Fajriyyah, Nurul (2015) Pemodelan Indeks Pembangunan Gender Dengan Pendekatan Regresi Nonparametrik Spline Di Indonesia. Undergraduate thesis, Institut Technology Sepuluh Nopember.
Preview |
Text
1311100053-Undergradaute Thesis.pdf - Published Version Download (1MB) | Preview |
Abstract
Indeks Pembangunan Gender (IPG) merupakan indeks
pencapaian kemampuan dasar pembangunan manusia yang sama
seperti Indeks Pembangunan Manusia (IPM) dengan memperhatikan
ketimpangan gender. Indonesia memiliki IPG yang rendah jika
dibandingkan dengan negara lain seperti Malaysia dan Australia.
Dalam hal pembangunan manusia sering dibahas mengenai perbedaan
gender, dimana berfokus pada bagaimana mencapai kesetaraan gender
dengan meningkatkan kualitas sumber daya manusia tanpa
membedakan laki-laki dan perempuan. Hal ini terkait dengan tujuan
dari MDGs yaitu mendorong kesetaraan gender dan pemberdayaan
perempuan. Untuk mengatasi permasalahan tersebut perlu diselidiki
faktor-faktor yang diduga berpengaruh terhadap IPG di Indonesia
menggunakan regresi nonparametrik spline. Pendekatan regresi
nonparametrik spline dapat digunakan untuk memodelkan IPG di
Indonesia karena pola data pada penelitian ini tidak membentuk suatu
pola tertentu. Berdasarkan penelitian ini, model regresi nonparametrik
spline terbaik adalah spline yang memiliki nilai GCV minimum yaitu
kombinasi knot (1,2,1,3,3,3,2,3) dengan semua variabel signifikan yaitu
Angka Partisipasi Sekolah (APS) SD/Sederajat penduduk perempuan
(X1), APS SMP/Sederajat penduduk perempuan (X2), APS
SMA/Sederajat penduduk perempuan (X3), Angka Buta Huruf penduduk
perempuan (X4), Tingkat Partisipasi Angkatan Kerja penduduk
perempuan (X5), rasio jenis kelamin (X6), rasio jenis kelamin saat lahir
(X7), dan persentase penduduk perempuan mempunyai keluhan
kesehatan (X8). Regresi spline linier menghasilkan R2 sebesar 99,81%.
===================================================================================================
Gender Development Index (GDI) is an index of human
development achievement of the basic capabilities the same as the
Human Development Index (HDI) with attention to gender inequality. .
Indonesia has IPG low when compared to other countries such as
Malaysia and Australia. In terms of human development is often
discussed regarding gender differences, which focuses on how to
achieve gender equality by improving the quality of human resources
regardless of male and female. This is related to the purpose of the
MDGs is to encourage gender equality and women's empowerment. To
overcome these problems need to be investigated factors supposed to
influence the GDI in Indonesia using nonparametric regression spline.
Approaches using Spline nonparametric regression can be used to
modeling of GDI in Indonesia because of the pattern of the data in this
study do not form a particular pattern. Based on this research, the best
spline nonparametric regression model is spline which has a minimum
GCV value that is a combination knots points (1,2,1,3,3,3,2,3) with all
significant variables that the School Participation Rate (SPR)
Elementary School/equal number of the female population (X1), SPR
Junior High School/equal number of the female population (X2), SPR
Senior High School/equal number of the female population (X3), Figures
Illiterate female population (X4), labor force participation rate of
females (X5), sex ratio (X6), the ratio of the type sex at birth (X7), and the
percentage of the female population have health complaints (X8). Spline
linear regression produces R2 99,81%.
Item Type: | Thesis (Undergraduate) |
---|---|
Additional Information: | RSSt 519.536 Faj p |
Uncontrolled Keywords: | GCV, IPG, Regresi Nonparametrik, Spline, Titik Knot |
Subjects: | Q Science > QA Mathematics > QA278.2 Regression Analysis. Logistic regression |
Divisions: | Faculty of Mathematics and Science > Statistics > 49201-(S1) Undergraduate Thesis |
Depositing User: | Mr. Tondo Indra Nyata |
Date Deposited: | 21 Nov 2018 06:56 |
Last Modified: | 21 Nov 2018 06:56 |
URI: | http://repository.its.ac.id/id/eprint/59979 |
Actions (login required)
View Item |