Kajian Perilaku Pesawat WISE L8 Dan Verifikasi Sistem Kendali Terbang Adaptif

Syamsuar, Sayuti (2018) Kajian Perilaku Pesawat WISE L8 Dan Verifikasi Sistem Kendali Terbang Adaptif. Doctoral thesis, Institut Teknologi Sepuluh Nopember.

[img] Text
4110301001-Disertation.pdf - Published Version
Restricted to Repository staff only

Download (9MB) | Request a copy

Abstract

Disertasi ini menyampaikan pembahasan tentang kajian perilaku pesawat WISE L8 dan verifikasi sistem kendali terbang adaptif yang diusulkan untuk diterapkan di kemudian hari. Dalam aspek perilaku secara khusus akan disampaikan intensitas gaya-gaya angkat-hambat hidrodinamika dan aerodinamika, gaya propulsi, gaya berat saat bergerak pada fase high speed water run, hydro planing dan mengudara di surface effect. Masalah kriteria terbang, diselesaikan melalui komputasional dinamika fluida CFD terhadap gambar 3-D CATIA, sehingga diperoleh distribusi tekanan P di sekitar permukaan sayap, badan dan permukaan air di surface effect. Pada bagian ini, juga dilakukan analisis downwash dan vortex yang terjadi di sekitar permukaan sayap dan permukaan air, di mana terlihat aliran udara dengan masing-masing intensitas yang bergerak mengitari sayap menuju ujung luar sayap dan winglet. Hal inilah yang menimbulkan bantalan udara dinamika antara permukaan air atau tanah dengan permukaan bawah sayap. Perhitungan komputasional dinamika fluida CFD terhadap gambar 3-D CATIA pesawat WISE L8 menggunakan input data inersia massa menghasilkan daya propulsi EHP= 299.73 HP, kecepatan VCRUISE ≈ 80.0 knots dan ketinggian terbang di surface effect h = 2.50 m menghasilkan gaya angkat aerodinamika Laero = 33.524 kN dan gaya hambat aerodinamika Daero = 5.357 kN dengan berat pesawat WISE L8 W = 32,000 N sesuai dengan D R & O. Perhitungan pergerakan pesawat WISE L8 fase high speed water run, hydro planing dan mengudara menghasilkan gaya propulsi dinamik Td, gaya gaya hidrodinamika, gaya gaya aerodinamika, kurva kecepatan versus waktu dan jarak take off oleh program Matlab. Pada bagian lain, dilakukan perhitungan pertumbuhan gaya gaya hidrodinamika, aerodinamika dan propulsi berdasarkan luas permukaan basah dan sarat saat hydro planing menurut metoda Savitsky melalui komputasional dinamika fluida CFD dengan model turbulensi k-ε serta perhitungan dengan program Matlab. Pengontrolan ketinggian terbang surface effect menggunakan defleksi elevator dan defleksi throttle mulai saat hydro planing sampai dengan pesawat WISE L8 mengudara sesuai dengan persyaratan take off masih memanfaatkan tenaga Pilot diperlihatkan oleh kurva diskontiniu. Pemodelan matematik sistem kendali terbang adaptif pesawat WISE L8 dalam gerak matra longitudinal dengan matriks controller observable berukuran (4 x 4) pada kondisi terbang mendatar stasioner di efek permukaan. Analisis kestabilan dinamik matra longitudinal dengan sistem lingkar terbuka dan tertutup pada pesawat WISE L8 menggunakan program root locus dan kontroler Tune PID dengan gain scheduling di Matlab. Variasi penguatan KP, KD dan KI sebagai gain scheduling yang memberikan interaksi dari permukaan atur defleksi elevator δe dan defleksi throttle δth ke beberapa respons output (u, w, q dan θ) oleh servo pada sistem kendali terbang adaptif. Kemudian dilakukan verifikasi sistem kendali terbang adaptif menggunakan metoda neural networks dengan sistem SISO pada sistem lingkar tertutup, di mana input adalah defleksi elevator δe, atau defleksi throttle δth dengan respons output sudut pitch θ atau pitch rate q sebagai sistem kontrol otomatik Pitch Attitude Hold dengan memberikan error minimum antara input dan respons output pada keadaan steady. ========================================================= This dissertation discusses about the of WISE L8 craft behavior and adaptive control system verification that has been introduced and will be applicated in the future. On the behavior as, special aspect of the WISE L8 craft are being introduce the intensities of hydrodynamics and aerodynamics forces, thrust, weight during high speed water run, hydro planing and airborne phase in the surface effect. The flight criteria base on the computational fluid dynamic (CFD) analysis on the (three view drawing) 3D CATIA configuration to obtain the pressure distribution around the water and wing surface. Also, the investigations on downwash and vortex around the wing and water surface have been carried out the dynamic cushion. The CFD analysis on the model of WISE L8 with the mass inertia as input produces information on power engine EHP = 299.73 HP, cruise speed (Vcruise) = 80.0 knots, and surface effect altitude (h) = 2.50 m from the water surface to obtain the aerodynamic forces Laero = 33.524 kN and aerodynamic drag Daero = 5.357 kN with WISE L8 W maximum take off weight = 32,000 N in accordance with D R & O. The calculation of the WISE L8 movement from high speed water run, hydro planing and airborne and takeoff distance starting from high-speed water run, hydroplaning and airborne has been calculated by Matlab. On the other hand, the hydrodynamic force, as well as aerodynamic force and thrust, are calculated considering the wetted surface area and draft during hydroplaning based on the Savitsky method using CFD and Matlab program. Note that the turbulence is approached using the k-ε model. The altitude during hydroplaning and airborne phase is controlled by deflecting elevator δe and throttle deflection δth. Some of the results are gave discontinue curve because the trayectory has been handled by the Pilot. The mathematical model of adaptive flight control system of WISE L8 in the longitudinal plane uses observable matrix (4 x 4) at stationary cruise in surface effect. The analysis of the dynamic longitudinal stability of open and close loop for WISE L8 craft by using root locus method and PID controller with gain scheduling on the Matlab. The strengthening variation of KP, KD, KI as gain scheduling that governs the deflection of control surface (δe and δth) to response outputs (u, w, q, and θ) by the servo in the adaptive flight control system. And then, the verification of the control system uses the neural network method with the SISO close loop system with elevator deflection δe is input with pitch angle θ output response as Pitch Attitude Hold automatic control that gave minimum error between input and output steady state response.

Item Type: Thesis (Doctoral)
Additional Information: none
Uncontrolled Keywords: (Ts/W) ratio, surface effect, hydro planing, Lippisch, stationery, gain scheduling, neural network
Subjects: T Technology > TC Hydraulic engineering. Ocean engineering
T Technology > TJ Mechanical engineering and machinery > TJ213 Automatic control.
V Naval Science > VM Naval architecture. Shipbuilding. Marine engineering
Divisions: Faculty of Marine Technology (MARTECH) > Naval Architecture and Shipbuilding Engineering > 36001-(S3) PhD Thesis
Depositing User: Syamsuar Sayuti
Date Deposited: 04 Dec 2018 07:29
Last Modified: 04 Dec 2018 07:29
URI: http://repository.its.ac.id/id/eprint/59555

Actions (login required)

View Item View Item