Hakam, Amirul (2018) Simulasi Numerik Aliran Fluida Di Sekitar Silinder Sirkular Dan Tiga Kendali Pasif. Masters thesis, Institut Teknologi Sepuluh Nopember.
Preview |
Text
bukupenuh.pdf - Accepted Version Download (3MB) | Preview |
Abstract
Perencanaan dan analisis dibidang infrastruktur seperti tiang penyangga jembatan dan sistem perpipaan laut lepas pantai sangat diperlukan mengingat bahwa keselamatan pengguna adalah hal yang utama. Fluida yang melintas akan menimbulkan gaya hambat dan mempengaruhi ketahanan bangunan tersebut. Persamaan Navier-Stokes digunakan sebagai persamaan aliran fluida yang melintasi objek, dengan asumsi fluida bersifat continue, incompressible dan unsteady. Pada penelitian ini, aliran fluida melintasi objek berbentuk silinder sirkular dan tiga kendali pasif dengan tujuan memperkecil koefisien hambat yang diterima silinder sirkular. Persamaan Navier-Stokes diselesaikan secara numerik menggunakan metode beda hingga dan algoritma SIMPLE. Berdasarkan hasil simulasi numerik, profil kecepatan di sekitar silinder sirkular dengan menggunakan tiga kendali pasif dapat terbentuk wake yang lebih sempit dari pada silinder sirkular tanpa kendali pasif. Konfigurasi tiga kendali pasif yang tepat yaitu kendali pasif pertama diletakkan di depan silinder sirkular dari arah masuk aliran fluida pada jarak S=2.4D dari pusat silinder sirkular dan dua kendali pasif lainnya diletakkan di belakang silinder sirkular pada jarak T=1.6D dan besar sudut antara dua kendali pasif tersebut adalah 60° untuk aliran fluida pada bilangan Reynolds 500 sehingga dapat memperkecil koefisien hambat hingga 21.2109%. Sedangkan pada aliran fluida dengan bilangan Reynolds 5000, konfigurasi tiga kendali pasif yang paling optimal yaitu dengan meletakkan satu kendali pasif di depan silinder sirkular dari arah masuk aliran fluida pada jarak S=2.4D dari pusat silinder sirkular dan dua kendali pasif diletakkan dibelakang pada jarak T=1.8D dengan besar sudut antara dua kendali pasif terbut adalah 60° dapat memperkecil koefisien hambat hingga 19.3358 %.
=============================================================
Planning and analysis in the field of infrastructure such as bridge supports and offshore piping systems is needed that user safety is the main thing. Fluid passing through will cause drag and affect the resistance of the building. The Navier-Stokes equation is used as an equation for fluid flow across an object, with assumtion the fluid is continuous, incompressible and unsteady. In this study, fluid flow across circular cylinders and three passive controls. The aim is reducing the drag coefficient received by a circular cylinder. The Navier-Stokes equation is solved numerically using finite difference methods and SIMPLE algorithms. Based on the results of numerical simulations, the velocity profile around a circular cylinder using three passive controls can be formed a wake that is narrower than a circular cylinder without passive control. The best configuration of three passive controls is the first passive control placed in front of the circular cylinder from the direction of fluid flow at the distance S=2.4D from the center of the circular cylinder and the other two passive controls are placed behind the circular cylinder at a distance T=1.6D and the angle between the two passive controls is 60 ° for fluid flow at Reynolds number500. So,the drag coefficient can be reduce to 21,2109%. Whereas in the fluid flow with Reynolds number 5000, the optimal three passive controls configuration is by placing a passive control in front of the circular cylinder from the inlet direction of fluid flow at a distance S=2.4D from the center of the circular cylinder and two passive controls are placed behind at a distance T=1.8D with a large angle between two the passive control is 60 °. It can reduce the drag coefficient up to 19,3358%.
Item Type: | Thesis (Masters) |
---|---|
Additional Information: | RTMa 515.353 Hak s |
Uncontrolled Keywords: | Passive Control, Circular Cylinder, Drag Coefficient, Separation Point, Wake |
Subjects: | Q Science > QA Mathematics > QA278.3 Structural equation modeling. Q Science > QA Mathematics > QA76.6 Computer programming. Q Science > QA Mathematics > QA76.9 Computer algorithms. Virtual Reality. Computer simulation. Q Science > QA Mathematics > QA9.58 Algorithms |
Divisions: | Faculty of Mathematics, Computation, and Data Science > Mathematics > 44101-(S2) Master Thesis |
Depositing User: | amirul hakam |
Date Deposited: | 26 Nov 2020 06:46 |
Last Modified: | 26 Nov 2020 06:46 |
URI: | http://repository.its.ac.id/id/eprint/59012 |
Actions (login required)
View Item |