Panjaitan, Hans Juno (2019) Analisis Sentimen Teks Bahasa Indonesia Pada Media Sosial Menggunakan Metode Support Vector Machine. Undergraduate thesis, Institut Teknologi Sepuluh Nopember.
Preview |
Text
Final Tugas Akhir 05211440000125.pdf - Accepted Version Download (5MB) | Preview |
Abstract
Tingginya penggunaan internet di Indonesia disebabkan oleh penggunaan media sosial. Media sosial menjadi sesuatu yang digemari oleh berbagai kalangan karena pengguna dengan mudah dapat mencari dan menyebarkan informasi terkait suatu hal. Hal ini menjadi suatu kesempatan bagi suatu pihak untuk mengetahui pendapat pengguna media sosial terhadap sesuatu hal, sehingga diperlukan suatu teknik untuk menyimpulkan seluruh pendapat tersebut. Analisis sentimen bekerja untuk mengetahui hal tersebut, sehingga dapat mengetahui masukan terkait objek yang dianalisis. Tetapi untuk melakukan analisis sentimen diperlukan beberapa tahap agar kita mengetahui objek tersebut bersentimen positif ataupun negatif. Diperlukannya algoritma yang mampu mengklasifikasikan pendapat-pendapat yang ada.
SVM (Support Vector Machine) merupakan algoritma yang memiliki akurasi yang baik dibandingkan algoritma yang lain dan juga dapat melakukan analisis sentimen terhadap suatu topik. SVM akan bekerja untuk mencari hyperplane terbaik dan memisahkan data sesuai kelas yang ada. Dibutuhkan input vektor yang mampu merubah kata menjadi sebuah vektor agar dapat diolah oleh SVM. Pada penelitian ini digunakan kolaborasi antara word2vec dan tf-idf yang diharapkan akan memberikan nilai akurasi yang sangat baik pada penggunaan tiga dataset yang ada .Hasil akhir dari penelitian ini berupa visualisasi dari pemodelan yang telah dilakukan.
================================================================================================
The high use of internet in Indonesia is caused by the use of
social media. Social media has become something favored by
various groups because users easily find and find information
related to something. This is an opportunity for some people to
know the opinions of social media users on something, so it
needs a technique to complete all of these opinions. Sentiment
analysis works to find out this so it can know the input related
to the object being analyzed. But to do a sentiment analysis that
some people need so that we know the object is positive or
negative. Algorithms Required
SVM (Support Vector Machine) is an algorithm that has good
accuracy compared to other algorithms and can also analyze
sentiments on a topic. SVM will work to find the best hyperplane
and work on data in accordance with existing classes. Vector
input Required which can be converted into a vector so that it
can be processed by SVM. In this study, a collaboration
between word2vec and tf-idf was used which is expected to
provide very good values on the use of three datasets. The end
of this study uses visualization from the modeling that has been
done.
Item Type: | Thesis (Undergraduate) |
---|---|
Additional Information: | RSSI 004.678 Pan a-1 2019 |
Uncontrolled Keywords: | Analisis Sentimen, Machine Learning, Support Vector Machine, Word Embedding, Word2Vec, Tf-Idf, Media Sosial, Teks, Klasifikasi, Visualisasi |
Subjects: | H Social Sciences > HM Sociology > HM742 Online social networks. T Technology > T Technology (General) > T57.5 Data Processing |
Divisions: | Faculty of Intelligent Electrical and Informatics Technology (ELECTICS) > Information System > 57201-(S1) Undergraduate Thesis |
Depositing User: | Hans Juno Panjaitan |
Date Deposited: | 25 Apr 2022 03:19 |
Last Modified: | 14 Jun 2022 01:07 |
URI: | http://repository.its.ac.id/id/eprint/60556 |
Actions (login required)
View Item |