nilai *duty cycle*, dimana t_{on} adalah waktu interval *switch* tertutup dan t_{off} pada saat *switch* terbuka. Nilai f_s menunjukan frekuensi *switching* yang terjadi.

$$D = \frac{T_{on}}{T_{on} + T_{off}} = T_{on} f_s \tag{2.14}$$

Gambar 2.6 menunjukan rangkaian ideal *buck converter* dengan operasi CCM, rangkaian saat transistor *on*, dan saat transistor *off*. Jika *switch on* maka induktor mulai menyerap sebagian daya dari *power supply*, sehingga diode berada di posisi *off* dan kapasitor mengalami posisi *charging*. Jika *switch* pada posisi *off*, maka pada posisi ini daya disuplai dari induktor yang telah menyerap daya selama rangkaian terhubung pada sumber dan akan membuat diode pada posisi *on* serta melakukan *discharge* pada kapasitor ke beban.

Gambar 2.6 Rangkaian ekuivalen *buck converter* (a) secara ideal dalam operasi CCM, b) saat *switch ON* dan dioda posisi OFF, dan c) saat *switch OFF* dan dioda posisi ON (Marian K. Kazimierczuk, 2015).

Terdapat dua jenis operasi pada konverter, yaitu *continuous conduction mode* (CCM) dan *discontinuous conduction mode* (DCM) yang ditentukan oleh bentuk gelombang arus yang terjadi pada komponen induktor (Marian K. Kazimierczuk, 2015). Pada CCM, terjadi aliran arus saat *switch* hidup dan mati, sedangkan terdapat kondisi tidak terjadi aliran arus pada operasi DCM. Pada penelitian ini diasumsikan terjadi proses CCM.

Persamaan 2.15 di bawah ini dapat digunakan untuk mencari nilai D pada *converter* pada kondisi ideal dengan tidak terjadinya energi yang hilang saat *switching* dan pada seluruh komponen penyusun lainnya.

$$\frac{v_{out}}{v_{in}} = D \tag{2.15}$$

Nilai setiap komponen haruslah ditentukan dalam pembuatan *buck converter* untuk mendapatkan konverter yang sesuai dengan spesifikasi yang dibutuhkan. Pada kondisi yang tidak ideal, nilai D memiliki rentang nilai yang dirumus pada persamaan berikut:

$$D_{min} = \frac{V_O}{V_{I \max} \eta} \tag{2.16}$$

$$D_{max} = \frac{V_0}{V_{I\min}\eta} \tag{2.17}$$

Dimana η merupakan efisiensi *buck converter* yang diinginkan, $V_{I max}$ adalah tegangan masukan maksimum yang diinginkan, $V_{I min}$ tegangan masukan minimum yang diinginkan, dan V_0 adalah tegangan keluaran yang diinginkan. Besar induktor minimum (L_{min}) yang diperlukan dapat diketahui dari persamaan 2.18 dan dari persamaan 2.19 dapat diketahui arus *ripple* maksimum (Δi_{Lmax}) pada induktor.

$$L_{min} = \frac{V_O\left(\frac{1}{\eta} - D_{min}\right)}{2 f_S I_{Omin}} \tag{2.18}$$

$$\Delta i_{Lmax} = \frac{V_O(1 - D_{min})}{f_S L} \tag{2.19}$$

Nilai I_{Omin} menunjukan besar arus keluaran minimum yang diinginkan dan L adalah besar induktor yang dipilih. Besar kapasitor minimum dapat dicari dengan persamaan 2.21 dengan mencari terlebih dahulu dengan persamaan 2.20 nilai *equivalent series resistor* (ESR) maksimum dari kapasitor untuk menentukan ESR kapasitor yang akan digunakan. ESR maksimum dapat dicari dengan menentukan terlebih dahulu nilai rasio *ripple* tegangan terhadap tegangan keluaran (V_r/V_O). Selanjutnya kapasitor dan induktor yang digunakan haruslah bernilai lebih dari nilai minimumnya dari yang sudah dihitung.

$$r_{Cmax} = \frac{V_r}{\Lambda_{l_r}}$$
(2.20)

$$C_{min} = \frac{D_{max}}{2 f_s r_c}$$
(2.21)

Buck converter haruslah dioperasikan pada frekuensi tinggi untuk mengecilkan besar arus *ripple* yang terjadi. Pemilhan pada tipe *switch* biasanya digunakan MOSFET dan dioda *schottky* yang memiliki frekuensi operasional besar. Perlu disesuaikan V_{GS} dari MOSFET haruslah lebih besar dari tegangan kendali dari mikrokontroler yang biasanya bernilai 5V agar dapat dilakukan *switching* secara otomatis. Tegangan operasional MOSFET (V_{DSS}) haruslah lebih dari V_{I max} dan arus operasionalnya (I_{SM}) juga harus melebihi jumlah arus keluaran maksimum (I_{Omin}) dan $\frac{\Delta i_{Lmax}}{2}$ (Marian K. Kazimierczuk, 2015).

Dengan adanya converter maka dapat dicari hambatan ekuivalen modul PV agar sesuai dengan hambatan optimalnya, sehingga dapat tercapai daya maksimum pada setiap kondisi iklim. Pada sistem PV, konverter diletakan antara modul PV dan beban. Rangkaian *buck converter* sangat bergantung pada beban yang diaplikasikan. Semakin besar beban yang digunakan, maka tegangan output akan semakin kecil dan berlaku sebaliknya. Suatu tegangan *feedback* perlu diberikan ke *controller* dengan menggunakan *voltage divider* pada bagian *output* dapat membuat tegangan keluaran relatif stabil pada variasi beban yang diberikan.

Tegangan *feedback* dapat diperoleh langsung jika menggunakan *power switch* berupa IC.

2.5 Buoy Laut

Buoy Laut atau oceanographic buoy merupakan wahana apung yang berfungsi untuk mengambil data dari variabel yang mempegaruhi kondisi cuaca pada wilayah maritim. Pada umumnya informasi variabel data meteorologi yang terukur akan dikirimkan secara *wireless* ke bagian stasiun *onshore* untuk keperluan prediksi kondisi cuaca pada wilayah maritim tesebut (Behrouzian, Tabesh, Bahrainian, & Zamani, 2011). Pembuatan desain buoy weather perlu dibuat untuk dapat menjaga kestabilan posisi agar tidak tenggelam saat terjadi gangguan dari luar. Bagian atas dari buoy *weather* dipasangkan sensor-sensor agar didapatkan data pengukuran akurat yang terbebas dari halangan yang dapat membuat nilai pengukuran dari variabel cuaca berubah sebelum terbaca sensor. Penempatan buoy weather tidak dapat dijangkau oleh jaringan listrik karena berada di perairan, sehingga perangkat instrumen yang berada padanya memanfaatkan sumber energi terbarukan seperti energi matahari untuk mendapat catu daya.

2.5.1 Buoyweather Station Type II

Buoyweather Station Type II merupakan wahana apung dari penelitan *buoy* laut yang dilakukan oleh departemen Teknik Fisika Institut Teknologi Sepuluh Nopember. Dari Gambar 2.7 mengilustrasikan bentuk desain wahana apung Buoyweather Station Type II yang digunakan untuk menopang peralatan instrumen pengukuran cuaca saat di laut. Untuk spesifikasi dari *body buoy* sendiri telah ditentukan bahwa beban maksimal yang mampu diangkat adalah 0.98 ton dengan titik berat *longitudinal center of weight* (LCG) adalah 1.08 meter dan *vertical center of weight* (VCG) adalah 0.37 meter (Desraino, 2016). Terdapat rangka besi tambahan yang difungsikan untuk meletakan sensorsensor dan modul PV agar pembacaan data tidak terhalang *body*.

Gambar 2.7 Desain wahana apung Buoyweather Station Type II (Desraino, 2016)

Terdapat 7 aspek variabel seperti temperatur udara, kelembapan udara, tekanan udara, kecepatan angin, arah angin, ketinggian gelombang, dan arah gelombang yang akan diambil data pengukurannya. Selain itu, digunakan juga sensor seperti salinitas, suhu permukaan air laut, dan curah hujan untuk mendapatkan data dalam memprediksi lokasi ikan. Digunakan juga transmitter radio untuk mengirimkan data-data tersebut ke stasiun onshore. Sumber catu daya untuk peralatan instrumen menggunakan sistem standalone photovoltaic yang terdiri dari panel surya, charge controller, dan baterai. Sistem tersebut dapat secara maksimal digunakan karena lokasi buoyweather yang terpapar matahari langsung tanpa adanya halangan atau shading. Baterai merupakan komponen yang dapat menyimpan kelebihan daya yang tidak digunakan oleh beban instrumen. Pengendalian kondisi charging ke baterai dan discharging ke beban dilakukan oleh solar charge controller.

2.6 Baterai Valve Regulated Lead Acid (VRLA)

Terdapat dua kategori baterai, yaitu baterai primer yang tidak dapat diisi ulang (*recharged*) dan baterai sekunder yang dapat diisi ulang seperti *lead acid, nickel-cadmium,* dan lainnya. Parameterparameter penting yang perlu diketahui sebelum memilih jenis baterai untuk keperluan tertentu antara lain adalah *lifetime* baterai, *deep cycle performance* (DOP), tingkat toleransi terhadap suhu dan *overcharge*, perawatan yang digunakan, dan lainnya. Semakin banyaknya energi listrik yang dapat diberikan ke beban (*discharge*), maka dapat dikatakan baterai memiliki DOP yang baik atau besar. Parameter *lifetime* suatu baterai dipengaruhi oleh desain, koponen, material, tingkat pemakaian, dan metode *charging* pada baterai yang digunakan (Sumathi, 2015). Pemakaian serta instalansi sistem *charging* yang tidak baik tentu akan mengurangi *lifetime* baterai tersebut.

Performa seperti DOP dan toleransinya terhadap suhu pada baterai *lead acid* tidak baiknya seperti baterai *nickel-cadmium* dan baterai lainnya, namun memiiki kelebihan seperti harga lebih murah, variasi ukuran lebih banyak, dan karakteristiknya mudah dipahami (Dunlop, 1997). Pada peneitian ini digunakan baterai *lead acid* karena instalansi yang diperlukan sederhana akibat karakteristik yang mudah dipahami dan tidak memerlukan DOP yang tidak terlalu besar. Baterai *lead acid* jenis *deep cycle* atau *motive power* sering digunakan untuk keperluan sistem PV karena DOD lebih banyak dari jenis lainnya. Jenis *deep cycle* dapat dibagi lagi menjadi tipe *flooded* dan *valve regulated lead acid* (VRLA). Tipe VRLA memiliki DOP yang lebh baik dari *flooded* serta tidak memerlukan penambahan air lagi, sehingga tipe ini digunakan dalam penelitian ini.

Baterai *lead-acid* adalah *valve regulated lead acid (VRLA)* atau dikenal juga sebagai *captive electrolyte lead-acid*. Sesuai namanya, elektrolit tidak bergerak dan baterai disegel pada kondisi normal. Saat terjadi *overcharge* berlebih, ventilasi segel akan terbuka akibat tekanan gas yang terjadi. Elektrolit yang telah menjadi gas tidak dapat diisi kembali, sehingga membuat baterai ini sangat rentan rusak terhadap *overcharge*. Untuk itu sebuah *solar charge controller* diperlukan untuk meregulasi muatan yang masuk ke baterai saat proses *charging* pada sistem PV.

2.7 Solar Charge Controller

Umur atau *lifetime* baterai sangat dipengaruhi oleh cara pemakaiannya pada sistem PV. Pemakaian secara tidak baik sampai menimbulkan kondisi *deep discharge* atau *overdischarging* pada baterai dapat memberikan penurunan *lifetime* baterai (Pandey et al., 2011). Persentase *state of charge* (SOC) mengibaratkan banyaknya energi yang tersimpan pada baterai, sehingga *charging* akan meningkatkan SOC tersebut. Perilaku dalam melakukan *charging* yang berlebih ketika *state of charge* (SOC) sudah 100% atau *overcharging* juga dapat mambahayakan baterai. Kondisi *overcharging* menunjukan tercapainya tegangan *gassing* baterai karena material aktif pada baterai memiliki muatan yang berlebih, sehingga akan terbentuk gas dan menurunkan efiesiensi *charging* pada baterai (Sumathi, 2015). Kondisi-kondisi yang tidak diinginkan tersebut dapat dicegah dengan pemakaian *solar charge controller*. Fungsi-fungsi dai *solar charge controller* pada sistem PV antara lain seperti (Dunlop, 1997):

- a. Mencegah *overcharge* pada baterai dengan cara membatasi energi yang masuk kebaterai dari PV ketika baterai sudah terisi penuh.
- b. Mencegah *overdischarge* pada baterai dengan cara memutuskan hubungan baterai dari beban saat SOC baterai rendah.
- c. Mengendalikan daya ke beban secara otomatis dengancara menghubungkan atau mematikan hubungan sumber energi ke beban saat waktu yang ditentukan.

SCC dirancang untuk mengatur daya keluaran atau tegangan keluaran DC dari panel PV ke baterai. Tegangan keluaran PV perlu diatur agar nominal tegangan dan arus yang diperlukan baterai saat *charging* tercapai, sehingga tidak mengurangi *lifetime* baterai dan meningkatkan performa baterai (Sumathi, 2015). Terdapat jenisjenis dari SCC yang secara komerial diperjualbelikan seperti SCC jenis *linear charge control, PWM charge controller*, dan *MPPT controller*. Ketiga jenis ini memiliki fungsi yang sama tetapi dibedakan atas keefisienan dalam mengambil energi dari matahari. Jenis SCC *MPPT controller* adalah yang paling efisien karena menggunkan teknik MPPT untuk mencari daya maksimum. Kehilangan daya pada alat ini dapat dihindarkan dengan cara meningkatkan arus keluaran saat tegangan dijaga sesuai tegangan charging.

2.7.1 Teknik Charging Baterai Lead Acid

Pada sistem PV, proses *charging* diperlukan agar memungkinkan dalam melakukan transfer energi sebanyak mungkin ke baterai tanpa harus merusak baterai. Gambar 2.8 menunjukan karakteristik dari *charging* baterai tipe *lead acid* pada variasi *state of charge* (SOC). Dari gambar tersebut dapat diketahui arus *charging* pada SOC tertentu menunjukan tegangan baterai yang berbeda. Dari hal teresebut dapat dilakukan teknik *charging* yang sesuai dengan prinsip karakteristik baterai teresebut. Atura pada teknik *charging* yang dapat dilakukan pada seluruh jenis baterai *lead acid* adalah sebagai berikut (Linden, 1995):

- 1. Arus *charging* saat memulai proses *charging* maksimal adalah arus yang menghasilkan jumlah tegangan baterai rata-rata sel gabungan tidak lebih dari tegangan *gassing* yang bernilai 2,4 V/sel.
- 2. Pengedalian arus perlu dilakukan untuk menjaga tegangan baterai lebih rendah dari tegangan *gassing* selama melakukan *charging* sampai tercapai 100% dari kapasitas yang dilakukan *discharging*.
- 3. Saat 100% dari kapasitas yang dilakukan *discharging* tercapai, maka laju arus *charging* akan secara normal mengecil menuju arus yang normalnya bernilai 5 A pada kapasitas 100 Ah (disebut juga laju 20 jam). Pada nilai ini arus perlu dijaga tetap konstan.

Berdasarkan aturan tersebut tercipta berbagai metode *charging* yang digunakan pada baterai *lead acid*. Jenis baterai *lead acid* yang memiliki tegangan 12 V terdiri dari 6 sel tersusun seri, sehingga tiap sel memiliki operasi kerja 2 V. Tegangan maksimum dari baterai 12 V adalah hasil perkalian tegangan *gassing* tiap sel yang bernilai 2,4 V/sel dengan jumlah 6 sel tesebut, sehingga didapatkan tegangan maksimumnya sekitar 14,4 V. Pehitungan ini berlaku pada setiap baterai *lead acid* dengan tegangan operasional

yang berbeda. Tegangan maksimum ini sangat dipeangaruhi oleh *arus* charging dan tingkat persetase SOC tersebut, sehingga semakin besar arus *charging* maka akan semakin cepat tegangan *gassing* dapat terjadi. Begitu juga bila pada SOC yang tinggi dengan arus *charging* yang konstan, maka tegangan *gassing* juga akan lebih cepat.

Kebanyakan manufaktur menyarankan proses *charging* dengan teknik 4 fase, yaitu *trickle charge, bulk charge, overcharge,* dan *float charge.* Penggunaan teknik memerlukan algoritma yang tidak sederhana dan rangkaian yang cukup kompleks. Teknik ini tidak memerlukan data nilai tegangan dan arus baterai maksimum masuk yang pasti

Gambar 2.8 Tegangan *charging* baterai *lead acid* pada variasi *state of charge* (Linden, 1995).

Gambar 2.9 Voltase dan arus baterai pada proses *charging* dengan empat fase *charge* (Ishengoma & Norum, 2002)

Proses dari setiap fasa pada Gambar 2.9 dijelaskan seperti berikut ini (Ishengoma & Norum, 2002).

- a) Fase *Trickle:* ketika voltase baterai sudah di bawah ambang batas *discharge*, V_{CHGENB}, maka dapat dikatakan baterai berada pada keadaan *deeply discharged* atau terdapat *short* pada selnya. Pada fase ini, *charger* memulai memberikan arus kecil *trickle* (I_{TC}) dan voltase akan naik menuju V_{CHGENB}.
- b) Fase *Bulk:* diberikan arus konstan sebesar I_{BULK} untuk memberikan laju muatan yang konstan pada baterai. Voltase baterai dijaga sampai mencapai 0.95 V_{OC}.
- c) Fase *Over-charge* (*absorption*): Tegangan baterai dijaga konstan pada V_{OC} dan arus dibiarkan turun sampai mencapai $I_{OCT.}$
- d) Fase *Float*: baterai akan dijaga konstan pada V_{FLOAT} untuk menjaga kapasitas baterai dari *self*-discharge. Baterai akan dibiarkan pada fase ini sampai voltase baterai turun 90% dari V_{FLOAT} akibat *discharging* dan pada saat tertentu akan kembali ke fasa *bulk*.

Gambar 2.10 Konsep teknik *charging regulation* (Koutroulis & Kalaitzakis, 2004)

Tidak semua sistem *charging* menggunakan teknik 4 fasa *charging* tersebut karena memerluan rangkaian yang cukup rumit. Salah satu fase saja dari 4 fase *charging* tadi juga dapat digunakan untuk melakukan *charging* dengan mengendalikan arus atau tegangan. Teknik *charging* yang banyak ditemui pada sistem *charging* baterai VRLA adalah teknik *constant voltage* (CV) yang caranya sama dengan fasa *bulk* dan teknik *constant current* (CC) yang caranya sama dengan fasa *absorption*. Jenis teknik *charging* lainnya yang dapat diterapkan pada baterai VRLA adalah seperti teknik *charging regulation* (Koutroulis & Kalaitzakis, 2004). Gambar 2.10 menunjukan konsep dari teknik *charging regulation* yang melakukan pengubahan nilai arus setiap tegangan baterai mencapai tegangan *overcharging*. Nilai C menunjukan kapasitas nominal baterai dalam Ah.

Fasa pertama dari teknik ini adalah *bulk*, yaitu mencari nilai arus pada daya tertinggi sesuai algoritma MPPT. Ketika tegangan baterai mencapai maksimumnya, maka fase *charge regulaion*

memulai mereduksi arus maksimum teriadi dan yang diperbolehkan. Tegangan baterai maksimum digunakan acuan nilai yang menandakan sel baterai mulai overcharging, yaitu 2,4V/sel pada suhu 25°C. Arus maksimum baterai pada awalnya ditentukan sebesar C/5, sedangkan arus minimumnya sebesar C/100, dan nilai koefisien reduksi (β) arus maksimum ditentukan dengan mempertimbangkan perubahan nilai SOC tidak melebihi 1% dari kapsitas nominal baterai setiap pernurunan arus baterai. Arus awal terjadi ketika tegangan baterai awal bernilai pada tegangan minimalnya. Tegangan minimal baterai dicari dengan mengukur open circuit tegangan baterai saat SOC 90% pada suhu 25°C. Keadaan SOC mendekati 100% terjadi saat arus baterai sudah mencapai nilai minimum tersebut dan fase ketiga dijalankan dengan mereduksi arus maksimum menjadi arus trickle untuk mencegah dampak self discharge pada baterai (Koutroulis & Kalaitzakis, 2004). Teknik ini memerlukan feedback dari arus serta tegangan baterai. Sinyal *feedback* tersebut digunakan untuk mengatur proses charging dalam mengaktifkan MPPT dan mengatur tegangan baterai menggunakan peralatan digital. Pada penelitian ini sebuah mikrokontroler dari papan sirkuit Arduino digunakan dalam menngunakan teknik *charging* tersebut.

2.8 Arduino Nano

Perangkat yang diproduksi oleh perusahaan Arduino sangat beragam, contohnya seperti tipe Nano yang memiliki fitur yang hampir sama dengan Uno. Skematik rangkaian Arduino Nano bersifat *open* source, sehingga banyak perusahaan lainnya yang membuat seperti papan Arduino ini dengan fungsi yang sama seperti buatan perusahaan Arduino itu sendiri. Papan sirkuit Arduino nano berbasis mikrokontroler jenis Atmega328 yang didesain sedimikian rupa agar memudahkan penggunanya dapat melakukan pemrograman pada mikrokontroler di komputer lewat IDE (*Integrated Development Environment*) yang merupakan sebuah *software*. Mengunggah program ke mikrokontroler dapat menggunakan koneksi USB yang juga dapat difungsikan sebagai catu daya untuk mengaktifkan papan Arduino Nano.

Gambar 2.11 Arduino Nano

Gambar 2.11 menunjukan perangkat keras Arduino Nano memiliki 14 pin digital input/output yang beroperasi pada tegangan 5V dengan arus masukan dan keluaran maksimum adalah 40mA. dimana diantaranya pada pin digital 3, 5, 6, 9, 10, dan 11 menyediakan 8-bit output pulse width modulation (PWM). Selain itu terdapat juga 8 pin analog dengan menggunakan kristal osilator 16Mhz yang dapat menghasilkan resolusi 10 bit, pin catu daya seperti Vin, 5 V, 3,3 V, dan GND yang digunakan sebagai pemberi tegangan input/output dari atau menuju perangkat lain. Catu daya juga dapat diberikan melalui plug adaptor atau pin Vin dengan memberikan masukan 7-12V tegangan vang telah direkomendasikan. Apabila tegangan yang diberikan kurang dari 7V, maka tegangan keluaran dari pin tidak mencapai 5V atau tidak stabil. Tegangan lebh dari 12V akan dapat merusak regulator tegangan, sehingga dapat merusak papan sirkuit Arduino. Secara *default* sistem mengukur dari *ground* sampai 5 volt dan rentangnya dapat diubah menggunakan fungsi analogReference(). Tabel 2.1 menunjukan spesifikasi Arduino Nano.

Selain itu, beberapa pin memiliki fungsi khusus seperti melakukan receive (RX) dan transmit (TX) data serial transistortransistor logic (TTL). Pin ini terhubung ke pin yang sesuai dari cip FTDI USB-to-TTL Serial. Pin ini digunakan untuk berkomunikasi dengan komputer, Arduino lain. atau mikrokontroler lain secara serial melalui USB dan FTDI driver yang menyediakan virtual com port untuk perangkat lunak pada komputer seperti IDE tersebut. Lampu LED RX dan TX di board akan berkedip ketika data sedang dikirim melalui *FTDI chip* dan koneksi USB ke komputer. Informasi lebih rinci mengenai cara menggunakan komunikasi lewat SPI dapat dilihat pada datasheet Atmega328P. Pada pin 13 merupakan built-in LED, dimana LED menyala saat bernilai nilai high dan mati ketika pin bernilai low. Pin Reset dapat digunakan untuk mengulang kembali program di mikrokontroler.

No	Mikrokontroler	Atmega328
1	Operasi Tegangan	5 Volt
2	Input Tegangan	7-12 Volt
3	Pin I/O Digital	22
4	Pin Analog	8
5	Arus DC tiap pin I/O	40 mA
6	SRAM	2 KB
7	Memori Flash	32 KB
8	EEPROM	1 KB
9	Kecepatan Clock	16 MHz
10	Konsumsi Daya	19 mA

Tabel 2.1 Spesifikasi Arduino Nano (Arduino, 2018)

Halaman ini sengaja dikosongkan

BAB III METODOLOGI PENELITIAN

3.1 Diagram Alir

Pada bab ini diuraikan langkah-langkah alur penelitian perancangan *solar charge controller* (SCC) pada sistem PV. Berikut diagram alir penelitian dalam mengerjakan tugas akhir ini adalah sebagai berikut:

Gambar 3.1 Flowchart metodologi penelitian

Berikut adalah rincian metodologi penelitian seperti Gambar 3.1 yang akan dilaksanakan pada penelitian ini:

- a) Perumusan masalah untuk menentukan cakupan bahasan penelitian yang sudah dijabarkan pada bab I.
- b) Studi literatur tentang *photovoltaic* serta materi yang terkait *buck converter, solar charge controller*, dan algoritma MPPT yang sudah dicantumkan pada bab II.
- c) Merancang simulasi pada *software* MATLAB dan hardware dilakukan secara parallel, yang meliputi *photovoltaic* dan konverter serta melakukan pengambilan data tanpa MPPT.
- d) Merancang konverter dan membuat pemrograman algoritma MPPT *incremental conductance* (INC) pada modul arduino sebagai elemen pengendali untuk mengendalikan daya keluaran pada konverter yang telah dirancang.
- e) Merancang sistem *solar charger controller* pada *buoyweather* yang menggabungkan baterai serta beban ke modul *photovoltaic*, serta melakukan pengujian rancangan terhdap pengendalian daya saat *charging* dan *discharging*.
- f) Merancang sistem *solar charger controller* pada *buoyweather* dengan algoritma INC serta pengambilan data pengaruhnya pada sistem tersebut.
- g) Melakukan analisis data dan membuat kesimpulan.

3.2 Simulasi Sistem Solar Charge Controller

Pembuatan simulasi dikerjakan sebelum dilakukannya perancangan *hardware* sistem *solar charge controller (SCC)*. Dilakukannya simulasi telebih dahulu agar mendapatkan desain SCC yang sesuai dalam melakukan algoritma INC serta pengendalian daya listrik. Penentuan spesifikasi komponen penyusun sistem catu daya yang tepat juga harus dilakukan terlebih dahulu sebelum dilakukan simulasi. Komponen utama penyusun tersebut adalah modul *photovoltaic, buck converter,* dan baterai. Setelah itu dapat dilakukan perangkaian antar setiap komponen dan dilakukan simulasi dalam pengendalian daya listrik. Algoritma MPPT INC yang dilakukan simulasi diterapkan pada komponen konverter yang telah ditentukan. Pengerjaan simulasi serta

penentuan komponen dilakukan pada *software* MATLAB Simulink.

Gambar 3.2 menunjukan diagram blok dari desain sistem pada Buoyweather Station Type II yang akan diteliti pada penelitian ini. Terdapat modul PV yang terhubung pararel dengan konverter, baterai, dan beban instrumen. Sensor arus terhubung seri dengan modul PV dan baterai, serta sensor tegangan tersusun pararel.Terdapat dua relay untuk mencegah *overcharging* dan *overdischarging* pada baterai yang diatur oleh mikrokontroler. Sinyal masukan dari mikrokontroler adalah nilai tegangan dari sensor dan keluaran dari mikrokontroler adalah sinyal PWM menuju konverter dan perintah mengaktif atau mematikan kedua relay. Komponen penyusun dari sistem SCC antara lain sensor arus, sensor tegangan, relay, konverter sebagai perubah tegangan, konverter sebagai regulasi tegangan, dan mikrokontroler.

Terdapat dua konverter dengan IC XL4016 setelah modul PV pada rangkaian tersebut. Konverter pertama dikendalikan oleh mikrokontroler untuk menemukan resistansi optimal pada modul PV, sehingga daya maksimum mampu didapatkan. Konverter kedua yang mampu melakukan constant current (CC) dan constant voltage (CV) digunakan untuk meregulasi arus dan tegangan dari konverter pertama menuju baterai. Tegangan yang kerluar pada konverter pertama haruslah diregulasi untuk tidak melebihi tegangan gassing baterai untuk melakukan charging. Arus yang keluar dari konverter pertama harulah juga diregulasi agar tidak melebihi arus maksimum charging yang telah ditentukan. Konverter kedua ini mampu mencegah tegangan dan arus tersebut melebihi nilai yang ditentukan. Nilai yang dilakukan pencegahan ini dapat diatur dengan memutar potensio yang ada pada modul konverter tersebut. Pada simulasi dirangkai konverter menggunakan sistem PID untuk memodelkan konverter kedua untuk menjaga tegangan dan arus keluaran. Terdapat juga isolated converter yang mampu melakukan constant voltage untuk meregulasi tegangan yang menuju beban. Nilai-nilai parameter kontrol PID dicarai dengan trial & error.

Gambar 3.2 Diagram blok sistem catu daya pada Buoyweather Station Type II

3.2.1 Pemodelan Modul Photovoltaic

Besar daya listrik yang dihasilkan oleh sel PV secara eksternal pada umumnya bergantung pada nilai radiasi matahari dan suhu lingkungan. Secara internal besarnya daya listrik dapat ditentukan dari banyaknya sel dan bahan penyusunnya. Tentunya setiap modul PV memiliki spesifikasi yang berbeda-beda akibat perbedaan bahan penyusunnya. Pemilihan modul PV ditentukan berdasarkan besar daya beban yang akan digunakan. Diperlukan modul PV yang memiliki daya keluaran melebihi daya beban tersebut agar beban yang dipakai dapat beoperasi.

Penelitian menggunakan modul PV dengan kapasitas 50 watt *peak* yang artinya dapat mengasilkan daya 50 watt saat kondisi standar ujinya, yaitu saat radiasi 1000 W/m², *Air mass coefficient* 1.5, dan suhu 25^oC. Spesifikasi dari modul PV sudah diberikan oleh perusahaan manufaktur lewat *datasheet* modul tersebut. Dari spesifikasi dapat dibuat pemodelan komponen modul PV pada MATLAB simulink. Persamaan untuk pemodelan modul PV yang diterapkan sama seperti persamaan 2.1 sampai 2.6 yang ada pada bab sebelumnya. Gambar 3.3 menunjukan desain rangkaian simulasi untuk mencari karakteristik pada modul PV setiap kondisi.

Pengkuran tingkat keakuratan model modul PV dari spesifikasi manufaktur terhadap kondisi aslinya dilakukan dengan menghitung arus *short circuit* (Isc) dan tegangan *open circuit* (Voc) yang keluar dari modul menggunakan multimeter pada setiap kondisi radiasi dan suhu permukaan panel. Pengambilan data dilakukan pada tanggal 19/03/2018 dari jam 8 pagi sampai jam 5 sore. Rentang waktu pengambilan data adalah satu jam dan nilai tiap variabel diukur secara bergantian.

Gambar 3.3 Desain rangkaian simulasi karakteristik modul PV

Jam	Radiasi	Suhu	I _{SC}	I _{SC simulasi}	Error I _{SC}
	(W/m^2)	(^{0}C)	(A)	(A)	(%)
08:00	217.7	34.5	0.66	0.97	47.3
09:00	736.9	32.8	1.87	2.72	45.67
10:00	959.8	46.3	2.45	3.55	45.12
11:00	954	46.7	2.32	3.32	43.2
12:00	950.97	41.77	2.42	3.31	36.78
13:00	904.35	43	2.39	3.25	36.02
14:00	699.21	46.65	2.01	2.72	35.56
15:00	420.47	36.53	1.09	1.47	35.43
16:00	244.43	30.92	0.67	0.9	34.87
17:00	51.37	31.46	0.14	0.19	34.53
				Rata-rata	38.44
				(%)	

Tabel 3.1 Hasil pengkuran akurasi I_{sc} pada pemodelan modul PV dari datasheet

Tabel 3.2 Hasil pengukuran akurasi V_{oc} pada pemodelan modul PV dari datasheet

Jam	Radiasi	Suhu	V _{OC}	V _{OC simulasi}	Error
	(W/m^2)	(^{0}C)	(V)	(V)	$V_{OC}(\%)$
08:00	325.6	34.6	19.33	19.01	1.64
09:00	766.54	33.2	20.6	20.29	1.6
10:00	949.4	44.3	19.85	19.54	1.56
11:00	960.5	46.3	19.75	19.53	1.12
12:00	956.71	38.45	20.67	20.21	2.19
13:00	870.96	41.68	19.75	19.81	0.41
14:00	737.27	48.16	19.46	19.08	1.94
15:00	446.58	38.23	19.78	19.44	1.72
16:00	243.28	31.35	19.84	19.44	2.94
17:00	58.13	32.37	18.15	17.88	1.54
				Rata-rata (%)	1.75

PV array (mas	k) (link)				
Implements a Allows modelin Input 1 = Sun	PV array built of strings of PV og of a variety of preset PV mo irradiance, in W/m2, and inpu	modules connected in p odules available from NR ut 2 = Cell temperature,	arallel. Each string consists o EL System Advisor Model (Ja in deg.C.	f modules connected in series. n. 2014) as well as user-defined PV m	odule
Parameters	Advanced				
Array data					
Parallel string	s 1				:
Module data	ted modules per string 1				
Module: User	r-defined				•
Maximum Pov	ver (W) 42.036		Cells per module (Ncell) 3	6	:
Open circuit v	oltage Voc (V) 20		Short-circuit current Isc (A) 2.5	:
Voltage at ma	ximum power point Vmp (V)	18.6	Current at maximum powe	er point Imp (A) 2.26	:
	coefficient of Voc (%/deg.C)	-1	Temperature coefficient of	Isc (%/deg.C) 0.5	:
Temperature					

Gambar 3.4 *Interface* pada Simulink Matlab untuk pemodelan modul PV

Tabel 3.1 dan Tabel 3.2 menunjukan bahwa nilai Isc yang keluar dari pemodelan modul PV dari spesifikasi *datasheet* menghasilkan *error* yang besar, sehingga dilakukan pemodelan lagi dengan spesifikasi yang baru dengan cara *trial & error*. Cara ini menentukan nilai V_{OC}, I_{SC}, tegangan daya maksimum (V_{MP}), arus daya maksimum (I_{MP}), sel seri penyusun modul, koefisien suhu pada tegangan *open circuit* dan *short circuit* secara acak.

Gambar 3.4 menunjukan *interface* dalam melakukan pemodelan modul PV yang berada pada Simulink Matlab. Pada Tabel 3.3 ditunjukan spesifikasi hasil *trial & error* dengan yang diasumsikan memiliki akurasi nilai V_{oc} dan I_{sc} lebih baik dibandingkan spesifikasi dari *datasheet*. Spesifikasi hasil model baru ini akan dijadikan pertimbangan dalam mendesain *buck converter*, menentukan desain baterai, dan mengetahui karakteristik susunan PV.

No	Modul PV SW 50 Poly RMA	Datasheet	Hasil trial & error
1	Maximum Power (P _{max})	50 W	42.036 W
2	Voltage at P _{max}	18.2 Volt	18.6 Volt
3	Current at P _{max}	2.75 A	2.26 A
4	Voc (Open Circuit)	21.42 V	20 V
5	Isc (Short Circuit)	3.08 A	2.5 A

Tabel 3.3 Spesifikasi modul PV 50 Wp *datasheet* dan hasil *trial & error*

Terdapat dua modul PV yang selanjutnya akan digabungkan dengan susunan seri dan pararel. Hal ini bertujuan untuk mendapatkan daya yang lebih besar. Dari kurva karakteristik gabungan modul PV secara seri memberikan nilai V_{OC} dua kali lebih besar dari V_{OC} tanpa digabungkan. Dari gabungan modul PV secara pararel memberikan nilai I_{SC} dua kali lipat lebih besar dari I_{SC} tanpa digabungkan. Daya yang dihasilkan juga terlihat lebih besar dibandingkan dengan satu modul saja. Besar daya maksimum yang terjadi ketika disusun seri atau pararel tidak jauh berbeda. Untuk mencapai daya maksimum dibutuhkan algoritma MPPT. Sebelum itu, desain *buck* konverter haruslah ditentukan telebih dahulu agar dapat diterapkan algoritma MPPT tersebut.

Bila digunakan susunan seri, maka perlu digunakan baterai dengan tegangan sekitar 24V agar mendapatkan daya lebih banyak. Untuk susunan pararel cukup digunakan baterai dengan tegangan 12V, namun desain konverter haruslah dapat menghasilkan arus keluaran yang lebih besar dari dua kali nilai arus saat daya tertinggi agar efisiensi daya tidak menurun. Rangkaian juga harus didesain untuk mengurangi pemanasan pada komponen *switch*.

3.2.2 Desain Konverter Buck

Pada simulasi ini akan ditentukan variabel-variabel seperti tegangan masukan serta keluaran minimum dan maksimumnya, arus masukan serta keluaran minimum dan maksimumnya, efisiensi, rasio *ripple* tegangan terhadap tegangan keluaran, dan lain-lain. Tegangan keluaran maksimum disesuaikan dengan tegangan maksimum baterai, yaitu sekitar 14.1 V untuk mencegah *gassing* pada baterai. Tegangan masukan konverter disesuaikan dengan nilai tegangan yang dapat menghasilkan daya maksimum. Arus maksimum keluaran didesain agar mendapatkan nilai yang sama dengan daya masukan saat kondisi yang dapat menghasilkan daya tertinggi. Diketahui saat radiasi 1000 W/m² terjadi daya maksimum adalah 42.036 W, maka arus keluaran maksimum didesain sekitar 3A saat tegangan keluaran 14.1 V.

Pembuatan desain simulasi *buck converter* dibuat berdasarkan persamaan yang telah disebutkan pada bab 2 bagian

buck converter. Spesifikasi desain yang digunakan adalah hasil perhitungan yang ditunjukanpada Tabel 3.4 berikut ini:

Tabel 3.4 Spesifikasi desain buck converter Tegangan Masukan (V_I) 17-19 V Tegangan Keluaran Maksimum (V_{Omax}) 14.1 V Arus Keluaran Minimum (I_{Omin}) 0.3 A Arus Keluaran Maksimum (I_{Omax}) 3.3 A Frekuensi Switch 180 KHz < 1 %*Ripple* Tegangan (V_r/V_0) Efisiensi 90 % *Duty Cycle* Minimum (D_{min}) 82 % *Duty Cycle* Maksimum (D_{max}) 92 % 37.4 uH Nilai Induktor Minimum (L_{min}) 47 uH Nilai Induktor yang Dipakai (L) 0.29 A *Ripple* Arus Induktor Maksimum (Δi_{Lmax}) ESR Maksimum Kapasitor (r_{Cmax}) 0.48 ohm ESR Kapasitor yang Dipakai (r_C) 0.016 ohm Nilai Kapasitor Minumum (C_{min}) 159.9 uF Nilai Kapasitor yang Dipakai (C) 220 uF

Berdasarkan spesifikasi tersebut, selanjutnya disusun rangkaian simulasinya menggunakan Matlab Simulink. Adapun power switch berupa MOSFET dan Dioda *schottcky* yang digunakan diasumsikan ideal dengan mengikuti spesifikasi. Rancangan simulasinya pada Gambar 3.5 akan dicari efesiensinya, rentang nilai tegangan dan arus masukan, serta rentang nilai tegangan dan arus keluaran operasinya. Setiap nilai dicari dengan cara mengubah duty cycle pada tiap tegangan masukan yang berbeda dengan digunakan hambatan uji sebesar 5 ohm. Pada tahap ini diuji untuk mematiskan konverter mampu menurunkan tegangan keluaran ketika duty cycle diturunkan. Komponen serta ketentuan seperti efisiensi, ripple tegangan, ripple arus. pada desain spesifikasi akan diganti jika tidak medapatkan kondisi tersebut. Nilai efisiensi, ripple tegangan, ripple arus perlu dicapai untuk mendapakan konverter yang stabil apabila diberikan perubahan duty cycle

Gambar 3.5 Racangan desain simulasi buck converter

3.2.3 Sistem *Photovoltaic* Dengan Algoritma Incremental Conductance

Desain simulasi konverter akan diintegrasikan dengan algoritma MPPT, yaitu pada penelitian ini digunakan *incremental conductance* (INC). Algoritma akan menambahkan atau

mengurangkan besar *duty cycle* sesuai *flowchart* pada Gambar 2.5 pada bab sebelumnya. Konverter yang sudah diintegrasikan dengan MPPT akan digabungkan dengan desain modul PV membentuk sistem PV dengan INC. Gambar 3.6 menunjukan diagram blok pengendalian sistem PV oleh INC. Sistem akan terus merubah besaran *duty cycle* sampai *setpoint* gradien daya terhadap tegangan keluaran PV bernilai nol. Pengendalian ini bertujuan mendapatkan titik daya maksimum yang berada saat dP/dV bernilai nol dengan *feedback* dari arus dan tegangan keluar dari konverter.

Gambar 3.7 menunjukan rancangan desain sistem PV dengan INC untuk keperluan simulasi. Dari simulasi ini akan dicari keberhasilan algoritma MPPT terhadap desain sistem PV dalam menjejak daya maksimum. Algoritma disusun untuk mendapatkan daya maksimum pada setiap kondisi iklim yang terjadi. Pembuatan algoritma menggunakan kode pemrograman yang bisa dilihat di lampiran. Simulasi dilakukan dengan cara memvariasikan nilai radiasi dengan transisi *step* terlebih dahulu dengan suhu permukaan panel konstan. Selanjutnya dilakukan variasi nilai suhu dengan membuat radiasi konstan. Nilai periode pada *ramp wave* adalah sesuai dengan frekuensi pada spesifikasi

Gambar 3.6 Diagram blok sistem pengendalian sistem PV oleh INC

Gambar 3.7 Rancangan desain sistem PV dengan INC
3.2.4 Desain Baterai Lead Acid

Baterai yang akan digunakan harus memiliki kapasitas yang dapat mencatu daya peralatan instrumen pada *buoy* ketika daya yang dihasilkan dari radiasi matahari tidak cukup. Nilai kapasitas baterai ditentukan dari besar pemakaian daya pada setiap peralatan instrumen yang ada. Tabel 3.5 menunjukan nilai total pemakaian daya yang terjadi setiap peralatan.

Peralatan	Jumlah	Arus Kerja	Tegangan	Daya
		(mA)	Kerja (V)	(mW)
HTU 21D	1	50	3.3	165
BMP 085	1	50	3.3	165
IMU 9DOF	1	50	3.3	165
Anemometer (Wind sensor	1	50	12	600
Windvane (Wind Direction	1	50	12	600
Sensor	1	50	12	000
Thermistor	1	20	5	100
Sensor Salinitas	1	20	5	100
Rain Gauge	1	20	5	100
3DR	1	20	5	100
Arduino Mega	1	19	5	95
ACS712-5A	2	40	5	400
Solid State Relay	2	40	5	400
Arduino Nano	1	19	5	95
			Total	3085

Tabel 3.5 Spesifikasi instrumen pada Buoyweather Station Type II

Jumlah daya yang dikonsumsi oleh seluruh peralatan instrumen pada *buoy* adalah sekitar 3.085 mW. Untuk itu, seluruh peralatan *buoy* dapat beroperasi selama 1 hari penuh dengan memakai total energi sebanyak 74,04 Wh. Dapat ditentukan kapasitas satu baterai dengan tegangan 12 V haruslah memiliki nilai minimal 6,17 Ah untuk melakukan catu daya selama 1 hari penuh. Penentuan kapasitas baterai yang diperlukan akan lebih lebih akurat jika memperhatikan efisiensi dari sistem *charging* tersebut. Baterai selanjutnya diintegrasikan dengan sistem SCC untuk dicari pengaruh MPPT pada proses *charging* dan akan dicari efisiensi dari sitem tersebut.

3.2.5 Desain Solar Charger Controller

Proses *charging* dan *discharging* pada sistem SCC dilakukan agar catu daya ke peralatan instrumen terus terjadi dan dapat mengisi ulang muatan jika baterai sudah hampir habis. Gambar 3.8 menunjukan diagram blok pengendalian sistem SCC dengan teknik yang akan digunakan, yaitu *charging regulation*. Pada teknik ini dikendalikan nilai arus yang masuk ke baterai dengan pengendali *charging regulation*. Pengendali mendapat *feedback* arus dari konverter. Nilai *setpoint* yang digunakan adalah nilai batas arus baterai maksimum masukan. Nilai ini terus berubah sampai dari nilai C/5 sampai C/100 sesuai dengan teknik tersebut.

Gambar 3.9 menunjukan desain rangkaian simulasi untuk sistem SCC. Desain mengintegrasikan sistem PV dengan 2 *relay, controller, 2 buck converter* dan *isolated converter*. *Buck converter* 2 dan *isolated converter* difungsikan sebagai *fixed output* untuk menjaga keluaran tegangan tetap pada nilai yang ditentukan. Letak relay 1 berada diantara *buck converter 2* dan baterai, sedangkan relay 2 diantara baterai dan *isolated converter*.

Gambar 3.8 Diagram blok pengendalian arus pada sistem SCC dengan teknik *charging regulation*

Gambar 3.9 Desain simulasi sistem SCC

Dalam sistem SCC yang dirancang menggunakan teknik charging reguation. Proteksi terhadap overcharging dan overdischarging akan dijalankan dengan pengimplementasian komponen *relay* yang diatur oleh mikrokontroler. Selanjutnya dari akan dicari pengaruh MPPT rangkaian ini incremental conductance dengan sistem SCC serta pengecekan setiap relay apakah berkerja sesuai dengan algoritma charge regulation seperti flowchart pada Gambar 3.10 yang akan digunakan pada sistem SCC tersebut dalam mengendalikan catu daya. Pada flowchart mencakup kondisi kapan aktifnya *relay* tersebut. Simbol R1 & R2 menunjukan komponen relay. Kondisi on dianalogikan seperti saklar tertutup dan off seperti saklar terbuka. Urutan pengendalian dalam kondisi charging, discharging, overcharging, dan overdischarging pada sistem adalah seperti berikut:

- Jika Tegangan PV () lebih besar dari tegangan baterai (V_B), maka kedua relay *ON* untuk melakukan *charging*. Perintah SOC tidak penuh diberikan jika kondisi tidak tercapai yang menunjukan baterai tidak penuh.
- Jika saat V_B lebih besar dari V_{PV} dan tegangan baterai minimum (V_{B_min}), maka relay 1 *OFF* dan menimbulkan fasa *discharging*. Bila Vb lebih kecil dari V_{B_min} , maka kedua relay *OFF* dan sistem akan *shutdown* untuk proteksi *overdischarging*.
- Jika arus masuk baterai (I_B) lebih kecil dari arus masuk baterai maksimum (I_{B_max}) saat *charging* dan SOC terdeteksi sudah *full* atau I_B sudah mencapai C/100, maka *discharge* baterai terjadi untuk proteksi *overcharging*.
- Jika SOC belum *full*, V_B dan I_B belum mencapai maksimumnya, maka MPPT akan *ON* dan *OFF* jika salah satu mencapai maksimum.

Gambar 3.10 Flowchart sistem SCC

Tegangan baterai maksimum digunakan untuk simuasi adalah 13.8 V untuk mempercepat waktu simulasi. Nilai koefisien reduksi (β) ditentukan adalah 0.9 karena setiap penurunan arus memberikan kenaikan tidak lebih dari 1% kapasitas nominal baterai. Tabel 3.6 menunjukan nilai variabel sistem SCC pada pengujian yang mendukung teori dasar dari teknik *charging regulation*. Tegangan maksimum baterai dan arus maksimum baterai berdasarkan pada *datasheet* baterai Luminous 7Ah 12V.

Tabel 3.6 Nilai variabel sistem SCC

Arus baterai minimum (I _{B_min})	C/100
Arus baterai maksimum awal (I _{B_max})	30%C
Arus <i>trickle</i> (I _{trickle})	0.05 A
Koefisien Reduksi (β)	0.95
Tegangan baterai minimum (V _{B_min})	12.7 V
Tegangan baterai maksimum (V _{B_max})	14.1 V

3.3 Perancangan Sistem PV Dengan Incremental Conductance

Pada tahap ini akan direalisasikan sistem PV yang didapat dari simulasi apabila berhasil dalam menemukan titik MPP pada kondisi tertentu. Jika belum, maka akan dibuat pemrograman atau desain konverter ulang. Komponen yang digunakan dalam menjalankan realisasi algoritma INC antara lain sensor arus ACS712-5A, sensor tegangan *voltage divider*, konverter *buck XL4016*, serta arduino nano untuk membuat program INC tersebut.

3.3.1 Sensor Arus ACS712-5A

Gambar 3.11 merupakan modul sensor arus ACS712-5A. Arus keluar dari PV akan dideteksi oleh modul sensor ini dengan cara mengubah besaran arus (0 - 5A) yang terdeteksi menggunakan prinsip kerja *hall effect* pada IC ACS712-5A menjadi besaran tegangan yang dapat dibaca oleh Arduino Nano. Tegangan yang dikeluarkan oleh modul adalah sekitar 2,5 Volt untuk pembacaan arus 0 A sampai 5 Volt untuk pembacaan arus 5 A, dimana tegangan tersebut merupakan tegangan maksimum yang dapat dibaca Arduino. Pembacaan arus dapat terbaca menggunakan persamaan berikut:

$$Arus = \frac{\left(\frac{ADC\,Vout}{1023}5V-2,5V\right)}{Sensitivitas}(gain)$$
(3.1)

ADC Vout adalah nilai hasil konversi sinyal analog ke digital pada pin analog di Arduino yang memiliki resolusi 10 bits. Sensitivitas untuk IC ACS712-5A adalah 185 mV/A dan nilai ini akan berubah untuk jenis IC dengan rentang pengukuran arus lainnya.

Gambar 3.11 Modul sensor arus ACS712-5A

Nilai *gain* diberikan sebagai faktor pengali yang dicari dengan membandingkan nilai yang keluar dari sesor dan nilai dari alat kalibratornya. Jika *gain* bernilai satu, maka dapat diketahui resolusi dari modul sensor ini adalah sekitar 0.026 mA. Modul membutuhkan tegangan 5 V dan arus 10 mA untuk beroperasi dengan normal.

3.3.2 Sensor Tegangan Voltage Divider

Gambar 3.12 menunjukan tampak dari modul sensor tegangan. Tegangan yang keluar dari PV akan dibaca oleh modul sensor tegangan yang menggunakan prinsip kerja *voltage divider*. Digunakan resistor 30.000 ohm dan 7500 ohm dalam membuat rasio 5 untuk pengukuran. Tegangan keluaran maksimum dirancang untuk mengeluarkan 5V agar dapat terbaca oleh Arduino. Rentang pengukurannya adalah 0-25 Volt. Perhitungan tegangan dapat dilihat pada persamaan berikut:

$$Tegangan = \frac{ADC Vout}{1023} 5V\left(\frac{R1+R2}{R2}\right)(gain)$$
(3.2)

ADC Vout akan bernilai 0 untuk pembacaan 0 V dan akan bernilai 1023 untuk pembacaan 25 V. Perbandingan hambatan adalah bernilai 5 untuk sensor ini. Nilai *gain* digunakan sebagai faktor pengali dan dicari dengan membandingkan nilai sensor dengan kalibrator. Modul tidak membutuhkan catu daya dan memiliki resolusi sekitar 0,024 Volt pada *gain* bernilai satu.

Gambar 3.12 Modul sensor teganan voltage divider

3.3.3 Buck Converter XL4016

Konverter yang digunakan adalah jenis *buck* yang dapat melakukan *step down* tegangan atau menurunkan tegangan output. Pada Konverter menggunakan IC XL4016 seperti pada Gambar 3.13 sebagai *power switch* yang bekerja dengan frekuensi *switching* 180 KHz. Pada Tabel 3.7 berikut diberikan spesifikasi dari modul konverter XL4016. Spesifikasi nilai kapasitor, induktor, dan frekuensi *switching* pada konverter ini bernilai sama dengan konverter yang dilakukan di simulasi.

Tabel 3.7 Spesifikasi modul konverter XL4016

Tegangan Masukan	8-40 V
Tegangan Keluaran	1.25- 36 V
Arus Keluaran Maksimum (I _{Omax})	8 A
Frekuensi Switch	180 KHz
Batas Arus Switch	10A
Efisiensi	96 %
Duty Cycle Maksimum (D _{max})	100 %
Nilai Kapasitor	220 uF
Nilai Induktor	47 uH

Gambar 3.13 Modul Konverter XL4016

Duty cycle pada konverter ini dapat diubah menggunakan potensio yang diputar dengan sekrup. Agar perubahan duty cycle dapat diubah menggunakan PWM pada arduino, maka pada pin feedback di IC haruslah diberikan resistor sebesar 1000 ohm apabila dalam modul menggunakan resistor 330 ohm agar mampu menghasilkan tegangan feedback sebesar 1,25 V saat diberikan tegangan 5 V dan potensio diposisikan pada nilai maksimumnya. Sinyal PWM pada Arduino sebelumnya haruslah diubah menjadi sinyal step menggunakan low pass filter. Setelah itu sinyal step tersebut dapat berubah dari 0-5V sesuai besar PWM yang diberikan. Sinyal step akan melewati rangkaian voltage follower agar tidak terjadi kehilangan daya sebelum menuju IC.

3.3.4 Rancangan Sistem *Photovoltaic*

Perancangan sistem dilakukan dengan menyusun setiap komponen seperti ditunjukan pada Gambar 3.14 di bawah. Digunakan dua konverter dengan kondisi satu modul PV menggunakan satu konverter, sehingga arus yang keluar dari tiap konverter akan terjumlahkan dan daya yang dihasilkan meningkat. Uji coba sistem PV menggunakan baterai sebagai beban dan juga sebagai sumber catu daya untuk Arduino dan op-amp. Algoritma INC selanjutnya diterapkan pada sistem ini untuk mencari daya maksimum yang dapat dihasilkan. Hasil algoritma akan diverifikasi menggunakan pencarian daya tertinggi secara manual menggunakan potensio untuk mengubah besar PWM. Dalam hal ini hanya digunakan satu jenis konverter yang dikendalikan oleh arduino. Hasil penjejakan akan diketauhi berhasil jika tegangan keluar pada modul PV yang terdeteksi dapat turun atau naik ketika potensio yang mewakili duty cycle diturunkan atau dinaikan. Pengujian yang dilakukan dapat membahayakan baterai karena tegangan charging yang tidak teregulasi. Penggunaan beban dengan resistansi kecil perlu dilakukan untuk menggantikan baterai dalam pencarian daya maksimum. Namun resistansi yang kecil akan menimbulkan suhu yang besar pada resistor, sehingga perngujian ini perlu dilakukan pada waktu yang singkat.

Gambar 3.14 Rangkaian sistem PV

3.4 Perancangan Sistem Solar Charger Controller

Sistem PV yang menggunakan algoritma MPPT tersebut selanjutnya akan dikembangkan dengan menambahkan komponenkomponen seperti *isolated converter* dan *relay* untuk keperluan *charger controller*. Penggunaan *isolated converter* ditujukan untuk menghasilkan tegangan masukan yang sesui ke peralatan instrumen seperti Arduino Uno Arduino Mega, dan lainnya yang membutuhkan tegangan masukan sekitar 12V. Komponen *relay* akan dikendalikan oleh tegangan dari Aduino Uno sesuai algoritma sistem SCC untuk tercapai kondisi *charging, discharging,* proteksi *overcharging,* dan proteksi *overdischarging* pada baterai.

3.4.1 Isolated Converter DKW5-12S12

Penggunaan isolated converter sangat banyak dipakai pada berbagai kegiatan industri yang membutuhkan isolasi galvanis dalam penanggulangan noise dan meningkatkan keamanan pada sebuah sistem kelistrikan. Isolasi galvanis adalah cara untuk menghilangkan konduksi listrik secara langsung pada suatu bagian ke bagian lain di dalam sistem kelistrikan. Gambar 3.15 (a) menunjukan penggunaan transformer yang biasanya digunakan untuk mengisolasi aliran arus masukan dan keluaran pada sebuah tahap daya sistem isolated converter DC/DC. Penggunaan tegangan *feedback* diperlukan jika digunakan untuk meregulasi tegangan yang keluar pada isolated converter. Gambar 3.15 (b) menunjukan sistem kontrol tegangan di sistem isolated converter DC/DC dengan penggunaan transformer atau optocoupler sebagai isolasi antara rangkaian kontrol primer dan sekunder. Bagian aktuatornya adalah PWM dengan mengeluarkan duty cycle sesuai besar error yang terdeteksi (Fan, 2014).

Gambar 3.15 Blok diagram (a) tahap daya sistem *isolated converter* DC-DC; (b) kontrol tegangan sistem *isolated converter* DC-DC

Dalam penelitian ini digunakan jenis *isolated converter* DC/DC DKW12S12 yang dapat meregulasi tegangan keluaran sekitar 12 V dan menghasilkan daya sekitar 5 W. Pada Tabel 3.8 ditunjukan spesifikasi yang lebih lengkap dari komponen ini.

No	Variabel Isolated Converter	Nilai
1	Tegangan Masukan	18 - 36 V
2	Daya Keluaran	5 - 6 W
3	Ripple & Noise	50 mVp-p
4	Suhu Operasi	-40°C - 85°C
5	Efisiensi	70 - 80
6	Tegangan Isolasi	1000 VDC
7	Maksimum Kapasitor	220 uF

Tabel 3.8 Spesifikasi isolated converter DC/DC DKW5-12S12

3.4.2 Solid State Relay DC-DC

Terdapat banyak jenis *solid state relay* yang dapat mengaktifkan atau mematikan rangkaian dengan beban DC atau AC. Jenisnya dibedakan atas tipe keluarannya, yaitu AC, DC, atau AC/DC yang ditandai dari komponen pensaklaran yang ada di dalamnnya. Komponen pensaklaran yang bisa digunakan adalah BJT, MOSFET, *silicon controlled rectifier (SCR)*, atau TRIAC. Pada Gambar 3.16 menunjukan blok diagram dari konfigurasi DC/DC menggunakan MOSFET.

Komponen *relay* yang digunakan adalah DC/DC karena tegangan masukan yang berasal dari Arduino Nano adalah DC. Dalam penelitian ini digunakan jenis *solid state relay* DC-DC G3NA-D210B yang dapat mentolerir arus 10 A dan tegangan input minimal adalah 5 V sesuai dengan tegangan keluaran pada Arduino tersebut. SSR berkerja dengan kondisi *normally open* atau diibaratkan seperti saklar terbuka. Ketika diberi tegangan masukan, maka SSR diibaratkan seperti saklar tertutup. Pada

Tabel 3.9 merupakan spesifikasi komponen *solid state relay* yang akan dipakai pada penelitian ini.

Gambar 3.16 Blok diagram DC-DC solid state relay (Arar, 2017)

No	Variabel Solid State	Nilai
	Relay	
1	Tegangan Masukan	5 - 24 VDC
2	Tegangan Beban	5 – 200 VDC
3	Arus Beban	0.1 - 10 A
4	Suhu Operasi	-30°C - 80°C
5	Leakage Current	5mA max (at 200 VDC)

Tabel 3.9 Spesifikasi solid state relay DC-DC G3NA-D210B

3.4.3 Rancangan Sistem Solar Charger Controller

Perancangan sistem SCC adalah menggabungan *solid state relay* dan *isolated converter* ke sistem PV. Gambar 3.17 menunjukan skema rangkaian dari SCC yang akan dianalisis. Beban instrumen akan tersambung secara pararel ke *isolated converter* dan terdapar 2 *solid state relay* untuk dapat memberikan 4 kondisi yang sesuai dengan algoritma SCC tersebut. SSR akan dikendalikan lewat pin digital pada Arduino Uno dengan memberikan tegangan sebesar 5 V pada terminal masukannya. Rangkaian ini akan diuji keberhasilnnya dalam mengendalikan daya listrik antara yang masuk beban dan baterai sesuai kondisi yang diinginkan.

Gambar 3.17 Rangkaian sistem solar charge controller

BAB IV ANALISA DATA DAN PEMBAHASAN

4.1 Simulasi Sistem Solar Charger Controller Berbasis Algoritma Incremental Conductance

Dari tahap simulasi yang telah dilakukan, akan dijabarkan mengenai hasil dari setiap tahap pada proses perancangan *solar charge controller* (SCC) yang menggunakan algoritma MPPT *incremental coductance* (INC). Tahapan-tahapannya adalah dimulai dari pemodelan modul PV, perancangan desain *buck converter*, simulasi sistem PV dengan algoritma INC, dan simulasi sistem SCC dengan algoritma INC. Hasil dari setiap tahapan akan dianalisis dan akan dilanjutkan untuk ke tahapan berikutnya apabila hasil dari tahapan sebelumnya sesuai dengan dasar teori yang ada.

4.1.1 Simulasi Pemodelan PV

Sesuai pada Tabel 3.4 ditunjukan spesifikasi yang bersumber dari manufaktur dan hasil melakukan pemodelan secara trial & error. Hasil spesifikasi yang baru didapat dari pemodelan secara trial & error pada Simulink Matlab. Pengujian akurasi pemodelan baru didapatkan dengan mencari nilai error keluaran Isc dan Voc dari hasil pemodelan terhadap kondisi yang aktual yang terukur saat pengujian. Gambar 4.1 menunjukan nilai-nilai error dari I_{SC} dan V_{OC} pada kondisi yang berbeda. Didapatkan rentang error I_{SC} adalah 3 – 3,5% dan rentang error V_{OC} adalah 1.5 – 2% terhadap nilai terukur aktualnya. Hasil pengujian tersebut didapatkan error rata-rata spesifikasi yang baru adalah 2.8% untuk Isc dan 1.64% untuk Voc. Nilai error menunjukan masih kurang akuratnya pemodelan terhadap komponen modul PV yang aslinya. Spesifikasi yang baru inilah yang akan menjadi acuan dalam melakukan simulasi sistem PV serta sistem SCC dengan algoritma INC karena tingkat akurasinya lebih baik dari spesifikasi sebelumnya. Pengubahan nilai parameter spesifikasi seperti V_{OC}, I_{SC}, V_{MP}, dan I_{MP} atau penggunaan persamaan lainnya dapat dilakukan untuk mendapatkan pemodelan yang lebih akurat.

Gambar 4.1 Hasil pengujian akurasi pemodelan trial & error

Kurva I-V dan P-V spesifikasi desain modul PV yang baru dapat ditunjukan pada Gambar 4.2 dan Gambar 4.3 dibawah. Perbedaan garis biru menunjukan karakteristik pada radiasi berbeda dengan suhu konstan 25° C sesuai Gambar 4.2(a) dan (b) serta saat suhu berbeda dengan radiasi konstan 1000 W/m² sesuai Gambar 4.3(c) dan (d). Saat proses pengujian akurasi modul PV, diketahui nilai radiasi tertinggi pada lokasi pengujian sekitar 1000 W/m² yang merupakan kondisi kurang dari vang memungkinkan terjadi daya tertinggi. Gambar 4.2(a) menunjukan arus yang dapat menghasilkan daya maksimum saat 1000 W/m² adalah sekitar 2.5A. Karakteristik pada gambar ini tentu akan berbeda ketika suhu permukaan modul PV dan radiasi matahari berbeda. Penyimpangan karakteristik yang ada pada gambar tentu akan terjadi dengan keadaan aslinya karena pemodelan modul PV yang kurang akurat.

Gambar 4.2 Kurva karakteristik (a) *I-V* dan (b) *P-V* pemodelan modul PV secara *trial & error* pada radiasi yang berbeda

Gambar 4.3 Kurva karakteristik (a) *I-V* dan (b) *P-V* pemodelan modul PV secara *trial & error* pada suhu yang berbeda

4.1.2 Simulasi Desain Buck Converter

Perancangan desain *buck converter* dibuat agar mendapatkan perbedaan tegangan masukan dan keluaran. Dilakukannya simulasi bertujuan untuk mengetahui apakah desain tersebut sudah mampu menciptakan perbedaan tegangan tersebut. Efisiensi yang mendekati spesifikasi juga diinginkan pada pendesainan ini. Tabel 4.1 menunjukan hasil simulasi dengan masukan perubahan nilai *duty cycle*.

Duty Cycle	Tegangan Masuk (V)	Tegangan Keluar (V)	Arus Masuk (A)	Arus Keluar (A)	Daya Masuk (W)	Daya Keluar (W)	Efisiensi (%)
1	17	16.14	0.54	0.54	9.14	9.11	99.67
0.9	17	16.14	0.54	0.54	9.14	9.11	99.67
0.8	17	16.14	0.54	0.54	9.14	9.11	99.67
0.7	17	11.33	0.48	0.38	8.22	6.40	77.80
0.6	17	10.49	0.35	0.35	5.94	5.92	99.65
0.5	17	5.24	0.20	0.17	3.41	2.95	86.51
0.4	17	4.89	0.17	0.16	2.89	2.65	91.70
0.3	17	4.09	0.36	0.14	6.15	1.83	29.79
0.2	17	1.21	0.06	0.04	0.99	0.50	50.96
0.1	17	0.52	0.01	0.02	0.12	0.11	92.98

Tabel 4.1 Hasil simulasi desain buck converter

Dari hasil simuasi didapatkan efisiensi konverter rata-rata adalah 82,84 % yang nilainya tidak jauh dari 90% yang merupakan efisiensi perancangan. Dengan kata lain konverter yang dirancang sudah memenuhi spesifikasi yang diinginkan. Pada *duty cycle* dibawah 80% akan terjadi perubahan tegangan keluaran, sehingga nilai *duty cycle* ini adalah nilai maksimal yang dapat mempengaruhi konverter. Ketidakstabilan daya dan tegangan keluaran dari konverter disebabkan oleh pemilihan nilai kapasitor , ESR kapasitor, dan induktor yang kurang sesuai. Pemilihan dilakukan secara *trial & error* karena dari perhitungan desain hanya didapatkan nilai minimal kapasitor, ESR kapasitor, dan induktor saja. Referensi lebih lanjut mengenai perhitungan komponen tersebut perlu didalami untuk menciptakan tegangan keluaran konverter yang lebih stabil.

4.1.3 Simulasi Sistem PV dengan Algoritma INC

Pada tahap ini dilakukan pengujian algoritma INC yang telah dirancang untuk melakukan pencarian titik daya maksimum pada berbagai kondisi radiasi matahari dan suhu panel. Simulasi menggunakan konverter yang telah didesain dengan hambatan sebesar 3 ohm untuk medapatkan arus maksimum serta menggabungkannya dengan modul PV hasil *trial & erorr*.

Di Gambar 4.4(a) ditunjukan hasil penjejakan titik MPP secara simulasi pada waktu *step* 0.05 detik dari radiasi 1000 W/m² menuju 800 W/m² dengan suhu tetap 25°C telah berhasil dengan menghasilkan osilasi. Diperolehnya daya tertinggi sesuai hasil kurva karakteristik pada kedua nilai radiasi tersebut. Didapatkan nilai daya maksimummya dengan waktu penjejakan dalam 0,01 detik. Di Gambar 4.4(b) ditunjukan hasil penjejakan titik MPP secara simulasi pada waktu *step* 0.05 detik dari suhu 35°C ke 25°C dengan radiasi tetap 1000 W/m² telah berhasil dan juga menghasilkan osilasi. Didapatkan nilai daya maksimummya dengan waktu penjejakan dalam 0,01 detik.

Timbulnya osilasi saat kondisi transien terjadi karena respon algoritma dalam mencari daya maksimum. Hal ini diketahui dari respon duty cycle yang turun dengan banyak step. Kejadian osilasi juga terjadi saat kondisi steady state yang disebabkan oleh respon konverter yang kurang stabil saat terjadi pergantian duty cycle karena pemilihan nilai induktor dan kapasitor berdasarkan trial &error. Pada Tabel 4.1 diketahui bahwa pada rentang duty cycle 0.5 dan 0.6 terdapat penurunan tegangan sangat drastis, sehingga membuat respon tidak stabil. Pada penjejakan radiasi berbeda dan suhu yang berbeda selalu akan muncul osilasi pada rentang *duty cycle* tersebut. Pada rentang *duty cycle* lainnya akan memiliki osilasi lebih sedikit diakibatkan oleh perbedaan tegangan yang tidak terlalu besar terjadi pada rentang tersebut dan adanya small marginal error seperti yang diterapkan. Rentang error ini dapat dipengaruhi oleh desain konverter yang digunakan, sehingga pengecilan rentang ini dapat dilakukan dan nilai osilasi dapat diperkecil.

Gambar 4.4 Hasil penjejakan *incremenetal conductance* pada (a) radiasi 1000 ke 800 W/m² (b) suhu 35 ke 25^{0} C

Dari hasil simulasi dapat diketahui nilai *error* yang merupakan perbandingan nilai daya keluaran simulasi terhadap nilai daya aktual yang bersumber dari kurva karakteristik. Nilai efisiensi didapat dengan membandingkan nilai daya keluaran terhadap daya masukan yang terjadi. Nilai-nilai tersebut dicantumkan pada Tabel 4.2 dengan kondisi yang terjadi. Dapat dikatakan bahwa parameter *error* dipengaruhi daya aktualnya. Jika

semakin meningkat daya aktualnya pada kondisi tertentu, maka *error* akan semakin besar. Hal ini dapat dilihat dari perbandingan saat terjadi fasa transien (dari detik ke 0 – 0.05) pada kondisi radiasi 1000 W/m² dan suhu 25^oC memiliki *error* lebih kecil karena daya aktual lebih kecil dari kondisi radiasi 1000 W/m² dan suhu 35^oC. Sementara saat setelah fasa transien (setelah detik ke 0.05) pada kondisi radiasi 800 W/m² dan suhu 25^oC memiliki *error* lebih kecil karena daya aktual lebih kecil dari kondisi radiasi 1000 W/m² dan suhu 25^oC. Sementara saat setelah fasa transien (setelah detik ke 0.05) pada kondisi radiasi 800 W/m² dan suhu 25^oC memiliki *error* lebih kecil karena daya aktual lebih kecil dari kondisi radiasi 1000 W/m² dan suhu 25^oC. Hal tersebut juga berlaku dari parameter efisiensi yang juga dipengaruhi oleh daya aktualnya. Jika semakin meningkat daya aktualnya pada kondisi tertentu, maka efisiensi akan semakin besar.

Т	Ir	Pi	Ро	Pact	Error	Efisiensi
$({}^{0}C)$	(W/m^2)	(W)	(W)	(W)	(%)	(%)
25	1000	38.287	36.066	42.036	14.191	94.200
25	800	32.867	31.512	33.574	6.138	95.879
35	1000	38.064	35.985	42.335	14.999	94.536
25	1000	40.3293	38.921	42.035	7.406	96.509

Tabel 4.2 Hasil simulasi penjejakan algoritma incremental conductance

4.1.4 Simulasi Sistem SCC dengan Algoritma INC

Pengujian sistem SCC akan dilakukan pada tahap ini untuk mengetahui respon *charging* dari pengaruh pemberian algoritma INC. Serta untuk mengetahui keberhasilan sistem dalam mengendalikan daya listrik ke beban dan baterai. Simulasi dijalankan dengan kondisi tingkat SOC mendekati 100% atau kondisi kapasitas baterai mendekati kapasitas maksimumnya. Perbandingan antara metode *charge regulation* dengan INC sesuai algoritma pada Gambar 3.10 dan metode *constant voltage* akan ditelsuri mengenai pengaruhnya terhadap kapasitas baterainya. Pada algoritma *charge regulation* digunakan koefisien reduksinya adalah 0,9 karena peningkatan SOC akan kurang dari 1% kapasitas nominalnya, yaitu 7Ah. Tegangan maksimum baterai pada kedua motode adalah 13,9 V agar mempercepat proses simulasi. Saat detik ke 0,5 diberikan *step* radiasi dari 1000 W/m² ke 800 W/m² pada kedua metode.

Gambar 4.5 Hasil sistem SCC dengan INC saat charging

Dari Gambar 4.5 menunjukan respon *charging* ke baterai terhadap penggunaan algoritma charge regulation dengan INC pada sinyal warna merah dan constant voltage pada sinyal warna biru. Waktu charging akan semakin cepat dengan diindikasikan tingkat state of charge (SOC) baterai yang meningkat dengan cepat menggunkan charge algoritma regulation dengan INC dibandingkan constant voltage tersebut. Hal ini disebabkan jumlah daya dari hasil penjejakan di modul PV yang diberikan ke baterai lebih banyak jika menggunakan charge regulation dengan INC. Pada detik ke 0,5 terjadi proses discharge pada metode constant voltage karena daya keluaran PV kurang dari daya yang dibutuhkan beban, sehingga mengambil daya tambahan dari baterai. Hal tersebut disebabkan metode constant voltage tidak melakukan penjejakan ke daya maksimum saat pergantian kondisi.

Keberhasilan dalam mengendalikan daya listrik pada metode charge regulation dengan INC dapat ditunjukan oleh perilaku

charging, discharging dan pencegahan overcharging. Kondisi charging diindikasikan dengan naiknya tingkat SOC baterai dan mulainya fase bulk yang dapat dilihat dari meningkatnya voltase baterai dan tanda arus negatif yang menunjukan terdapat arus yang masuk ke baterai. Pada fasa ini tanda sinyal angka 3 yang berarti algoritma MPPT berjalan dan juga perilaku pencegahan overcharging terjadi karena tegangan baterai mencapai tegangan maksimum. Fasa charge regulation atau absorption juga berhasil terjadi yang diindikasikan dengan tanda sinyal angka 1 yang berarti MPPT tidak aktif dan penurunan nilai arus menuju baterai (niali arus menuju tanda positif). Perilaku discharging diindikasikan dengan penurunan SOC baterai, penurunan teganan baterai, dan terjadi keluaran arus dari baterai yang ditunjukan oleh tand arus yang positif. Perilaku ini terjadi pada detik ke 1,6 ketika tegangan baterai maksimum terjadi saat arus masukan baterai mencapai nilai minimalnya.

Terdapat osilasi pada arus masukan dan tegangan baterai akibat tidak stabilnya konverter. MPPT yang aktif pada sinyal 3 dan tidak aktif pada sinyal 1 beruturut-turut menunjukan tegangan baterai belum mencapai maksimum dan sudah mencapai maksimum. Osilasi saat sinyal 1 lebih kecil dari sinyal 3 karena terjadi pengurangan *duty cycle* sampai mencapai arus maksimum referensi yang baru pada saat sinyal 1. Osilasi kembali besar lagi saat sinyal 3 karena terjadi pengurangan *duty cycle* sampai mencapai arus maksimum referensi yang baru pada saat sinyal 1. Osilasi kembali besar lagi saat sinyal 3 karena terjadi penambahan dan pengurangan *duty cycle* secara acak dalam melakukan penjejakan daya maksimum.

4.2 Realisasi Sistem Solar Charge Controller Berbasis Algoritma Incremenal Conductance

Setelah dilakukan uji simulasi dan didapatkan pengendalian daya listrik berhasil pada sistem SCC, maka dilanjutkan dengan pengambilan data hasil rancangan sistem SCC yang diberikan algoritma INC tersebut. Namun sebelum itu, pada tahap ini akan ditelusuri terlebih dahulu tingkat keakuratan sensor, tingkat kesesuaian konverter yang digunakan terhadap spesifikasi yang diinginkan, hasil kemampuan algoritma INC pada Arduino, serta keberhasilan pengendalian daya listrik dengan pengintegrasian seluruh komponen yang digunakan.

4.2.1 Pengujian Sensor

Pengujian sensor dilakukan untuk mengetahui seberapa akurat nilai data pengukuran terhadap nilai dari alat ukur yang sudah terkalibrasi seperti multimeter. Tingkat keakuratannya dapat didefiniskan oleh nilai *error* hasil pengukuran. Dari nilai tersebut akan ditentukan kalkulasi yang dapat meningkatkan akurasi pengukuran. Hal tersebut digunakan sebagai kompensasi terhadap nilai pengukuran aktual yang akan dijadikan masukan algoritma INC.

4.2.1.1 Pengujian Sensor Arus

Sensor arus digunakan untuk membaca arus keluaran dengan melihat tegangan keluaran sensor yang proporsional dengan arus yang dibaca. Pengujian dilakukan dengan menghubungkan sensor arus yang akan diuji dan yang sudah terkalibrasi secara seri ke modul PV. Arus *short circuit* (I_{SC}) yang keluar berdasarkan kondisi radiasi dan suhu modul akan diukur dan dibandingkan untuk mendapatkan tingkat akurasinya. Gambar 4.6 menunjukan grafik data hasil pengujian sensor arus.

Gambar 4.6 Hasil pengujian sensor arus

Variasi arus yang mampu dihasilkan modul *photovoltaic* pada saat pengujian hanya sampai sebesar 2.5 A. Hasil pengujian sensor arus menunjukkan bahwa sensor memiliki *error* semakin rendah jika nilai arus semakin besar. Rata-rata *error* yang dihasilkan sensor arus adalah 2.75 % dari hasil seluruh kondisi. Nilai *gain* pada persamaan 3.1 perlu dilakukan perubahan untuk meningkatkat keakuratan. Kompensasi dapat dilakukan dengan cara mengalikan nilai *error* yang sesuai pada setiap nilai arus terukur yang berbeda.

4.2.1.2 Pengujian Sensor Tegangan

Sensor tegangan dengan prinsip *voltage divider* digunakan untuk membaca tegangan keluaran dari modul PV. Pengujian dilakukan dengan menggunakan modul PV dengan mengukur variasi tegangan *open circuit* (V_{OC}). Sensor yang diuji dan kalibrator disusun secara pararel. Gambar 4.7 menunjukan hasil pengujian sensor tegangan tersebut.

Hasil pengujian menunjukan tegangan yang dapat dihasilkan dari modul PV berkisar antara 18 V sampai 20.79 V. Didapatkan *error* pembacaan sensor pada setiap kondisi relatif kecil. Semakin kecil tegangan yang terdeteksi, maka semakin kecil *error* yang terjadi. Nilai rata-rata *error* adalah 0.36 % dari seluruh kondisi.

Gambar 4.7 Hasil pengujian sensor tegangan

4.2.2 Pengujian Buck Konverter XL4016

Konverter *buck* XL4016 perlu dilakukan pengecekan untuk mengetahui kesesuian dalam mencipatakan kondisi yang diperlukan. Kondisi tersebut sudah dicantumkan dalam data spesifikasi konverter yang diinginkan. Konverter yang digunakan memilki nilai komponen yang sesuai dengan nilai komponen saat simulasi. Frekuensi *switching* juga sama seperti simulasi. Tahap pengujian dilakukan dengan beban satu lampu 12V 5W dan tegangan masukan bersumber dari *power supply*. Hasil pengujian konverter berperilaku sedikit berbeda dengan hasil simulasi. Nilai tegangan keluaran yang ditentukan juga dapat dihasilkan. Nilai efisiensi rata-rata konverter adalah 65,94% untuk seluruh masukan *duty cycle*. Dari parameter tersebut sudah cukup memenuhi spesifikasi yang diperukan.

Rugi daya ini disebabkan dari panas yang terjadi pada komponen konverter seperti IC XL4016, resistor, dioda, dan kapasitor. Tegangan keluaran konverter tidak berubah saat *duty cycle* diatas 80% yang menunjukan nilai maksimum *duty cycle* yang dapat terjadi. Hal tersebut sesuai dengan keadaan saat pengujian di simulasi yang disebabkan karena nilai kapastior dan kapistor yang kurang sesuai.

Duty	Tegangan	Tegangan	Arus	Arus	Daya	Daya	Efisiensi
Cycle	Masuk (V)	Keluar	Masuk	Keluar	Masuk	Keluar	[%)
		(V)	(A)	(A)	(W)	(W)	
1	17	16.52	0.54	0.55	9.18	9.09	98.98
0.9	17	16.52	0.54	0.55	9.18	9.09	98.98
0.8	17	16.52	0.54	0.55	9.18	9.09	98.98
0.7	17	11.67	0.50	0.54	8.50	6.30	74.14
0.6	17	10.50	0.42	0.50	7.14	5.25	73.53
0.5	17	10.20	0.42	0.48	7.14	4.90	68.57
0.4	17	9.14	0.30	0.25	5.10	2.29	44.80
0.3	17	7.13	0.17	0.16	2.89	1.14	39.47
0.2	17	2.32	0.05	0.12	0.85	0.28	32.75
0.1	17	1.42	0.02	0.07	0.34	0.10	29.24

Tabel 4.3 Hasil pengujian konverter buck XL4016

4.2.3 Pengujian Sistem Solar Charge Controller (SCC)

Gambar 4.8 menunjukan realisasi sistem SCC yang terdiri dari Arduino Nano, 2 *solid state relay* (SSR), *isolated converter*, konverter XL4106 CC-CV, konverter XL4016, konverter XL4015, 2 sensor tegangan, dan 2 sensor arus. Pengujian dilakukan untuk mengetahui keberhasilan pemrograman yang berada pada Arduino sebagai unit pengendali sistem SCC. Terdapat dua SSR yang akan dikontrol aktif atau tidak aktifnya tergantung pada kondisi yang terdeteksi sesuai pada *flowchart* sistem SCC tersebut. Konverter XL4106 CC-CV digunakan untuk membatasi tegangan masukan maksimum ke baterai dan arus masukan maksimum ke baterai.

Gambar 4.9(a) dan (b) menunjukan respon sistem SCC dalam mengendalikan catu daya dalam arus dan tegangan secara berturut-turut. Kondisi relay aktif ditunjukan oleh angka satu dan tidak aktif oleh angka nol. Digunakan beban lampu 12V 5W dalam uji ini. Nilai radiasi saat pengujian sekitar 530 W/m² dengan suhu permukaan modul mencapai 38.7^oC.

Gambar 4.8 Realisasi sistem SCC

Gambar 4.9 Respon sistem SCC dalam (a) tegangan PV dan baterai; (b) arus PV dan baterai

Di tahap (0-1) saat kedua relay aktif didapatkan PV dan baterai saling mensuplai daya ke beban yang ditunjukan dari arus masukan modul PV bertanda positif dan arus baterai bertanda negatif yang berarti *discharging*. Hal tersebut terjadi karena daya beban yang lebih besar dari daya masukan PV, sehingga daya tambahan diambil dari baterai. Kondisi *discharging* juga terjadi saat hanya R2 yang aktif pada tahap (1-2) yang ditunjukan dari arus masukan baterai yang bertanda negatif dan tegangan baterai yang turun relatif kecil. Pada kondisi ini baterai mensuplai penuh daya beban tersebut. Kondisi *shutdown* dapat terjadi pada tahap (2-3) yang ditunjukan oleh arus masukan baterai dan keluaran PV bernilai nol saat tegangan komponen PV dan baterai kurang dari batas tegangan minimal. Pada tahap (3-4) menunjukan berhasilnya terjadi kondisi *discharging* dari kondisi *shutdown*. Jika tegangan PV melebihi tegangan baterai, maka tahap (4-5) terjadi seperti tahap (0-1) sebelumnya. Dari respon hasil pengujian tersebut dapat diketahui pengendalian daya pada sistem SCC ini telah berhasil. Sistem ini selanjutnya dapat diintegrasikan dengan algoritma INC untuk diuji keberhasilan penjejakan daya maksimum saat terjadinya pengendalian catu daya.

4.2.4 Pengujian Algoritma Incremental Conductance (INC)

Hasil simulasi dengan algoritma *incremental conductance* (INC) telah berhasil memcari titik daya tertinggi dengan nilai *error* yang relatif kecil. Pada realisasinya algoritma diprogram pada Arduino Nano yang telah terhubung konverter dan modul PV. Gambar 4.10(a) menunjukan hasil penjejakan titik daya maksimum dengan kondisi saat radiasi matahari sekitar 610 W/m² dan suhu permukaan modul PV sekitar 46°C. Didapatkan daya saat keadaan *steady state* adalah 22,39 W dan nilai daya tertinggi yang berhasil didapatkan adalah 24,23 W. Secara simulasi pada kondisi radiasi dan suhu yang sama didapatkan daya saat *steady state* adalah 25,04 W dan daya tertiggi adalah 25,47 W. Dibandingkan dengan hasil simulasi pada kondisi yang sama, maka didapatkan persentase perbedaan rata-rata daya sebesar 10.58% pada keadaan *steady state*.

Gambar 4.10(b) menunjukan tegangan pada daya maksimum secara simulasi adalah 16.64 V, sedangkan saat pengujian secara aktual yang dilakukan pengujian di darat didapatkan bahwa daya maksimum terdapat pada tegangan 16.39 V. Dari hal tersebut dapat dikatakan perbedaan daya masukan maksimum terjadi karena ketidakakuratan pemodelan modul PV. Daya keluaran *steady state* secara aktual juga tidak sesuai dengan daya maksimum yang dihasilkan pada simulasi dan pada pengukuran secara aktual terjadi osilasi di daerah transien diakibatkan oleh ketidakakuratan pembacaan sensor. Dari hal tersebut dapat diketuhi sistem mampu mendapatkan daya maksimum pada kondisi tersebut.

Gambar 4.10 Hasil penjejakan daya maksimum oleh algoritma INC (a) secara aktual dan (b) simulasi

4.2.5 Pengujian Sistem SCC Dengan Algoritma INC

Pengujian ini dilakukan untuk menentukan keberhasilan sistem SCC yang terintegrasi dengan algoritma INC dalam mengendalikan daya listrik sesuai kondisi yang terjadi. Kondisi relay aktif ditunjukan oleh angka satu dan tidak aktif oleh angka nol. Beban dan peralatan lainnya digunakan sama dengan pengujian sistem SCC tanpa algoritma INC. Waktu pengambilan data dilakukan pada hari yang berbeda namun pada jam yang sama saat pengujian tanpa algoritma INC. Tercatat radiasi matahari sekitar 550 W/m² dengan suhu permukaan modul sekitar 39^oC. Kondisi *charging* ke *discharging* dilakukan dengan cara

memutuskan aliran listrik dari modul PV dan kondisi *discharging* ke *charging* dilakukan dengan menyambungkan kembali aliran listrik dari modul PV. Kondisi *charging* ke *shutdown* dilakukan dengan cara memutuskan aliran listrik dari modul PV dan baterai dan kondisi *shutdown* ke *charging* dilakukan dengan cara menghubungkan kembali aliran listrik dari modul PV dan baterai.

Gambar 4.11(a) dan (b) menunjukan respon pengendalian daya listrik terebut dalam arus dan tegangan secara berturut-turut. Dari tahap 0 - 1 kedua relay aktif dan tegangan baterai mencapai tegangan maksimumnya yang menunjukan terjadi proses charging ke baterai dan catu daya beban. Saat modul PV tidak terpapar radiasi matahari pada tahap 1 - 2, maka terjadi proses discharging dari baterai ke beban yang ditunjukan oleh arus baterai yang bertanda negatif. Saat tegangan baterai rendah dan kedua relay mati pada tahap 2 - 3, maka terjadi kondisi shutdown yang ditunjukan tidak adanya arus untuk catu daya ke beban. Naiknya tegangan baterai ke tegangan baterai minimalnya pada tahap 3 - 4 akan meaktifkan proses discharging kembali. Pada tahap 4 - 5 sama seperti tahap 0 - 1 dengan ditambah berjalnnya algoritma MPPT yang ditunjukan dari terjadinya penjejakan daya maksimum. Tahap 5 - 6 menyerupai tahap 1 - 2, begitu juga pada tahap 6 - 7 menyerupai tahap 2 - 3 yaitu terjadi kondisi shutdown. Selanjutnya tahap 7 - 8 menunjukan berhasilnya terjadi proses charging dengan MPPT dari kondisi shutdown. Pada tahap 8 - 9 juga menunjukan berhasilnya kondisi shutdown dari kondisi charging. Dari respon yang ditunjukan seluruh tahap tersebut, maka dapat dikatakan pengendalian daya listrik dengan algoritma MPPT INC telah berhasil diterapkan pada sistem SCC.

Penjejakan diketahui dapat terjadi saat proses *charging* serta proses *partial charging*. Kondisi penjejakan juga dapat terjadi ketika tegangan baterai yang belum mencapai tegangan maksimum. Tegangan penjejakan lebih besar dari tegangan maksimum tersebut menunjukan berhasilnya regulasi tegangan pada konverter kedua, sehingga proses *charging* akan aman. Respon antara *charging*, *discharging*, dan *shutdown* dengan cepat dapat terjadi ketika perubahan nilai relay tersebut terjadi.

Gambar 4.11 Respon sistem SCC dengan INC dalam (a) tegangan pv dan baterai; (b) arus PV dan baterai

4.3 Uji Perbandingan Sistem SCC Memakai Teknik Charge Regulation-INC & Teknik Constant Voltage

Sistem SCC yang memakai algoritma *charge regulation* dan INC akan dibandingkan dengan teknik *charging constant voltage* (CV) untuk mengetahui teknik mana yang lebih baik. Pengujian pada kedua algoritma dilakukan pada waktu yang sama. Pada teknik CV digunakan konverter jenis *buck* dengan membuat tegangan kelurannya menjadi tegangan maksimum baterai, yaitu

14 V. Digunakan dua jenis modul PV 50 Watt dan baterai 7 Ah dengan spesifikasi yang sejenis. Baterai 1 adalah baterai dengan metode *charging* yang diajukan, yaitu *charge regulation* dengan INC. Baterai 2 adalah baterai dengan metode charging yang memakai teknik CV. Kedua teknik ini akan dibandingkan untuk menentukan perbandingan hasil besar pengisian kapasitas baterai yang terjadi. Pengujian dilakukan di darat dan pada waktu jam 14:00 WIB.

Pada keadaan awal pengujian, tegangan kedua baterai dibuat sama dengan nilai 12.57 V. Gambar 4.12(a) menunjukan terjadi fasa bulk berjalan selama 2400 detik pada baterai dengan charge regulation-INC. Nilai arus pada fasa terebut relatif konstan dengan besar yang sama pada kedua baterai. Didapatkan juga bahwa tegangan pada baterai dengan charge regulation-INC dapat mencapai tegangan maksimumnya, sedangkan baterai dengan teknik CV tidak sama sekali mencapai tegangan maksimum tersebut. Kondisi *charging* yang berbeda antara baterai dengan CV terjadi dan baterai dengan charge regulation-INC terletak pada fasa charge regulation. Arus yang masuk ke baterai dengan charge regulation-INC pada fasa ini akan diturunkan setiap menyentuh maksimum baterainya sesuai algoritma. tegangan Seiring meningkatnya tegangan pada baterai dengan CV, maka semakin menurunnya arus yang masuk ke baterai. Arus masukan ke baterai dengan CV lebih menurun drastis dibandingkan arus masukan ke dengan *charge regulation*-INC selama fasa baterai ini. Pengambilan data dilakukan selama 12000 detik atau sekitar 3,5 jam lebih. Setelah pengambilan berakhir, maka kedua baterai dilepaskan dari sistem charging dan didiamkan selama 1000 detik. Diperoleh bahwa tegangan pada baterai dengan charge regulation-INC lebih besar 0,07 V dari baterai dengan CV yang memiliki nilai tegangan akhirnya 13,3 V. Dari perbedaan tegangan akhir tersebut dapat diketahui kapasitas baterai dengan charge regulation-INC lebih besar dari kapasitas baterai dengan CV setelah charging diberhentikan. Dari energi masukan keseluruhan didapatkan bahwa baterai dengan charge regulation-INC mendapatkan 35,89% energi lebih banyak dari baterai dengan teknik CV.

Gambar 4.12 Perbandingan respon sistem SCC dengan INC & *constant voltage* dalam (a) arus & tegangan baterai (b) daya masuk ke baterai

Gambar 4.12(b) ditunjukan daya masukan ke baterai dan nilai radiasi selama proses charging tersebut. Dapat dilihat bahwa perbedaan daya masukan ke baterai cukup signifikan pada fasa charge regulation dibandingkan pada fasa bulk. Baterai dengan charge regulation-INC mendapatkan daya lebih banyak selama fasa charge regulation dibandingkan baterai dengan teknik CV. Dari hal tersebut diketahui bahwa kapasitas baterai dengan metode yang diajukan pada penelitian ini lebih besar dari baterai dengan metode CV dengan waktu charging yang sama. Hal tersebut terjadi karena pada baterai dengan charge regulation-INC diterapkan penjejakan daya maksimum ke baterai setiap tegangan baterai dibawah tegangan maksimumnya. Pada fasa bulk didapatkan bahwa perbedaan daya masukan ke baterai tidak terlalu signifikan antara penggunaan kedua algoritma tersebut. Hal tersebut dikarenakan titik yang mendekati daya maksimum terjadi di kedua baterai pada berberapa kondisi radiasi. Osilasi yang timbul pada baterai dengan charge regulation-INC disebabkan karena pengaruh algoritma yang mengurangi batas arus masukan baterai dengan cara merubah *duty cycle* setiap tegangan baterai mencapai tegangan maksimum. Pada baterai dengan CV tidak terjadi osilasi karena nilai *duty cycle* yang tetap terjadi pada konverter baterai tersebut

4.4 Uji Otonomi Sistem SCC dengan Algorimta INC Pada Beban Lampu 5W 12V

Sistem SCC dengan algoritma INC diterapkan pada beban lampu 5 W 12 V yang memiliki kapasitas lebih besar dari total beban instrumen Buoywather Station Type II. Gambar 4.13 menunjukan respon sistem selama 24 jam penuh dengan menggunakan 2 baterai 7Ah 12V tersusun pararel dan 2 modul PV 50Wp.tersusun pararel. Penggunaan beban ini dapat merepresentasikan beban instrumen yang ada pada *buoy* karena memiliki nilai daya lampu lebih tinggi. Baterai pada tegangan baterai awal 11,42 V. Pengambilan data dimulai dari jam 06:30 pagi dengan kondisi cuaca mendung.

Gambar 4.13 Respon sistem SCC dengan beban lampu 5 W 12 V

Gambar 4.13 menunjukan respon sistem SCC saat melakukan pengendalian daya listrik ke baterai dan beban. Pada garis hijau menunjukan daya keluaran modul PV, garis biru menunjukan daya *discharge* dari baterai ke beban, garis merah menunjukan daya yang dibutuhkan beban, dan garis unggu merupakan dava total dari dava keluaran modul PV dan dava discharge dari baterai. Terjadi proses partial charging atau charging sebagian dari modul PV dan baterai dari jam 06:30 sampai 08:30 pagi. Hal ini terjadi karena daya dari modul PV saat pagi tidak mencukupi kebutuhan daya beban. Pada jam 08:30 sampai 10:30 pagi daya modul PV melebihi kebutuhan beban, sehingga kelebihan daya digunakan untuk charging baterai. Penurunan daya yang sebentar terjadi setelah jam 10:30 pagi karena penurunan radiasi matahari, sehingga terjadi partial charging kembali. Setelah itu daya modul PV paling tinggi terjadi sampai jam 14:30 siang. Daya total yang didapat merupakan daya yang keluar dari keonverter saja, sedangkan daya discharge tidak terjadi. Terlihat bahwa hanya sebagian daya modul PV yang dipakai untuk proses charging karena dipengaruhi oleh efisiensi konverter tersebut. Pada jam 14:30 sampai 18:30 terjadi partial charging kembali. Kondisi full discharging terjadi setelah jam 18:30 sore karena tidak ada daya dari modul PV pada jam tersebut. Pada jam 02:30 pagi samapi seterusnya menunjukan daya total yang bersumber dari discharging saja tidak memenuhi kebutuhan beban dan memicu kondisi osilasi. Kondisi ini terjadi karena akibat respon algoritma yang dipicu dari pengukuran tegangan baterai. Saat kondisi discharging terukur tegangan baterai kurang dari tegangan minimal, sehingga kondisi shutdown terjadi. Pada waktu saat setelah kondisi shutdown terjadi terukur tegangan baterai melebihi tegangan minimalnya, sehingga kondisi discharging terjadi. Hal ini terus menerus terjadi sampai energi baterai mengecil.

Waktu otonomi dari sistem SCC dapat dicari dengan menghitung waktu saat dimulainya pengambilan data sampai daya total yang bernilai dibawah daya kebutuhan beban. Dari hal tersebut diketahui sistem SCC mampu melakukan otonomi pada beban selama 20 jam saat kondisi tegangan baterai 11,42 V dan cuaca mendung. Tabel 4.4 merupakan hasil nilai analisis keseluruhan energi selama pengujian. Saat charging didapatkan total energi keluaran dari modul PV adalah 151,43 Wh. Total energi discharging dari baterai selama 1 hari adalah 72,16 Wh dan kebutuhan beban 126,24 Wh. Energi total yang masuk ke beban lampu selama pengujian adalah 111,83 Wh. Nilai total energi yang masuk ke beban dibandingkan dengan nilai total dari keluaran baterai dan keluaran PV akan didapatkan efisiensi kerja sistem SCC. Efisiensi sistem SCC adalah 50% setelah melakukan charging dan discharging ke beban lampu 5 W 12 V. Kurang besarnya nilai efisiensi tersebut diakibatkan karena penggunaan energi oleh komponen dalam SCC seperti Arduino dan konverter saat kondisi charging terjadi. Hal lainnya disebabkan karena terkonversinya energi dari baterai menjadi energi panas yang timbul di isolated converter dan komponen lainnya saat discharging.

rabel 4.4 Hash pengujian ternadap sistem SCC						
No	Jenis Daya	Energi (Wh)				
1	Keluaran PV	151,43				
2	Dibutuhkan Beban	126,24				
3	Discharging Baterai	72,16				
4	Masuk Beban	111,83				

Tabel 4.4 Hasil pengujian terhadap sistem SCC

4.5 Uji Sistem SCC Dengan Algorimta INC Pada Buoyweather Station Type II

Penggunaan sistem SCC ini telah diterapkan pada Buoyweather Station Type II yang diapungkan tepi laut kenjeran, Surabaya. Gambar 4.14 menunjukan respon sistem selama 1 hari penuh dengan penggunaan baterai 7 Ah 12 V tersusun pararel serta modul PV yang sejenis tersusun pararel juga. Beban instrumen yang ada pada buoy langsung disalurkan dari sistem SCC dan beroperasi tanpa kendala selama 24 jam.

Gambar 4.14 Respon sistem SCC pada Buoyweather Station Type II di perairan

Garis merah merupakan daya yang dihasilkan modul PV, garis biru menunjukan daya yang discharge baterai, haris hijau adalah nilai daya yang dibutuhkan beban, dan garis ungu mengunjukan total daya yang masuk ke beban. Terlihat pada grafik proses charging terjadi pada jam 14:00 sampai sekitar jam 17:00 sore hari. Proses charging ditunjukan dari tidak adanya daya discharge oleh baterai, Lebih besarnya daya total dari daya yang dibutuhkan beban akan membuat energi yang berlebih tersebut masuk ke baterai. Proses discharge terjadi dari sekitar jam 17:00 sampai 05:00 pagi yang ditunjukan dari daya baterai yang meningkat dan tidak adanya daya dari modul PV. Selama proses discharge ditunjukan baterai berhasil mencatu daya beban secara penuh. Dari jam 05:00 sampai jam 14:00 siang terjadi charging kembali. Nilai daya yang masuk ke beban tidak pernah mengalami pernurunan terhadap nilai daya yang dibutuhkan beban, sehingga dapat dikatakan beban mengalami catu daya selama seharian penuh. Kondisi baterai awal sebelum di perairan memiliki tegangan open circuit 12.58 V dan setelah berada 24 jam diperairan lalu ditunggu selama 5 jam selepas dari perairan, maka didapatkan tegangan open circuit

baterai menjadi 12.67 V. Dapat dikatakan ada kenaikan kapasitas baterai dari proses *charging* selama di perairan. Dengan demikian proses *charging* dan *discharging* sudah berhasil terjadi pada buoy yang berada diperairan. Terlihat juga pada grafik pada jam 17:00 dan 05:00 - 07:00 terjadi proses *discharging* sebagian oleh baterai ke beban karena daya dari modul PV yang kurang untuk menyuplai beban.

Gambar 4.15 Realisasi Sistem SCC Pada Buoyweather Station Type II

Gambar 4.15 menunjukan pengambilan data dengan menarik buoy sejauh 1 Km ke tengah laut Kenjeran, Surabaya dari tepi pantai. Gambar 4.16 menunjukan hasil pengambilan data tegangan baterai selama 70 menit yang dimulai pada jam 11:00 WIB. Terlihat bahwa tegangan baterai awal adalah sekitar 11,2 V. Dalam 60 detik setelah algoritma INC aktif, didapatkan tegangan lebih tinggi dari tegangan awal. Hal tersebut menunjukan terdapat daya lebih masuk ke baterai dan hal tersebut menunjukan sistem bekerja dalam melakukan penjejakan daya maksimum. Terjadi osilasi selam proses *charging* diakibatkan karena terjadinya perubahan kondisi radiasi matahari dan suhu panel ketika pada perairan. Perubahan ini disebabkan oleh gerak ombak yang membuat panel PV naik turun. Pergerakan ini membuat paparan sinar matahari menuju modul PV berubah. Perubahan paparan ke modul juga menyebabkan perubahan suhu panel. Pada stiap perubahan kondisi tersebut membuat tegangan pada daya maksimum berubah-ubah dan menghasilkan osilasi.

Gambar 4.16 Respon tegangan baterai pada Buoyweather Station Type II saat penarikan ke tengah laut Kenjeran, Surabaya

BAB V KESIMPULAN

5.1 Kesimpulan

Adapun kesimpulan yang dapat diambil dalam penelitian ini antara laian:

- 1. Pendesainan sistem solar charge controller (SCC) berhasil dalam melakukan pengendalian daya pada Buoyweather selama berada diperairan. Station Type II Proteksi overdischarging overcharging dan dapat dilakukan mengendalikan 2 solid state relay. Daya masukan ke beban instrumen dapat diregulasi menggunakan isolated converter. Efisiensi sistem SCC didapatkan 50% dan hari otonomi sistem SCC didapatkan 20 jam dari keadaan tegangan baterai 11,42 V dan kondisi mendung untuk pengujian pada beban lampu 5 W 12 V.
- 2. Algoritma *incremental conductance* (INC) berhasil meningkatkan kapasitas baterai pada pengujian secara simulasi. Secara eksperimen, sistem SCC dengan teknik *charging regulation* dan INC menghasilkan energi 35.89% ke baterai 7 Ah 12 V lebih banyak dari sistem dengan *constant voltage* saat *charging*.

5.2 Saran

Tedapat berberapa aspek yang masih perlu diteliti mengenai tema penelitian ini. Oleh karena itu, saran untuk mengembangkan penelitian ini lebih lanjut antara lain:

- 1. Melakukan perbandingan dengan algoritma, desain konverter, atau metode *charging* lainnya untuk mendapatkan efisiensi lebih besar.
- 2. Mempertimbangkan faktor suhu lingkungan terhadap karakteristik baterai.
- 3. Penggunaan sensor yang lebih akurat dan resolusi mikrokontroler yang lebih baik perlu digunakan dalam memaksimalkan penggunaan metode ini.

Halaman ini sengaja dikosongkan

DAFTAR RUJUKAN

- Arar, S. (2017). The Basics of SSRs (Solid-State Relays): The Switching Device. Retrieved from https://www.allaboutcircuits.com/technical-articles/basicsof-ssr-solid-state-relay-the-switching-device/
- Arduino. (2018). Automatic (Software) Reset. Retrieved July 17, 2018, from https://store.arduino.cc/usa/arduino-nano
- Behrouzian, E., Tabesh, A., Bahrainian, F., & Zamani, A. (2011). Power electronics for photovoltaic energy system of an oceanographic buoy. 2011 IEEE Applied Power Electronics Colloquium, IAPEC 2011, 1–4. https://doi.org/10.1109/IAPEC.2011.5779839
- BNPB. (2017, December). BNPB: Seluruh Alat Pendeteksi Tsunami di Indonesia Rusak. Retrieved from https://nasional.tempo.co/read/1042840/bnpb-seluruh-alatpendeteksi-tsunami-di-indonesiarusak?TerkiniUtama&campaign=TerkiniUtama Click 3
- De Brito, M. A. G., Galotto, L., Sampaio, L. P., De Azevedo Melo, G., & Canesin, C. A. (2013). Evaluation of the main MPPT techniques for photovoltaic applications. *IEEE Transactions* on *Industrial Electronics*, 60(3), 1156–1167. https://doi.org/10.1109/TIE.2012.2198036
- Desraino, A. (2016). Desain Maximum Power Point Tracking (Mppt) Solar Charger Controller Menggunakan Buck Converter Dengan Metode Logika Fuzzy Di Buoy Weather Station.
- Dunlop, J. P. (1997). Batteries and Charge Control in Stand-Alone Photovoltaic Systems Batteries and Charge Control in Stand-Alone Photovoltaic Systems Fundamentals and Application.
- Esram, T., & Chapman, P. L. (2007). Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques. *IEEE Transactions on Energy Conversion*, 22(2), 439–449. https://doi.org/10.1109/TEC.2006.874230
- Fan, H. (2014). Understanding isolated DC / DC converter. Retrieved from https://www.edn.com/design/power-

management/4437430/3/Understanding-isolated-DC-DC-converter-voltage-regulation-

- Hussein, K. H., Muta, I., Hoshino, T., & Osakada, M. (1995). Maximum photovoltaic power tracking: an algorithm for rapidly changing atmospheric conditions. *IEE Proceedings* -*Generation, Transmission and Distribution, 142*(1), 59. https://doi.org/10.1049/ip-gtd:19951577
- Ishengoma, F. M., & Norum, L. E. (2002). Design and implementation of a digitally controlled stand-alone photovoltaic power supply. *Nordic Workshop on Power and Industrial Electronics*, (August), 12–14.
- Ismail, M. S., Moghavvemi, M., & Mahlia, T. M. I. (2013). Characterization of PV panel and global optimization of its model parameters using genetic algorithm. *Energy Conversion and Management*, 73, 10–25. https://doi.org/10.1016/j.enconman.2013.03.033
- Kolsi, S., Samet, H., & Amar, M. Ben. (2014). Design Analysis of DC-DC Converters Connected to a Photovoltaic Generator and Controlled by MPPT for Optimal Energy Transfer throughout a Clear Day. *Journal of Power and Energy Engineering*, 02(01), 27–34. https://doi.org/10.4236/jpee.2014.21004
- Koutroulis, E., & Kalaitzakis, K. (2004). Novel battery charging regulation system for photovoltaic. *IEE Proceedings-Electric Power Applications*, *151*(2), 139–145. https://doi.org/10.1049/ip-epa:20040219
- Linden, D. (1995). Handbook of batteries 2nd. The McGraw-Hill Companies. (2nd ed.). https://doi.org/10.1016/0378-7753(86)80059-3
- Liu, F., Duan, S., Liu, F., Liu, B., & Kang, Y. (2008). A Variable Step Size INCMPPT Method for PV Systems. *IEEE Transactions on Industrial Electronics*, 55(7), 2622–2628. https://doi.org/10.1109/ICMCS.2014.6911212
- Marian K. Kazimierczuk. (2015). *Pulse-width modulated DC-DC* power converters (2nd ed., Vol. 2). Wiley.
- Pandey, A., Thakur, N., & Mukerjee, A. K. (2011). Maximum

Power Point Tracking. In *Handbook of Renewable Energy Technology* (pp. 2–5).

- Radjai, T., Rahmani, L., Mekhilef, S., & Gaubert, J. P. (2014). Implementation of a modified incremental conductance MPPT algorithm with direct control based on a fuzzy duty cycle change estimator using dSPACE. *Solar Energy*, *110*, 325–337. https://doi.org/10.1016/j.solener.2014.09.014
- Safari, A., & Mekhilef, S. (2011). Incremental conductance MPPT method for PV systems. *Canadian Conference on Electrical and Computer Engineering*, 000345–000347. https://doi.org/10.1109/CCECE.2011.6030470
- Safari, A., & Mekhilef, S. (2011). Simulation and hardware implementation of incremental conductance MPPT with direct control method using cuk converter. *IEEE Transactions on Industrial Electronics*, 58(4), 1154–1161. https://doi.org/10.1109/TIE.2010.2048834
- Salas, V., Olías, E., Barrado, A., & Lázaro, A. (2006). Review of the maximum power point tracking algorithms for standalone photovoltaic systems. *Solar Energy Materials and Solar Cells*, 90(11), 1555–1578. https://doi.org/10.1016/j.solmat.2005.10.023
- Sumathi, S. (2015). *Application of MATLAB / SIMULINK in Solar PV Systems*. Springer International Publishing Switzerland. https://doi.org/10.1007/978-3-319-14941-7
- Walker, G. (2001). Evaluating Mppt Converter Topologies Using a Matlab Pv Model. *Journal of Electrical Electronics Engineering*, 21(1), 49–56. https://doi.org/10.7237/

Halaman ini sengaja dikosongkan

LAMPIRAN A

Block Parameters: PV Module FIX4	×
Implements a PV array built of strings of PV modules connecte Allows modeling of a variety of preset PV modules available fro	ed in parallel. Each string consists of modules connected in series. om NREL System Advisor Model (Jan. 2014) as well as user-defined PV module
Input 1 = Sun irradiance, in W/m2, and input 2 = Cell temperation	ature, in deg.C.
Parameters Advanced	
Array data	
Parallel strings 1	1
Series-connected modules per string 1	1
Module data	
Module: User-defined	•
Maximum Power (W) 42.036	E Cells per module (Ncell) 36
Open circuit voltage Voc (V) 20	E Short-circuit current Isc (A) 2.5
Voltage at maximum power point Vmp (V) 18.6	E Current at maximum power point Imp (A) 2.26
Temperature coefficient of Voc (%/deg.C) -1	E Temperature coefficient of Isc (%/deg.C) 0.5
	~
<	>
	OK Cancel Help Apply

Gambar A. 1 Blok parameter 1 modul photovoltaic

Block Parameters: Mosfet1		>
Parameters		
FET resistance Ron (Ohms) :		
0.001	:	
internal diode inductance Lon (H) :		
0	:	
Internal diode resistance Rd (Ohms) :		
0.01	:	
Internal diode forward voltage Vf (V) :		
0	:	
Initial current Ic (A) :		
0	:	
Snubber resistance Rs (Ohms) :		
1e5	:	
Snubber capacitance Cs (F) :		
inf	:	
Show measurement port		

Gambar A. 2 Blok parameter mosfet pada konverter *buck*

📔 Block Parameters: Diode1		×
zero. The Diode impedance is infinite in off-state mode.		^
Parameters		
Resistance Ron (Ohms) :		
0.001	:	
Inductance Lon (H) :		
0	:	
Forward voltage Vf (V) :		
0.8	:	
Initial current Ic (A) :		
0	:	
Snubber resistance Rs (Ohms) :		
500	:	
Snubber capacitance Cs (F) :		
250e-9	:	
Show measurement port		
		¥

Gambar A. 3 Blok parameter dioda pada konverter buck

Block Parameters: Lead Acid Battery 7 Ah					
Battery (mask) (link)					
Implements a generic battery model for most popular battery types. Temperature and aging (due to cycling) effects can be specified for Lithium-Ion battery type.					
Parameters Discharge					
Туре:					
Lead-Acid					
Nominal voltage (V) 12					
Rated capacity (Ah) 7					
Initial state-of-charge (%) 99.5					
Battery response time (s) 1					
	~				
<	>				
Gambar A. 4 Blok parameter bater	ai				

Gambar A. 5 Blok diagram konverter buck dan isolated converter

Gambar A. 6 Blok diagram solar charge controller (SCC)

Gambar A. 7 Blok diagram kontrol arus (I_CHARG) pada sistem SCC

Gambar A. 8 Blok diagram kontrol MPPT (INC MPPT) pada sistem SCC

LAMPIRAN B

```
Kode Pemrograman Simulasi Incremental Conductance (INC)
function D2 = Incre2(V, I) %D2 = Duty Cycle, V =
tegangan sekarang, I = arus sekarang
                           D2 = output, (I,V) =
input
% Parameter input:
Dinit = 0;
                           %Nilai awalah Duty
Cycle (D2)
Dmax = 1;
                           %Nilai Maximum D2
Dmin = 0;
                           %Nilai Minimum D2
deltaD = 0.01;
                           %Konstanta
penambah/pengurang D2
persistent Vo Io Do;
if isempty(Vo) %jika "Vo" belum ada nilai maka
isi dijalankan,
                %jika sudah bernilai maka isi
tidak dijalankan
   %isi
    Vo = 0;
   IO = 0;
   Do = Dinit;
end
dV= V - Vo; %dV=perubahan nilai tegangan =
tegangan sekarang - tegangan sebelumnya
dI= I - Io; %dI=perubahan nilai arus = arus
sekarang - arus sebelumnya
% Menjalankan algoritma Incremental Coductance
(INC)
if dV == 0
    if dI \sim = 0
        if dI > 0
           D2 = Do + deltaD; % Menaikan
Vref=Vphotovoltaic (PV)
        else
           D2 = Do - deltaD; % Menurunkan
Vref=Vphotovoltaic (PV)
        end
```

```
else
       D2 = Do;
    end
else
    if (I + dI*V/dV) \sim = 0
                               %dP/dV = (I
+ dI*V/dV)
        if (I + dI * V/dV) > 0
            D2 = Do + deltaD;
                                   % Menaikan
Vref=Vphotovoltaic (PV)
        else
            D2 = Do - deltaD;
                                    % Menurunkan
Vref=Vphotovoltaic (PV)
        end
    else
       D2 = Do;
    end
end
if D2 >= Dmax || D2<= Dmin
    D2=Do;
end
Do = D2;
Vo = V;
IO = I;
```

Kode Pemrograman Simulasi *Solar Charge Controller* dengan INC

```
function [Irefb,signal,R1,R2] =
CHARGER(Vb,Ib,Vpv, T)
%Output:
    %Irefb = Nilai arus referensi input baterai
    %signal = sinyal trigger sistem (1=mode
constant current, 3=INC)
    %R1,R2 = sinyal trigger ke relay1 dan
relay2 (1=ON=close, 2=OFF=open)
%Input:
    %Vb=tegangan baterai sekarang
    %Ib=arus baterai sekarang
    %Vpv=tegangan photovoltaic(PV) sekarang
% variabel yang nilainya berubah ketika ada
nilai baru
```

```
persistent temp ib temp signal temp R1 temp R2 n
SOC;
if isempty(temp ib)%jika "temp ib" belum ada
nilainya, maka isi (temp ib=10;) dipakai.
                  %Jika sudah ada nilainya,
maka isi dilewatkan
   temp ib=10; %set arus baterai maksimum
sekarang=10A
end
if isempty(temp signal)
   temp signal=1; %mentrigger ke mode 1
(constant curent)
end
if isempty(temp_R1)
    temp R1=1; %membuat relay1 ON
(close) (charging on)
end
if isempty(temp R2)
   temp R2=1;
                     %membuat relay2 sekarang
ON (close) (charging on)
end
if isempty(n)
   n=0;
                       %membuat variabel faktor
pengali waktu(T) sekarang=0
end
if isempty(SOC)
   SOC=0;
                       %Tanda kapasitas Baterai
sekarang mendekati 0%
end
if (T>n*0.02)
                          % waktu sampling
adalah 0.02s
   n=n+1;
   if Vpv>Vb
                        %jika tegagan PV >
tegangan baterai
                            %maka relav1 dan
relay 2 = ON (charging ON & PV catu beban)
      temp R1=1;
      temp R2=1;
      if Ib>temp ib %jika arus baterai
sekarang > arus maksimum sekarang
```

```
temp signal=1;
       else
           if SOC==1
%jika SOC 100% charging OFF, PV catu beban
                temp R1=0;
                temp R2=1;
           else
               if Vb>13.9
%Vb max=tegangan baterai max=13.8
                    if temp ib>7
%temp ib > Ib min
                        temp ib = 0.8 \times temp ib;
%Mengecilkan nilai arus baterai max sekarang
                        temp signal=1;
                    else
                        temp ib=0.5; %arus
untuk fase trickle = 0.05A
                        SOC=1;
%SOC=100%=kapasitas baterai hampir 100%
                        temp signal=1;
%decrease Ib
                    end
               else
                    if Vb<12
%vb min=tegangan baterai minimal = 12V
                        temp ib = 10;
                        temp R1=1;
%charging ON, PV catu beban
                        temp R2=1;
                        temp signal=3;
                    else
                        temp signal=3;
                    end
               end
           end
       end
    else
        SOC=0;
        if Vb<12
                       %vb min=tegangan baterai
minimal = 12V
```

```
temp R1=0; %discharging
OFF, charging OFF (Shutdown) (baterai habis)
            temp R2=0;
        else
            temp R1=0; %discharging ON, charging
OFF
            temp R2=1;
        end
    end
end
%set nilai baru tadi menjadi nilai sekarang
signal=temp signal;
R1=temp R1;
R2=temp R2;
Irefb=temp ib;
end
```

Kode Pemrograman Eksperimen Pembuatan Karakteristik Modul PV

#include <TimerOne.h>
#define R1pin 3
#define R2pin 4
#define pwmpin 9
#define voltValue1 A0
#define curValue1 A1
//#define voltValue2 A4
#define curBat A3
#define voltBat A2

```
// initialize serial
Serial.begin(9600);
communication at 9600 bits per second:
 pinMode(R1pin, OUTPUT);
pinMode(R2pin, OUTPUT);
 digitalWrite(R1pin, HIGH);
 digitalWrite(R2pin, HIGH);
}
void loop() {
 int x = 100:
 float sumv=0.0;
 float sumvb=0.0:
 //float sumv2=0.0;
 float sumi=0.0;
 float sumib=0.0:
 //float currentVolt1 = 0.0:
 //float currentVolt2 = 0.0:
 static int value = 1000:
 Timer1.pwm(pwmpin, value);
 //delay(2);
  for (unsigned int i=0; i<=x; i++)
                                                     // unsigned
int = bilangan bulat positif, int = semua bilangan bulat (bilangan
dengan koma bukan bil. bulat)
  {
                                          //Get 150 samples
   sumi
                      +=((analogRead(curValue1)*(5.0/1023.0)-
(2.53)/(0.185)*1.6; //sensitivitas= 185 mV/A (5A)
   sumv
            +=
                 (analogRead(voltValue1)*(5.0/1023.0)*(4.72));
//range 0-25V
   sumib +=((analogRead(curBat)*(5.0/1023.0)-2.53)/0.185)*1.1;
//sensitivitas 185 mV/A (5A)
                     (analogRead(voltBat)*(5.0/1023.0)*(4.56));
   sumvb
              +=
//range 0-25V
  //sumv2 += (analogRead(voltValue2)*(5.0/1023.0)*(4.97));
//range 0-25V
  //currentVolt1 += (5.0/1024.0 * analogRead(curValue1));
```

```
//currentVolt2 += (5.0/1024.0 * analogRead(curBat));
      sumi += (((5000.0/1024.0 * analogRead(curBat)) - Vref) *
//
sensitivity);
                                                   // let ADC settle
   //delay (1);
before next sample 3ms
   ł
value -= 5;
if (value >= 1000)
 { value = 1000;
 }
if (value \leq 0)
 \{ value = 0; \}
 }
delay (90);
Serial.print(sumv/x);
//Serial.print("\t" + String(sumv2/x));
Serial.print("\t"+ String(sumvb/x));
Serial.print("\t"+String(sumi/x));
Serial.print("\t"+String(sumib/x));
//Serial.print("\t"+String(currentVolt1/x));
//Serial.print("\t"+String(currentVolt2/x));
Serial.print("\t"+String (value));
Serial.print("\n");
```

Kode Pemrograman Eksperimen Sistem SCC dengan Teknik *Charging Regulation* dan INC

#include <timerone.h></timerone.h>	
#define R1pin 3	//trigger relay 1 dari pin D3
#define R2pin 4	//trigger relay 2 dari pin D4
#define pwmpin 9	//Sinyal PWM dari pin D9
#define voltValue1 A0	//sensor tegangan dari PV ke pin A0
#define curValue1 A1	//sensor arus dari PV ke pin A1
#define curBat A3	//sensor arus dari baterai ke pin A3
#define voltBat A2	//sensor tegangan dari baterai ke pin
A2	

```
void setup() // perintah yang dijalankan sekali saat baru
mulai/reset
```

{ Serial.begin(9600); // Memulai serial communication pada 9600 bits/detik:

Timer1.initialize(42); // sinyal pwm dengan periode 42us=50khz pinMode(R1pin, OUTPUT); // inisialisasi pin D3 sebagai output pinMode(R2pin, OUTPUT); // inisialisasi pin D4 sebagai output }

```
void loop()
              // perintah yang dijalankan berulang-ulang
Ł
//double p = analogRead(A2);
 static int t=0; // variabel t(waktu) yang nilainya berubah ketika
ada nilai baru
static int R1 = 1;
                       //RELAY 1 sekarang (Normally open) =
ON = CLOSE
static int R1_previous = 1; //RELAY 1 sebelumnya
static int R2 = 1; //RELAY 2 sekarang(Normally open) =
ON = CLOSE
static int R2_previous = 1; //RELAY 2 sebelumnya
 if (R1 == 1)
  { digitalWrite(R1pin, HIGH);
                                     //trigger R1 ON=CLOSE
  }
 else
  { digitalWrite(R1pin, LOW);
                                      //trigger R1 OFF=OPEN
  }
 if (R2 == 1)
  { digitalWrite(R2pin, HIGH);
                                     //trigger R2 ON=CLOSE
  }
 else
  { digitalWrite(R2pin, LOW);
                                     //trigger R2 OFF=OPEN
  }
static int Do next = 1000;
                            //set Duty cycle berawal dari 1000
```

static int Do previous = 0; //set duty cycle sebelumnya berawal dari 0 int dDo = Do next - Do previous; Do previous = Do next; Timer1.pwm(pwmpin, Do_next); //trigger PWM sesuai dengan nilai duty cycle int x = 100: float sumv = 0.0; //nilai tegangan pv sekarang float sumi = 0.0; //nilai arus dari pv sekarang float sumvb = 0.0; //nilai tegangan baterai sekarang float sumib = 0.0; //nilai arus ke baterai sekarang for (int i=0; i<=x ; i++) //this loop calculates the current and voltage average +=((analogRead(curValue1)*(5.0/1023.0)sumi { (2.53)/(0.185)*1.6; //sensitivitas= 185 mV/A (5A) sumv += (analogRead(voltValue1)*(5.0/1023.0)*(4.72)); //range 0-25V sumib +=((analogRead(curBat)*(5.0/1023.0)-2.53)/0.185)*1.1; //sensitivitas 185 mV/A (5A) sumvb (analogRead(voltBat)*(5.0/1023.0)*(4.87)); +=//range 0-25V } float voltage next = sumv/x; //nilai tegangan pv rata-rata sekarang float voltage_bat = sumvb/x; //nilai teganfan baterai rata-rata sekarang float current_next = sumi/x; //nilai arus dari pv rata-rata sekarang float current_bat = sumib/x; //nilai arus ke baterai rata-rata sekarang float Ppv_next = voltage_next * current_next; //nilai daya dari pv sekarang float Pbat = voltage bat * current bat; //nilai daya dari bateari sekrang

```
static float voltage_previous = 0.0; //nilai tegangan pv
sebelumnya
  float dV = voltage_next - voltage_previous; //perubahan nilai
tegangan pv
   voltage_previous = voltage_next;
  static float current_previous = 0.0;
                                           //nilai arus dari pv
sebelumnya
  float dI = current_next - current_previous; //perubahan nilai
arus dari pv
   current_previous = current_next;
                   Ppv_previous = voltage_previous
  static
           float
current_previous; //nilai daya dari pv sebelumnya
  float dP = Ppv_next - Ppv_previous;
                                                   //perubahan
nilai daya dari pv
   Ppv_previous = Ppv_next;
```

```
int Dmax = 1000; /* Maximum value for duty cycle (D) */
int Dmin = 0; /* Minimum value for D */
int deltaD = 5:
float Vbmax = 14.4;
                        //tegangan sebelum terjadi gassing
float Vbmin = 10.0;
                       //tegangan baterai saudah mau habis
float Vfloat = 13.8:
                       //tegangan saat sudah mau penuh
                       // arus ke baterai maksimal awal (0.3C)
float Ibmax0 = 4.2:
float Ibmin = 0.14:
                       // arus ke baterai minimal (0.01C)
static int MPPT = 1:
static int Float = 0;
                            //tanda baterai sudah penuh atau
Ibat(current_bat) = Itrickle
if (voltage_next > voltage_bat)
 { R1=1;
  R2=1:
                         //charging & supply
  if (Float == 1)
   \{ MPPT = 0; \}
   }
  else
```

```
{ if (voltage bat \geq Vbmax)
      { if (current_bat > Ibmin)
         { MPPT = 1;
         }
       else
         { Float = 1; //Enter float phase
         ł
      }
     else
      { MPPT = 1;
      }
    }
  }
else
 \{ Float = 0; \}
  if (voltage_bat < Vbmin)
    { R1=0;
                              //Shutdown (battery undervoltage)
     R2=0;
    }
  else
    { R1=0;
    R2=1;
                              //discharge
    }
 }
```

float error = 0.7; float batas = 1.9; // batas nilai daya yang menandakan terjadi kenaikan daya jika diatas batas tersebut //dan peunurunan daya jika dibawah nilai tersebut

```
static int signMPPT = 0;
if (MPPT == 1)
{ if (dV == 0)
      { if (dI == 0)
      { if (Ppv_next > batas)
```

```
{ signMPPT=1;
         }
                                // if (Ppv_next < batas)
       else
        { Do_next -= deltaD;
                                        // decrease duty = decrese
Vpv
         signMPPT=2;
         }
      }
    if (dI > 0)
      { if (Ppv_next > batas)
         { if (dDo > 0)
           { Do_next += deltaD; //increase duty = increase
Vpv
            signMPPT=3;
           }
          else
                                // if (dDo < 0)
           { Do_next -= deltaD;
            signMPPT=4;
           }
         }
                                // if (Ppv_next <= batas)</pre>
       else
        { Do_next -= deltaD;
         signMPPT=5;
         }
      }
    else if (dI \le 0)
      { Do_next -= deltaD;
       signMPPT=6;
      }
    }
  else
   \{ if ((dP/dV) == 0) \}
      { if (Ppv_next > batas)
        { signMPPT=7;
         }
```

```
// if (Ppv_next <= batas)</pre>
  else
    { Do_next -= deltaD;
     signMPPT=8;
    }
 }
if ((dP/dV) > 0)
 { if (dP > error)
    { if (Ppv_next > batas)
      { Do next += deltaD;
       signMPPT=9;
      }
                           // if (Ppv_next <= batas)</pre>
     else
      { Do_next -= deltaD;
       signMPPT=10;
      }
    }
  if (dP < -error)
    { if (Ppv_next > batas)
      { Do_next += deltaD;
       signMPPT=11;
      }
                           // if (Ppv_next <= batas)</pre>
     else
      { Do_next -= deltaD;
       signMPPT=12;
      }
    }
  else if (-error < dP < error)
    { Do_next -= deltaD;
     signMPPT=13;
    }
 }
                           // if ((dP/dV) < 0)
else
 \{ if (dP > 0) \}
    { Do next -= deltaD;
     signMPPT=14;
    }
```

```
if (dP <= 0)
       { Do next -= deltaD;
        signMPPT=15;
       }
     }
   }
 }
else
              //ketika arus baterai sudah kurang dari minimum
              //atau
                     tegangan
                              baterai
                                      sudah melebihi
maksimum
 { if (voltage_bat = Vfloat)
   { Do_next += deltaD;
    signMPPT = 18;
   }
  else
   { signMPPT = 19;
   }
 }
if (Do_next >= Dmax) //mencegah duty cycle lebih dari
maksimum
 { Do_next = Dmax;
 }
if (Do next <= Dmin) //mencegah duty cycle kurang dari
minimum
 { Do_next = Dmin;
 }
int dR1 = R1 - R1_previous; //perubahan nilai relay 1
 R1_previous = R1;
int dR2 = R2 - R2_previous; //perubahan nilai relay 2
 R2 previous = R2;
```

```
delay (90);
static int w = 0;
if (t == w*10 \parallel dR1 != 0 \parallel dR2 != 0)
                                                    //t stiap klipatan
1000(1detik) atau dR1 atau dR2 bukan nol
 { Serial.print(t/10);
  Serial.print("\tR1="+String(R1));
  Serial.print("R2="+String(R2));
   Serial.print("\tdR1="+String(dR1));
   Serial.print("dR2="+String(dR2));
  Serial.print ("\t"+String(Do_next));
    Serial.print("\t" + String(voltage next));
                                                     //VPV(V)
    Serial.print("\t" + String(voltage_bat));
                                                    //VBAT(V)
    //Serial.print("\t" + String(p));
                                           //VBAT(V)
    Serial.print("\t" + String(current_next));
                                                    //IPV(A)
    Serial.print("\t" + String(current_bat));
                                                    //IBAT(A)
    Serial.print("\t" + String(Ppv_next));
                                                    //PPV(W)
    Serial.print("\t" + String(Pbat));
                                                 //PBattery(W)
     Serial.print( "\t//");
     Serial.print("\t" + String (dDo));
     Serial.print("\t" + String (dV));
     Serial.print("\t" + String (dI));
     Serial.print( "\t" + String (dP));
     Serial.print ("\t" + String (dP/dV));
    Serial.print("\tSOC="+String(Float));
    Serial.print("\t" + String(signMPPT));
  Serial.print ("\n");
  if (t == w*10)
    \{ w += 1; \}
    }
 }
t=t+1;
}
```

LAMPIRAN C

Datasheet IC XL4016

XLSEMI

8A 180KHz 40V Buck DC to DC Converter

Features

- Wide 8V to 40V Input Voltage Range
- Output Adjustable from 1.25V to 36V
- Maximum Duty Cycle 100%
- Minimum Drop Out 0.3V
- Fixed 180KHz Switching Frequency
- 8A Constant Output Current Capability
- Internal Optimize Power MOSFET
- High efficiency up to 96%
- Excellent line and load regulation
- Built in thermal shutdown function
- Built in current limit function
- Built in output short protection function
- Built in input over voltage protection
- Available in TO220-5L package

Applications

- LCD Monitor and LCD TV
- Portable instrument power supply
- Telecom / Networking Equipment

General Description

The XL4016 is a 180 KHz fixed frequency PWM buck (step-down) DC/DC converter, capable of driving a 8A load with high efficiency, low ripple and excellent line and load regulation. Requiring a minimum number of external components, the regulator is simple to use and include internal frequency compensation and a fixed-frequency oscillator.

The PWM control circuit is able to adjust the duty ratio linearly from 0 to 100%. An over current protection function is built inside. When short protection function happens, the operation frequency will be reduced from 180KHz to 48KHz. An internal compensation block is built in to minimize external component count.

Figure1. Package Type of XL4016

Datasheet XL4016

XLSEMI

Datasheet

8A 180KHz 40V Buck DC to DC Converter

XL4016

Pin Configurations

Figure2. Pin Configuration of XL4016 (Top View)

Table 1 Pin Description

Pin Number	Pin Name	Description
1	GND	Ground Pin. Care must be taken in layout. This pin should be placed outside of the Schottky Diode to output capacitor ground path to prevent switching current spikes from inducing voltage noise into XL4016.
2	FB	Feedback Pin (FB). Through an external resistor divider network, FB senses the output voltage and regulates it. The feedback threshold voltage is 1.25V.
3	SW	Power Switch Output Pin (SW). SW is the switch node that supplies power to the output.
4	VC	Internal Voltage Regulator Bypass Capacity. In typical system application, The VC pin connect a 1uf capacity to VIN.
5	VIN	Supply Voltage Input Pin. XL4016 operates from a 8V to 40V DC voltage. Bypass Vin to GND with a suitably large capacitor to eliminate noise on the input.

XLSEMI

Datasheet

8A 180KHz 40V Buck DC to DC Converter

XL4016

Function Block

Figure3. Function Block Diagram of XL4016

Typical Application Circuit L1 47oH/12A $\begin{array}{l} \text{VOUT=1.25*} (1 + \text{N2/RL}) \\ \text{IOUT=0} & \approx 8 \end{array}$ γ VIN 3 ЪDI \mathbb{R}^2 XL4016 ≤ 10K MBR1545 CC C2 105 COUT 105 1000uF/25V VIN VC CIN 470aF/50V C1 105 GND \$^{R1} 3.3K

Figure4. XL4016 Typical Application Circuit (VIN=8V~40V, VOUT=5V/8A)

Datasheet Isolated Converter Yuan

 \mathscr{F} marke shenzhen sunyuan technology co., LTD. Yuan dkws series dc-dc converter

- RATED 5W OUTPUT
- HIGH POWER DENSITY
- 24PIN DIP PACKAGE
- SINGLE&DUAL OUTPUT
- INDUSTRIAL STANDARD PIN-OUT
- NO HEAT SINK REQUIRED
- 1K VDC ISOLATION
- WIDE INPUT
- REGULATED OUTPUT
- PCB MOUNTING
- OVER CURRENT&SHORT CIRCUIT PROTECTION

The DKW5 series DC-DC converter offers 5 watts regulated power from a 24 PIN international standard DIP package. The series are especially designed for the application of telecommunication, industry control, instrumentation and measurements. With its features, the product can be used where the wide input, regulated output and isolation needed.

Rons

ELECTRICAL SPECIFICATIONS

All specifications tested typically @ 25°C, humidity<75%, nominal input and rated output unless otherwise noted.

OUTPUT SPECIFICATIONS								
Items:	Testing condit	ion	Min	Тур	Max			
Output accuracy:	At full load and nominal Vin				±2%			
Output power:				5W	6W			
Line regulation:	Input voltage from low	to full load			0.5%			
T and an advantations	From 10% to full load	Single Vout			0.5%			
Load regulation:		Dual Vout			3%			
Ripple and noise:	20MHz bandwidth				50mVp-p			
Temperature drift:					0.03 %/°C			
Minimum load					10%			
Switching frequency				400K HZ				
Over load protection	Over load protection % of FL at nominal input			120				
Short circuit protection Co			ontinuous and autom	atic recovery				

INPUT SPECIFICATIONS							
Items:	Min Typ Max						
	12VDC nominal input	9-18VDC					
Input voltage range	24VDC nominal input	18-36VDC					
	48VDC nominal input	36-72VDC					
Input filter		Pi					
Start-up time	Nominal Vin and certain load		100mS				

デ 順源料技 SHENZHEN SUNYUAN TECHNOLOGY CO., LTD. YUAN DKW5 SERIES DC-DC CONVERTER

COMMON SPECIFICATIONS								
Items	Testing condition	Min	Typ.	Max				
Operating temperature range		-40°C		+85°C				
Storage temperature range		-55°C		+125°C				
Humidity				<75%				
Cooling		Free Air Co	onvection					
Isolation voltage (VDC)	Input to Output		1,000					
Isolation resistance (ohms)			10 ⁹					
Isolation capacitance (pF)				30				
Efficiency (%)	See Product List	70		80				
Case material		Non-conductive	black copper					
Potting material		Epoxy Resin	UL94-V0					
Packing material	Tube							
Dimension (mm / inch)		31.8*20.3*10.2 (
Weight (g)	14							
MTBF (Hrs)		106						

PRODUCT LIST								
Part Number	Input Voltage (VDC)		Output		Efficiency	Pachaga	Capacitor	
Tare Number	Range	Nominal	Max.	Current (mA)	Voltage (VDC)	(%, Typ.)	Tackage	Load Max (uF)
DKW5-12S33		12	20	1100	3.3	70	DIP	2200
DKW5-12S05]	12	20	1000	5	78	DIP	1200
DKW5-12S12]	12	20	417	12	80	DIP	220
DKW5-12S15	9-18	12	20	333	15	80	DIP	150
DKW5-12D05]	12	20	±500	±5	78	DIP	±680
DKW5-12D12		12	20	±208	±12	80	DIP	±100
DKW5-12D15	1	12	20	±167	±15	80	DIP	±68
DKW5-24S33		24	40	1100	3.3	70	DIP	2200
DKW5-24S05]	24	40	1000	5	80	DIP	1200
DKW5-24S12]	24	40	417	12	80	DIP	220
DKW5-24S15	18-36	24	40	333	15	80	DIP	150
DKW5-24D05		24	40	±500	±5	78	DIP	±680
DKW5-24D12]	24	40	±208	±12	80	DIP	±100
DKW5-24D15		24	40	±167	±15	80	DIP	±68
DKW5-48S33		48	80	1100	3.3	70	DIP	2200
DKW5-48S05]	48	80	1000	5	78	DIP	1200
DKW5-48S12		48	80	417	12	80	DIP	220
DKW5-48S15	36-72	48	80	333	15	80	DIP	150
DKW5-48D05		48	80	±500	±5	78	DIP	±680
DKW5-48D12		48	80	±208	±12	80	DIP	±100
DKW5-48D15		48	80	±167	±15	80	DIP	±68

Note:(1) A minimum 10% load is required on the output to meet the published specifications. Even though working at no load condition will not damage the device, it is not adoptable.

(2) If the output power needed is smaller than rated, please connect a proper value resistor at output end in parallel to increase the load or contact us for a lower power product.

(3) For lower noise and ripple, please use a "LC" filter network at the output. The capacitance must be at proper value in case of start-up problems.
\mathscr{F} wärk <u>Shenzhen Sunyuan technology</u> Co., Ltd. \mathscr{F} yuan dkw5 series dc-dc converter

TEMPERATURE DERATING GRAPH

TYPICAL CONNECTION

PINS DESCRIPTION

PIN	SINGLE	DUAL	PIN	SINGLE	DUAL
2	-Vin	-Vin	23	+Vin	+Vin
3	-Vin	-Vin	22	+Vin	+Vin
9	NC	COMMON	16	-Vout	COMMON
10	NC	NC	15	NC	NC
11	NC	-Vout	14	+Vout	+Vout

SHENZHEN SUNYUAN TECHNOLOGY CO., LTD. 3F, 3Bldg, Duoli Industrial Zone, Meihua R.d. Futian District, Shenzhen 518049, China Tel: +86-755-8310080 Fax: +86-755-83116652 Email: info@szsunyuan.com www.szunyuan.com

Copyright @ Shenzhen Sunyuan Technology Co., Ltd. Edition-SZSY-07-01 Printed in P.R.C January 2007 Page 4 of 4

LAMPIRAN D

Gambar D. 1 Respon sistem SCC pada Buoyweather Station Type II selama 2 hari

BIODATA PENULIS

Nama lengkap penulis adalah Kadek Sunantara Wipayana, lahir di Jakarta pada tanggal 5 Juli 1996. Pada tahun 2008 penulis menyelesaikan pendidikan sekolah dasar di SDN 01 Pondok Ranggon Jakarta, pada tahun 2011 penulis menyelesaikan sekolah menengah pertama di SMP CHIS Denpasar, pada tahun 2014 penulis menyelesaikan sekolah menengah atas di SMAN 01 Denpasar, dan pada tahun 2018 penulis telah

menyelesikan Tugas akhir pada Departemen Teknik Fisika Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember. Penulis telah aktif dalam organisasi kemahasiswaan dan kepanitian seperti Tim Pembina Kerohanian Hindu (TPKH), *Engineering Physics Week* (EPW) dan Laboratorium Rekayasa Bahan. Konsetrasi penelitian penulis berada pada bidang ilmu rekayasa instrumentasi dan kontrol. Buku ini merupakan salah satu penilitian dari penulis mengenai bidang ilmu tersebut. Melalui buku ini diharapakan dapat berguna demi kemajuan teknologi mengenai penggunaan sistem catu daya intrumen. Kritik, saran, dan diskusi lebih lanjut dapat diberikan melalui *email* penulis, yaitu denansunantara@gmail.com.