Solusi Numerik dari Aliran Fluida Magnetohidrodinamik Konveksi Campuran Melalui Bola Bermagnet

Mardianto, Lutfi (2018) Solusi Numerik dari Aliran Fluida Magnetohidrodinamik Konveksi Campuran Melalui Bola Bermagnet. Masters thesis, Institut Teknologi Sepuluh Nopember Surabaya.

[thumbnail of Tesis.pdf]
Preview
Text
Tesis.pdf - Accepted Version

Download (11MB) | Preview

Abstract

Masalah yang diteliti dalam penelitian ini adalah konveksi campuran pada magnetohidrodinamik tak tunak untuk fluida kental yang mengalir melalui bola bermagnet. Persamaan pembangun diperoleh berupa persamaan kontinuitas, persamaan momentum dan persamaan energi berdimensi. Variabel tak berdimensi digunakan mengubah persamaan menjadi persamaan
tak berdimensi. Persamaan ini diuraikan dengan menggunakan teori lapisan batas, fungsi alir dan variabel similaritas. Persamaan dari permasalahan ini nantinya diselesaikan secara numerik menggunakan metode beda hingga skema implisit. Gesekan kulit dan bilangan Nusselt dipelajari berdasarkan kecepatan dan temperatur di sepanjang bola bermagnet. Ketebalan lapisan batas juga dipelajari dari variasi parameter non-dimensional diantaranya parameter magnetik M, bilangan Prandtl Pr dan bilangan Richardson (parameter konveksi campuran) Ri selain waktu separasi dan titik separasi. Ketika parameter magnetik bertambah, kecepatan, temperatur dan gesekan kulit menurun, tetapi bilangan Nusselt meningkat. Tidak ada perubahan ketebalan lapisan batas, waktu separasi
semakin cepat dan titik separasi semakin maju ketika parameter magnetik meningkat. Ketika bilangan Prandtl bertambah, kecepatan, temperatur dan gesekin kulit menurun, tetapi bilangan Nusselt meningkat dan titik separasi semakin maju. Untuk bilangan Prandtl 0 < Pr < 1, lapisan
batas bertambah saat bilangan Prandtl bertambah. Bilangan Prandtl tidak mempengaruhi waktu separasi. Ketika bilangan Richardson bertambah, kecepatan, temperatur dan gesekan kulit juga bertambah, tetapi bilangan Nusselt berkurang. Lapisan batas semakin tipis, waktu separasi semakin lambat dan titik separasi semakin mundur ketika bilangan Richardson bertambah.
=========================================================
The problem in this research is unsteady magnetohydrodynamics
mixed convection for viscous
uid
ow through a magnetic sphere. Governing
equation are dimensional continuity equation, momentum equation and energy
equation. Non-dimensional variables are used to transform the equations be
the non-dimensional one. All of the equations are solved by using boundary
layer theory, stream function and similarity variable. Further, the equations
are solved numerically by using implicit scheme �nite di�erent method. Skin
friction and Nusselt number is studied due to velocity and temperature along
a magnetic sphere. Boundary layer thickness is also studied by using various
of non-dimensional parameters, i.e., Prandtl number Pr, magnetic parameter
M and mixed convection parameter � as well as time and point separation.
When magnetic parameter increases, velocity, temperature and skin friction
decrease. There is no change on boundary layer thickness, separation
time becomes earlier and separation point becomes shorter when magnetic
parameter increases. When Prandtl number increases, velocity temperature
and skin friction decrease, but Nusselt number increases and separation poin
becomes shorter. For Prandtl number 0 < Pr < 1, boundary layer thickness
increases as Prandtl number also increases. Prandtl number does not a�ect
separation time. When Richardson number increases, velocity, temperature
and skin friction increase, but Nusselt number decreases. Boundary layer
thickness decreases, time separation becomes longer and point separation
becomes farther when Richardson number increases.

Item Type: Thesis (Masters)
Additional Information: RTMa 511.8 Mar s
Uncontrolled Keywords: Magnetohydrodynamics, mixed convection, boundary layer, implicit scheme
Subjects: Q Science > Q Science (General) > Q180.55.M38 Mathematical models
Q Science > QA Mathematics > QA278.3 Structural equation modeling.
Q Science > QA Mathematics > QA76.9 Computer algorithms. Virtual Reality. Computer simulation.
Q Science > QA Mathematics > QA911 Fluid dynamics. Hydrodynamics
Divisions: Faculty of Mathematics, Computation, and Data Science > Mathematics > 44101-(S2) Master Thesis
Depositing User: Lutfi Mardianto
Date Deposited: 20 Dec 2018 05:52
Last Modified: 21 Jan 2021 03:47
URI: http://repository.its.ac.id/id/eprint/59026

Actions (login required)

View Item View Item