

SKRIPSI –TK141581

EKSPERIMEN DAN ESTIMASI PARAMETER KESETIMBANGAN FASA UAP-CAIR SISTEM LARUTAN ELEKTROLIT CO₂-K₂CO₃-(PIPERAZINE+DEA)-H₂O

Oleh : VITO NAUFAL PRIYO 2311 100 133 BAGUS ARIF WISNUAJI 2311 100 146

Dosen Pembimbing : Dr. Ir. Kuswandi, DEA NIP. 1958 06 12 1984 03 1003 Prof. Dr. Ir. Gede Wibawa, M.Eng NIP. 1963 01 22 1987 01 1001

JURUSAN TEKNIK KIMIA FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2015

FINAL PROJECT – TK141581

EXPERIMENT AND PARAMETER ESTIMATION OF VAPOR-LIQUID EQUILIBRIA FOR ELECTROLYTE SOLUTION OF CO₂-K₂CO₃-(PIPERAZINE+DEA)-H₂O

Project By : VITO NAUFAL PRIYO 2311 100 133 BAGUS ARIF WISNUAJI 2311 100 146

Advisor : Dr. Ir. Kuswandi, DEA NIP. 1958 06 12 1984 03 1003 Prof. Dr. Ir. Gede Wibawa, M.Eng NIP. 1963 01 22 1987 01 1001

DEPARTMENT OF CHEMICAL ENGINEERING FACULTY OF INDUSTRIAL TECHNOLOGY SEPULUH NOPEMBER INSTITUTE OF TECHNOLOGY SURABAYA 2015

LEMBAR PENGESAHAN

EKSPERIMEN DAN ESTIMASI PARAMETER KESETIMBANGAN FASA UAP-CAIR SISTEM LARUTAN ELEKTROLIT CO₂-K₂CO₃-(PIPERAZINE+DEA)-H₂O

Diajukan Untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Teknik pada Program Studi S-1 Jurusan Teknik Kimia Institut Teknologi Sepuluh Nopember

Oleh :

Vito Naufal Priyo Bagus Arif Wisnuaji NRP: 2311 100 133 NRP: 2311 100 146

Disetujui oleh Tim Penguji Tugas Akhir :

1. Dr. Ir. Kuswandi, DEA

2. Prof. Dr. Ir. Gede Wibawa, M. Eng.

IDIKAA

3. Prof. Ir. Renanto, M.S. Ph.D.

4. Ir. Minta Yuwana, M.S.

5. Prida Novarita, S.T., M.T

Pembimbing II)

(Penguji I)

(Penguji II)

(Penguji III)

Surabaya Juli, 2015

LEMBAR PENGESAHAN

EKSPERIMEN DAN ESTIMASI PARAMETER KESETIMBANGAN FASA UAP-CAIR SISTEM LARUTAN ELEKTROLIT CO₂-K₂CO₃-(PIPERAZINE+DEA)-H₂O

Diajukan Untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Teknik pada Program Studi S-1 Jurusan Teknik Kimia Institut Teknologi Sepuluh Nopember

Oleh :

Vito Naufal Priyo Bagus Arif Wisnuaji NRP: 2311 100 133 NRP: 2311 100 146

Disetujui oleh Tim Penguji Tugas Akhir :

1. Dr. Ir. Kuswandi, DEA

2. Prof. Dr. Ir. Gede Wibawa, M. Eng

3. Prof. Ir. Renanto, M.S. Ph.D.

4. Ir. Minta Yuwana, M.S.

5. Prida Novarita, S.T., M.T

Pembimbing I)

(Penguji I)

(Penguji II)

(Penguji III)

Surabaya Juli, 2015

EKSPERIMEN DAN ESTIMASI PARAMETER KESETIMBANGAN FASA UAP-CAIR SISTEM LARUTAN ELEKTROLIT CO₂-K₂CO₃-(PIPERAZINE+DEA)-H₂O

Nama Mahasiswa

Jurusan Dosen Pembimbing

1) Vito Naufal Priyo (2311100133)
2) Bagus Arif Wisnuaji (2311100146)
Teknik Kimia, FTI-ITS
Dr. Ir. Kuswandi, DEA
Prof. Dr. Ir. Gede Wibawa, M.Eng

ABSTRAK

Proses absorpsi gas CO₂ dengan menggunakan larutan K₂CO₃ dan promotor seperti DEA dan Piperazine sangat luas dipakai di industri kimia. Data kesetimbagan fase uap-cair sistem CO₂-K₂CO₃-(PZ+DEA)-H₂O dibutuhkan untuk perancangan yang rasional dan optimal dari unit CO₂ removal. Penelitian ini bertujuan untuk mendapatkan data kesetimbangan fasa uap-cair CO_2 didalam larutan K_2CO_3 dengan promotor campuran Piperazine+DEA dengan komposisi 30% K₂CO₂, variasi PZ-DEA dengan total 5% berat, dan variasi konsentrasi umpan CO₂ 5-20% pada temperatur 30-50°C. Solubilitas gas tidak dapat diukur secara langsung dalam sistem ini, karena akan terjadi reaksi antara pelarut dan gas CO₂. Metode analogi N₂O digunakan untuk mengestimasi semua properti CO2 terhadap sistem CO₂-K₂CO₃-(PZ+DEA)-H₂O. Hasil dari eksperimen menunjukkan bahwa harga konstanta Henry yang meningkat seiring dengan kenaikan suhu yakni 3179,23-4410,41 kPa.m³/kmol. Pada konsentrasi CO₂ umpan dan promotor yang sama, kenaikan suhu operasi dapat menaikkan tekanan parsial gas CO₂ dalam larutan K₂CO₃ 30% dengan promotor PZ-DEA yakni sebesar 517,34-1462,30 Pa. Meningkatnya konsentrasi CO₂ dalam gas umpan dapat meningkatkan besarnya CO₂ loading rata-rata

sebesar 11,81% untuk 10% CO_2 umpan dan 36,43% untuk 20% CO_2 umpan. Penggunaan model E-NRTL memberikan hasil dengan *Average Absolute Relative Deviation (AARD)* sebesar 3,38%.

EXPERIMENT AND PARAMETER ESTIMATION OF VAPOR-LIQUID EQUILIBRIA FOR ELECTROLYTE SOLUTION OF CO₂-K₂CO₃- (PIPERAZINE+DEA)-H₂O

Student's Name

Department

Advisors

: 1) Vito Naufal Priyo (2311100133)
2) Bagus Arif Wisnuaji (2311100146)
: Chemical Engineering, FTI-ITS
: Dr. Ir. Kuswandi, DEA Prof. Dr. Ir. Gede Wibawa, M.Eng

ABSTRACT

The process of absorption of CO_2 by chemical reactions taking K_2CO_3 (potassium carbonate) solution and activator materials such as DEA and Piperazine is widely used in the chemical industry. Data of equilibria vapor-liquid phase CO₂- K_2CO_3 -(PZ+DEA)-H₂O system needed for a rational and optimum design of CO₂ removal unit. This study aims to determine the solubility of CO₂ in the experimental solution of K_2CO_3 with a mixture promoter Piperazine+DEA mixture with a composition of 30 % K₂CO₃, variation of total 5% PZ-DEA, and variation of CO_2 concentration in feed 5-20% at a temperature of 30-50°C. Gas solubility cannot be measured directly in this system, because there will be a reaction between the solvent and gas. N_2O analogy method is used to estimate all the properties of CO_2 in CO_2 - K_2CO_3 -(PZ+DEA)- H_2O system. The results of this experiment show that the higher the temperature, the higher the value of Henry constant about 3179,23-4410,41 kPa.m³/kmol. At the same CO_2 feed and promotor, increasing the temperature makes partial pressure of CO₂ increase at 517,34-1462,30 Pa. The increasing of CO₂ concentration in feed can increase the amount of CO2 loading with the average of 11,81% for 10% CO₂ and 36,43% for 20% CO_2 . Using E-NRTL model gives a result with Average Absolute

Relative Deviation (AARD) about 3,38%.

Segala puji dan syukur atas kehadirat Tuhan YME karena berkat Rahmat dan karunia-Nya yang telah memberi segala kemudahan dan kekuatan kepada penulis, sehingga penulis dapat menyelesaikan penyusunan Tugas Akhir Skripsi yang berjudul "EKSPERIMEN DAN ESTIMASI PARAMETER KESETIMBANGAN FASA UAP-CAIR SISTEM LARUTAN ELEKTROLIT CO₂-K₂CO₃-(PIPERAZINE+DEA)-H₂O" yang merupakan salah satu syarat kelulusan bagi mahasiswa Teknik Kimia FTI-ITS Surabaya.

Keberhasilan penulisan Tugas Akhir Skripsi ini tidak lepas dari dorongan dan bimbingan dari berbagai pihak. Untuk itu dalam kesempatan ini penulis mengucapkan terima kasih yang setulus-tulusnya kepada :

- 1. Bapak Dr. Ir. Kuswandi, DEA selaku Dosen Pembimbing Tugas Akhir Skripsi atas bimbingan dan saran yang telah diberikan.
- 2. Bapak Prof. Dr. Ir. Gede Wibawa, M.Eng. selaku Dosen Pembimbing Tugas Akhir Skripsi dan Kepala Laboratorium Thermodinamika.
- 3. Bapak dan Ibu Dosen Penguji atas saran yang telah diberikan.
- 4. Bapak Prof. Dr. Ir. Tri Widjaja, M.Eng., selaku Ketua Jurusan Teknik Kimia, Fakultas Teknologi Industri, Institut Teknologi Sepuluh Nopember.
- 5. Bapak dan Ibu Dosen pengajar serta seluruh karyawan Jurusan Teknik Kimia.
- 6. Orang Tua dan keluarga kami yang telah banyak memberikan dukungan baik moral maupun spiritual.
- 7. Teman-teman seperjuangan di Laboratorium Thermodinamika Teknik Kimia yang mengagumkan, terima kasih untuk segala support, bantuan dan kerjasamanya.
- 8. Teman-teman angkatan 2011 yang telah memberikan banyak support dan bantuan.

Semua pihak yang telah membantu penyelesaian Tugas Akhir Skripsi ini yang tidak dapat disebutkan satu persatu.Semoga segala kebaikan dan keikhlasan yang telah diberikan mendapat balasan dari Tuhan YME. Penulis mengharapkan saran dan kritik yang bersifat membangun demi kesempurnaan dan untuk penelitian di masa yang akan datang.

Akhirnya, semoga tugas akhir ini dapat memberikan kontribusi yang bermanfaat bagi Penulis dan Pembaca khususnya.

Surabaya, Juli 2015 Penyusun

DAFTAR ISI

Halamar Lembar	n Judul Pengesahan	i iii
Abstrak		iv
Abstract		vi
Kata Per	ngantar	viii
Daftar Is	i (0)/- (0)/- (0)/- (0)/-	x
Daftar G	ambar	xii
Daftar T	abel	xiv
BAB I	PENDAHULUAN	
	1.1 Latar Belakang	1
	1.2 Perumusan Masalah	5
	1.3 Tujuan Penelitian	6
	1.4 Manfaat Penelitian	6
BAB II	TINJAUAN PUSTAKA	
	2.1 Metode Absorpsi	7
	2.2 Kesetimbangan Fase Uap-Cair	8
	2.3 Solubilitas Fisik	10
	2.4 Kesetimbangan Reaksi Kimia	12
	2.5 Model Elektrolit Non Random Two Liquid	14
	2.6. Deremeter Interaksi Dada Model ENDTI	22
	2.0 Falameter Interacti Fada Woder EINKTE 2.7 Metode GPG (Canaralized Reduced	23
	Gradient) Non Linear	24
		(ST)
BAB III	METODOLOGI PENELITIAN	
	3.1 Deskripsi Penelitian	27
	3.2 Peralatan Percobaan	28
	3.3 Bahan Percobaan	29
	3.4 Variabel Percobaan	29
	3.5 Pelaksanaan Percobaan	29
	3.6 Evaluasi Data	33

BAB IV	HASIL DAN PEMBAHASAN		
	4.1 Validasi Peralatan Penelitian	37	
	4.2 Hasil Eksperimen dan Pembahasan	38	
	4.3 Korelasi dengan Model E-NRTL	44	
BAB V	KESIMPULAN	51	
DAFTA	R PUSTAKA	53	
DAFTA	R NOTASI	57	
APENDIKS 59 59 59		59	
LAMPII		109	

DAFTAR TABEL

Tabel 4.1	Hasil Validasi Peralatan Penelitian	37
Tabel 4.2	Hasil Perhitungan CO2 Terabsorp	41
Tabel 4.3	Hasil Perhitungan Tekanan Parsial CO2 untuk 0- 5% PZ-DEA	45
Tabel 4.4	Hasil Perhitungan Tekanan Parsial CO2 untuk 1- 4% PZ-DEA	46
Tabel 4.5	Hasil Perhitungan Tekanan Parsial CO2 untuk 2- 3% PZ DEA	16
Tabel 4.6	Hasil Perhitungan Tekanan Parsial CO2 untuk 3- 2% PZ-DEA	47
Tabel A.1	Perhitungan Massa Tiap Komponen Untik 1% Massa PZ dan 4% Massa DEA	59
Tabel A.2	Perhitungan Mol N ₂ O Terabsorb %PZ dan %DEA	60
Tabel A.3	Perhitungan Mol H _{N20} dan H _{C02} Untuk %PZ dan %DEA	63
Tabel A.4	Nilai Konstanta C pada Persamaan	66
Tabel A.5	Hasil Perhitungan Konstanta Kesetimbangan Pada Analisa Awal Untuk 5% Mol CO ₂ pada	00
Tabel A 6	suhu 40°C Nilai Konstanta C pada Persamaan	67
Tuberrino	Kesetimbangan	69
Tabel A.7	Hasil Perhitungan Konstanta Kesetimbangan	
	suhu 40°C	70
Tabel A.8	Hasil Perhitungan Mol dan Komposisi di Liquid	
	Untuk 5% Mol CO ₂ pada suhu 40° C	75
Tabel A.9	Hasil Perhitungan Mol dan Komposisi (Fraksi Mol) di Liquid Untuk 0% PZ dan 5% DEA	
	Komposisi Gas CO ₂ 5%	76

Tabel A.10	Hasil Perhitungan Mol dan Komposisi (Fraksi	
	Mol) di Liquid Untuk 1% PZ dan 4% DEA	
	Komposisi Gas CO ₂ 5%	77
Tabel A.11	Hasil Perhitungan Mol dan Komposisi (Fraksi	
	Mol) di Liquid Untuk 2% PZ dan 3% DEA	
	Komposisi Gas CO ₂ 5%	77
Tabel A.12	Hasil Perhitungan Mol dan Komposisi (Fraksi	
	Mol) di Liquid Untuk 3% PZ dan 2% DEA	
	Komposisi Gas CO ₂ 5%	78
Tabel A.13	Hasil Perhitungan Mol dan Komposisi (Fraksi	
	Mol) di Liquid Untuk 0% PZ dan 5% DEA	
	Komposisi Gas CO ₂ 10%	78
Tabel A.14	Hasil Perhitungan Mol dan Komposisi (Fraksi	
	Mol) di Liquid Untuk 1% PZ dan 4% DEA	
	Komposisi Gas CO ₂ 10%	79
Tabel A.15	Hasil Perhitungan Mol dan Komposisi (Fraksi	
	Mol) di Liquid Untuk 2% PZ dan 3% DEA	
	Komposisi Gas CO ₂ 10%	79
Tabel A.16	Hasil Perhitungan Mol dan Komposisi (Fraksi	
	Mol) di Liquid Untuk 3% PZ dan 2% DEA	
	Komposisi Gas CO ₂ 10%	80
Tabel A.17	Hasil Perhitungan Mol dan Komposisi (Fraksi	
	Mol) di Liquid Untuk 0% PZ dan 5% DEA	
	Komposisi Gas CO ₂ 20%	80
Tabel A.18	Hasil Perhitungan Mol dan Komposisi (Fraksi	
	Mol) di Liquid Untuk 1% PZ dan 4% DEA	
	Komposisi Gas CO ₂ 20%	81
Tabel A.19	Hasil Perhitungan Mol dan Komposisi (Fraksi	
	Mol) di Liquid Untuk 2% PZ dan 3% DEA	
	Komposisi Gas CO ₂ 20%	81
Tabel A.20	Hasil Perhitungan Mol dan Komposisi (Fraksi	
	Mol) di Liquid Untuk 3% PZ dan 2% DEA	
	Komposisi Gas CO ₂ 20%	82
Tabel A.21	Hasil Perhitungan C _i Untuk 1% PZ 4% DEA	83
Tabel A.22	Data Nonrandomness Parameter	84

Tabel A.23	Data Konstanta Binary Interaction Parameter	
	antar Molekul-Pasangan ion dan Pasangan Ion-	
	Molekul untuk Sistem PZ-DEA	85
Tabel A.24	Perhitungan Binary Interaction Parameter	
	(Molekul:CO ₂)	93
Tabel A.25	Perhitungan Binary Interaction Parameter	
	(Molekul:H ₂ O)	94
Tabel A.26	Perhitungan Binary Interaction Parameter	
	(Molekul:DEA)	95
Tabel A.27	Perhitungan Binary Interaction Parameter	
	(Molekul:PZ)	96
Tabel A.28	Data Konstanta Binary Interaction Parameter	
	antar Molekul	97
Tabel A.29	Perhitungan Binary Interaction Parameter antar	
	Molekul	99
Tabel A.30	Perhitungan Koefisien Aktivitas H ₂ O	106

(Halaman ini sengaja dikosongkan)

DAFTAR GAMBAR

Gambar 3.1	Skema Peralatan Solubilitas CO ₂	28
Gambar 3.2	Diagram Alir Metodologi Penelitian	31
Gambar 3.3	Diagram Alir Perhitungan Parameter dengan	
	Persamaan E-NRTL	32
Gambar 4.1	Hasil Validasi Peralatan Eksperimen	38
Gambar 4.2	Solubilitas CO_2 pada 30% K_2CO_3 dengan	
	Promotor PZ-DEA	39
Gambar 4.3	Pengaruh Suhu terhadap CO ₂ Terabsorp	
	dengan Konsentrasi Gas Umpan 5% CO ₂	42
Gambar 4.4	Pengaruh Suhu terhadap CO ₂ Terabsorp	
	dengan Konsentrasi Gas Umpan 10% CO ₂	42
Gambar 4.5	Pengaruh Suhu terhadap CO ₂ Terabsorp	
	dengan Konsentrasi Gas Umpan 5% CO ₂	43
Gambar 4.6	Hubungan Tekanan Parsial CO ₂ (P_{CO_2})	
	Eksperimen dan Korelasi dengan CO ₂	
	Loading Promotor 0-5% PZ-DEA	48
Gambar 4.7	Hubungan Tekanan Parsial $CO_2(P_{CO_2})$	
	Eksperimen dan Korelasi dengan CO ₂	
	Loading Promotor 1-4% PZ-DEA	48
Gambar 4.8	Hubungan Tekanan Parsial $CO_2(P_{CO_2})$	
	Eksperimen dan Korelasi dengan CO ₂	
	Loading Promotor 2-3% PZ-DEA	49
Gambar 4.9	Hubungan Tekanan Parsial $CO_2 (P_{CO})$	5
	Eksperimen dan Korelasi dengan CO	
	Logding Promotor 3-2% PZ-DEA	10
	Louung Homotol 5-2/01 L-DEA	47

(Halaman ini sengaja <mark>dik</mark>osongkan)

DAFTAR NOTASI

A_{φ}	Parameter Debye-Huckel
C	Konsentrasi (mol/L)
D_i	Konstanta Dielektrik spesies i
D_s	Konstanta Dielektrik pelarut
D_m	Konstanta Dielektrik campuran pelarut
D_w	Konstanta Dielektrik air
e	Muatan elektron
G	Energi Gibbs
G^{ex}	Energi Gibbs ekses
G ^{id}	Energi Gibbs ideal
ΔG^0	Perubahan energi Gibbs
H _{CO2}	Konstanta Henry CO ₂ di larutan
H^{o}_{CO2}	Konstanta Henry CO ₂ di air
H _{N2O}	Konstanta Henry N_2Odi larutan
H ^o _{N2O}	Konstanta Henry N ₂ O di air
ΔH^0	Perubahan entalpy reaksi standard
I_x	Daya ionik
k (Konstanta Boltzmann
K	Konstanta kesetimbangan
No	Bilangan Avogadro
P^s_w	Tekanan uap air (Pa)
Р	Tekanan total (Pa)
p	Tekanan parsial (Pa)
R	Konstanta gas ideal (J.K ⁻¹ .mol ⁻¹)
Т	Temperatur (K)
$\overline{v}_{mw}^{\infty}$	Parsial molar volume <i>solute</i> m (m ³)
v_w^l	Parsial molar volume untuk air murni (m ³)
V	Volume (m ³)
x	Fraksi komponen di liquid
v	Fraksi komponen di vapor
Z	Muatan ion

Huruf Latin

BIODATA PENULIS

VITO NAUFAL PRIYO adalah anak pertama dari dua bersaudara pasangan Bapak Yuswanto dan Ibu Evie. Penulis dilahirkan di Jakarta pada tanggal 15 November 1993. Jenjang pendidikan yang ditempuh dimulai dari TK Islam Pondok Duta, SD Islam Pondok Duta, SMPN 103 Jakarta, dan SMAN 39 Jakarta. Selepas lulus SMA, penulis melanjutkan kuliah tahap sarjana di Jurusan Teknik Kimia Institut Teknologi Sepuluh Nopember (ITS)

Surabaya dan tergabung dalam angkatan 2011 (K-51). Penulis menunjukkan kegigihan dalam menempuh perkuliahan dengan semangat tinggi dan pantang menyerah. Selain aktif sebagai mahasiswa, penulis juga aktif dalam berbagai organisasi kemahasiswaan yaitu sebagai staff Competency Development HIMATEKK FTI-ITS dan staff Chemical Departement Engineering Photography (CEPOT). Dalam kegiatan akademis, penulis pernah kerja praktik di Total E&P Indonesie Balikpapan. Pada tahun terakhir perkuliahan, penulis memilih Laboratorium Thermodinamika sebagai laboratorium yang menjadi spesialisasinya. Penulis menyelesaikan tugas akhir "Pra Desain Pabrik Liquefied Natural Gas (LNG) dari Coal Bed Methane" pada semester 7 dan skripsi pada semester 8 dengan judul "Eksperimen dan Estimasi Parameter Kesetimbangan Fasa Uap-Cair Sistem Elektrolit CO₂-K₂CO₃-(Piperazine+DEA)-H₂O" dengan Dosen Pembimbing Dr. Ir. Kuswandi, DEA dan Prof. Dr. Ir. Gede Wibawa, M.Eng. Penulis menerima kritik dan saran yang dapat dikirimkan lewat email: vitonaufal@gmail.com.

BIODATA PENULIS

Bagus Arif Wisnuaji, lahir di Denpasar Agustus pada tanggal 22 1993. merupakan anak pertama dari pasangan bapak Bagus Nyoman Putra dan Ibu Diah Sintawati. Penulis memulai pendidikan di SD Cipta Dharma Denpasar, kemudian melanjutkan sekolah ke SMP Negeri 1 Denpasar dan SMA Negeri 4 Denpasar. Setelah lulus SMA, penulis melanjutkan kuliah tahap sarjana di Jurusan Teknik Kimia Institut Teknologi Sepuluh Nopember (ITS) Surabaya, dan

tergabung dalam angkatan 2011 (K-51). Semasa kuliah, penulis juga aktif dalam kegiatan organisasi kemahasiswaan seperti staff Social Development (SOSDEV) HIMATEKK FTI-ITS dan Ketua Teknik Kimia Basketball Club (TBC). Dalam kegiatan akademis, penulis pernah kerja praktik di Total E&P Indonesie, Balikpapan pada bulan Juli-Agustus 2014. Memasuki tahun terakhir diawali bergabung sebagai anggota Laboratorium dengan Themodinamika Teknik Kimia ITS. Penulis menyelesaikan "Pra Desain Pabrik Liquiefied Natural Gas (LNG) dari Coal Bed Methane" pada semester 7 dan skripsi pada semester 8 dengan judul "Eksperimen dan Estimasi Parameter Kesetimbangan Fasa Uap-Cair Sistem Elektrolit CO₂-K₂CO₃-(Piperazine+DEA)" dengan Dosen Pembimbing bapak Dr. Ir. Kuswandi, DEA dan bapak Prof. Dr. Ir. Gede Wibawa, M.Eng. Penulis sangat terbuka dalam menerima kritik dan saran, silakan menghubungi penulis lewat email: arif.bagus7@gmail.com

BAB I PENDAHULUAN

1.1 Latar Belakang

Indonesia merupakan salah satu negara penghasil gas alam papan atas di dunia. Data BP Statistics tahun 2014 menunjukkan cadangan gas alam terbukti Indonesia mencapai 103,3 TCF. Dengan angka cadangan tersebut menempatkan Indonesia berada pada posisi ke-14 pemilik cadangan terbesar di dunia. Bahkan, di kawasan Asia, Indonesia merupakan pemilik cadangan gas terbesar kedua setelah China yang memiliki 115,6 TCF. Kendati memiliki cadangan gas yang cukup besar, namun gas alam belum digunakan secara maksimal di Indonesia. Sebagian besar gas alam tersebut dijual ke pasar ekspor. Untuk konsumsi domestik, proporsi pemakaian gas alam hanya mencakup 17% dari total kebutuhan energi Indonesia. Mengacu pada tingkat produksi sekarang, cadangan gas alam Indonesia bisa bertahan untuk jangka waktu 50 tahun. Dengan tingkat cadangan yang masih melimpah dan berharga jauh lebih murah ketimbang bahan bakar minyak (BBM), salah satu solusi yang ditawarkan oleh pemerintah adalah menerapkan kebijakan konversi BBM ke gas secara masif. Langkah ini diperkirakan akan berdampak signifikan bagi pengurangan subsidi BBM yang selama ini selalu membebani anggaran negara (Dudley, 2014).

Kualitas gas alam penting untuk diperhatikan, gas alam mengandung kontaminan berupa H_2O , N_2 , Hg, CO_2 dan H_2S . Dalam hal ini, penghilangan kontaminan atau pemurnian gas alam memiliki peranan penting dalam penentuan harga produksi gas alam yang dihasilkan, sehingga dibutuhkan teknologi pemurnian gas alam yang efisien dan ekonomis. Permasalahan utama adalah kandungan CO_2 , dikarenakan CO_2 termasuk kategori gas yang bersifat asam (*acid gas*). Adanya gas CO_2 dapat menyebabkan korosi pada utilitas pabrik dan sistem perpipaannya, dikarenakan CO_2 dan uap air dalam gas alam akan

1

menghasilkan senyawa Carbonic Acid (H₂CO₃) yang sangat korosif. Disamping itu gas CO₂ dapat mengurangi nilai kalor dari gas alam, yang akan menyebabkan penurunan harga produk gas alam. Pada kilang LNG, gas CO2 harus dihilangkan untuk mencegah pembekuan atau pembuntuan sewaktu proses pendinginan. Dalam pabrik sintesa ammonia, CO₂ harus dipisahkan dari gas proses untuk menghindari keracunan promotor sintesa ammonia. Namun demikian, gas CO₂ yang telah dipisahkan tersebut diupayakan untuk ditangkap agar dapat dimanfaatkan dan mengurangi penumpukan Gas Rumah Kaca di atmosfer yang menyebabkan pemanasan global. Namun hanya sebagian kecil saja CO₂ yang dimanfaatkan, diantaranya adalah sebagai bahan baku pembuatan urea, industri minuman berkarbonat (minuman ringan), industri logam dan karoseri sebagai pendingin pada pengelasan logam (welding) dan pengecoran, industri makanan sebagai media pengawetan sayuran, buah-buahan, gabah, daging dan lain-lain (Suprapto. 2007).

Berbagai teknologi pemisahan CO₂ secara luas telah banyak dikembangkan, diantaranya yaitu metode membran, kriogenik, adsorpsi, dan yang paling umum digunakan adalah metode absorpsi dengan larutan kimia. Membran merupakan metode pemisahan dengan menggunakan sistem semacam selaput/membran, dimana feed dilewatkan melalui membran tersebut. Membran merupakan filter yang sangat spesifik, dimana hanya molekul dengan ukuran tertentu saja yang dapat melewati membran, sedangkan sisanya akan tertahan di permukaan membran. Pada proses pemisahan ini tidak memerlukan zat kimia tambahan, tidak ada limbah buangan *by-product* yang dihasilkan, serta memerlukan tekanan operasi yang rendah dan umumnya bisa beroperasi pada suhu lingkungan. Namun kelemahan dari proses pemisahan ini yaitu terkadang perlu dilakukan pretreatment feed terlebih dahulu untuk mendapatkan feed yang murni. Hal ini dikarenakan membran rentan terdegradasi oleh impurities. Sementara kriogenik dapat dipakai untuk tekanan

parsial CO₂ yang besar, namun dengan adanya proses pendinginan, biaya yang dikeluarkan tidak sedikit. Bila digunakan untuk kandungan gas CO₂ yang rendah metode ini tidak efektif dari segi ekonomi, metode ini biasanya hanya digunakan pada aliran gas dengan kandungan CO₂ yang sangat besar. Sedangkan metode pemisahan adsorpsi merupakan CO_2 dengan menggunakan suatu adsorben yang dapat menyerap CO₂. Proses adsorpsi telah diterapkan namun kapasitas dan selektivitas yang rendah tidak berpotensi untuk pengambilan CO₂ dari aliran gas dengan baik. Apabila adsorben sudah mulai jenuh, regenerasi secara menyeluruh dan pembersihan perlu dilakukan sebelum adsorben digunakan kembali (Suprapto, 2007)

Metode absorpsi adalah metode pemisahan CO₂ dari aliran gas yang paling ekonomis. Absorpsi CO₂ dengan larutan kimia atau fisika adalah teknologi yang dikembangkan dengan baik dan telah diaplikasikan pada berbagai proses komersial, termasuk pemurnian gas dan produksi ammonia. Banyak penelitian telah dilakukan pada teknologi ini lebih dari 50 tahun yang lalu, terutama pada pengembangan pengetahuan terhadap spesifikasi dan karakteristik dari jenis pelarut. Sebagai contoh yang telah dipublikasikan yaitu jenis pelarut seperti banyak amine. Sedangkan pengembangan pengetahuan mengenai campuran pelarut yang kompleks masih sedikit dilakukan, di mana teknologi ini merupakan teknologi yang paling efektif. Salah satu proses absorpsi/stripping yang banyak dipakai dan dikembangkan adalah dengan sirkulasi larutan kimia. Proses semacam ini banyak dipakai pada produksi ammonia dan pemurnian gas alam. Sedangkan untuk proses absorpsi fisika biasanya diaplikasikan pada tekanan yang tinggi. Beberapa pelarut yang umum digunakan vaitu Selexol, Rectisol, dan Purisol. Karena pelarut fisika tidak bereaksi dengan CO₂, maka pelarut tidak terkonsumsi (tidak berkurang). Sebagai tambahan, panas absorpsi dibatasi pada enthalpy absorpsi fisika, yang mana nilainya jauh lebih rendah dibandingkan dengan menggunakan pelarut yang reaktif.

Proses dibatasi oleh selektivitas dan laju absorpsi yang rendah (http://www.owlnet.rice.edu/~ceng403/co2abs.html).

Beberapa penelitian terdahulu telah dilakukan, dimulai dari *Kuswandi et al* (2008) yang melakukan penelitian mengenai data solubilitas gas CO₂ dalam larutan *Potassium Carbonat* (K₂CO₃) untuk meningkatkan kinerja proses absorpsi. Penelitian ini dilakukan dengan menggunakan *wetted wall column* sebagai absorber dari berbagai konsentrasi *Potassium Carbonat* yaitu 10,

15, 20, 25 dan 30% massa dan suhu operasi 30, 40, 50 dan 60 ^oC. Perhitungan estimasi menggunakan persamaan *vapour liquid equilibrium* (VLE) dan reaksi kimia dengan metode NRTL. Hasil penelitian menunjukkan penurunan jumlah mol CO₂ yang terlarut dengan naiknya suhu serta konsentrasi larutan *Potassium Carbonat*.

Hilliard (2008), memprediksi model termodinamika untuk larutan campuran K_2CO_3 , Piperazine, dan MEA untuk mengabsorbsi CO₂. Percobaan dilakukan pada suhu 40° C dan 60° C dan campuran K_2CO_3 , Piperazine, dan MEA yang bervariasi. Dari hasil percobaan didapatkan campuran 2,5 m K⁺ +7 m MEA+ 2 m PZ memiliki kapasitas diferensial tertinggi yaitu 0,17.

Winarno et al (2008), melakukan penelitian mengenai proses absorbsi disertai reaksi kimia gas CO₂ memakai larutan K_2CO_3 dengan promotor *Diethanolamine* (DEA). Penelitian ini bertujuan untuk menentukan data kesetimbangan fasa uap-cair sistem larutan elektrolit CO₂-K₂CO₃-*Diethanolamine*-H₂O memakai kolom absorpsi tipe wetted wall column (WWC) pada tekanan atmosfer. Penelitian dilakukan dengan konsentrasi larutan K₂CO₃ 30% dan DEA 2% dengan variabel suhu 30^oC,50^oC, dan 70^oC dan gas umpan CO₂ antara 1-7%. Hasil ekperimen menunjukkan bahwa kenaikan konsentrasi CO₂ dalam gas umpan pada temperatur konstan akan menyebabkan kenaikan CO₂ loading, penurunan kadar CO₃²⁻, kenaikan kadar HCO₃⁻, kenaikan kadar CO₂ dalam larutan, kenaikan tekanan parsial kesetimbangan CO₂ dan penurunan tekanan parsial kesetimbangan H₂O. Hasil eksperimen juga dikorelasikan dengan model *Electrolyte Non-Random Two Liquid* (ENRTL) dengan deviasi absolut 3,5%.

Thee et al (2012), melakukan penelitian mengenai evaluasi reaksi kinetik absorpsi CO₂ kedalam larutan K₂CO₃ dengan promotor *monoethanolamine* (MEA) dibawah kondisi seperti yang terjadi pada industri CO₂ *capture plant*. Hasil yang ditunjukkan disini memperlihatkan bahwa pada 63° C, penambahan MEA pada jumlah kecil 1,1 M (5% berat) mempercepat laju *overall* absorpsi CO₂ pada 30% berat pelarut K₂CO₃ dengan faktor 16 dan pada penambahan MEA 2,2 M (10% berat) mempercepat laju *overall* absorpsi CO₂ pada 30% berat pelarut K₂CO₃ dengan faktor 45.

Altway et al (2014), melakukan prediksi dengan pelarut K_2CO_3 -MDEA-H₂O, didapatkan bahwa dengan penambahan jumlah MDEA dapat meningkatkan besarnya loading dari CO₂ dan dapat menurunkan tekanan parsial CO₂ dalam gas keluaran.

Kurniati et al (2014), dengan adanya MDEA (1%) dan DEA (0-3%) dalam larutan K_2CO_3 dapat meningkatkan konstanta Henry sehingga dengan kata lain MDEA-DEA dapat menurunkan kelarutan CO₂ dalam larutan.

Zulfetra dan Nuharani (2014), melakukan penelitian dengan pelarut K_2CO_3 -MDEA-DEA dan K_2CO_3 -PZ-DEA, didapatkan hasil pelarut K_2CO_3 -PZ-DEA dapat mengabsorbsi gas CO_2 komposisi 20% lebih baik dibandingkan dengan pelarut K_2CO_3 -MDEA-DEA. Hal ini dikarenakan pelarut K_2CO_3 -PZ-DEA memiliki nilai tekanan parsial lebih kecil dibandingkan pelarut K_2CO_3 -MDEA-DEA.

1.2 Perumusan Masalah

Penelitian-penelitian mengindikasikan bahwa *potassium* carbonate (K_2CO_3) mempunyai panas regenerasi yang rendah tetapi laju reaksinya lambat bila dibandingkan dengan *amine*. Beberapa penelitian telah menunjukkan bahwa penambahan promotor *amine* dapat mempercepat proses absorpsi. Adapun salah satu contoh penelitian terdahulu adalah dengan penambahan

promotor PZ (Piperazine) dan promotor DEA (*Diethanolamine*) pada larutan K_2CO_3 kemudian dikorelasikan dengan model E-NRTL. Tetapi kelemahan dari DEA yaitu produk degradasinya bersifat korosif dan juga *foaming* larutan sering terjadi pada konsentrasi DEA yang tinggi. Sedangkan kelemahan PZ adalah panas reaksinya tinggi dan harganya mahal.

1.3 Tujuan Penelitian

Penelitian ini bertujuan untuk mendapatkan data kesetimbangan fasa uap-cair CO_2 dalam larutan K_2CO_3 dengan promotor campuran Piperazine-DEA dalam berbagai konsentrasi *solvent*, konsentrasi gas umpan CO_2 dan suhu pada tekanan atmosferik.

1.4 Manfaat Penelitian

Data kesetimbangan fasa uap-cair CO_2 di dalam larutan K_2CO_3 dengan penambahan promotor campuran Piperazine-DEA dapat dijadikan sebagai acuan pada perancangan kolom absorpsi untuk proses mereduksi gas CO_2 pada dunia industri.

BAB II TINJAUAN PUSTAKA

2.1 Metode Absorpsi

Absorpsi adalah suatu proses pemisahan suatu komponen fluida dari campurannya dengan menggunakan solvent atau fluida lain. Cairan yang digunakan juga umumnya tidak mudah menguap dan larut dalam gas. Sebagai contoh yang umum dipakai adalah absorpsi amonia dari campuran udara-amonia oleh air. Setelah absorpsi terjadi, campuran gas akan di-recovery dengan cara distilasi.

Terdapat beberapa hal lain yang perlu dipertimbangkan dalam pemilihan solvent, yaitu:

1. Kelarutan Gas

Kelarutan gas harus tinggi, sehingga menaikkan rate absorpsi dan mengurangi jumlah solvent yang dibutuhkan. Umumnya suatu solvent yang memiliki sifat kimia hampir sama dengan solute yang diabsorpsi akan memberikan kelarutan yang baik. Reaksi kimia antara solvent dan solute akan terjadi pada kelarutan gas yang sangat tinggi.

2. Volatilitas

Pelarut atau solvent harus memiliki tekanan uap yang rendah dimana gas saat meninggalkan suatu proses absorpsi biasanya saturated dengan solvent dan mungkin banyak yang mungkin hilang.

3. Korosivitas

Pelarut hendaknya memiliki korosivitas kecil, sehingga material konstruksi alat tidak terlalu mahal.

- 4. Harga pelarut harus murah, dan mudah untuk didapat.
- 5. Viskositas

Pelarut harus mempunyai harga viskositas yang rendah sehingga proses absorpsi berjalan cepat, pressure drop kecil pada saat pemompaan, memberikan sifat perpindahan panas yang baik dan meningkatkan karakteristik flooding dalam menara absorpsi.

6. Hal-hal lain yang meliputi : s olvent harus nontoxic, nonflammable, memiliki komposisi kimia yang stabil dan titik bekunya rendah.

2.2 Kesetimbangan Fase Uap-Cair

Syarat terjadinya kesetimbangan fase pada sistem tertutup meliputi kesamaan suhu, tekanan, potensial kimia setiap komponen pada masing-masing fasa dan energi bebas Gibbs total mencapai minimum.

Potensial kimia suatu komponen ditransformasikan sebagai fugasitas komponen tersebut, yaitu :

Lewis/Randal mendefinisikan fugasitas untuk larutan ideal adalah fungsi dari konsentrasi :

$$\hat{f}_i^{ideal} = x_i f_i \tag{2.2}$$

Dimana *xi* adalah fraksi mol dari spesies *i*. Apabila larutan tidak ideal, maka faktor koreksi digunakan untuk menyatakan koefisien aktifitas γ sebagai koefisien aktivitas dari *liquid*.

$$\gamma_i = \frac{\hat{f}_i}{\hat{f}_i^{ideal}} = \frac{\hat{f}_i}{x_i f_i}$$
(2.3)

Kesetimbangan uap-cair direpresentasikan dalam fugasitas sebagai fungsi dari konsentrasi dan tekanan. Untuk spesies *i* dalam campuran uap:

$$\hat{f}_i^V = y_i \, \phi_i \, P \tag{2.4}$$

Untuk spesies i dalam larutan cair:

$$\hat{f}_i^L = x_i \gamma_i f_i \tag{2}$$

5)

Pada kondisi kesetimbangan maka berlaku (formulasi gamma phi VLE):

$$y_i \hat{\phi}_i P = x_i \gamma_i f_i$$
 (2.6)

Persamaan fugasitas spesies i murni adalah:

$$f_i = \phi_i^s P_i^s \exp\left(\frac{V_i^L(P - P_i^s)}{RT}\right)$$
(2.7)

Faktor eksponensial tersebut dikenal sebagai faktor poynting. Substitusi persamaan (2.7) ke (2.6) maka didapat:

$$y_i \, \phi_i \, P = x_i \gamma_i \phi_i^s P_i^s \, \exp\left(\frac{V_i^L (P - P_i^s)}{RT}\right) \tag{2.8}$$

atau

$$y_i \Phi_i P = x_i \gamma_i P_i^s$$
(2.9)

dimana:

$$\Phi_i = \frac{\phi_i}{\phi_i^s} \exp\left(-\frac{V_i^L(P - P_i^s)}{RT}\right)$$
(2.10)

Pada tekanan rendah, persamaan VLE yang lebih realistis hanya menganggap fasa uap sebagai model gas ideal dimana:

$$\hat{\phi}_i = \hat{\phi}_i^s = 1$$
 dan $P = P_i^s \cong 0$ atau faktor
 $\exp\left(-\frac{V_i^L(P - P_i^s)}{RT}\right) = 1$

Sehingga harga $\Phi_i = 1$, atau persamaan (2.9) menjadi :

$$y_i P = x_i \gamma_i P_i^s \tag{2.11}$$

Kondisi kesetimbangan dinyatakan dengan energi Gibbs (G) yang dimiliki sistem tersebut, perubahan energi Gibbs yang terjadi untuk semua proses irreversibel dinyatakan :

$$aG'' \leq 0$$
 (2.12)
Diberikan tanda pertidaksamaan di atas adalah dalam
sistem tertutup pada tekanan dan temperatur tetap, apabila
perubahan properti terjadi maka energi Gibbs total akan menurun.
Dengan kata lain energi Gibbs akan minimal pada kondisi
kesetimbangan.

Energi Gibbs total memberikan kondisi umum suatu kesetimbangan. Untuk larutan, digunakan istilah energi Gibbs ekses yang merepresentasikan penyimpangan dari larutan ideal.

$$G_i^{ex} = G_i - G_i^{ideal}$$

(2.13)

Dimana Gi merupakan energi Gibbs molar untuk spesies i :

$$G_i = \Gamma(T) + RT \ln \hat{f}_i \tag{2.14}$$

 $\Gamma(T)$ adalah konstanta integrasi.

Substitusi Persamaan (2.14) ke Persamaan (2.13) dan menggabungkan dengan aturan *Lewis/Randal* maka diperoleh :

$$G_i^{ex} = RT \ln \frac{f_i}{x_i f_i} = RT \ln \gamma_i$$
(2.15)

2.3 Solubilitas Fisik

Solubilitas fisik adalah kesetimbangan antara molekul CO₂ gas dan molekul CO₂ larutan aqueous *amine* :

$$CO_2(v) \leftrightarrow CO_2(l)$$

Hal ini dapat dinyatakan dengan hukum Henry.

Hukum Henry ini dapat diterapkan untuk menghubungkan konsentrasi kesetimbangan gas dalam liquid sebagai fungsi

tekanan parsialnya dalam fase gas. Solubilitas memiliki berbagai definisi, tetapi definisi yang digunakan yaitu:

$$H_A = \frac{p_A}{C_A^*} \tag{2.16}$$

Dimana C_A^* konsentrasi kesetimbangan gas yang dapat dihitung dari mol gas total yang secara fisik terserap dalam volume liquid pengabsorb.

Dalam kesetimbangan gas-cair hukum Henry dinyatakan :

$$P_{CO_2}\phi_{CO_2} = H_{CO_2}\gamma^*_{CO_2}x_{CO_2}$$
(2.17)

Dimana P adalah tekanan sistem, y_{CO_2} adalah fraksi mol CO₂ dalam fase gas, ϕ_{CO_2} koefisien fugasitas dalam fase gas, H_{CO_2} konstanta hukum Henry CO₂ dalam solven campuran air dan amine, x_{CO_2} , fraksi mol CO₂ kesetimbangan dalam fase liquid, dan $\gamma^*_{CO_2}$ koefisien aktivitas unsimetris CO₂ dalam campuran air dan amine.

Sebagai *reference state* digunakan pengenceran tak berhingga dalam air sehingga $\gamma_{CO_2}^* \rightarrow 1$, dan konstanta *Henry* untuk air murni adalah :

$$H_{CO_2}^w = \frac{P_{CO_2}}{x_{CO_2}}$$
(2.18)

Koefisien aktifitas dalam campuran solvent dinyatakan :

$$\gamma_{CO_2}^* = \frac{H_{CO_2}}{H_{CO_2}^w}$$
(2.19)

Konstanta Henry CO_2 dalam campuran *solvent* dicari dari data kelarutan CO_2 (eksperimen), sedangkan konstanta Henry CO_2 dalam air murni ditentukan dari persamaan korelasi sebagai berikut (*Austgen et al*, 1991) :

$$\ln H_{CO_2}^w = 170,7126 - 8477,711/T - 21,95743 \ln T + 0,005781T \quad (2.20)$$

konstanta Henry dalam satuan Paskal, T adalah temperatur sistem dalam Kelvin.

Pengukuran solubilitas CO₂ tidak dapat dilakukan langsung dalam pelarut amine, karena reaksi antara CO₂ dan amine mungkin dapat mempengaruhi keakuratan data. Umumnya, solubilitas CO2 secara fisik ditentukan dengan menggunakan metode analogi N₂O sebagaimana yang dilakukan oleh Clarke (1964). Jadi setelah solubilitas N₂O didapatkan secara eksperimen, solubilitas N₂O dapat dihitung dengan :

$$\frac{H_{CO_2,a\min e}}{H_{N_2O,a\min e}} = \frac{H_{CO_2,water}}{H_{N_2O,water}}$$
(2.21)

Berdasarkan studi yang dilakukan oleh Versteeg dan Swaaij (1988), diperoleh dua persamaan untuk solubilitas CO_2 dan N_2O dalam air.

$$H_{N_2O,water}(kPa\,m^3kmol^{-1}) = (8.5470\,x10^6)\exp(\frac{-2284}{T}) \quad (2.22)$$

$$H_{CO_2,water}(kPa\,m^3kmol^{-1}) = (2.8249\,x10^6)\exp(\frac{-2044}{T}) \quad (2.23)$$

2.4 Kesetimbangan Reaksi Kimia

Permasalahan dalam menentukan komposisi kesetimbangan pada sistem reaktif membutuhkan sebuah kondisi dan informasi spesifik mengenai komponen yang ada dalam sistem tertutup. Konstanta kesetimbangan untuk tiap-tiap reaksi dalam sistem tertutup diberikan oleh *Smith et al* (2001), yaitu :

$$K = \prod_{i} (x_{i} \gamma_{i})^{v_{i}} = \exp\left(\frac{-\Delta G^{o}}{RT}\right)$$
(2.24)
Sedangkan hubungan ΔG° dan ΔH° diberikan oleh persamaan :

$$\Delta H^{o} = -RT^{2} \frac{d(\Delta G^{o} / RT)}{dT}$$
(2.25)

 ΔH° merupakan perubahan *enthalpy* reaksi standart.

Kombinasi Persamaan (2.24) dan Persamaan (2.25) :

$$\int d(\ln K) = \int \frac{\Delta H^o}{RT^2} dT$$
(2.26)

Di dalam sistem larutan CO₂-K₂CO₃-PZ-DEA-H₂O terjadi kesetimbangan reaksi kimia sebagai berikut (Ma Xiaoguang, 2010) :

$CO_{2 (g)} \leftrightarrow CO_{2 (aq)}$	(2.27)
$CO_2 + 2H_2O \leftrightarrow HCO_3^- + H_3O^+$	(2.28)
$HCO_3^- + H_2O \iff H_3O^+ + CO_3^{2-}$	(2.29)
$2 H_2 O \leftrightarrow H_3 O^+ + OH^-$	(2.30)
$PZ + H_2O + CO_2 \leftrightarrow PZCOO^- + H_3O^+$	(2.31)
$PZH^+ + H_2O + \leftrightarrow PZ + H_3O^+$	(2.32)
$PZCOO^{-} + H_2O + CO_2 \iff PZ(COO^{-})_2 + H_3O^{+}$	(2.33)
$H^+PZCOO^- + H_2O \iff PZCOO^- + H_3O^+$	(2.34)
$H_2O + DEAH^+ \leftrightarrow H_3O^+ + DEA$	(2.35)

$$DEACOO^{-} + H_2O \iff DEA + HCO_3^{-}$$
 (2.36)

Pada larutan Potassium Karbonat encer, gas CO₂ bereaksi dengan prinsip mekanisme reaksi asam basa berpenyangga dengan senyawa *alkanolamine* dimana reaksi kesetimbangannya dapat dituliskan seabagai reaksi disosiasi kimia. Untuk molekular *solute* CO₂, kesetimbangan fisika diekspresikan oleh :

$$y_m \varphi_m P = x_m \gamma_m^* H_{m,W}^{(P_W^S)} \exp \frac{\overline{v}_{m,W}^{\infty} (P - P_W^S)}{RT}$$
(2.37)

Di mana $H_{m,w}^{(P_w^s)}$ adalah konstanta *Henrysolute* dalam air pada temperatur sistem, φ_m koefisien fugasitas, P tekanan sistem, P_w^s tekanan uap pada air murni pada temperatur sistem T, dan $\overline{v}_{m,w}^{\infty}$ adalah parsial molar volume untuk molekular *solute* m pada pelarutan tak berhingga dalam air.

Untuk air, VLE diekspresikan oleh :

$$y_{H_{2}0}\varphi_{H_{2}0}P = x_{H_{2}0}\gamma_{H_{2}0}\varphi_{w}^{S}P_{w}^{S}\exp\frac{v_{w}^{t}(P-P_{w}^{S})}{RT}$$
(2.38)

Di mana φ_w^s adalah koefisien fugasitas untuk air jenuh pada temperatur sistem dan v_w^l molar volume untuk air murni pada temperatur sistem.

Molar volume air murni dapat dicari dengan cara massa molekul relatif dari air murni dibagi dengan densitasnya, sedangkan tekanan uap *saturated* dari air murni diperoleh dari persamaan *Antoine*.

2.5 Model Elektrolit Non Random Two Liquid (E-NRTL)

Secara umum energi Gibbs ekses pada model E-NRTL merupakan gabungan dari dua faktor yaitu *long range* (LR) *forces*

dan *short range* (SR) *forces.* Pada larutan encer dimana jarak antar molekul cukup jauh maka energi Gibbs ekses didominasi oleh interaksi LR *force.* Sedangkan pada larutan pekat dimana jarak antar molekul lebih dekat maka energi Gibbs ekses didominasi oleh interaksi SR *force.*

Austgen et al (1989) mengembangkan model elektrolit NRTL yang dalam hal ini terdiri dari tiga kontribusi. Pertama, *Long Range force* terdiri dari dua kontribusi yaitu model PDH (Pitzer-Debye-Huckel) yang menghitung adanya kontribusi elektrostatik antar semua ion. Kontribusi kedua yaitu kontribusi *ion-reference-state-transfer* yang dinyatakan dengan, model persamaan Born. Ketiga adalah kontribusi *short range* yang dinyatakan dengan persamaan *local composition* elektrolit NRTL yang menghitung adanya interaksi *short range* semua spesies.

Total kontribusi terhadap energi Gibbs ekses adalah:

$$\frac{g_{i}^{ex^{*}}}{RT} = \frac{g_{LR,i}^{ex^{*}}}{RT} + \frac{g_{SR,i}^{ex^{*}}}{RT} = \left(\frac{g_{PDH,i}^{ex^{*}}}{RT} + \frac{g_{Born,i}^{ex^{*}}}{RT}\right) + \frac{g_{lc,i}^{ex^{*}}}{RT}$$
(2.39)

Atau

$$\ln \gamma_{i} = \left(\ln \gamma_{PDH,i} + \ln \gamma_{Born,i} \right) + \ln \gamma_{lc,i}$$
(2.40)

2.5.1 Long Range Forces

Model Pitzr-Debye-Huckel adalah ekspresi untuk energi Gibbs ekses, dimana nilai fraksi mol adalah satu untuk pelarut dan nol untuk ion-ion. Model Pitzer-Debye-Huckel ini merepresentasikan energi Gibbs ekses sebagai:

$$g_{PDH}^{ex^{*}} = -RT\left(\sum_{k} x_{k}\right) \left(\frac{1000}{MW}\right)^{0.5} \left(\frac{4A_{\phi}I_{x}}{\rho}\right) \ln\left(1 + \rho I_{x}^{0.5}\right)$$
(2.41)

dimana:

x

= fraksi mol

MW = berat molekul dari pelarut

= parameter pendekatan model PDH yang terdekat

= Daya ionik yang dinyatakan dalam fraksi mol dan muatan z

$$I_x = \frac{1}{2} \sum_i x_i z_i^2$$

Tanda (*) merujuk pada nergi Gibbs ekses tak simetris.

Parameter Debye-Huckel, A didapat dari :

$$A_{\phi} = \frac{1}{3} \left(\frac{2\pi N_0 \rho_s}{1000} \right)^{0.5} \left(\frac{e^2}{D_s kT} \right)^{1.5}$$

dimana:

ρ

I.

No = bilangan Avogadro (6.02×10^{23}) ρ_s = densitas pelarut e = muatan elektron (1.6x10⁻¹⁹ Coulomb) D_s = konstanta dielektrik pelarut k = konstanta Boltzmann (1.38x10⁻²³ J/K)

Konstanta dielektrik dri pelarut dihitung sebagai :

$$D_s = \sum_i x_i D_i$$

(2.44)

(2.42)

(2.43)

dimana:

 $x_i =$ fraksi massa spesies i

 D_i = konstanta dielektrik spesies i

2.5.2 Persamaan Born

Pada pelarut campuran, kondisi acuan untuk ion-ion menjadi kacau karena perubahan konstanta dielektrik. Persamaan Born diperkenalkan untuk kontribusi long-range terhadap energi Gibbs guna mempertahankan kondisi acuan pada pengenceran tak berhingga dengan air untuk ion-ion tersebut. Bentuk persamaannya adalah :

$$g_{Born}^{ex} = RT \left(\frac{e^2}{2kT}\right) \left(\sum_{i} \frac{x_i z_i^2}{r_i}\right) \left(\frac{1}{D_m} - \frac{1}{D_w}\right)^{1/2} x 10^{-2}$$
(2.45)

Dimana D_m dan D_w masing-masing adalah konstanta dielektrik campuran pelarut dan air. Koreksi ini menentukan perbedaan energi Gibbs diantara ion-ion dalam campuran pelarut dan dalam air.

2.5.3 NRTL Term Sebagai Kontribusi Local Composition

Saat larutan menjadi lebih pekat, term yang mendeskripsikan interaksi diantara spesies netral dan spesies ionik dan spesies netral dan spesies netral dan spesies netral menjadi penting. Interaski tersebut digambarkan secara lokal, ataiu *short-range forsces*. Wilson (1964) menurunkan persamaan untuk energi pencampuran non-elektrolit. Dasar penurunan adalah distribusi molekul *i* dan *j*, di sekitar pusat molekul *i*, diberikan oleh :

$$\frac{x_{ij}}{x_{ii}} = \frac{x_j \exp\left(-\frac{g_{ji}}{RT}\right)}{x_k \exp\left(-\frac{g_{ii}}{RT}\right)}$$
(2.46)

Renon dan Praunitz (1968) merumuskan ulang persamaan di atas dalam model NRTL, hingga pada modifikasi distribusi molekuler untuk menghitung pencampuran *non-random* :

$$\frac{x_{ij}}{x_{ii}} = \frac{x_j \exp\left(-\alpha_{ij} \frac{g_{ji}}{RT}\right)}{x_i \exp\left(-\alpha_{ij} \frac{g_{ii}}{RT}\right)}$$
(2.47)

 α adalah parameter variabel. Nilainya berkisar antara 0,1 hingga 0,4 tergantung dari molekul dan molekul dan pelarut dalam sistem (Cullinane, 2004). Penambahan parameter non-random α , memperluas aplikasi model NRTL.

Baik antara model Wilson dan NRTL, keduanya menggunakan persamaan energi Gibbs bebas pencampuran dalam bentuk :

$$\frac{g^M}{RT} = \sum_i x_i \ln \xi_i \tag{2.48}$$

(2.49)

Dimana ξ adalah fraksi volume *i* sekitar pusat molekul. Fraksi volume diturunkan dari distribusi molekuler yang diberikan di atas dan dapat ditulis :

$$\xi_{i} = \frac{x_{i}V_{i}\exp\left(-\frac{g_{ij}}{RT}\right)}{\sum_{j}x_{j}V_{j}\exp\left(-\frac{g_{ij}}{RT}\right)}$$

Dimana V menunjukkan volume molar. Energi dari pencampuran dihubungkan dengan energi Gibbs ekses melalui ekses melalui persamaan:

$$\frac{g^{ex}}{RT} = \frac{g^{M}}{RT} - \sum_{i} x_{i} \ln x_{i}$$
(2.50)

Pengembangan persamaan ini dilakukan oleh Chen et al (1986) mengembangkan persamaan ini untuk larutan multi-komponen dari spesies netral maupun ionik. Pengembangan model ini oleh Chen, menggabungkan tiga sel atau grup yang berbeda dari interaksi ion dan molekul, dengan membuat 2 asumsi untuk gambaran fisik dari interaksi spesies:

- 1. Dua sel termasuk pusat kation, c at au pusat anion, a, dan diasumsikan mengalami saling tolakutnuk ion sejenis. Ini berarti pusat ion dikelilingi oleh molekul dan ion yang berbeda muatan.
- 2. Satu sel terdiri dari sebuah pusat molekul lokal, m, dengan muatan netral, yaitu muatan sekitar pusat molekul sama dengan nol.

Interaksi antar sel dapat didefinisikan sebagai interaksi dua spesies. Energi Gibbs dapat dmodelkan sebagai fungsi dari interaksi model berikut :

$$\tau_{ji,ki} = \frac{G_{ji} - G_{ki}}{RT}$$
(2.51)

Dalam sistem elektrolit, semua komponen dapat dikategorikan dalam tiga tipe :

- a. Spesies molekul (m) : solute dan solvent
- b. Spesies *cationic* (c) : kation
- c. Spesies *anionic* (a) : anion

Sebuah model global dapat disusun sebagai jumlah ineteraksi spesifik spesies pada komposisi rerata larutan. Sehingga energi Gibbs ekses dari *local interaction* dapat diprediksi dari model NRTL sebagai berikut :

$$\frac{G_{lc}^{ex}}{RT} = \sum_{m} \left(X_{m} \frac{\sum_{j} X_{j} G_{jm} \tau_{jm}}{\sum_{k} X_{k} G_{km}} \right) + \sum_{c} X_{c} \left(\sum_{a'} \left(\frac{X_{a'} \sum_{j} G_{jc,a'c} \tau_{jc,a'c}}{\sum_{a''} X_{a''} \sum_{k} X_{k} G_{kc,a'c}} \right) \right) + \sum_{a''} X_{a''} \left(\sum_{c''} \left(\frac{X_{c'} \sum_{j} G_{ja,c'a} \tau_{ja,ca}}{\sum_{c''} X_{c'''} \sum_{k} X_{k} G_{ka,c'a}} \right) \right) \right) + \sum_{c''} \left(\sum_{a'''} \left(\frac{X_{c'} \sum_{j} G_{ja,c'a} \tau_{ja,ca}}{\sum_{c'''} \sum_{k} X_{k} G_{ka,c'a}} \right) \right) \right) + \sum_{c''} \left(\sum_{a'''} \left(\sum_{c'''} \sum_{k} X_{k} G_{ka,c'a} \tau_{ja,ca} \right) \right) \right) \right)$$

$$(2.52)$$

$$X_{j} = C_{j} x_{j}$$
 ; $j = m, c, a$ (2.53)

$$x_j = \frac{n_j}{\sum_j n_j} \tag{2.54}$$

$$G_{ja,c'a} = \exp(-\alpha_{ja,c'a}\tau_{ja,c'a})$$
(2.55)

$$G_{jc,a'c} = \exp(-\alpha_{jc,a'c}\tau_{jc,a'c})$$
(2.56)

$$G_{jm} = \exp(-\alpha_{im}\tau_{im})$$
(2.57)

dimana :

 $X_j = x_j C_j ;$

 $\alpha = \text{parameter nonrandomness}^{(C_j = Z_j \text{ untuk ion-ion dan sama dengan 1 untuk molekul)}}$

T = parameter interaksi biner

Koefisien aktivitas untuk masing-masing komponen dapat dihitung sebagai berikut : programmer and sebagai berikut :

$$\ln \gamma_{m}^{lc} = \frac{\sum_{j} X_{j} G_{jm} \tau_{jm}}{\sum_{k} X_{k} G_{km}} - \sum_{m'} \frac{X_{m'} G_{mm'}}{\sum_{k} X_{k} G_{km'}} \left(\tau_{mm'} - \frac{\sum_{k} X_{k} G_{km'} \tau_{km'}}{\sum_{k} X_{k} G_{km'}} \right)$$
$$+ \sum_{c} \sum_{a} \frac{Y_{a} X_{c} G_{mc,ac}}{\sum_{k} X_{k} G_{kc,ac}} \left(\tau_{mc,ac} - \frac{\sum_{k} X_{k} G_{kc,ac} \tau_{kc,ac}}{\sum_{k} X_{k} G_{kc,ac}} \right)$$
$$+ \sum_{a} \sum_{c} \frac{Y_{c} X_{a} G_{ma,ca}}{\sum_{k} X_{k} G_{ka,ca}} \left(\tau_{ma,ca} - \frac{\sum_{k} X_{k} G_{ka,ca} \tau_{ka,ca}}{\sum_{k} X_{k} G_{ka,ca}} \right)$$
(2.58)

Untuk spesies kation :

$$\frac{1}{z_c} \ln \gamma_c^{lc} = \sum_a Y_a \frac{\sum_k^X k^G kc, ac^{\tau} kc, ac}{\sum_k^X k^G kc, ac} + \sum_m \frac{X_m G_{cm}}{\sum_k^X k^G km} \left(\tau_{cm} - \frac{\sum_k^X k^G km^{\tau} km}{\sum_k^X k^G km} \right) + \sum_a \sum_c \frac{Y_{c'} X_a G_{ca,c'a}}{\sum_k^X k^G ka, c'ac} \left(\tau_{ca,c'a} - \frac{\sum_k^X k^G km, c'a^{\tau} km, c'a}{\sum_k^X k^G km'c'a} \right)$$

$$(2.59)$$

Untuk spesies anion :

$$\frac{1}{z_{a}}\ln\gamma_{a}^{lc} = \sum_{c}Y_{aca}\frac{\sum_{k}^{K}X_{k}G_{ka,ca}\tau_{ka,ca}}{\sum_{k}X_{k}G_{ka,ca}} + \sum_{m}\frac{X_{m}G_{am}}{\sum_{k}X_{k}G_{km}}\left(\tau_{am} - \frac{\sum_{k}X_{k}G_{km}\tau_{km}}{\sum_{k}X_{k}G_{km}}\right)$$
$$+ \sum_{c}\sum_{a'}\frac{Y_{a'}X_{c}G_{ac,a'c}}{\sum_{k}X_{k}G_{kc,a'cc}}\left(\tau_{ac,a'c} - \frac{\sum_{k}X_{k}G_{ka,a'c}\tau_{kc,a'c}}{\sum_{k}X_{k}G_{kc,a'c}}\right)$$
(2.60)

Dari persamaan (2.52)-(2.60) dibutuhkan parameter-parameter sebagai berikut :

Nonrandomness parameter

$$\alpha_{mm'} = \alpha_{m'm'}, \ \alpha_{m,cm} = \alpha_{cm,m}, \ \alpha_{ca,ca'} = \alpha_{ca'ca}, \ \alpha_{ca,c'a}$$
$$= \alpha_{c'a,ca}, \ \alpha_{cm}, \ \alpha_{am}, \ \alpha_{mc,ac}, \ \alpha_{ma,ca}$$

Binary interaction parameter

$$\tau_{mm'}, \tau_{m'm'}, \tau_{m,ca}, \tau_{ca,m}, \tau_{ca,ca'}, \tau_{ca'ca}, \tau_{ca,c'a}, \tau_{c'a,ca}$$

 $\tau_{cm}, \tau_{am}, \tau_{mc,ac}, \tau_{ma,ca}$

Binary interaction parameter dihitung dari model binary parameter yang telah disesuaikan. Dan, dapat dihitung sebagai berikut :

$$\alpha_{cm} = \sum_{a} Y_a \alpha_{m,ca}$$
(2.61)
$$\alpha_{am} = \sum_{c} Y_c \alpha_{m,ca}$$
(2.62)

Jumlah fraksi komposisi muatan anion, Y_a, dan jumlah fraksi komposisi muatan kation, Y_c, dapat dihitung sebagai berikut :

$$Y_{a} = \frac{X_{a}}{\sum_{a'} X_{a'}}$$

$$Y_{c} = \frac{X_{c}}{\sum X_{c'}}$$
(2.63)
(2.64)

Kemudian, G_{cm} dan G_{am} dapat dihitung sebagai berikut :

$$G_{cm} = \sum_{a} Y_a G_{ca,m}$$
(2.65)

$$G_{am} = \sum_{a} Y_c G_{ca,m}$$
(2.66)

Kemudian, au_{cm} dan au_{am} dapat dihitung sebagai berikut :

$$\tau_{cm} = -\frac{\ln(G_{cm})}{\alpha_{cm}}$$

$$\tau_{am} = -\frac{\ln(G_{am})}{\alpha_{am}}$$
(2.68)

Selanjutnya dapat dihitung parameter-parameter yang lain sebagai berikut :

$$\alpha_{mc,ac} = \alpha_{cm}$$
(2.69)

$$\alpha_{ma,ca} = \alpha_{am} \tag{2.70}$$

$$\tau_{ma,ca} = \tau_{am} - \frac{\alpha_{ca,m}}{\alpha_{ma,ca}} (\tau_{ca,m} - \tau_{m,ca})$$
(2.71)

$$\tau_{mc,ac} = \tau_{cm} - \frac{\alpha_{ca,m}}{\alpha_{mc,ac}} (\tau_{ca,m} - \tau_{m,ca})$$
(2.72)

$$G_{mc,ac} = \exp(\alpha_{mc,ac}\tau_{mc,ac}) = \exp(\alpha_{cm}\tau_{mc,ac})$$
(2.73)

$$G_{ma,ca} = \exp(\alpha_{ma,ac}\tau_{ma,ac}) = \exp(\alpha_{am}\tau_{ma,ac})$$
(2.74)

Kondisi acuan kontribusi NRTL dapat dikonversikan ke bentuk asimetri dengan koreksi terhadap koefisien aktivitas pelarutan tak berhingga.

$$g_{NRTL}^{ex'} = \frac{g_{NRTL}^{ex}}{RT} + \left(\sum_{m \neq w} x_m \ln \gamma_m^{\infty} + \sum_c x_c \ln \gamma_c^{\infty} + \sum_a x_a \ln \gamma_a^{\infty}\right) (2.75)$$

(2.76)

$$\ln \gamma_m^\infty = \tau_{wm} + G_{mw} \tau_{mw}$$

$$\ln \gamma_c^{\infty} = Z_c \left(G_{cw} \tau_{cw} + \frac{a'}{\sum_{a''} x_{a''}} \right)$$

$$\ln \gamma_a^{\infty} = Z_a \left(G_{aw} \tau_{aw} + \frac{c'}{\sum_{a''} x_{c''}} \right)$$
(2.77)
$$(2.77)$$

Subskrip w menunjukkan air.

2.6 Parameter Interaksi Pada Model E-NRTL

Ada tiga jenis parameter interaksi biner dalam kotribusi NRTL untuk energi Gibbs ekses yaitu, molekul-molekul, molekul-pasangan ion, pasangan ion-pasangan ion (anion-kation). Parameter interaksi molekul-molekul T dinyatakan dengan persamaan :

$$\tau = A + B/T(K) \tag{2.79}$$

Parameter interaksi untuk molekul-pasangan ion dan pasangan ion-molekul sesuai persamaan berikut :

$$\tau = A + B \left(\frac{1}{T(K)} - \frac{1}{353.15(K)} \right)$$
(2.80)

Nilai faktor non-randomness NRTL adalah 0,2 untuk molekul-molekul, air-pasangan-ion dan pasangan ion-air (Liu, 1999). Sedangkan untuk pasangan amine-ion adalah 0,1. Interaksi antar pasangan ion pada umumnya tidak signifikan dan tidak dimasukkan dalam model ini.

2.7 Metode GRG (Generalized Reduced Gradient) Non Linear

Arora (2012) menjelaskan metode reduced gradient berdasarkan teknik eliminasi variabel sederhana untuk permasalahan dengan constrain berupa persamaan. Metode Generalized Reduced Gradient merupakan perluasan metode *reduced* gradient untuk menangani permasalahan dengan constrain berupa pertidaksamaan nonlinear. Algoritma metode GRG Untuk meminimalkan fungsi f(x), $x=[x_1, x_2,...,x_n]$ dengan constrain $h_k(x)=0$, k=1,2,...K, adalah sebagai berikut:

Tentukan nilai awal x⁰ dan search parameter α^0 , serta error ε dan reduction parameter γ , $0 < \gamma < 1$.

> Bagi x menjadi \hat{x} (basic variable) dan \overline{x} (non-basic variable), dengan ketentuan jumlah non-basic variable merupakan selisih antara jumlah total variabel dengan jumlah persamaan constrain

- Hitung nilai turunan $\nabla f(x^{(t)}) \operatorname{dan} \nabla f(x^{(t)})$
- Hitung nilai $C=[\nabla_1 \overline{h}_k; \nabla_2 \overline{h}_k; \dots; \nabla_k \overline{h}_k]$ dan $\mathbf{J} = [\nabla_1 \hat{h}_k; \nabla_2 \hat{h}_k; ...; \nabla_K \hat{h}_k]$
- Hitung $\nabla \tilde{f}(x^{(t)}) = \nabla \bar{f}(x^{(t)}) \nabla \hat{f}(x^{(t)}) J^{-1}C$
- If $\|\nabla \widetilde{f}(x^{(t)})\| \leq \varepsilon$, berhenti. Jika tidak, tetapkan $\overline{d} = (\nabla \tilde{f})^{\mathrm{T}}, \hat{d} = -J^{-1}C \bar{d}, \text{ dan } d = (\hat{d}, \bar{d})^{\mathrm{T}}$
 - Tetapkan search parameter $\alpha = \alpha^0$

Untuk *i*=1,2,3,...:

1.

2.

3.

4.

5.

6.

7. 8.

- Hitung $v^{(i)} = x^{(t)} + \alpha d$. Jika $|h_t(v^{(i)})| \leq 1$ a. 8.
 - $k=1,2,\ldots,K$. lanjut ke (d). Jika tidak, lanjutkan. $\hat{v}^{(i+1)} = \hat{v}^{(i)} - J^{-1} v^{(i)} h(v^{(i)}) \operatorname{dan} \overline{v}^{(i+1)} = \overline{v}^{(i)}$
- b.

- c. Jika $\|\hat{v}^{(i+1)} \hat{v}^{(i)}\| > \varepsilon$, kembali ke (b). Jika tidak, jika $h_k(v^{(i)}) \le \varepsilon$, k=1,2,...,K, lanjut ke langkah (d), jika tidak, $\alpha = \alpha \gamma$ dan kembali ke langkah (a)
- d. Jika $f(x^{(i)}) \leq f(v^{(i)})$, $\alpha = \alpha \gamma$ dan kembali ke langkah (a). Jika tidak, $x^{(i+1)} = v^{(i)}$ dan kembali ke tahap (2).

(Halaman ini sengaja dikosongkan)

BAB III METODOLOGI PENELITIAN

3.1 Deskripsi Penelitian

Penelitian ini dilakukan untuk mendapatkan data kesetimbangan fasa uap-cair gas CO₂ dalam sistem K₂CO₃-(PZ+DEA)-H₂O pada tekanan atmosfer dan suhu 30°C, 40°C dan 50°C dalam berbagai konsentrasi promotor Piperazine-DEA dan berbagai konsentrasi gas CO₂. Data kesetimbangan fasa uap-cair ini dapat dijadikan sebagai acuan pada perancangan kolom absorpsi untuk proses mereduksi gas CO₂ pada dunia industri dalam menetukan kinetika reaksi dengan *amine* atau memprediksi rate absorpsi gas menggunakan model.

Semua sifat ini tidak selalu dapat diukur secara langsung dengan metode eksperimen karena gas akan terjadi reaksi kimia dengan *solvent*nya. Clarke (1964) dalam penelitiannya mengatakan adanya kemiripan struktur molekul dan parameter interaksi molekular antara CO_2 dan N_2O . Clarke (1964) mengasumsi bahwa rasio solubilitas CO_2 dan N_2O dalam air dan dalam larutan encer dari solven organik mendekati 5% pada temperatur sama, hal ini berarti ratio H_{CO2}/H_{N2O} dalam air dan larutan dengan konsentrasi *amine* yang berbeda dianggap konstan pada temperatur konstan.

Metode penelitian yang akan dilakukan terdiri dari beberapa langkah, yakni langkah pertama melakukan eksperimen dengan menggunakan gas N_2O untuk memperoleh nilai konstanta Henry CO_2 . Langkah kedua, melakukan eksperimen dengan menggunakan gas CO_2 , dan dapat diperoleh nilai tekanan parsial CO_2 . Langkah terakhir melakukan korelasi dengan model E-NRTL.

3.2 Peralatan Percobaan

Peralatan yang digunakan dalam percobaan ini didasarkan pada peralatan yang digunakan dalam eksperimen Haimour and Sandall (1984) yang dimodifikasi. Skema alat dapat dilihat pada gambar 3.1. Prinsip kerja dari metode ini yaitu mengkontakkan volume tertentu suatu *liquid* dengan sejumlah gas pada temperatur dan tekanan konstan. Kesetimbangan bisa dicapai dengan adanya pengadukan hingga waktu tertentu sampai tercatat tidak ada perubahan dalam volume gas. Perubahan pada volume gas menyatakan bahwa ada sejumlah gas yang terlarut dalam *liquid*.

Gambar 3.1 Skema Peralatan Solubilitas CO₂

- Keterangan :
 - A. Gas CO_2
 - B. Saturation Flask
 - C. Absorption Flask
 - D. Injeksi Liquid
 - E. Ke udara luar
 - F. Buret 50 mL
 - G. Waterbath shaker
 - H. Movable barometric leg
 - I. Termometer

3.3 Bahan Percobaan

Bahan-bahan utama yang digunakan dalam percobaan :

- 1. Gas Carbon Dioxide (CO_2) 5, 10, 20 % CO_2
- 2. Gas Nitrogen Oxide (N_2O)
- 3. Potassium Karbonat (K₂CO₃)
- 4. Diethanolamine (DEA)
- 5. Piperazine (PZ)
- 6. Hydrogen Cloride 3 N (HCl)
- 7. Metil Orange (MO)
- 8. Phenolphthaline (PP)

3.4 Variabel Percobaan

Variabel dalam percobaan ini adalah:

- 1. Temperatur : 30, 40, 50°C
- 2. Komposisi larutan PZ-DEA : 5% total campuran
- 3. Konsentrasi gas umpan CO_2 : 5, 10, 20%

3.5 Pelaksanaan Percobaan

3.5.1 Persiapan Percobaan

Larutan *amine* disiapkan terlebih dahulu, yakni melarutkan K_2CO_3 dan Piperazine+DEA dengan aquades dengan kemurnian >99%. Konsentrasi larutan diukur dengan metode titrasi. Densitas larutan *amine* dan komponen-komponen murni ditentukan dengan menggunakan alat piknometer. Temperatur *bath* dikontrol dengan perbedaan ±0,05°C.

3.5.2 Prosedur Penelitian

- 1. Membuat sampel penelitian dengan campuran 30% K₂CO₃ dan 5% PZ-DEA
- 2. Mempersiapkan kondisi peralatan dengan cara mengalirkan gas CO_2 ke dalam rangkaian alat selama ± 5 menit.
- 3. Menutup kedua keran sehingga gas CO₂ berada di dalam *Absorption Flask*

- ≥98 % Sigma-Aldrich
- \geq 99 % MERCK

>99%

- 4. Mengkondisikan *Movable Manometric Leg* hingga level pada manometer air sama.
- 5. Melakukan injeksi larutan sebanyak 20 m L dengan Syringe kedalam Absorption Flask dan mencatat perubahan level pada manometer air.
- 6. Mengaduk sampel dengan shaker pada waterbath.
- 7. Mengukur volume gas setiap 4-5 menit sampai kesetimbangan tercapai. Kesetimbangan dikatakan tercapai ketika level pada manometer air tidak berubah.
- 8. Mengukur konsentrasi larutan dengan metode titrasi.
- 9. Melakukan langkah yang sama untuk ni lai variabel penelitian yang lain.
- 10. Mengkorelasikan hasil penelitian dengan model E-NRTL.

3.5.2 Diagram Alir Metodologi Penelitian

Diagram alir percobaan ini ditampilkan dalam Gambar 3.2 dimana dari hasil eksperimen dengan gas CO₂, dilakukan perhitungan tekanan parsial CO₂ secara eksperimen. Setelah itu, dilakukan *fitting* parameter untuk menentukan tekanan parsial CO₂ dengan menggunakan model E-NRTL, dimana untuk memperoleh parameter yang ditunjukkan pada Gambar 3.3.

Persamaan E-NRTL

3.6 Evaluasi Data

Berdasarkan data hasil percobaan dan data lain dari literatur maka dilakukan perhitungan-perhitungan sebagai berikut:

- Perhitungan konsentrasi kesetimbangan $N_2O(C_{A^*})$
- V gas terabsorb = V sampel $-\Delta V$ gas (3.1)

mol total gas terabsorp ((n) =
$$\frac{PV}{RT}$$
 (3.2)

$$C_{A^*} = \frac{mol \ total \ gas \ terabsorp}{Volume \ liquid}$$
(3.3)

Perhitungan konstanta Henry N2O dalam larutan K2CO3

$$H_A = \frac{p_A}{C_A^*} \tag{3.4}$$

Perhitungan konstanta Henry CO₂ dalam larutan air

$$H_{CO_2,water} (kPa m^3 kmol^{-1}) = (2.8249 x 10^6) \exp(\frac{-2044}{T})$$
 (3.5)

Perhitungan konstanta Henry N₂O dalam larutan air $H_{N_2O,water} (kPa m^3 kmol^{-1}) = (8.5470 x 10^6) \exp(\frac{-2284}{T})$ (3.6)

Perhitungan konstanta Henry CO₂ dalam larutan K₂CO₃

$$\frac{H_{CO_2, a \min e}}{H_{N_2O, a \min e}} = \frac{H_{CO_2, water}}{H_{N_2O, water}}$$
(3.7)

Menghitung parameter Parameter nonrandom

 $\alpha_{mm'} = \alpha_{m'm'}, \ \alpha_{m,cm} = \alpha_{cm,m}, \ \alpha_{ca,ca'} = \alpha_{ca'ca}, \ \alpha_{ca,c'a}$ $= \alpha_{c'a,ca}, \ \alpha_{cm}, \ \alpha_{am}, \ \alpha_{mc,ac}, \ \alpha_{ma,ca}$

Parameter interaksi biner

$$\tau_{mm'}, \tau_{m'm'}, \tau_{m,ca}, \tau_{ca,m}, \tau_{ca,ca'}, \tau_{ca'ca}, \tau_{ca,c'a}, \tau_{ca,c'a}, \tau_{ca,c'a}, \tau_{ca,c'a}, \tau_{c'a,ca}, \tau_{cm}, \tau_{am}, \tau_{mc,ac}, \tau_{ma,ca}, \tau_{a'}, \tau_{a$$

Dengan nilai konstanta A dan B didapatkan dari hasil fitting parameter.

$$\alpha_{mc,ac} = \alpha_{cm}$$
(3.11)

$$\alpha_{ma,ca} = \alpha_{am}$$
(3.12)

$$\alpha_{cm} = \sum_{a} Y_{a} \alpha_{m,ca}$$
(3.13)

$$\alpha_{am} = \sum_{c} Y_{c} \alpha_{m,ca}$$
(3.14)

$$G_{am} = \sum_{c} Y_{c} G_{ca,m}$$
(3.15)

$$G_{cm} = \sum_{a}^{a} Y_{a} G_{ca,m}$$
(3.16)

$$\tau_{cm} = -\frac{\ln(G_{cm})}{\alpha_{cm}}$$
(3.17)

$$am = -\frac{\ln(G_{am})}{\alpha_{am}}$$
(3.18)

τ

$$\tau_{ma,ca} = \tau_{am} - \frac{\alpha_{ca,m}}{\alpha_{ma,ca}} (\tau_{ca,m} - \tau_{m,ca})$$
(3.19)

$$\tau_{mc,ac} = \tau_{cm} - \frac{\alpha_{ca,m}}{\alpha_{mc,ac}} (\tau_{ca,m} - \tau_{m,ca})$$
(3.20)

$$G_{mc,ac} = \exp(\alpha_{mc,ac}\tau_{mc,ac}) = \exp(\alpha_{cm}\tau_{mc,ac})$$
(3.21)

$$G_{ma,ca} = \exp(\alpha_{ma,ac}\tau_{ma,ac}) = \exp(\alpha_{am}\tau_{ma,ac})_{(3.22)}$$

Menghitung nilai estimasi koefisien aktifitas (Y) masingmasing komponen

$$\ln \gamma_m^{lc} = \frac{\sum_j X_j G_{jm} \tau_{jm}}{\sum_k X_k G_{km}} - \sum_{m'} \frac{X_{m'} G_{mm'}}{\sum_k X_k G_{km'}} \left(\tau_{mm'} - \frac{\sum_k X_k G_{km'} \tau_{km'}}{\sum_k X_k G_{km'}} \right)$$
$$+ \sum_c \sum_a \frac{Y_a X_c G_{mc,ac}}{\sum_k X_k G_{kc,ac}} \left(\tau_{mc,ac} - \frac{\sum_k X_k G_{kc,ac} \tau_{kc,ac}}{\sum_k X_k G_{kc,ac}} \right)$$
$$+ \sum_a \sum_c \frac{Y_c X_a G_{ma,ca}}{\sum_k X_k G_{ka,ca}} \left(\tau_{ma,ca} - \frac{\sum_k X_k G_{ka,ca} \tau_{ka,ca}}{\sum_k X_k G_{ka,ca}} \right)$$
(3.23)

$$\frac{1}{z_{c}}\ln\gamma_{c}^{lc} = \sum_{a}Y_{a}\frac{\sum_{k}X_{k}G_{kc,ac}\tau_{kc,ac}}{\sum_{k}X_{k}G_{kc,ac}} + \sum_{m}\frac{X_{m}G_{cm}}{\sum_{k}X_{k}G_{km}}\left(\tau_{cm} - \frac{\sum_{k}X_{k}G_{km}\tau_{km}}{\sum_{k}X_{k}G_{km}}\right) + \sum_{a}\sum_{c'}\frac{Y_{c'}X_{a}G_{ca,c'a}}{\sum_{k}X_{k}G_{ka,c'ac}}\left(\tau_{ca,c'a} - \frac{\sum_{k}X_{k}G_{km,c'a}\tau_{km,c'a}}{\sum_{k}X_{k}G_{km'c'a}}\right)$$
(3.24)

$$\frac{1}{z_{a}}\ln\gamma_{a}^{lc} = \sum_{c}Y_{aca}\frac{\sum_{k}^{K}X_{k}G_{ka,ca}^{\tau}ka,ca}{\sum_{k}X_{k}G_{ka,ca}} + \sum_{m}\frac{X_{m}G_{am}}{\sum_{k}X_{k}G_{km}}\left(\tau_{am} - \frac{\sum_{k}X_{k}G_{km}^{\tau}km}{\sum_{k}X_{k}G_{km}}\right)$$
$$+ \sum_{c}\sum_{a'}\frac{Y_{a'}X_{c}G_{ac,a'c}}{\sum_{k}X_{k}G_{kc,a'cc}}\left(\tau_{ac,a'c} - \frac{\sum_{k}X_{k}G_{ka,a'c}^{\tau}kc,a'c}{\sum_{k}X_{k}G_{kc,a'c}}\right)$$
(3.25)

- Membuat kurva solubilitas pada berbagai suhu, perbandingan hasil eksperimen dengan data hasil estimasi.
- Membuat kurva pengaruh suhu terhadap CO₂ terabsorp pada berbagai konsentrasi umpan gas CO₂.
- Membuat kurva hubungan antara P_{CO2} dengan CO_2 loading dengan membandingan hasil eksperimen dengan hasil estimasi.

BAB IV HASIL DAN PEMBAHASAN

Penelitian ini dilakukan untuk mengetahui pengaruh penambahan campuran Piperazine-DEA terhadap solubilitas CO_2 dalam larutan 30% berat K_2CO_3 untuk berbagai variabel penambahan Piperazine-DEA dengan total 5% berat campuran menggunakan konsentrasi CO_2 umpan yang berbeda dari 5% hingga 20% dalam range suhu 30-50 °C.

Penelitian ini bertujuan untuk mendapatkan data kesetimbangan fasa uap-cair CO_2 dalam larutan K_2CO_3 dengan promotor campuran Piperazine-DEA dalam berbagai konsentrasi *solvent*, konsentrasi CO_2 dan suhu pada tekanan atmosferik. Data penelitian yang didapatkan akan dikorelasikan dengan menggunakan metode E-NRTL sehingga bisa memprediksi kondisi di luar data penelitian.

4.1 Validasi Peralatan Penelitian

Validasi peralatan penelitian dilakukan menggunakan air sebagai pelarut. Validasi ini mengacu pada hasil eksperimen penelitian sebelumnya yaitu Versteeg (1988) dan Lee (2006) yang dilakukan pada suhu 30–50°C. Hasil uji validasi ditunjukkan pada Tabel 4.1 berikut:

H _{N2O} (kPa.m ³ /kmol)	H _{N2O} (kPa.m ³ /kmol)	H _{N2O} (kPa.m ³ /kmol)
(Penelitian ini)	(Versteeg, 1988)	(Lee, 2006)
4352	4568	4450
5889	5811	5504
7261	7282	7184

Tabel 4.1 Hasil Validasi Peralatan Penelitian

Dari Tabel 4.1 tersebut terlihat bahwa harga konstanta Henry hasil validasi telah sesuai dengan harga yang diperoleh dari hasil eksperimen Versteeg (1988) dan Lee (2006). Hal ini menunjukkan bahwa peralatan penelitian telah memadai untuk digunakan dalam melakukan penelitian pengaruh penambahan Piperazine dan DEA terhadap solubilitas karbondioksida dalam larutan potassium karbonat (K_2CO_3).

Gambar 4.1 Hasil Validasi Peralatan Eksperimen

4.2 Hasil Eksperimen dan Pembahasan

a. Solubilitas CO₂ secara Fisik

Data solubilitas gas CO_2 dalam pelarut alkanolamine tidak dapat diukur secara langsung. Oleh karena itu, analogi gas N_2O dipakai untuk mengestimasi solubilitas gas CO_2 dalam pelarut alkanolamine. Dalam penelitian ini, dilakukan dengan variabel konsentrasi awal larutan K_2CO_3 30%, PZ-DEA 0-5%, 1-4%, 2-3%, dan 3-2% menggunakan konsentrasi CO_2 umpan yang berbeda 5%, 10%, dan 20% CO_2 dalam range suhu 30-50 °C. Data solubilitas fisik CO_2 dalam pelarut diperoleh dari persamaan analogi N_2O yang telah dikemukakan oleh Clarke (1964):

$$\frac{{}^{H}CO_{2}, a\min e}{{}^{H}N_{2}O, a\min e} = \frac{{}^{H}CO_{2}, water}{{}^{H}N_{2}O, water}$$
(4.1)

Untuk mendapatkan data solubilitas N_2O dan CO_2 dalam air, dapat digunakan persamaan (2.22) dan (2.23) berdasarkan studi yang dilakukan oleh Versteeg dan Swaaij (1988). Sedangkan untuk data solubilitas N_2O dalam pelarut didapatkan dari hasil penelitian ini, sehingga data-data yang dibutuhkan untuk menghitung data solubilitas CO_2 dalam pelarut dengan persamaan (4.1) telah terpenuhi. Data solubilitas N_2O yang dihasilkan dalam setiap pelarut $K_2CO_3+PZ+DEA-H_2O$ pada konsentrasi ini ditunjukkan pada Gambar 4.2 di bawah ini:

Gambar 4.2 Solubilitas CO₂ pada 30% K₂CO₃ dengan Promotor PZ-DEA

Dari Gambar 4.2 menunjukkan bahwa hubungan antara 1/suhu dan konstanta Henry berbanding terbalik, semakin tinggi harga 1/suhu maka nilai konstanta Henry semakin kecil. Hal ini berarti dengan peningkatan suhu menyebabkan peningkatan harga dari konstanta Henry dan semakin tinggi harga dari konstanta Henry menunjukkan bahwa gas semakin sulit terlarut dalam larutan. Sehingga dengan kata lain meningkatnya nilai 1/suhu menyebabkan kelarutan gas oleh liquid semakin besar dan itu terjadi pada suhu yang lebih rendah, CO₂ lebih banyak terlarut di larutan. Dari grafik diatas menunjukkan bahwa pelarut 3-2% PZ-DEA memiliki nilai konstanta Henry terkecil jika dibandingkan dengan campuran lainnya, Hal ini menunjukkan bahwa daya solubilitas CO₂ secara fisik dengan pelarut 3-2% PZ-DEA lebih baik dan melarutkan gas lebih banyak jika dibandingkan dengan pelarut lainnya.

b. Solubilitas CO₂ secara Kimia

Penelitian ini dilakukan dengan tujuan mengetahui pengaruh penambahan zat aditif atau promotor Piperazine-DEA terhadap solubilitas gas karbon dioksida (CO₂) dalam larutan kalium karbonat (K₂CO₃) pada tekanan atmosferik. Setelah terjadi kesetimbangan dilakukan pengambilan sampel larutan untuk pengukuran densitas larutan dan analisa larutan dengan titrasi. Titrasi dilakukan untuk mengetahui kadar $CO_3^{2^-}$ dan HCO_3^- dalam larutan. Analisa kadar HCO_3^- dalam larutan dilakukan untuk mengetahui jumlah gas CO_2 yang bereaksi dengan larutan K₂CO₃ karena CO_2 yang terabsorp ada yang bereaksi dan terlarut dengan larutan K₂CO₃. Pengukuran densitas dilakukan dengan cara yang sederhana dengan menggunakan piknometer.

Reaksi yang terjadi dalam kesetimbangan larutan:

$$K_2CO_3 + CO_2 + H_2O \leftrightarrow 2 \text{ KHCO}_3$$
 (4.2)

Di dalam larutan, aditif PZ akan meningkatkan jumlah terbentuknya HCO₃-

$$PZ + CO_2 + H_2O \leftrightarrow PZH^+ + HCO_3^-$$
(4.3)

Sehingga akan meningkatkan jumlah CO₂ yang bereaksi.

$$\text{CO}_2 + 2\text{H}_2\text{O} \leftrightarrow \text{H}_3\text{O}^+ + \text{HCO}_3^- \tag{4.4}$$

$$HCO_3^{-} + H_2O \leftrightarrow H_3O^{+} + CO_3^{-2}$$

$$(4.5)$$

Hasil perhitungan besarnya CO_2 yang terabsorb dengan larutan dapat dilihat pada Tabel 4.2 :

		Suhu	CO ₂ Terabsorp (mol)			
PZ	DEA	(°C)	Umpan 5% CO ₂	Umpan 10% CO ₂	Umpan 20% CO ₂	
NY.	S. S.	30	0,0234	0,0252	0,0294	
0	5	40	0,0233	0,0251	0,0292	
	51 17	50	0,0232	0,0250	0,0290	
SE		30	0,0235	0,0253	0,0295	
1	4	40	0,0233	0,0251	0,0293	
		50	0,0232	0,0250	0,0292	
Sh	529	30	0,0235	0,0253	0,0295	
2	3	40	0,0234	0,0252	0,0294	
		50	0,0233	0,0251	0,0293	
D	739	30	0,0238	0,0254	0,0296	
3	2	40	0,0235	0,0253	0,0295	
		50	0,0234	0,0252	0,0294	

Tabel 4.2 Hasil Perhitungan CO₂ Terabsorp

Dari Tabel 4.2, dapat dilihat hasil perhitungan dari jumlah mol CO_2 terabsorp, CO_2 terabsorp merupakan jumlah antara CO_2 bereaksi dan CO_2 terlarut. CO_2 terlarut disini merupakan CO_2 dalam larutan yang tidak bereaksi. Untuk perhitungan jumlah CO_2 terlarut dengan menggunakan rumus konstanta kesetimbangan dari Austgen and Rochelle (1991) yaitu:

$$\ln K_{x} = C_{1} + \frac{C_{2}}{T} + C_{3}T + C_{4}\ln T$$

(4.6)

Hubungan CO_2 yang terabsorp dengan suhu dapat dilihat pada Gambar 4.3 - 4.5:

Gambar 4.5 Pengaruh Suhu terhadap CO₂ Terabsorp dengan Konsentrasi Gas Umpan 20% CO₂

Dari Gambar 4.3-4.5 terlihat bahwa, pada konsentrasi umpan CO_2 dan campuran promotor yang sama, dengan meningkatnya suhu dari 30-50°C maka jumlah mol CO_2 yang terabsorp mengalami penurunan. Hal ini disebabkan K_2CO_3 dengan promotor piperazine adalah larutan yang memiliki panas reaksi yang rendah dan bersifat *eksoterm*, sehingga kenaikan suhu akan menurunkan laju reaksi larutan benfield dengan gas CO_2 Kenaikan suhu berdampak pada penurunan kadar ion $HCO_3^$ dalam larutan.

Di samping itu, pada suhu dan campuran promotor yang sama, jumlah CO₂ terabsorp lebih banyak pada konsentrasi CO₂ umpan yang lebih tinggi. Pada umpan 5% CO₂, terabsorp sebanyak 0,23164-0,23763 mol. CO₂ terabsorp mengalami kenaikan pada umpan 10% CO₂, yaitu 0,24965-0,25444 mol. Pada umpan 20% CO₂, berkisar diantara 0,29047-0,029646 mol CO₂ yang dapat terabsorp, nilai pada umpan 20% CO₂ merupakan yang tertinggi apabila dibandingkan dengan konsentrasi CO₂ umpan yang lainnya.

Selain itu, dapat dilihat pula bahwa promotor 3-2% PZ-DEA memiliki nilai CO₂ terabsorp tertinggi pada tiap konsentrasi umpan. Hal ini disebabkan oleh PZ yang dapat bereaksi lebih cepat dengan CO₂ dibandingkan amine lainnya. PZ adalah diamine, sehingga dapat mengabsorb 2 mol CO₂ per mol amine berdasarkan Cullinane (2005). Dari hasil yang didapatkan, terdapat beberapa data yang memiliki nilai CO2 terabsorb berhimpit. Hal ini terjadi dikarenakan adanya pembulatan pada nilai CO₂ terabsorb yang sebenarnya nilai tersebut tidak persis sama, dimana nilai tersebut merupakan penjumlahan dari CO₂ terlarut dan CO₂ bereaksi. Nilai CO₂ terabsorb yang hampir sama dikarenakan adanya penambahan konsentrasi PZ yang ini seiringan dengan pengurangan konsentrasi DEA atau sebaliknya pada tiap variabel. Hal yang serupa terjadi pada penelitian Zulfetra dan Nuharani (2014).

Dari harga CO_2 terabsorp dalam larutan akan dapat diperoleh nilai CO_2 loading. CO_2 loading merupakan rasio antara jumlah total mol CO_2 yang mampu diabsorp terhadap total mol K^+ dan mol *amine* yang terkandung dalam larutan.

4.3 Korelasi dengan Model E-NRTL

Untuk melakukan perhitungan korelasi tekanan kesetimbangan dengan menggunakan data fraksi mol komponen pada kondisi kesetimbangan dari eksperimen, dihitung dengan model E-NRTL. Model E-NRTL ini telah cukup baik untuk memprediksi kelakuan larutan elektrolit lemah hingga elektrolit kuat. Selain itu, berdasarkan Chen dan Song (2004) menyatakan bahwa model E-NRTL (Electrolyte Non Random Two Liquid) telah diaplikasikan secara luas untuk menunjukkan sifat-sifat thermodinamika dari berbagai macam sistem elektrolit. Misalnya, model ini dapat digunakan untuk menghitung koefisien aktivitas komponen-komponen larutan elektrolit. Untuk mendapatkan parameter biner yang digunakan dalam perhitungan koefisien aktivitas CO₂ dengan model E-NRTL, maka dilakukan *fitting* Average Absolute Relative Deviation (AARD) antara (P_{CO_2})yang

didapatkan dari eksperimen dengan (P_{CO_2}) hasil perhitungan korelasi menggunakan *solver tool* pada *Microsoft Excel* dengan metode GRG (Generalized Reduced Gradient) Non Linear.

Dari metode *fitting* yang telah dilakukan, kemudian digunakan untuk menghitung tekanan parsial CO₂ hasil korelasi (P_{CO_2}) dapat ditabelkan hasilnya dalam Tabel 4.3 sampai 4.6 yang merupakan perbandingan antara P_{CO_2} hasil eksperimen dan hasil korelasi untuk metode *fitting* dapat dilihat pada berikut:

Konsentrasi Gas CO ₂	Suhu	P CO ₂ Experiment	P CO ₂ Korelasi	Error P CO ₂
Umpan	(°C)	(Pa)	(Pa)	(%)
	30	579,40	539,64	6, <mark>86%</mark>
5%	40	668,33	671,16	0,42%
	50	827,07	827,12	0,01%
	- 30	721,74	718,14	0,50%
10%	40	830,49	856,87	3,18%
	50	1016,75	993,49	2,29%
(TT)) (T7"(T	30	1060,96	1060,96	0, <mark>00%</mark>
20%	40	1208,06	1259,55	4,26%
	50	1477,89	1462,30	1,05%

Tabel 4.3 Hasil Perhitungan Tekanan Parsial CO₂ untuk 0-5% PZ-

				~ ~
Konsentrasi	Suhu	P CO ₂	P CO ₂	Error
Gas CO ₂		Experiment	Korelasi	P CO ₂
Umpan	(°C)	(Pa)	(Pa)	(%)
	30	567,24	546,25	3,70%
5%	40	623,61	590,09	5,38%
	50	787,64	788,29	0,08%
	30	704,85	703,48	0,19%
10%	40	774,04	773,42	0,08%
	50	961,19	975,25	1,46%
20%	30	1032,64	1029,05	0,35%
	40	1133,73	1130,04	0,33%
	50	1406,95	1382,82	1,72%

Tabel 4.4 Hasil Perhitungan Tekanan Parsial CO₂ untuk 1-4% PZ-DEA

Tabel 4.5 Hasil Perhitungan Tekanan Parsial CO₂ untuk 2-3% PZ-DEA

Konsentrasi Gas CO ₂	Suhu	P CO ₂ Experiment	P CO ₂ Korelasi	Error P CO ₂
Umpan	(°C)	(Pa)	(Pa)	(%)
Ser 1	30	538,26	549,84	2,15%
5%	40	618,04	591,92	4,23%
	50	772,34	762,77	1,24%
10%	30	667,27	685,84	2,78%
	40	768,16	773,67	0,72%
	50	919,98	928,96	0,98%
20%	30	974,94	997, <mark>00</mark>	2,26%
	40	1122,15	1149,22	2,41%
	50	1342,21	1342,22	0,00%

Konsentrasi Gas CO ₂	Suhu	P CO ₂ Experiment	P CO ₂ Korelasi	Error P CO ₂
Umpan	(°C)	(Pa)	(Pa)	(%)
	30	517,51	517,34	0,03%
5%	40	557,54	557,83	0,05%
	50	700,08	687,11	1, <mark>85%</mark>
	30	637,07	634,49	0,41%
10%	40	688,10	688,46	0,05%
	50	822,08	804,07	2, <mark>19%</mark>
	30	927,01	927,00	0,00%
20%	40	1000,26	1000,36	0,01%
to be and	50	11 <mark>93,54</mark>	11 <mark>49,97</mark>	3,65%

Tabel 4.6 Hasil Perhitungan Tekanan Parsial CO₂ untuk 3-2% PZ DEA

Dari Tabel 4.3 sampai 4.6 dapat terlihat bahwa, pada konsentrasi CO_2 umpan dan promotor yang sama, suhu berbanding lurus dengan tekanan parsial CO_2 . Meningkatnya suhu akan menaikkan tekanan parsial CO_2 didalam larutan. Dapat dilihat juga bahwa pada hasil korelasi untuk setiap tekanan parsial gas CO_2 meningkat seiring dengan kenaikan suhu.

Selain itu, dari Tabel 4.3 sampai 4.6 dapat dilihat juga pada suhu dan campuran promotor yang sama, tekanan parsial CO_2 semakin tinggi pada konsentrasi gas umpan CO_2 yang lebih tinggi.

Untuk hubungan antara tekanan parsial CO_2 (P_{CO_2}) baik eksperimen maupun korelasi dari setiap campuran larutan terhadap CO_2 *loading* seperti yang ditunjukkan pada Gambar 4.6 -4.9:

Gambar 4.7 Hubungan Tekanan Parsial CO₂ (P_{CO_2}) Eksperimen dan Korelasi dengan CO₂ Loading Promotor 1-4% PZ-DEA

Dari Gambar 4.6 s ampai 4.9 da pat dilihat untuk hasil eksperimen maupun hasil korelasi menunjukkan bahwa, pada konsentrasi CO₂ umpan dan promotor yang sama, semakin besar gas CO₂ loading maka tekanan parsial juga semakin besar. Hal ini disebabkan karena terjadinya kenaikkan konsentrasi CO₂ didalam larutan yang pada dasarnya selalu berkesetimbangan dengan konsentrasi CO₂ didalam fase gas (Kurniati, Y. dan Panca S.U, 2013). Pada konsentrasi CO₂ umpan dan promotor yang sama pula, suhu berbanding lurus dengan tekanan parsial CO₂. Meningkatnya suhu akan menaikkan tekanan parsial CO₂ didalam larutan. Dapat dilihat juga bahwa pada hasil korelasi untuk setiap tekanan parsial gas CO₂ meningkat seiring dengan kenaikkan suhu. Dari Gambar 4.6 sampai 4.9 juga dapat dilihat bahwa, pada suhu dan campuran promotor yang sama, jumlah CO₂ *loading* lebih banyak pada konsentrasi CO₂ umpan yang lebih tinggi.

Penelitian ini dapat dibandingkan dengan penelitian Harimurti (2011) yang menggunakan 30% K₂CO₃ tanpa promotor pada suhu dan konsentrasi CO₂ umpan yang sama. Dalam penelitian Harimurti (2011) didapatkan CO₂ *loading* sebesar 0,027 (mol CO₂ / mol K⁺). Apabila dibandingkan dengan penelitian ini pada suhu dan konsentrasi CO₂ umpan yang sama, nilai yang CO₂ *loading* didapatkan bernilai 0,1386 hingga 0,1536 (mol CO₂ / mol K⁺ + mol PZ + mol DEA). Sehingga dapat disimpulkan bahwa penambahan promotor PZ-DEA dapat menaikkan CO₂ *loading* secara signifikan sebesar 413-468% dari nilai sebelumnya.

Hilliard (2008) melakukan penelitian menggunakan sistem CO₂-K₂CO₃-PZ-H₂O dengan suhu dan konsentrasi promotor PZ yang berbeda dengan penelitian ini, namun tren yang dihasilkan sama. Pada penelitian Hilliard (2008) menghasilkan nilai *Average Absolute Relative Deviation (AARD)* sebesar 15,48%, sedangkan pada penelitian ini model E-NRTL memberikan hasil yang lebih baik pada sistem CO₂-K₂CO₃-(PZ+DEA)-H₂O dengan *Average Absolute Relative Deviation (AARD)* 3,38% untuk *fitting* pada tiap variasi komposisi gas umpan.

DAFTAR PUSTAKA

- Al-Rashed, O. A., S. H. Ali. Modeling the solubility of CO₂ and H₂S in DEA–MDEA alkanolamine solutions using the electrolyte–UNIQUAC model. *Sep Purif Technol.* 2012, 94, 71–8.
- Altway, S. dan K. D. Marhetha. Prediksi Solubilitas Gas CO₂ di Dalam Larutan Potasium Karbonat dan MDEA Menggunakan Model Elektrolit UNIQUAC. Skripsi Jurusan Teknik Kimia Institut Teknologi Sepuluh Nopember. 2010.
- Altway. S, Kuswandi, dan A.Altway. Prediction of Gas-Liquid Equilibria of CO₂-K₂CO₃-MDEA-H₂O System by Electrolyte UNIQUAC Model. *IPTEK Journal of Engineering.* **2014**, *1*, 1.
- Arora, J. S. Introduction to Optimum Design 3rd edition. Academic Press. USA. **2012**. 567-569.
- Austgen, D.M., G.T. Rochelle, X. Peng, dan C.C. Chen. Model of Vapor-Liquid Equilibria for Aqueous Acid Gas-Alkanolamine Systems Using the Electrolyte-NRTL Equation. Ind. Eng. Chem. Res. **1989**, 28, 1060-1073.
- Austgen, D.M., G.T. Rochelle, X. Peng, dan C.C. Chen. Model of Vapor-Liquid Equilibria for Aqueous Acid Gas-Alkanolamine Systems. 2. Representation of H₂S and CO₂ Solubility in Aqueous MDEA and CO₂ Solubility in Aqueous Mixtures of MDEA with MEA or DEA. *Ind. Eng. Chem. Res.* **1991**, *30*, 543-555.

- Chen, C.C., Song, Y. Solubility Modeling with Nonrandom Two-Liquid Segment Activity Coefficient Model. *Ind. Eng. Chem. Res.* 2004, 43, 8354.
- Clarke, J. K. A. Kinetics of Absorption of Carbon Dioxide In Monoethanolamine Solutions tt Short Contact Times. *Ind. Eng. Chem. Fundamental.* **1964**, *3*.
- Cullinane, J. Tim, G.T. Rochelle. Carbon dioxide Absorption with Aqueous Potassium Carbonate Promoted by Piperazine. *Chem Eng Sci.* **2004**, *59*, 3619-3630
- Dudley, Bob. BP Statistical Review of World Energy June 2014. BP. London. 2014
- Dang, H. dan G.T. Rochelle. CO2 Absorption Rate and Solubility in Monoethanolamine / Piperazine / Water. Journal, Department of Chemical Engineering, University of Texas at Austin. 2001.
- Haimour, N., O.C. Sandall. Absorption of Carbon Dioxide Into Aqueous Methyldiethanolamine. *Chem. Eng. Science*. **1984**, *39*.
- Hilliard, M.D. A Predictive Thermodynamic Model or an Aqueous Blend of Pottasium Carbonate, Piperazine, and Monoethanolamine for Carbon Dioxide Capture from Flue Gas. Dissertation, Department of Chemical Engineering, The University of Texas at Austin. 2008.
- Kuswandi, K. Anam, dan Y.P. Laksana. Solubilitas Gas CO2 dalam Larutan Potassium Karbonat. *Jurnal Teknik Kimia, Universitas Pembangunan Nasional*. **2008**.
- Kurniati, Y., A.Altway, Kuswandi. Eksperimental Penentuan Kesetimbangan Uap-Cair dalam Sistem Larutan Elektrolit

CO₂-K₂CO₃-MDEA+DEA-H₂O. *Prosiding Seminar Nasional Teknik Kimia "Kejuangan"*. **2014**.

- Lee, Seungmoon; Song, Ho-Jun; Maken, Sanjeev; Park, Jong-Jin; Park, Won-Jin. Physical Solubilities and Diffusivity of N₂O and CO₂ in Aqueous Solutions of Sodium Glycinate. *J Chem Eng Data*. **2006**, *51*, 504-509.
- Liu, Y., L. Zhang, S. Watanasiri. Representing Vapor-Liquid Equilibrium for an Aqueous MEA-CO₂. *Ind. Eng. Chem.* **1999**, 38.
- Ma, Xiaoguang. Inna Kim. Ralf Beck. Hanna Knuutila dan Jens Petter Andreassen. Precipitation of Piperazine in The Piperazine-H2O-CO2 System. *Journal, Department of Chemical Engineering, NTNU, Norway.* 2010.
- Renon, H. Prausnitz, J.M. Local Compositions in Thermodynamic Excess Functions for Liquid Mixtures. *AIChE J.* **1968**, 14, 135-144

Suprapto, Y. The World of Energy Volume I. PT Badak NGL. Samarinda. 2007

Suprapto, Y. The World of Energy Volume IV. PT Badak NGL. Samarinda. 2007

Thee, H., Y. A. Suryaputradinata, K. A. Mumford, K. H. Smith, G.D. Silva, S.E. Kentish, G. W. Stevens. A kinetic and process modeling study of CO₂ capture with MEApromoted potassium carbonate solutions. *Chem Eng J.* 2012, 210, 271-279.

- Versteeg, G. F., van Swaaij, W. P. M., Solubility and Diffusivity of Acid Gases (CO₂, N₂O) in Aqueous Alkanolamine Solutions. *J Chem Eng Data*. **1988**, *33*, 29-34.
- Winarno, H., G. Wibawa, dan Kuswandi. Eksperimental dan Estimasi Kesetimbangan Fase Uap-Cair Sistem Larutan Elektrolit CO₂-K₂CO₃-Diethanolamine-H₂O. Jurnal Teknik Industri, Institut Teknologi Sepuluh Nopember. 2008.
- Zhang Y., H. Que, C.C. Chen. Thermodynamic modeling for CO₂ absorption in aqueous MEA solution with electrolyte NRTL model. *Fluid Phase Equilib.* **2011**, *311*, 67-75.
- Zulfetra, I. dan F. Nuharani. Eksperimen dan Estimasi Kesetimbangan Fasa Uap-Cair Sistem Larutan Elektrolit CO₂-K₂CO₃-(MDEA+DEA) dan CO₂-K₂CO₃-(Piperazine+DEA). Skripsi Jurusan Teknik Kimia Institut Teknologi Sepuluh Nopember. **2014**.

(http://www.owlnet.rice.edu/~ceng403/co2abs.html), tanggal akses 21 Maret 2015

BAB V KESIMPULAN

5.1 Kesimpulan

Dari hasil eksperimen diperoleh harga konstanta Henry untuk absorpsi gas CO₂ dalam larutan K₂CO₃ 30% dengan campuran PZ-DEA sebesar 3179,23-4410,41 promotor kPa.m³/kmol dengan cara analogi gas N₂O. Nilai konstanta Henry yang diperoleh meningkat seiring dengan kenaikan suhu pada range 30-50°C. Pada konsentrasi CO₂ umpan dan promotor yang sama, kenaikan suhu operasi dapat menaikkan tekanan parsial gas CO₂ dalam larutan K₂CO₃ 30% dengan promotor PZ-DEA yakni sebesar 517,34-1462,30 Pa. Meningkatnya konsentrasi CO₂ dalam gas umpan dapat meningkatkan besarnya CO₂ loading rata-rata sebesar 11,81% untuk 10% CO₂ umpan dan 36,43% untuk 20% CO₂ umpan. Penggunaan model E-NRTL memberikan hasil dengan Average Absolute Relative Deviation (AARD) sebesar 3.38%.

<mark>(H</mark>alaman i<mark>ni se</mark>ngaja d<mark>ikos</mark>ongkan)

APENDIKS

A.1 Perhitungan Eksperimen

1.

Eksperimen ini dilakukan dengan variabel sebagai berikut:

Untuk Sistem K ₂ CO	3-(PZ+DEA) :
Suhu (T)	$= 30 ^{\circ}\text{C}, 40 ^{\circ}\text{C}, \text{dan } 50 ^{\circ}\text{C}$
Kadar K ₂ CO ₃	= 30% massa
Kadar PZ+DEA	= 5% massa

Berikut contoh perhitungan dan penabelan hasil perhitungan:

a. Sebagai contoh perhitungan, diambil suhu 40 °C dengan variabel larutan 30% massa K_2CO_3 dan 1% massa PZ dan 4% massa DEA. Contoh perhitungan sebagai berikut:

a tiap komponen:
n _{larutan awal})= 150 g larutan
sisi larutan sebagai berikut:
= 30%
= 1%
=4%
$= 100\% - (\% \text{ massa } \text{K}_2\text{CO}_3 + \% \text{ massa})$
PZ + % massa DEA)
= 100% - (30% + 1% + 4%)
= 100% - 35% = 65%

Massa tiap-tiap larutan dapat dihitung dengan rumus berikut: Massa = % massa x m_{larutan awal} Contoh perhitungan massa K_2CO_3 sebagai berikut: m $K_2CO_3 = \%$ massa K_2CO_3 x m_{larutan awal}

Perhitungan massa PZ, massa DEA dan massa H₂O dapat dilihat pada Tabel A.1 berikut:

Tabel A.1 Perhitungan Massa Tiap Komponen Untuk 1% Massa PZ dan 4% Massa DEA

Senyawa	Komposisi (% Massa)	Massa (gram)	n (mol)	Fraksi
K ₂ CO ₃	30	45	0,324	0,05571
PZ		1,5	0,018	0,00309
DEA	4	6	0,057	0,00981
H ₂ O	65	97,5	5,417	0,93139
Total	100	150	5,816	1

Menghitung adanya N2O terabsorb

Untuk menghitung mol N_2O terabsorb, dapat digunakan rumus sebagai berikut:

 $P = 1,01325 \times 10^{5} Pa$ T = 40 °C = 313,15 KVolume sampel : 20 mL = 2 x 10⁻⁵ m³ ΔV gas = 10,3 mL = 10,3 x 10⁻⁶ m³ Volume gas yang terabsorb = Volume sampel – ΔV gas $= 2 \times 10^{-5} - 12 \times 10^{-6}$

 $= 0,0000097 \text{ m}^3$

Perhitungan konsentrasi kesetimbangan N₂O (C_A*)

 $mol total gas terabsorp(n) = \frac{PV}{RT}$

8.3<mark>14 x</mark> 313,15

=0,0003775mol

Hasil Perhitungan untuk mol N2O terabsorb ditunjukkan pada Tabel A.2.dan %DEA pada Tabel A.2.

%PZ	%DEA	Suhu (°C)	N ₂ O Terabsorb (mol)
		30	0,0004261
0	5	40	0,0003580
es ses		50	0,0002829
		30	0,0004382
1	4	40	0,0003775
		50	0,0002942
		30	0,0004382
2	3	3 40 0	
		50	0,0003017
		30	0,0004462
3	2	40	0,0004048
		50	0,0003243

Menghitung Konstanta Henry N2O Dalam Solvent

Mol total yang terabsorp (n) = 3,775.10⁻⁷ kmol

$$C_{A^*} = \frac{mol total gas terlarut}{Volume liquid}$$

$$= \frac{3,775.10^{-7}}{20}$$

$$= 0,019 \frac{kmol}{m^3}$$
Perhitungan konstanta Henry N₂O dal K₂CO₃+PZ+DEA

 $P_{H_20}^{\nu} / bar = \frac{1.33567 \times 10^6 \exp(-5243/T(K))}{100}$ =7.24547kPa

dalam

larutan

61

$$P_{N_{2}O} = P_{total} - x_{H_{2}O} \cdot P^{v}_{H_{2}O} - x_{K_{2}CO_{3}} - x_{solvent} \cdot P_{a\min e}$$

$$= 1,01325x10^{5} - (0,93139)(7.24547) - 0 - 0$$

$$= 94,5758kPa$$

$$H_{A} = \frac{P_{A}}{C_{A}^{*}}$$

$$= \frac{94,5758}{0,019}$$

$$= 5010,5359 \frac{kPa.m^{3}}{kmol}$$

Menghitung Konstanta Henry CO₂ Dalam Solvent (analogi N₂O)

Perhitungan konstanta Henry CO₂ dalam air

$$H_{CO_2,water}$$
 (kPa m³ kmol⁻¹) = (2.8249 x 10⁶) exp($\frac{-2044}{T}$)

Perhitungan konstanta Henry N₂O dalam air

$$H_{N_20,water}$$
 (kPa m³ kmol⁻¹) = (8.5470 x 10⁶) exp($\frac{-2284}{T}$)

Perhitungan konstanta Henry CO₂ dalam larutan K₂CO₃+PZ+DEA dengan menggunakan rumus analogi N₂O

 $\frac{H_{CO_2,a\min e}}{H_{N_2O,a\min e}} = \frac{H_{CO_2,water}}{H_{N_2O,waer}}$

62

			0/	DEA	
	%PZ %]	0/DEA	Suhu	H N ₂ O	H CO ₂
NA		70DEA	(°C)	(kPa.m ³ /kmol)	(kPa.m ³ /kmol)
	0 5		30	4 <mark>573,</mark> 0194	3328,9821
		5	40	5282,6447	3749,5594
AL.		Pho 1	50	6362,8356	4410,4154
when			30	4 <mark>530,</mark> 3781	3297,9409
		4	40	5010,5359	3556,4198
			50	6118,5258	4241,0714
	2		30	4447,3473	3237,4976
		3	40	4909,5013	3484,70 <mark>66</mark>
			50	5 <mark>965,</mark> 9664	4135,3245
	3 2		30	4367,3084	3179,2324
		2	40	4673,6467	3317,2997
TT			50	5 <mark>550,</mark> 1114	3847,0736

Hasil Perhitungan untuk Konstanta Henry (H) tercantum pada Tabel A.3

Tabel A.3 Perhitungan Mol H_{N20} dan H_{C02} Untuk %PZ dan

b. Berikut perhitungan menggunakan gas CO₂
 Sebagai contoh perhitungan, diambil variabel gas 5% mol
 CO₂ dengan variabel larutan 30% massa K₂CO₃ dan 1% massa PZ dan 4% massa DEA. Contoh perhitungan sebagai berikut:

Perhitungan volume larutan awal:

Untuk menghitung volume larutan, sebelumnya harus diketahui terlebih dahulu massa dan densitas larutan dan didapatkan data sebagai berikut :

massa piknometer kosong	= 13,378 g
massa piknometer + aquades	r = 23,4248 g
massa aquades	=(13,5279 - 13,1756) g
	= 10,0467 g

= 1 g/mL

dengan massa jenis aquades

volume piknometer	= (10,0467 g)/(1 g/mL)
-	= 10,0467 mL
massa piknometer + larutan	= 26,1747 g
massa larutan	= (26,1747 - 13,378) g
	= 12,7969 g
densitas larutan awal	= (12,7969 g) / (10,0467)
	- 1 2727 a/m

volume larutan awal

= 1,2737 g/mL = (150 g)/(1,2737 g/mL)

= 117,7663 mL

Untuk analisa komposisi karbonat dan bikarbonat mulamula, diambil 10 ml larutan.

Analisa Awal Larutan:

a. Menganalisa Adanya Bikarbonat (HCO₃⁻) Mula-Mula Untuk menganalisa adanya bikarbonat (HCO₃⁻) mulamula, dilakukan titrasi dengan menggunakan titran HCl. Titrasi 1

Volume sampel larutan Molaritas HCl (M_{HCl}) = 5 mL = 3 M Dibutuhkan larutan HCl sebesar: Volume HCl (V_{HCl}) = 5 mL Dari hasil titrasi tersebut dapat dihitung mol karbonat (CO_3^2) mula-mula dalam 10 ml sampel larutan sebagai berikut: Mol $CO_3^{2^-}$ mula-mula = $M_{HCl} \times V_{HCl}$

 $= 3 \text{ M} \times 5 \text{ mL}$ = 15 mmol

Sehingga dapat dihitung mol karbonat (CO_3^{2-}) mula-mula dalam 20 mL larutan sebagai berikut:

```
mol CO_3^{2-} mula - mula = \frac{15 \text{ mmol x } 20 \text{ mL}}{1000 \text{ mL}}
```

5 mL= 60 mmol = 0,060 mol

Titrasi 2:

Volume sampel larutan= 5 mLMolaritas HCl (M_{HCl})= 3,015 MDibutuhkan larutan HCl sebesar:Volume HCl (V_{HCl})= 9 mL

Dari hasil titrasi tersebut dapat dihitung mol bikarbonat (HCO₃⁻) mula-mula dalam 10 ml sampel larutan sebagai berikut:

Mol HCO₃⁻ mula-mula = $(M_{HCI} \times V_{HCI}) - Mol CO_3^{2-}$ mula-mula = $(3 M \times 9 mL) - 60 mmol$

Sehingga dapat dihitung mol bikarbonat (HCO₃⁻) dalam 20 ml larutan sebagai berikut:

 $mol HCO_3 mula - mula = \frac{12 mmol x 20 mL}{12 mmol x 20 mL}$

5mL

= 48 mmol= 0,048 mol

 Menghitung Adanya CO₂ Terlarut Mula-Mula Untuk menghitung mol CO₂ terlarut mula-mula, dapat digunakan rumus konstanta kesetimbangan dari reaksireaksi berikut:

Reaksi 1: $CO_2 + 2H_2O \rightleftharpoons H_3O^+ + HCO_3^- K_1$ Reaksi 2: $HCO_3^- + H_2O \rightleftharpoons H_3O^+ + CO_3^{2-} K_2$ Konstanta kesetimbangan masing-masing reaksi dapat dihitung dengan menggunakan persamaan berikut:

$$\ln K_{x} = C_{1} + \frac{C_{2}}{T} + C_{3}T + C_{4}\ln T$$

(Austgen dan Rochelle tahun 1991)

Konstanta C pada persamaan tersebut juga diperoleh dari Jurnal Autsgen dan Rocelle tahun 1991, seperti pada Tabel A.4 berikut:

Tabel A.4 Nilai Konstanta C pada Persamaan Kesetimbangan

Keterangan	C ₁	C ₂	C ₃	C ₄
Reaksi 1	231,465	-12.092,1	-36,7816	0
Reaksi 2	216,049	-12.431,7	-35,4819	0

Sehingga dapat dilakukan perhitungan konstanta kesetimbangan pada masing-masing reaksi kesetimbangan tersebut sebagai berikut : Dengan T sistem = 40 °C

 $= (40 \,^{\circ}\text{C} + 273.15) \,\text{K}$

Perhitungan konstanta kesetimbangan reaksi 1:

$$\ln K_1 = 231,465 + \frac{-12.092,1}{313,15} + (-36,7816 \ln 313,15) + (0 \times 313,15)$$

= -18.,52 $K_1 = 9,04 \cdot 10^{-9}$ Perhitungan konstanta kesetimbangan reaksi 2:

$$\ln K_2 = 216,049 + \frac{-12.431,7}{305,15} + (-35,4819 \ln 305,15) + (0 \times 305,15)$$
$$= -27.55$$

 $K_2 = 1,081 \cdot 10^{-12}$

Hasil perhitungan konstanta kesetimbangan untuk kedua reaksi tersebut dapat dilihat pada Tabel A.5 berikut:

Tabel A.5 Hasil Perhitungan Konstanta Kesetimbangan Pada Analisa Awal Untuk 5% Mol CO₂ pada suhu 40°C

Keterangan	K _x
Reaksi 1	9,04 . 10 ⁻⁹
Reaksi 2	1,081 . 10 ⁻¹²

Perhitungan CO_2 terlarut dapat dihitung dengan persamaan berikut:

$$[CO_2 \text{ terlarut}] = \frac{K_2 [\text{HCO}_3^-]^2}{K_1 [\text{CO}_3^{2-}]}$$

dengan:

$$\left[\text{HCO}_{3}^{-}\right] = \frac{\text{mol HCO}_{3}^{-}}{\text{V}_{\text{larutan}}}$$
$$= \frac{0,048 \text{ mo}}{20 \text{ ml}}$$
$$= 2,4 \text{ mol/ml}$$

$$\begin{bmatrix} \text{CO}_3^{2-} \end{bmatrix} = \frac{\text{mor} \text{CO}_3}{\text{V}_{\text{larutan}}}$$
$$= \frac{0,06 \text{ mol}}{20 \text{ ml}}$$
$$= 0,003$$

maka:

$$\begin{bmatrix} CO_2 \text{ terlarut} \end{bmatrix} = \frac{K_2 \begin{bmatrix} \text{HCO}_3^- \end{bmatrix}^2}{K_1 \begin{bmatrix} \text{CO}_2^{-2} \end{bmatrix}}$$
$$= \frac{1,081.10^{-12} \text{ x } 0,00241^2}{9,04.10^{-9} \text{ x } 0,0030}$$
$$= 0,000 \text{ mol/ml}$$
$$CO_2 \text{ terlarut mula-mula} = \begin{bmatrix} \text{CO}_2 \text{ terlarut} \end{bmatrix} \text{ x } \text{V}_{\text{larutar}}$$
$$= 0 \text{ mol/mL } \text{ x } 20 \text{ mL}$$
$$= 0 \text{ mol}$$

Analisa Akhir Larutan:

a. Menganalisa Jumlah Bikarbonat (HCO₃⁻) Akhir Untuk menganalisa jumlah bikarbonat (HCO₃) akhir, dilakukan titrasi dengan menggunakan titran HCl. Titrasi 1: Volume sampel larutan = 5 mLMolaritas HCl (M_{HCl}) = 3 MDibutuhkan larutan HCl sebesar: Volume HCl (V_{HCl}) $= 6.16 \, \text{mL}$ Dari hasil titrasi tersebut dapat dihitung mol karbonat (CO_3^{2-}) akhir dalam 5 ml sampel larutan sebagai berikut: Mol CO_3^{2-} akhir $= M_{HCI} \times V_{HCI}$ $= 3 M \times 6.16 mL$ = 18.48 mmolSehingga dapat dihitung mol karbonat (CO₃²⁻) akhir dalam 20 ml larutan sebagai berikut:

mol CO₃²⁻ akhir = $\frac{18,48 \text{ mmol x 20 ml}}{5 \text{ ml}}$ = 73,92 mmol = 0,07392 mol

Titrasi 2:

Volume sampel larutan = 5 mL Molaritas HCl (M_{HCl}) = 3 M Dibutuhkan larutan HCl sebesar: Volume HCl (V_{HCl}) = 10,04 mL Dari hasil titrasi tersebut dapat dihitung mol bikarbonat (HCO₃⁻) akhir dalam 5 ml sampel larutan sebagai berikut:

Mol HCO₃⁻ akhir = $(M_{HCl} \times V_{HCl}) - Mol CO_3^{2-}$ akhir = $(3 M \times 10,04 ml) -15,075 mmol$ = 11,64 mmol Sehingga dapat dihitung mol bikarbonat (HCO₃⁻) dalam 20 ml larutan sebagai berikut :

mol HCO; akhir =
$$\frac{11,64 \text{ mmol x } 20 \text{ ml}}{1000 \text{ ml}}$$

46,56

mmol = 0,04656 mol

b. Menghitung adanya CO₂ terlarut akhir

Untuk menghitung mol CO₂ terlarut akhir, dapat digunakan rumus konstanta kesetimbangan dari reaksi-reaksi berikut:

Reaksi 1:

 $\begin{array}{c} \textbf{CO}_2 + 2\textbf{H}_2\textbf{O} \\ \textbf{Reaksi 2:} \\ \textbf{HCO}_3^- + \textbf{H}_2\textbf{O} \end{array} \qquad \overleftarrow{\textbf{Z}} \qquad \textbf{H}_3\textbf{O}^+ + \textbf{HCO}_3^{--} \textbf{K}_1 \\ \overrightarrow{\textbf{K}}_1 \\ \textbf{K}_2 \\ \textbf{K}_3 \\ \textbf{K}_3 \\ \textbf{K}_4 \\ \textbf{K}_3 \\ \textbf{K}_4 \\ \textbf{K}_4 \\ \textbf{K}_5 \\ \textbf{K}$

Konstanta kesetimbangan masing-masing reaksi dapat dihitung dengan menggunakan persamaan berikut :

$$\ln K_{x} = C_{1} + \frac{C_{2}}{T} + C_{3}T + C_{4}\ln T$$

(Jurnal Autsgen dan Rocelle tahun 1991)

Konstanta C pada persamaan tersebut juga diperoleh dari Jurnal Autsgen dan Rochelle tahun 1991, seperti pada Tabel A.6 berikut:

Tabel A.6 Nilai Konstanta C pada Persamaan

Kesetimbangan

Keterangan	C ₁	C ₂	C ₃	C ₄
Reaksi 1	231,465	-12.092,1	-36,7816	0
Reaksi 2	216,049	-12.431,7	-35,4819	0

Sehingga dapat dilakukan perhitungan konstanta kesetimbangan pada masing-masing reaksi kesetimbangan tersebut sebagai berikut:

Dengan T sistem

 $= 40 \ ^{\circ}C$ = (40 \ ^{\circ}C + 273.15) K

$$= 313,15 \text{ K}$$

Perhitungan konstanta kesetimbangan reaksi 1:

 $\ln K_{1} = 231,465 + \frac{-12.092,1}{313,15} + (-36,7816 \ln 313,15) + (0 \times 313,15)$ = -18,52 K₁ = 9,04 . 10⁻⁹ Perhitungan konstanta kesetimbangan reaksi 2: $\ln K_{2} = 216,049 + \frac{-12.431,7}{313,15} + (-35,4819 \ln 313,15) + (0 \times 313,15)$

 $\begin{array}{r} = -27,55 \\ K_2 &= 1,081 \cdot 10^{-12} \end{array}$

Hasil perhitungan konstanta kesetimbangan untuk kedua reaksi tersebut dapat dilihat pada Tabel A.7 berikut:

Tabel A.7 Hasil Perhitungan Konstanta Kesetimbangan Pada Analisa Akhir Untuk 5% Mol CO₂ pada suhu 40° C

Keterangan	K _x
Reaksi 1	9,04.10-9
Reaksi 2	1,081 . 10 ⁻¹²

Perhitungan CO₂ terlarut dapat dihitung dengan persamaan berikut:

$$[CO_2 \text{ terlarut}] = \frac{K_2 [\text{HCO}_3^-]^2}{K_1 [\text{CO}_3^{2-}]}$$

dengan:

$$\left[\text{HCO}_{3}^{-}\right] = \frac{\text{mol HCO}_{3}^{-}}{\text{V}_{\text{larutan}}}$$
$$= \frac{0,07392\text{mol}}{20 \text{ ml}}$$
$$= 0,003696 \text{ mol/ml}$$

$$\begin{bmatrix} CO_{3}^{2-} \end{bmatrix} = \frac{\text{mol } CO_{3}^{2-}}{V_{\text{larutan}}}$$
$$= \frac{0,04656 \text{ mol}}{20 \text{ ml}}$$
$$= 0.002328 \text{ mol/m}$$

maka:

$$\begin{bmatrix} CO_2 \text{ terlarut} \end{bmatrix} = \frac{K_2 \begin{bmatrix} \text{HCO}_3^- \end{bmatrix}^2}{K_1 \begin{bmatrix} \text{CO}_3^{-2} \end{bmatrix}}$$
$$= \frac{1,081 \times 10^{-12} \times (0,003696)^2}{9.,04 \times 10^{-9} \times 0,002328}$$
$$= 1,753 \cdot 10^{-7} \text{ mol/mL}$$

Mol CO₂ terlarut = [CO₂ terlarut] x V_{larutan}
= 1,753 .
$$10^{-7}$$
 mol/mL x 20 mL
= 3,507 . 10^{-6} mol

a. Menghitung Mol CO₂ yang bereaksi Reaksi kesetimbangan yang terjadi: $K_2CO_3 + CO_2 + H_2O \cong 2KHCO_3$

Berdasarkan reaksi kesetimbangan tersebut, dapat dihitung jumlah mol CO₂ yang bereaksi sebagai berikut:

Mol CO₂ bereaksi =
$$\frac{1}{2} x \mod \text{HCO}_3^\circ$$
 akhir
= $\frac{1}{2} .0,04656 \mod$
= 0.02328 mol

b.

Menghitung Mol CO₂ yang terabsorb Mol CO₂ terabsorb = Mol CO₂ bereaksi + Mol CO₂ terlarut = $0,02328 \text{ mol} + 3,507 \cdot 10^{-6} \text{ mol}$ = 0,02328 mol

Menghitung Densitas Larutan:

Untuk menghitung densitas larutan akhir, dilakukan penimbangan massa larutan dengan menggunakan piknometer. Penimbangan tersebut dilakukan sebanyak tiga kali.

Data yang diperoleh sebagai berikut:

Massa pikno dan larutan

Massa pikno dan larutan = 26,2247 g

<u>Massa larutan</u>

Massa larutan dapat dihitung dengan cara berikut:

Massa larutan	= Massa pikno dan larutan - Massa
pikno kosong	= 26,2247 g $-$ 12,8467 g - 12,8467 g $-$ 12,8467 g - 12,8467 g

Densitas larutan

Densitas larutan dapat dihitung dengan cara berikut:

Densitas larutan = $\frac{\text{Massa larutan}}{\text{Volume pikno}}$ = $\frac{13,378 \text{ g}}{10,0468 \text{ ml}}$ = 1,2737 g/mL

Menghitung massa tiap-tiap komponen di larutan akhir: Massa tiap-tiap komponen di larutan akhir dapat dihitung dengan persamaan berikut:

Untuk kalium karbonat (K₂CO₃)

Mol K_2CO_3 = Mol $CO_3^{2^2}$ = 0,0739 mol BM K_2CO_3 = 138 g/mol maka: Massa K_2CO_3 = Mol $K_2CO_3 \times BM K_2CO_3$ = 0,0739 mol x 138 g/mol = 10,2 gram

Untuk kalium bikarbonat (KHCO₃) Mol KHCO₃ = Mol HCO₃⁻ = 0.04656 molBM KHCO₃ = 100 g/molmaka: Massa $KHCO_3 = Mol KHCO_3 \times BM KHCO_3$ = 0,04656 mol x 100 g/mol = 4,66 gram Untuk Methyl diethanolamine (PZ) Massa PZ = 1,5 gram mol PZ = massa PZ / BM PZ= (1,5 g)/(86 g/mol)= 0.017 molUntuk diethanolamine (DEA) Massa DEA = 6 gmol DEA = massa DEA / BM DEA = (6 g)/(105 g/mol)= 0.057 molUntuk gas karbon dioksida (CO₂) = Mol CO_2 terlarut Mol CO₂ $= 3,507 \cdot 10^{-6} \text{ mol}$ = 44 g/molBM CO₂ maka: = $Mol CO_2 \times BM CO_2$ Massa CO₂ $= 3,507 \cdot 10^{-6} \text{ mol x } 44 \text{ g/mol}$ $= 1,543 \cdot 10^{-4}$ gram Untuk Air (H₂O) Massa $H_2O = M$ assa larutan akhir – (Massa $K_2CO_3 +$ Massa KHCO₃ + Massa PZ + Massa $DEA + Massa CO_2$) = 9,22 gram Mol H₂O = (9,22 g) / (18 g/mol)= 0.51 mol

Menghitung mol tiap-tiap komponen di larutan akhir: Mol tiap-tiap komponen di larutan akhir dapat dihitung dengan persamaan berikut: Untuk ion karbonat (CO_3^{2-}) Berdasarkan titrasi 1 pada analisa larutan akhir, diperoleh: $Mol CO_3^{2-}$ = 0.0739 molUntuk ion bikarbonat (HCO_3) titrasi 1 pada analisa larutan Berdasarkan akhir. diperoleh: Mol HCO₃ = 0.04656 molUntuk ion kalium (K^+) Mol $K^+ = (2 \times Mol CO_3^{2^-}) + Mol HCO_3^{-1}$ $= (2 \times 0.0739 \text{ mol}) + 0.04656 \text{ mol}$ = 0.1478 molUntuk *Piperazine* (PZ) Mol PZ = 0.017 molUntuk diethanolamine (DEA) Mol DEA = 0.0571 molUntuk gas karbon dioksida (CO₂) hasil perhitungan mol CO₂ terlarut, Berdasarkan diperoleh: = $Mol CO_2$ terlarut Mol CO₂ $= 3.507 \cdot 10^{-6} \text{ mol}$ Untuk Air (H₂O) Berdasarkan hasil perhitungan massa H₂O dalam larutan akhir, diperoleh: Mol H₂O = 0,512 molUntuk Larutan Mol Larutan akhir = $(Mol CO_3^2 + Mol HCO_3^2 + Mol K^+)$ + Mol PZ + Mol DEA + Mol CO₂ $+ Mol H_2O)$ = 0.0739 + 0.04656 + 0.1478 + $0,0174 + 0,0571 + 3,507.10^{-6} + 0,512$ = 0.8549 mol

Mol dan komposisi tiap-tiap komponen dapat dilihat pada Tabel A.10.

Komponen	mol	fraksi mol
CO ₃ ²⁻	0,0739	0,0865
HCO ₃ ⁻	0,0466	0,0545
K ⁺	0,1478	0,1729
PZ	0,0174	0,0204
DEA	0,0571	0,0668
CO ₂	3,507,E-06	4,102E-06
H ₂ O	0,5120	0,5989
total	0,8549	1,0000

Tabel A.8 Hasil Perhitungan Mol dan Komposisi di Liquid Untuk5% Mol CO2 pada suhu 40° C

Menghitung CO₂ Loading:

CO₂ loading dapat dihitung dengan rumus berikut:

 $CO_{2} Loading = \frac{\text{mol } CO_{2} \text{ terabsorb}}{\text{mol } K^{+} + \text{mol } PZ + \text{mol } DEA}$ $= \frac{0,02328}{0,1478 + 0,0174 + 0,0571}$ = 0,1047

Fraksi mol H₂O di gas :

Air di fasa gas dalam keadaan jenuh sehingga, $P_{H_{2O}} = P_{H_{2O}}^{sat}$ $= \exp (16.2620 - (3799.89/((T-273.15)+226.35)))$ Pada T = 313,15 K maka.

пака,

 $P_{H_2O}^{sat}$ = 7355,67 Pa

Menghitung Tekanan Parsial secara Eksperimen pada larutan :

$$P_{co_{2}} = H_{co_{2}} \cdot x_{co_{2}}$$

= 3556,4198 $\frac{kPa.m^{3}}{kmol}$.3,507.10⁻⁶ kmol. $\frac{1}{2.10^{-5}m^{3}}$
= 0,6236139kPa
= 623,6139Pa

Berikut penabelan hasil perhitungan komposisi masing-masing komponen di liquid :

Tabel A.9 Hasil Perhitungan Mol dan Komposisi (Fraksi M	Iol) di
Liquid Untuk 0% PZ dan 5% DEA Komposisi Gas CO ₂	5%

V	30° C		40	40° C		0° C
Komponen	Mol	Fraksi Mol	Mol	Fraksi Mol	Mol	Fraksi Mol
CO3 ²⁻	0,0696	0,0726	0,0727	0,0768	0,0739	0,0786
HCO ₃ -	0,0468	0,0488	0,0466	0,0491	0,0463	0,0493
K ⁺	0,1392	0,1452	0,1454	0,1535	0,1478	0,1572
PZ	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
DEA	0,0714	0,0745	0,0714	0,0754	0,0714	0,0759
CO ₂	3,4 <mark>81.10⁻</mark>	3,6322.10 ⁻⁶	3,565.10 ⁻	3,763.10 ⁻⁶	3,739.10 ⁻	3,976.10 ⁻⁶
H ₂ O	0,6313	0,6588	0,6112	0,6452	0,6010	0,6390
Total	0, <mark>9584</mark>	1,0000	0,9474	1,0000	0,9405	1,0000

Y	30° C		40	40° C		50° C	
Komponen	Mol	Fraksi <mark>Mol</mark>	Mol	Fraksi Mol	Mol	Fraksi Mol	
CO3 ²⁻	0,0713	0,0821	0,0739	0,0865	0,0746	0,0878	
HCO ₃ -	0,0470	0,0542	0,0466	0,0545	0,0463	0,0545	
K ⁺	0,1426	0,1642	0,1478	0,1729	0,1493	0,1756	
PZ	0, <mark>0174</mark>	0,0201	0,0174	0,0204	0,0174	0,0205	
DEA	0,0571	0,0658	0,0571	0,0668	0,0571	0,0672	
CO ₂	3,434.10-6	3,956.10-6	3,507.10-6	4,102.10-6	3,703.10-6	4,356.10-6	
H ₂ O	0,5326	0,6136	0,5120	0,5989	0,5053	0,5944	
Total	0,8681	1,0000	0,8549	1,0000	0,8501	1,0000	

Tabel A.10 Hasil Perhitungan Mol dan Komposisi (Fraksi Mol) di *Liquid* Untuk 1% PZ dan 4% DEA Komposisi Gas CO₂ 5%

Tabel A.11 Hasil Perhitungan Mol dan Komposisi (Fraksi Mol) diLiquid Untuk 2% PZ dan 3% DEA Komposisi Gas CO2 5%

Vannanan	30° C		40	40° C		50° C	
Komponen	Mol	Fraksi Mol	Mol	Fraksi Mol	Mol	Fraksi Mol	
CO3 ²⁻	0,0737	0,0955	0,0754	0,0984	0,0749	0,0912	
HCO ₃ -	0,0470	0,0610	0,0468	0,0611	0,0466	0,0567	
K ⁺	0,1474	0,1910	0,1507	0,1968	0,1498	0,1823	
PZ	0 <mark>,0348</mark>	0,0451	0,0348	0,0455	0,0348	0,0424	
DEA	0,0429	0,0555	0,0429	0,0560	0,0429	0,0522	
CO ₂	3,322.10-6	4,306.10-6	3,476.10-6	4,538.10-6	3,729.10-6	4,541.10-6	
H ₂ O	0,4258	0,5518	0,4153	0,5423	0,4725	0,5752	
Total	0,7715	1,0000	0,7659	1,0000	0,8213	1,0000	

	30	Р°С	40	40° C		50° C	
Komponen	Mol	Fraksi Mol	Mol	Fraksi Mol	Mol	Fr <mark>aksi M</mark> ol	
CO3 ²⁻	0,0768	0,1140	0,0787	0,1183	0,0778	0,1159	
HCO ₃ -	0,0475	0,0705	0,0470	0,0707	0,0470	0,0701	
K*	0,1536	0,2280	0,1574	0,2366	0,1555	0,2317	
PZ	0,0522	0,0775	0,0522	0,0785	0,0522	0,0778	
DEA	0,0286	0,0424	0,0286	0,0429	0,0286	0,0426	
CO ₂	3,252.10-6	4,827.10-6	3,361.10-6	5,052.10-6	3,666.10-6	5,461.10 ⁻⁶	
H ₂ O	0,3151	0,4676	0,3013	0,4528	0,3101	0,4620	
Total	0,6738	1,0000	0,6653	1,0000	0,7558	1,0000	

Tabel A.12 Hasil Perhitungan Mol dan Komposisi (Fraksi Mol) di *Liquid* Untuk 3% PZ dan 2% DEA Komposisi Gas CO₂ 5%

Tabel A.13 Hasil Perhitungan Mol dan Komposisi (Fraksi Mol) di Liquid Untuk 0% PZ dan 5% DEA Komposisi Gas 10%

V	30° C		40	40° C		0° C
Komponen	Mol	Fraksi Mol	Mol	Fraksi Mol	Mol	Fraksi Mol
CO ₃ ²⁻	0,0648	0,0672	0,0679	0,0712	0,0698	0,0741
HCO ₃ -	0,0504	0,0523	0,0502	0,0526	0,0499	0,0529
K ⁺	0,1296	0,1344	0,1358	0,1425	0,1397	0,1481
PZ	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
DEA	0,0714	0,0741	0,0714	0,0749	0,0714	0,0757
CO ₂	4,336.10-6	4,496.10-6	4,430.10-6	4,646.10-6	4,597.10 ⁻⁶	4,874.10-6
H ₂ O	0,6481	0,6721	0,6280	0,6587	0,6122	0 <mark>,6492</mark>
Total	0,9644	1,0000	0,9534	1,0000	0,9431	1,0000

V	30° C		40	40° C		50° C	
Komponen	Mol	Fraksi Mol	Mol	Fraksi Mol	Mol	Fraksi Mol	
CO3 ²⁻	0,0665	0,0761	0,0691	0,0803	0,0710	0,0835	
HCO ₃ -	0,0506	0,0579	0,0502	0,0583	0,0490	0,0587	
K ⁺	0,1330	0,1521	0,1382	0,1606	0,1421	0,1671	
PZ	0,0174	0,0199	0,0174	0,0202	0,0174	0,0205	
DEA	0,0571	0,0654	0,0571	0,0664	0,0571	0,0672	
CO ₂	4,267.10-6	4,882.10-6	4,353.10-6	5,056.10-6	4,519.10-6	5,313.10 ⁻⁶	
H ₂ O	0 <mark>,5494</mark>	0,62 <mark>86</mark>	0,5288	0,6143	0,5129	0,6030	
Total	0,8741	1,0000	0,8609	1,0000	0,8505	1,0000	

Tabel A.14 Hasil Perhitungan Mol dan Komposisi (Fraksi Mol) di *Liquid* Untuk 1% PZ dan 4% DEA Komposisi Gas 10%

Tabel A.15 Hasil Perhitungan Mol dan Komposisi (Fraksi Mol) diLiquid Untuk 2% PZ dan 3% DEA Komposisi Gas 10%

Vampanan	30° C		40° C		50° C	
Komponen	Mol	Fraksi Mol	Mol	Fraksi Mol	Mol	Fraksi Mol
CO ₃ ²⁻	0 <mark>,0689</mark>	0,0886	0,0703	<mark>/</mark> 0,0910	0,0730	0,0896
HCO ₃ -	0,0506	0,0651	0,0504	0,0652	0,0502	0,0616
K ⁺	0,1378	0,1772	0,1406	0,1819	0,1459	0,1793
PZ	0 <mark>,0348</mark>	0,0448	0,0348	0,0451	0,0348	0,0428
DEA	0,0429	0,0551	0,0429	0,0554	0,0429	0,0527
CO ₂	4,118.10-6	5,297.10 ⁻⁶	4,320.10-6	5,588.10-6	4,442.10-6	5,458.10-6
H ₂ O	0 <mark>,4426</mark>	0,5692	0,4339	0,5614	0,4672	0,5740
Total	0,7775	1,0000	0,7730	1,0000	0,8139	1,0000

W A	30° C		40° C		50° C	
Komponen	Mol	Fraksi Mol	Mol	Fraksi Mol	Mol	Fraksi Mol
CO3 ²⁻	0,0715	0,1047	0,0739	0,1101	0,0768	0,1163
HCO ₃ -	0,0509	0,0745	0,0506	0,0754	0,0504	0,0763
K ⁺	0,1430	0,2094	0,1478	0,2202	-0,1536	0,2326
PZ	0,0522	0,0765	0,0522	0,0778	0,0522	0,0791
DEA	0,0286	0,0418	0,0286	0,0426	0,0286	0,0433
CO ₂	4,004.10-6	5,861.10-6	4,149.10-6	6,180.10-6	4,261.10-6	6,452.10 ⁻⁶
H ₂ O	0,3369	0,4922	0,3181	0,4738	0,2988	0 <mark>,4524</mark>
Total	0,6832	1,0000	0,6713	1,0000	0,6604	1,0000

Tabel A.16 Hasil Perhitungan Mol dan Komposisi (Fraksi Mol) di *Liquid* Untuk 3% PZ dan 2% DEA Komposisi Gas 10%

Tabel A.17 Hasil Perhitungan Mol dan Komposisi (Fraksi Mol) di Liquid Untuk 0% PZ dan 5% DEA Komposisi Gas 20%

Komponen	30° C		40	40° C)° C
	Mol	Fraksi Mol	Mol	Fraksi Mol	Mol	Fraksi Mol
CO ₃ ²⁻	0,0600	0,0612	0,0631	0,0655	0,0650	0,0681
HCO ₃ -	0,0588	0,0600	0,0583	0,0606	0,0581	0,0608
K ⁺	0,1200	0,1224	0,1262	0,1311	0,1301	0,1362
PZ	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
DEA	0,0714	0,0728	0,0714	0,0742	0,0714	0,0748
CO ₂	6,374.10 ⁻⁶	6,501.10-6	6,444.10-6	7690.10 ⁻⁶	6,997.10 ⁻⁶	6,997.10 ⁻⁶
H ₂ O	0,6703	0,6836	0,6440	<mark>0,6</mark> 687	0,6302	0 <mark>,6600</mark>
Total	0,9805	1,0000	0,9631	1,0000	0,9548	1,0000

T	30° C		40	40° C		50° C	
Komponen	Mol	Fraksi <mark>Mol</mark>	Mol	Fraksi Mol	Mol	Fraksi Mol	
CO3 ²⁻	0,0617	0,0700	0,0643	0,0739	0,0662	0,0769	
HCO ₃ -	0,0590	0,0670	0,0586	0,0673	0,0583	0,0677	
K ⁺	0,1234	0,1400	0,1286	0,1478	0,1325	0,1503	
PZ	0,0174	0,0198	0,0174	0,0200	0,0174	0,0202	
DEA	0,0571	0,0648	0,0571	0,0656	0,0571	0,0663	
CO ₂	6,251.10-6	7,092.10-6	6,376.10-6	7,323.10-6	6,615.10 ⁻⁶	7,677.10 ⁻⁶	
H ₂ O	0,5628	0,63 <mark>85</mark>	0,5446	0,6255	0,5300	0,6151	
Total	0,8814	1,0000	0,8706	1,0000	0,8616	1,0000	

Tabel A.18 Hasil Perhitungan Mol dan Komposisi (Fraksi Mol) di *Liquid* Untuk 1% PZ dan 4% DEA Komposisi Gas 20%

Tabel A.19 Hasil Perhitungan Mol dan Komposisi (Fraksi Mol) diLiquid Untuk 2% PZ dan 3% DEA Komposisi Gas 20%

Komponen -	30° C		40° C		50° C	
	Mol	Fraksi Mol	Mol	Fraksi Mol	Mol	Fraksi Mol
CO3 ²⁻	0, <mark>0641</mark>	0,0802	0,0655	0,0825	0,0682	0,0886
HCO ₃ -	0,0590	0,0739	0,0588	0,0740	0,0586	0,0761
K ⁺	0,1282	0,1603	0,1310	0,1650	0,1363	0,1771
PZ	0,0348	0,04 <mark>36</mark>	0,0348	0,0439	0,0348	0,0453
DEA	0,0429	0,0536	0,0429	0,0540	0,0429	0,0557
CO ₂	6,017.10 ⁻⁶	7,528.10-6	6,310.10 ⁻⁶	7,946.10-6	6,481.10 ⁻⁶	8,421.10 ⁻⁶
H ₂ O	0,4703	0,58 <mark>84</mark>	0,4611	0,5806	0,4289	0,5573
Total	0,7993	1,0000	0,7941	1,0000	0,7697	1,0000

Komponen	30° C		40° C		50° C	
	Mol	Fraksi Mol	Mol	Fraksi Mol	Mol	Frak <mark>si Mol</mark>
CO3 ²⁻	0,0667	0,0918	0,0691	0,0997	0,0720	0,1061
HCO ₃ -	0,0593	0,0816	0,0590	0,0851	0,0588	0,0867
K ⁺	0,1334	0,1836	0,1382	0,1993	0,1440	0,2112
PZ	0,0522	0,0719	0,0522	0,0753	0,0522	0,0770
DEA	0,0286	0,0393	0,0286	0,0412	0,0286	0,0421
CO ₂	5,826.10-6	8,018.10-6	6,031.10-6	8,695.10-6	6,186.10-6	9,116.10-6
H ₂ O	0,3864	0,5317	0,3464	0,4994	0,3229	0,4759
Total	0,7266	1,0000	0,6936	1,0000	0,6785	1,0000

Tabel A.20 Hasil Perhitungan Mol dan Komposisi (Fraksi Mol) di *Liquid* Untuk 3% PZ dan 2% DEA Komposisi Gas 20%

A.2 Perhitungan dengan Persamaan Korelasi E-NRTL

Tahap korelasi ini dilakukan untuk menghitung koefisien aktivitas H₂O dan CO₂ dengan menggunakan persamaan model E-NRTL. Persamaan model E-NRTL yang digunakan adalah untuk *molekular species* karena H₂O dan CO₂ berbentuk *molekular species*

Berikut contoh perhitungan dan penabelan hasil perhitungan:

a. Sebagai contoh perhitungan, diambil variabel larutan 30% massa K₂CO₃, dengan 1% massa PZ dan 4% massa DEA pada suhu 30°C dengan komposisi gas 10%. Contoh perhitungannya sebagai berikut:

Dari eksperimen diperoleh data komposisi (fraksi mol) tiaptiap komponen di fase liquid yang dapat dilihat pada Tabel A.14

Menghitung C_i, dimana:

 $C_i = z_i$ (jumlah muatan) untuk *ionic species*

No.	Spesies	Ci
1.	CO_{3}^{2}	-2
2.	HCO ₃ ⁻	-1
3.	K ⁺	1
4.	PZ	
5.	DEA	1
6.	CO ₂	
7.	H ₂ O	

Tabel A.21 Hasil Perhitungan C_i Untuk 1% PZ 4% DEA

Menghitung X_i, : Sehingga:

2	X_{co_2}	$= C_{CO_2} \cdot x_{CO_2}$
		$= 1 \times 5,056.10^{-6}$
		$= 5,056.10^{-6}$
2	X_{H_2O}	$= C_{H_2O} . x_{H_2O}$
		= 1 x 0,6143
		= 0,6143
2	X _{PZ}	$= C_{PZ} . x_{PZ}$
		$= 1 \times 0,0202$
		= 0,0202
	K DEA	$= C_{DEA} \cdot x_{DEA}$
		$= 1 \ge 0,0664$
		= 0,0664
	X_{K^+}	$= C_{K^+} . x_{K^+}$
		$= 1 \ge 0,1606$
		= 0,1606
	$X_{CO_3^{2-}}$	$= C_{CO_3^{2-}} x_{CO_3^{2-}}$
		$= -2 \ge 0.0803$
		= -0,1606
	$X_{HCO_3^-}$	$= C_{HCO_3^-} x_{HCO_3^-}$
		$= -1 \ge 0,0583$
		= -0,0583
		83

Menghitung *Binary Interaction Parameter* antara Molekul-Pasangan Ion dan Pasangan Ion-Molekul

Menghitung jumlah fraksi komposisi muatan anion, Y_a dan jumlah fraksi komposisi muatan kation, Y_c, sebagai berikut :

Sehingga:

$$Y_{co_{3}^{-}} = \frac{X_{co_{3}^{-}}}{X_{co_{3}^{-}} + X_{Hco_{3}^{-}}}$$

$$= \frac{-0,1606}{-0,1606 + -0,0583}$$

$$= 0,7338$$

$$Y_{Hco_{3}^{-}} = 1 - 0,7338$$

$$= 0,2662$$

$$Y_{K^{+}} = \frac{X_{K^{+}}}{X_{K^{+}}}$$

$$= 1$$

(2005): Diketahui nonrandomness parameter dari Cullinane

Tuber TI.22 Duta Hor	in an aoniticos 1 ai	ameter
Interaksi 💎 😽	α	Harga α
Molekul-Molekul	<u>α m,m'</u>	0,2
H ₂ O-Pasangan ion	α H ₂ O,ca	0,2
Pasangan ion-H ₂ O	α ca,H ₂ O	0,2
PZ-Pasangan ion	α PZ,ca	0,1
DEA-Pasangan ion	α DEA,ca	0,1
CO ₂ - Pasangan ion	α CO ₂ ,ca	0,1

Tabel A.22 Data Nonrandomness Parameter

Dari hasil fitting diperoleh konstanta *Binary Interaction Parameter* antar molekul-pasangan ion dan pasangan ion-molekul seperti pada Tabel A.23 untuk sistem PZ-DEA

interaksi	A	В
$H_2O-K^+, CO_3^=$	12,4147	1582,0155
$K^+, CO_3^H_2O$	21,8084	-376,9975
H_2O-K^+,HCO_3^-	14,6031	2862,9845
$K^+,HCO_3^H_2O$	-4,3939	-600,8536
$CO_2 - K^+, CO_3^=$	80,9726	0,0209
$K^+, CO_3^=-CO_2$	73,5904	0,0223
CO ₂ -K ⁺ ,HCO ₃ ⁻	28,8741	0,0018
$K^+,HCO_3^CO_2$	11,2491	0,0090
$PZ-K^+, CO_3^=$	24,1544	0,0051
$K^+, CO_3^= -PZ$	-0,5691	-0,0028
PZ-K ⁺ ,HCO ₃ -	16,0216	0,0094
K ⁺ ,HCO ₃ ⁻ -PZ	-9,0928	0,0026
$DEA-K^+, CO_3^=$	8,8020	-0,0005
K ⁺ ,CO ₃ ⁼ -DEA	-8,0502	0,0056
DEA-K ⁺ ,HCO ₃ ⁻	13,5856	0,0171
K ⁺ ,HCO ₃ ⁻ -DEA	-4,0565	-0,0066

Tabel A.23 Data Konstanta *Binary Interaction Parameter* antar Molekul-Pasangan ion dan Pasangan Ion-Molekul untuk Sistem

Menghitung *Binary Interaction Parameter* antara molekulpasangan ion dan pasangan ion-molekul untuk molekul CO₂: maka,

molekular anion cation $= CO_2$ = CO₃⁼,HCO₃⁻ = K⁺ Dari eksperimen didapatkan suhu sistem pada saat terjadi kesetimbangan:

T sistem = 40° C = 313,15 K

Rumus yang digunakan untuk menghitung *Binary Interaction Parameter* antara molekul-pasangan ion dan pasangan ionmolekul adalah :

Menghitung τ ca,m

Untuk anion (a) CO3

Konstanta *Binary Interaction Parameter* yang digunakan adalah konstanta interaksi pasangan ion-molekul yaitu K⁺,CO₃⁼-CO₂ dengan data sebagai berikut:

A () = 73,5904; B = 0,0223 sehingga:

$$\tau_{ca,m} = A + B \left[\frac{1}{T(K)} - \frac{1}{353,15(K)} \right]$$

= 73,5904 + 0,0223 $\left[\frac{1}{313,15(K)} - \frac{1}{353,15(K)} \right]$
= 73,590

Untuk anion (a) HCO3

Konstanta *Binary Interaction Parameter* yang digunakan adalah konstanta interaksi pasangan ion-molekul yaitu K^+ ,HCO₃⁻-CO₂ dengan data sebagai berikut:

A = 11,2491; B = 0,0090Sehingga:

$$\tau_{ca,m} = A + B \left[\frac{1}{T(K)} - \frac{1}{353,15(K)} \right]$$

= 11,2491 + 0,0090 $\left[\frac{1}{313,15(K)} - \frac{1}{353,15(K)} \right]$
= 11,249

Menghitung T m,ca
Untuk anion (a) $CO_3^{=}$

Konstanta *Binary Interaction Parameter* yang digunakan adalah konstanta interaksi molekul-pasangan ion yaitu CO₂-pasangan ion lain dengan data sebagai berikut:

 $\begin{array}{l} A \\ B \\ B \\ \end{array} = 80,9726 \\ = 0,0209 \end{array}$

sehingga:

$$\tau_{m,ca} = A + B \left[\frac{1}{T(K)} - \frac{1}{353,15(K)} \right]$$

= 80,9726 + 0,0209 $\left[\frac{1}{313,15(K)} - \frac{1}{353,15(K)} \right]$
= 80,973

Untuk anion (a) HCO3⁻

Konstanta *Binary Interaction Parameter* yang digunakan adalah konstanta interaksi molekul-pasangan ion yaitu CO₂-pasangan ion lain dengan data sebagai berikut:

A = 28,8741B = 0,0018sehingga:

$$\tau_{m,ca} = A + B \left[\frac{1}{T(K)} - \frac{1}{353,15(K)} \right]$$

= 28,8741 + 0,0018 $\left[\frac{1}{313,15(K)} - \frac{1}{353,15(K)} \right]$
= 28,874

 $\begin{array}{l} \textbf{Menghitung } \alpha \textbf{ m,ca} \\ \textbf{Untuk anion (a) } \textbf{CO}_3^{=} \\ \alpha_{m,ca} &= \alpha_{CO_2,ca} \\ &= 0,1 \end{array}$

Untuk anion (a) HCO3

 $\alpha_{m,ca}$

 $Menghitung \alpha c,m$ $\underline{\text{Untuk anion (a) CO}_3^{=}}$ $\alpha_{c,m} = \sum_a Y_a \alpha_{m,ca}$ $= [Y_{CO_3^{2^-}} \times \alpha_{m,ca} (a = CO_3^{=})]$ = 0,072 $\underline{\text{Untuk anion (a) HCO}_3^{=}}$ $\alpha_{c,m} = \sum_a Y_a \alpha_{m,ca}$ $= [Y_{HCO_3^-} \times \alpha_{m,ca} (a = HCO_3^{-})]$ = 0,028

 $= \alpha_{CO_2,ca}$

= 0,1

Menghitung a a,m Untuk anion (a) CO3 $\alpha_{a,m} = \sum Y_c \alpha_{m,ca}$ $= Y_{K^+} \ge \alpha_{m,ca}$ $= 1 \times 0.1$ = 0,1Untuk anion (a) HCO3 $\alpha_{a,m} = \sum Y_c \alpha_{m,ca}$ $= Y_{K^+} \times \alpha_{m,ca}$ = 0,1 $= 1 \ge 0.1$ Menghitung G ca,m Untuk anion (a) CO₃ $G_{ca,m}$ $= \exp(-\alpha_{ca,m}\tau_{ca,m})$ $= \exp(-0.072 \times 73.590)$

$$= 0,0001$$
Untuk anion (a) HCO₃⁻

$$G_{ca,m} = \exp(-\alpha_{ca,m}\tau_{ca,m})$$

$$= \exp(-0,028 \times 11,249)$$

$$= 0,325$$

 $\begin{array}{l} \textbf{Menghitung G c,m} \\ \underline{\text{Untuk anion (a) CO}_{3}}^{=} \\ G_{c,m} &= \sum_{a} Y_{a} G_{ca,m} \\ &= [Y_{CO_{3}^{2-}} \times G_{ca,m} (a = \text{CO}_{3}^{-})] \\ &= (0,7338 \times 0,001) \\ &= 0,0007 \\ \underline{\text{Untuk anion (a) HCO}_{3}}^{-} \\ G_{c,m} &= \sum_{a} Y_{a} G_{ca,m} \\ &= [Y_{HCO_{3}^{-}} \times G_{ca,m} (a = \text{HCO}_{3}^{-})] \\ &= (0,2662 \times 0,325) \end{array}$

 $\begin{array}{l} \textbf{Menghitung G a,m} \\ \underline{\text{Untuk anion (a) CO}_3}^{=} \\ G_{a,m} &= \sum_c Y_c G_{ca,m} \\ &= Y_{K^+} \ge G_{ca,m} \\ &= 1 \ge 0,001 \\ \underline{\text{Untuk anion (a) HCO}_3} \\ G_{a,m} &= \sum_c Y_c G_{ca,m} \\ &= Y_{K^+} \ge G_{ca,m} \end{array}$

= 0,091

$$= 1 \ge 0.325$$

= 0.325

Menghitung τ c,m $= \exp(-\alpha \tau)$ G $\ln G$ -ατ $\ln G$ τ α Untuk anion (a) CO3 $\ln G_{c,m}$ $\tau_{c,m}$ $\alpha_{c,m}$ ln(0,0007) 0,1 = 106,772 Untuk anion (a) HCO3⁻ $\ln G_{c,m}$ $\tau_{c,m}$ $\alpha_{c,m}$ ln(0,091) 0,1 = 85,638

Menghitung $\tau a,m$ Untuk anion (a) $CO_3^{=}$ $\tau_{a,m} = -\frac{\ln G_{a,m}}{\alpha_{a,m}}$ $= -\frac{\ln(0,001)}{0,1}$ = 73,590Untuk anion (a) HCO₃

 $\ln G_{a,m}$ $\tau_{a,m}$ $\alpha_{a,m}$ ln(0,325)0,1 = 11,249

Menghitung τ mc,ac Dari Cullinane (2005):

 $\alpha_{mc,ac} = \alpha_{cm}$ Untuk anion (a) CO3⁼ $=\tau_{cm}-\frac{\alpha_{ca,m}}{\alpha_{mc,ac}}(\tau_{ca,m}-\tau_{m,ca})$

 $au_{mc,ac}$

= 117,025 Untuk anion (a) HCO3

 $au_{mc,ac}$

$$\frac{\alpha_{ca,m}}{\alpha_{mc,ac}}(\tau_{ca,m}-\tau_{m,ca})$$

= 148,585

 $= \tau_{cm} -$

Menghitung τ ma,ca Dari Cullinane (2005): $\alpha_{ma,ca} = \alpha_{am}$ Untuk anion (a) $CO_3^{=}$ $= \tau_{am} - \frac{\alpha_{ca,m}}{\alpha_{ma,ca}} (\tau_{ca,m} - \tau_{m,ca})$ $\tau_{ma,ca}$ = 80,973Untuk anion (a) HCO3

 $\tau_{ma,ca}$

 $= \tau_{am} - \frac{\alpha_{ca,m}}{\alpha_{ma,ca}} (\tau_{ca,m} - \tau_{m,ca})$

= 28,874

 $\begin{array}{l} \textbf{Menghitung G mc,ac} \\ \underline{\text{Untuk anion (a) CO}_3^{=}} \\ G_{mc,ac} &= \exp(-\alpha_{cm}\tau_{mc,ac}) \\ &= 0,0002 \\ \underline{\text{Untuk anion (a) HCO}_3^{-}} \\ G_{mc,ac} &= \exp(-\alpha_{cm}\tau_{mc,ac}) \\ &= 0,016 \end{array}$

 $\begin{array}{l} Menghitung G ma, ca \\ \underline{\text{Untuk anion (a) CO}_3^{=}} \\ G_{ma,ca} &= \exp(-\alpha_{am}\tau_{ma,ca}) \\ &= 0,0003 \\ \underline{\text{Untuk anion (a) HCO}_3^{-}} \\ G_{ma,ca} &= \exp(-\alpha_{am}\tau_{ma,ca}) \\ &= 0,056 \end{array}$

Perhitungan *Binary* Interaction Parameter antara molekul-pasangan ion dan pasangan ion-molekul untuk molekul CO_2 tersebut dapat dilihat pada Tabel A.24.

(Molekul.co ₂)				
m = CO ₂ , o	c = K+			
a = CO ₃ =	a = HCO ₃ -			
0,736	0,264			
1,000	1,000			
73,590	11,249			
80,973	28,874			
0,100	0,100			
0,100	0,100			
0,074	0,026			
0,100	0,100			
0,001	0,325			
0,0005	0,086			
0,001	0,325			
104,123	93,147			
73,590	11,249			
114,1 <mark>51</mark>	159,9 <mark>54</mark>			
80,973	28,874			
0,0002	0,015			
0,00 <mark>03</mark>	0,056			
	m = CO ₂ , o a = CO ₃ = 0,736 1,000 73,590 80,973 0,100 0,100 0,100 0,0074 0,001 0,001 0,001 104,123 73,590 114,151 80,973 0,0002 0,0003			

Tabel A.24 Perhitungan *Binary Interaction Parameter* (Molekul:CO₂)

Binary Interaction Parameter antara molekul-pasangan ion dan pasangan ion-molekul untuk molekul H₂O dapat dihitung dengan cara yang sama seperti Perhitungan *Binary Interaction Parameter* antara molekul-pasangan ion dan pasangan ionmolekul untuk molekul H₂. Perhitungan tersebut dapat dilihat pada Tabel A.25.

(1	violekul.1120	
Devenetar	$m = H_2 0, c$	= K+
Parameter	$a = CO_3^=$	a = HCO ₃ -
Ya	0,736	0,264
Yc	1,000	1,000
τ ca,m	21,672	-4,611
τm,ca	12,987	15,639
α ca,m	0,200	0,200
α m,ca	0,200	0,200
<mark>α c,</mark> m	0,147	0,053
α a,m	0,200	0,200
G ca,m	0,013	2,515
<mark>G c,</mark> m	0,010	0,663
G a,m	0,013	2,515
τc,m	31,519	7,775
τa,m	21,672	-4,611
τmc,ac	19,721	84,532
τ ma,ca	12,987	15,639
G mc,ac	0,055	0,012
<mark>G m</mark> a,ca	0,074	0,044

Tabel A.25 Perhitungan *Binary Interaction Parameter* (Molekul:H₂O)

Binary Interaction Parameter antara molekul-pasangan ion dan pasangan ion-molekul untuk molekul DEA dapat dihitung dengan cara yang sama seperti Perhitungan Binary Interaction Parameter antara molekul-pasangan ion dan pasangan ionmolekul untuk molekul CO₂. Perhitungan tersebut dapat dilihat pada Tabel A.26 berikut:

(1)	IOICKUI.DL/	.)
Daramotor	m = DEA, c	c = K+
r al allietei	$a = CO_3^{=}$	a = HCO ₃ -
Ya	0,736	0,264
Yc	1,000	1,000
τ ca,m	-7,151	-5,528
τm,ca	9,790	15,233
α ca,m	0,100	0,100
α m,ca	0,100	0,100
α c,m	0,074	0,026
α a,m	0,100	0,100
G ca,m	2,044	1,738
G c,m	1,505	0,459
G a,m	2,044	1,738
τ c,m	-5,553	29,556
τa,m	-7,151	-5,528
τ mc,ac	17, <mark>459</mark>	108,247
τ ma,ca	9,790	15,233
G mc,ac	0,277	0,058
G ma,ca	0,376	0,218

Tabel A.26 Perhitungan *Binary Interaction Parameter* (Molekul:DEA)

Binary Interaction Parameter antara molekul-pasangan ion dan pasangan ion-molekul untuk molekul PZ dapat dihitung dengan cara yang sama seperti Perhitungan Binary Interaction Parameter antara molekul-pasangan ion dan pasangan ionmolekul untuk molekul CO₂. Perhitungan tersebut dapat dilihat pada Tabel A.27

(MOICKUI, IZ)					
Parameter	III = F L, C = K +				
Turumeter	$a = CO_3^=$	$a = HCO_3^{-1}$			
Ya	0,736	0,264			
Yc	1,000	1,000			
τ ca,m	-1,016	-7,509			
τm,ca	24,542	18,247			
α ca,m	0,100	0,100			
α m,ca	0,100	0,100			
αc,m	0,074	0,026			
α a,m	0,100	0,100			
G ca,m	1,107	2,119			
<mark>G c,</mark> m	0,815	0,559			
G a,m	1,107	2,119			
τc,m	2,780	22,044			
τa,m	-1,016	-7,509			
τ mc,ac	37,497	119,672			
τ ma,ca	24,542	18,247			
G mc,ac	0,063	0,043			
G ma,ca	0,086	0,161			

Tabel A.27 Perhitungan *Binary Interaction Parameter* (Molekul:PZ)

Menghitung *Binary Interaction Parameter* antar Molekul Diketahui *Binary interaction parameter* dari hasil fitting seperti pada Tabel A.28.

	monum	and the second sec
Interaksi	A	В
CO ₂ -H ₂ O	48,792	-8428,918
H ₂ O-CO ₂	-2,772	1080,043
H ₂ O-PZ	-9,311	-0,026
PZ-H ₂ O	-1,773	-0,040
PZ-CO ₂	5,198	0,021
CO ₂ -PZ	0,000	0,000
H ₂ O-DEA	-7,696	1317,608
DEA-H ₂ O	0,916	-718,126
DEA-CO ₂	12,905	0,025
CO ₂ -DEA	-0,568	-0,001
DEA-PZ	-0,755	-0,002
PZ-DEA	-4,776	-0,016

Tabel A.28 Data Konstanta *Binary Interaction Parameter* antar Molekul

Menghitung *Binary Interaction Parameter* antar molekul untuk molekul CO₂:

molekular = CO_2 , H_2O , PZ dan DEA

Dari eksperimen didapatkan suhu sistem pada saat terjadi kesetimbangan:

T sistem

 $= 40^{\circ}C$ = (40°C + 273,15) K = 313,15 K

Rumus yang digunakan untuk menghitung *Binary Interaction Parameter* antar molekul adalah : poor

Menghitung τ m,m'

<u>Untuk m' CO₂</u> *Binary Interaction Parameter* antar molekul CO₂- CO₂: $\tau_{m,m'} = 0$ Untuk m' H₂O, m' PZ, m' DEA Konstanta *Binary Interaction Parameter* yang digunakan adalah konstanta interaksi molekul-molekul yaitu CO₂- H₂O, CO₂- PZ, CO₂-DEA dengan persamaan berikut:

$$\tau_{m,m'} = A + \frac{B}{T(K)}$$

Menghitung a m.m' Untuk m' CO₂ Nonrandomness parameter antar molekul CO₂- CO₂: = 0.2 $\alpha_{m m'}$ Untuk m' H₂O Nonrandomness parameter antar molekul CO₂- H₂O: = 0,2 $\alpha_{m m'}$ Untuk m' PZ Nonrandomness parameter antar molekul CO₂- PZ: = 0.2 $\alpha_{m m'}$ Untuk m' DEA Nonrandomness parameter antar molekul CO₂- DEA: = 0,2 $\alpha_{m,m'}$

Menghitung G m,m' <u>Untuk m' CO₂, m' H₂O, m' PZ, m' DEA</u> $G_{m,m'} = \exp(-\alpha_{m,m'}\tau_{m,m'})$

Binary Interaction Parameter antar molekul untuk molekul H₂O, PZ dan DEA dapat dihitung dengan cara yang sama seperti Perhitungan *Binary Interaction Parameter* antar molekul untuk molekul CO₂. Perhitungan tersebut dapat ditabelkan sebagai berikut:

Tabel A.29 Perhitungan Binary Interaction Parameter antar Molekul

	m' =	$m' = CO_2$		$m' = H_2O$		m' = DEA		m' =PZ	
	τ m,m'	G m,m'	τ m,m'	G m,m'	τ m,m'	G m,m'	τ m,m'	G m,m'	
H2O	0,000	1,000	0,791	0,854	-3,350	1,954	-9,311	6,438	
CO2	20,987	0,015	0,000	1,000	<mark>-0,5</mark> 68	1,120	0,000	1,000	
DEA	-1,453	1,337	12,905	0,076	0,000	1,000	-0,755	1,163	
PZ	-1,773	1,426	5 <mark>,198</mark>	0,354	<mark>-4,</mark> 776	2,599	0,000	1,000	

Menghitung Koefisien Aktivitas H₂O dan CO₂ Perhitungan koefisien aktivitas H₂O dan CO₂ sebagai berikut : Menghitung $\sum_{j} X_{j} G_{jm} \tau_{jm}$

$$\sum_{j} X_{j} G_{jm} \tau_{jm} = X_{CO_{2}} G_{CO_{2},H_{2}O} \tau_{CO_{2},H_{2}O} + X_{H_{2}O} G_{H_{2}O,H_{2}O} \tau_{H_{2}O,H_{2}O}$$

+ $X_{PZ} G_{PZ,H_{2}O} \tau_{PZ,H_{2}O} + X_{DEA} G_{DEA,H_{2}O} \tau_{DEA,H_{2}O} + X_{CO_{3}^{2-}} G_{CO_{3}^{2-},H_{2}O} \tau_{CO_{3}^{2-},H_{2}O} + X_{HCO_{3}^{-}} G_{HCO_{3}^{-},H_{2}O} \tau_{HCO_{3}^{-},H_{2}O} + X_{K^{+}} G_{K^{+},H_{2}O} \tau_{K^{+},H_{2}O}$

Menghitung $\sum_{k} X_{k} G_{km}$

$$\sum_{k} X_{k} G_{km} = X_{CO_{2}} G_{CO_{2},H_{2}O} + X_{H_{2}O} G_{H_{2}O,H_{2}O} + X_{PZ} G_{PZ,H_{2}O} + X_{DEA} G_{DEA,H_{2}O} + X_{CO_{3}^{2-}} G_{CO_{3}^{2-},H_{2}O} + X_{CO_{3}^{2-}} G_{CO_{3}^{2-},H_{2}O} + X_{CO_{3}^{2-}} G_{CO_{3}^{2-},H_{2}O} + X_{CO_{3}^{2-},H_{2}O} + X_{CO_{3}^{2-},$$

$$X_{HCO_3^-}G_{HCO_3^-,H_2O} + X_{K^+}G_{K^+,H_2O}$$

$$Menghitung \sum_{m'} \frac{X_{m'}G_{mm'}}{\sum_{k} X_{k}G_{km'}}$$
Untuk m' = CO₂

$$\frac{X_{m'}G_{mm'}}{\sum_{k} X_{k}G_{km'}} = \frac{X_{CO_{2}}G_{H_{2}O,CO_{2}}}{X_{CO_{2}}G_{CO_{2},CO_{2}} + X_{H_{2}O}G_{H_{2}O,CO_{2}} + X_{PZ}G_{PZ,CO_{2}}}$$

$$\frac{X_{m'}G_{mm'}}{\sum_{k} X_{k}G_{km'}} = \frac{X_{PZ}G_{H_{2}O,PZ}}{X_{CO_{2}}G_{CO_{2},PZ} + X_{H_{2}O}G_{H_{2}O,PZ} + X_{PZ}G_{PZ,PZ}}$$

$$\frac{Y_{PZ}G_{H_{2}O,PZ}}{\sum_{m'} \sum_{k} X_{k}G_{km'}} = \frac{X_{PZ}G_{H_{2}O,PZ}}{X_{CO_{2}}G_{CO_{2},PZ} + X_{H_{2}O}G_{H_{2}O,PZ} + X_{PZ}G_{PZ,PZ}}$$

$$\frac{Y_{PZ}G_{H_{2}O,PZ}}{\sum_{m'} \sum_{k} X_{k}G_{km'}} = \frac{X_{PZ}G_{H_{2}O,PZ}}{X_{CO_{2}}G_{CO_{2},PZ} + X_{H_{2}O}G_{H_{2}O,PZ} + X_{PZ}G_{PZ,PZ}}$$

$$\frac{Y_{PZ}G_{H_{2}O,PZ}}{\sum_{m'} \sum_{k} X_{k}G_{km'}} = \frac{X_{PZ}G_{H_{2}O,PZ}}{X_{CO_{2}}G_{CO_{2},PZ} + X_{H_{2}O}G_{H_{2}O,PZ} + X_{PZ}G_{PZ,PZ}}$$

+ $X DEA^G DEA, DEA + X CO_3^{2-G} CO_3^{2-}, DEA$

+ $X_{HCO_3^-}G_{HCO_3^-,DEA}$ + $X_{K^+}G_{K^+,DEA}$

 $\begin{array}{l} Menghitung \ \tau \ m,m'\\ \underline{Untuk \ m' = CO_2}\\ \tau_{m,m'} &= \tau_{H_2O,CO_2}\\ \underline{Untuk \ m' = PZ}\\ \tau_{m,m'} &= \tau_{H_2O,PZ}\\ \underline{Untuk \ m' = DEA}\\ \tau_{m,m'} &= \tau_{H_2O,DEA} \end{array}$

 $\begin{aligned} & \textit{Menghitung } \sum_{k} X_{k} G_{km'} \tau_{km'} \\ & \underline{\textit{Untuk m'} = CO_{2}} \\ & \sum_{k} X_{k} G_{km'} \tau_{km'} = X_{CO_{2}} G_{CO_{2},CO_{2}} \tau_{CO_{2},CO_{2}} + X_{H_{2}O} G_{H_{2}O,CO_{2}} \tau_{H_{2}O,CO_{2}} + \\ & X_{PZ} G_{PZ,CO_{2}} \tau_{PZ,CO_{2}} + X_{DEA} G_{DEA,CO_{2}} \tau_{DEA,CO_{2}} + \\ & X_{CO_{3}^{2-}} G_{CO_{3}^{2-},CO_{2}} \tau_{CO_{3}^{2-},CO_{2}} + \\ & X_{HCO_{3}} G_{HCO_{3},CO_{3}} \tau_{HCO_{3},CO_{3}} + X_{K^{+}} G_{K^{+},CO_{3}} \tau_{K^{+},CO_{3}} \end{aligned}$

 $\frac{\text{Untuk m'} = PZ}{\sum_{k} X_{k} G_{km'} \tau_{km'}} = X_{CO_{2}} G_{CO_{2},PZ} \tau_{CO_{2},PZ} + X_{H_{2}O} G_{H_{2}O,PZ} \tau_{H_{2}O,PZ} + X_{PZ} G_{PZ,PZ} \tau_{PZ,MDEA} + X_{DEA} G_{DEA,PZ} \tau_{DEA,PZ} + X_{DEA,PZ} + X_{DEA,PZ} \tau_{DEA,PZ} \tau_{DEA,PZ} + X_{DEA,PZ} \tau_{DEA,PZ} \tau_{DEA,PZ} \tau_{DEA,PZ} + X_{DEA,PZ} \tau_{DEA,PZ} \tau_{DEA,$

 $X_{CO_{3}^{2-}}G_{CO_{3}^{2-},PZ}\tau_{CO_{3}^{2-},PZ} + X_{HCO_{3}^{-}}G_{HCO_{3}^{-},PZ}\tau_{HCO_{3}^{-},PZ}$ + $X_{K^{+}}G_{K^{+},PZ}\tau_{K^{+},PZ}$

$$\underbrace{\text{Untuk m' = DEA}}_{\sum_{k} X_{k}} G_{km'} \tau_{km'} = X_{CO_{2}} G_{CO_{2}, DEA} \tau_{CO_{2}, DEA} + X_{H_{2}O} G_{H_{2}O, DEA} \tau_{H_{2}O, DEA} + X_{PZ} G_{PZ, DEA} \tau_{PZ, DEA} + X_{DEA} G_{DEA, DEA} \tau_{DEA} \tau_{DEA} + X_{CO_{3}^{2-}} G_{CO_{3}^{2-}, DEA} \tau_{CO_{3}^{2-}, DEA} + X_{HCO_{3}^{-}, DEA} \tau_{HCO_{3}^{-}, DEA} \tau_{HCO_{3}^{-}, DEA} + X_{K^{+}} G_{K^{+}, DEA} \tau_{K^{+}, DEA}$$

$$Menghitung \sum_{k} X_{k}G_{km'}$$

$$\underline{Untuk \ m' = CO_{2}}$$

$$\sum_{k} X_{k}G_{km'} = X_{CO_{2}}G_{CO_{2},CO_{2}} + X_{H_{2}O}G_{H_{2}O,CO_{2}} + X_{PZ}G_{PZ,CO_{2}} + X_{DEA}G_{DEA,CO_{2}} + X_{CO_{3}^{2-}}G_{CO_{3}^{2-},CO_{2}} + X_{HCO_{3}^{-}}G_{HCO_{3}^{-},CO_{2}} + X_{K^{+}}G_{K^{+},CO_{2}}$$

 $\frac{\text{Untuk m'} = PZ}{\sum_{k} X_{k} G_{km'}} = X_{CO_{2}} G_{CO_{2},PZ} + X_{H_{2}O} G_{H_{2}O,PZ} + X_{PZ} G_{PZ,PZ} + X_{DEA} G_{DEA,PZ} + X_{CO_{3}^{2-}} G_{CO_{3}^{2-},PZ} + X_{HCO_{3}^{-}} G_{HCO_{3}^{-},PZ} + X_{K^{+}} G_{K^{+},PZ}$

$$\frac{\text{Untuk m'} = \text{DEA}}{\sum_{k} X_{k} G_{km'}} = X_{CO_{2}} G_{CO_{2},DEA} + X_{H_{2}O} G_{H_{2}O,DEA} + X_{PZ} G_{PZ,DEA} + X_{DEA} G_{DEA,DEA} + X_{CO_{3}^{2-}} G_{CO_{3}^{2-},DEA} + X_{HCO_{3}^{-}} G_{HCO_{3}^{-},DEA} + X_{K^{+}} G_{K^{+},DEA}$$

$$Menghitung \sum_{c} \sum_{a} \frac{Y_a X_c G_{mc,ac}}{\sum_{k} X_k G_{ka,ac}}$$

$$\frac{\sum_{c} \sum_{a} \frac{Y_{a} X_{c} G_{mc,ac}}{\sum_{k} X_{k} G_{ka,ac}} = \frac{Y_{CO_{3}^{2-}} X_{K^{+}} G_{H_{2}O-K^{+},CO_{3}^{2-}-K^{+}}}{X_{CO_{2}} G_{CO_{2}-CO_{3}^{2-},CO_{3}^{2-}-K^{+}} + X_{H_{2}O} G_{H_{2}O-CO_{3}^{2-},CO_{3}^{2-}-K^{+}}}$$

$$+ X_{PZ}G_{PZ-CO_3^2,CO_3^2-K^+} + X_{DEA}G_{DEA-CO_3^2,CO_3^2-K^+}$$

$$\frac{\text{Untuk } a = \text{HCO}_{3}}{\sum_{c} \sum_{a} \frac{Y_{a} X_{c} G_{mc,ac}}{\sum_{k} X_{k} G_{ka,ac}}} = \frac{Y_{HCO_{3}} X_{K^{+}} G_{H_{2}O-K^{+},HCO_{3}-K^{+}}}{X_{CO_{2}} G_{CO_{2}-HCO_{3},HCO_{3}-K^{+}} + X_{H_{2}O} G_{H_{2}O-HCO_{3},HCO_{3}-K^{+}}}$$

$$+ X_{PZ}G_{PZ-HCO_{3}^{-},HCO_{3}^{-}-K^{+}}X_{DEA}G_{DEA-HCO_{3}^{-},HCO_{3}^{-}-K^{+}}$$

$$Menghitung \tau mc,ac$$

$$\underline{Untuk a = CO_3^{=}}$$

$$\tau_{mc,ac} = \tau_{H_2O-K^+,CO_3^{2-}-K^+}$$

$$\underline{Untuk a = HCO_3^{-}}$$

$$\tau_{mc,ac} = \tau_{H_2O-K^+,HCO_3^{-}-K^+}$$

$$Menghitung \sum_k X_k G_{kc,ac} \tau_{kc,ac}$$

$$Untuk a = CO_3^{=}$$

$$\sum_{k} X_{k} G_{kc,ac} \tau_{kc,ac} = X_{CO_{2}} G_{CO_{2}-K^{+},CO_{3}^{2^{-}}-K^{+}} \tau_{CO_{2}-K^{+},CO_{3}^{2^{-}}-K^{+}} + X_{H_{2}O} G_{H_{2}O-K^{+},CO_{3}^{2^{-}}-K^{+}} \tau_{H_{2}O+-K^{+},CO_{3}^{2^{-}}-K^{+}} + X_{PZ} G_{PZ-K^{+},CO_{3}^{2^{-}}-K^{+}} \tau_{PZ-K^{+},CO_{3}^{2^{-}}-K^{+}} + X_{DEA} G_{DEA-K^{+},CO_{3}^{2^{-}}-K^{+}} \tau_{DEA-K^{+},CO_{3}^{2^{-}}-K^{+}} + X_{H_{2}O} G_{H_{2}O-K^{+},HCO_{3}^{-}-K^{+}} \tau_{CO_{2}-K^{+},HCO_{3}^{-}-K^{+}} + X_{H_{2}O} G_{H_{2}O-K^{+},HCO_{3}^{-}-K^{+}} \tau_{H_{2}O+-K^{+},HCO_{3}^{-}-K^{+}} + X_{DEA} G_{DEA-K^{+},HCO_{3}^{-}-K^{+}} \tau_{DEA-K^{+},HCO_{3}^{-}-K^{+}} + X_{DEA-K^{+},HCO_{3}^{-}-K^$$

$$Menghitung \sum_{k} X_{k} G_{kc,ac}$$

$$\underbrace{Untuk \ a = CO_{3}^{=}} \sum_{k} X_{k} G_{kc,ac} = X_{CO_{2}} G_{CO_{2}-K^{+},CO_{3}^{2}-K^{+}} + X_{H_{2}O} G_{H_{2}O-K^{+},CO_{3}^{2}-K^{+}} + X_{PZ} G_{PZ-K^{+},CO_{3}^{2}-K^{+}} + X_{DEA} G_{DEA-K^{+},CO_{3}^{2}-K^{+}} + K_{DEA} G_{DEA-K^{+},C$$

$$\frac{\text{Untuk } a = \text{HCO}_{3}}{\sum_{k} X_{k} G_{kc,ac}} = X_{CO_{2}} G_{CO_{2}-K^{+},HCO_{3}^{-}-K^{+}} + X_{H_{2}O} G_{H_{2}O-K^{+},HCO_{3}^{-}-K^{+}} + X_{PZ} G_{PZ-K^{+},HCO_{3}^{-}-K^{+}} + X_{DEA} G_{DEA-K^{+},HCO_{3}^{-}-K^{+}} + M_{CO} G_{M_{2}O-K^{+},HCO_{3}^{-}-K^{+}} + M_{CO} G_{M_{2}O-K^{+},K^{+},HCO_{3}^{-}-K^{+}} + M_{CO} G_{M_{2}O-K^{+},K^{+},HCO_{3}^{-}-K^{+}} + M_{CO} G_{M_{2}O-K^{+},K^{+},HCO_{3}^{-}-K^{+}} + M_{CO} G_{M_{2}O-K^{+},K^{+$$

$$\frac{1}{X_{PZ}G_{PZ-CO_{3}^{2-},K^{+}-CO_{3}^{2-}}X_{DEA}G_{DEA-CO_{3}^{2-},K^{+}-CO_{3}^{2-}}}{\sum_{a c} \sum_{c} \frac{Y_{c}X_{a}G_{ma,ca}}{\sum_{k} X_{k}G_{ka,ca}}}{= \frac{Y_{K^{+}}X_{HCO_{3}^{-}}G_{H_{2}O-HCO_{3}^{-},K^{+}-HCO_{3}^{-}}}{X_{CO_{2}}G_{CO_{2}-HCO_{3}^{-},K^{+}-HCO_{3}^{-}} + X_{H_{2}O}G_{H_{2}O-HCO_{3}^{-},K^{+}-HCO_{3}^{-}}}}$$

$$Menghitung \sum_{k} X_{k} G_{ka,ca} \tau_{ka,ca}$$

$$Untuk a = CO_{3}^{=}$$

$$\sum_{k} X_{k} G_{ka,ca} \tau_{ka,ca} = X_{CO_{2}} G_{CO_{2}-CO_{3}^{2-},K^{+}-CO_{3}^{2-}} \tau_{CO_{2}-CO_{3}^{2-},K^{+}-CO_{3}^{2-}} \tau_{H_{2}O-CO_{3}^{2-},K^{+}-CO_{3}^{2-}} + X_{H_{2}O} G_{H_{2}O-CO_{3}^{2-},K^{+}-CO_{3}^{2-}} \tau_{H_{2}O-CO_{3}^{2-},K^{+}-CO_{3}^{2-}} + X_{PZ} G_{PZ-CO_{3}^{2-},K^{+}-CO_{3}^{2-}} \tau_{PZ-CO_{3}^{2-},K^{+}-CO_{3}^{2-}} + X_{DEA} G_{DEA-CO_{3}^{2-},K^{+}-CO_{3}^{2-}} \tau_{DEA-CO_{3}^{2-},K^{+}-CO_{3}^{2-}} + X_{DEA} G_{DEA-CO_{3}^{2-},K^{+}-CO_{3}^{2-}} \tau_{DEA-CO_{3}^{2-},K^{+}-CO_{3}^{2-}} + X_{H_{2}O} G_{H_{2}O-HCO_{3}^{-},K^{+}-HCO_{3}^{-}} \tau_{DEA-CO_{3}^{2-},K^{+}-HCO_{3}^{-}} + X_{H_{2}O} G_{H_{2}O-HCO_{3}^{-},K^{+}-HCO_{3}^{-}} \tau_{H_{2}O-HCO_{3}^{-},K^{+}-HCO_{3}^{-}} + X_{DEA} G_{DEA-HCO_{3}^{-},K^{+}-HCO_{3}^{-}} \tau_{DEA-HCO_{3}^{-},K^{+}-HCO_{3}^{-}} \tau_{DEA-HCO_{3}^{-},K^{+}-HCO_{3}^{-}} \tau_{DEA-HCO_{3}^{-},K^{+}-HCO_{3}^{-}} + X_{DEA} G_{DEA-HCO_{3}^{-},K^{+}-HCO_{3}^{-}} \tau_{DEA-HCO_{3}^{-},K^{+}-HCO_{3}^{-}} \tau_{DEA-HCO_{3}^{-},K^{+}-HCO_{3}^$$

$$\sum_{k} X_{k} G_{ka,ca} = X_{CO_{2}} G_{CO_{2} - CO_{3}^{2^{-}}, K^{+} - CO_{3}^{2^{-}}} + X_{H_{2}O} G_{H_{2}O - CO_{3}^{2^{-}}, K^{+} - CO_{3}^{2^{-}}} + X_{PZ} G_{PZ - CO_{3}^{2^{-}}, K^{+} - CO_{3}^{2^{-}}} + X_{DEA} G_{DEA - CO_{3}^{2^{-}}, K^{+} - CO_{3}^{2^{-}}}$$

Untuk $a = HCO_3^{-1}$

$$\sum_{k} X_{k} G_{ka,ca} = X_{CO_{2}} G_{CO_{2}-HCO_{3}^{-},K^{+}-HCO_{3}^{-}} + X_{PZ} G_{PZ-HCO_{3}^{-},K^{+}-HCO_{3}^{-}}$$

$$X_{H_{2}O} G_{H_{2}O-HCO_{3}^{-},K^{+}-HCO_{3}^{-}} + X_{DEA} G_{DEA-HCO_{3}^{-},K^{+}-HCO_{3}^{-}}$$

Perhitungan koefisien aktivitas H_2O dapat dilihat pada Tabel A.30 dan untuk perhitungan koefisien aktivitas CO_2 dapat dilihat pada Tabel A.31.

No.	Persamaan E-NRTL	Hasil Perhitungan				
1a	$\sum_{j} X_{j} G_{jm} \tau_{jm}$	0,660				
1b	$\sum_{k} X_{k} G_{km}$		0,515			
1c	1a/1c		1,283			
		m' = CO ₂	m' = DEA	m' = DEA		
2a	$\sum_{m' \sum_{k} X_{k} G_{km'}}^{X_{m'} G_{mm'}}$	8,46E- 06	0,106032 <mark>5</mark>	0,0825		
2b	τm,m'	1,605	0,404	-8,649		
2c	$\Sigma_k X_k G_{km'} \tau_{km'}$	0,390	2,297	-25,7561		
2d	$\Sigma_k X_k G_{km'} \tau_{km'}$	19,424	0,482	3,080263		
2e	$2a\left(2b-\frac{2c}{2d}\right)$	-0,226	-0,042388	1,4E-01		
2f	Jumlah 2e		-0,268	V.R.S.		
		$a = CO_3^{=}$	$a = HCO_3^-$	PV - 44		

Tabel A.30 Perhitungan Koefisien Aktivitas H₂O

No.	Persamaan E-NRTL	1	Hasil Perhitungan			
3a	$\sum_{c a} \frac{Y_a X_c G_{mc,ac}}{\sum_k X_k G_{ka,ac}} $ 0,000		0,00	0	5	
3b	τ mc,ac	11	4,151	159,9	54	1
3c	$\Sigma_k X_k G_{kc,ac} \tau_{kc,ac}$	0,	,013	1,12	23	1
3d	$\sum_{k} X_{k} G_{kc,ac}$	0,	.049	1,16E	-02	
3e	$3a\left(3b-\frac{3c}{3d}\right)$	0,	0,051 0,015		.5	2
3f	Jumlah 3e		TYTE	0,0	67	177
315		a =	$\text{CO}_3^=$	a = HC	CO_3^-	
4a	$\sum_{a} \sum_{c} \frac{Y_c X_a G_{ma,ca}}{\sum_k X_k G_{ka,ca}}$	-0	,001	-0,08	33	G
4b	τ ma,ca	80),973	,973 28,874		
4c	$\Sigma_k X_k G_{ka,ca} \tau_{ka,ca}$		0,8	0,70)1	-
4d	$\sum_{k} X_{k} G_{ka,ca}$	7	0,1	0	<mark>,044</mark>	1
4e	$4a\left(4b - \frac{4c}{4d}\right)$		-0,05	7 -1	l,068	
4f	Jumlah 4e	5	and	-1	,125	
5	$\ln \gamma \frac{lc}{H_2 O} = 1c + 2f + 3f +$	4 <i>f</i>	-0,511			
6	$\ln \gamma \frac{PHD}{H_2O} = \ln \gamma \frac{Born}{H_2O} = 0$		0,000		1	
7	γ _{H2} O	24	0.600		J	
8	P_{H_2O}	773.67		Y		

Tabel A.31 Perhitungan Koefisien Aktivitas H₂O (lanjutan)

(Halaman ini sengaja dikosongkan)

EKSPERIMEN DAN ESTIMASI PARAMETER KESETIMBANGAN FASA UAP-CAIR SISTEM LARUTAN ELEKTROLIT CO₂-K₂CO₃-(PIPERAZINE+DEA)-H₂O

Nama Mahasiswa

Jurusan Dosen Pembimbing

1) Vito Naufal Priyo (2311100133)
2) Bagus Arif Wisnuaji (2311100146)
Teknik Kimia, FTI-ITS
Dr. Ir. Kuswandi, DEA
Prof. Dr. Ir. Gede Wibawa, M.Eng

ABSTRAK

Proses absorpsi gas CO₂ dengan menggunakan larutan K₂CO₃ dan promotor seperti DEA dan Piperazine sangat luas dipakai di industri kimia. Data kesetimbagan fase uap-cair sistem CO₂-K₂CO₃-(PZ+DEA)-H₂O dibutuhkan untuk perancangan yang rasional dan optimal dari unit CO₂ removal. Penelitian ini bertujuan untuk mendapatkan data kesetimbangan fasa uap-cair CO_2 didalam larutan K_2CO_3 dengan promotor campuran Piperazine+DEA dengan komposisi 30% K2CO3, variasi PZ-DEA dengan total 5% berat, dan variasi konsentrasi umpan CO₂ 5-20% pada temperatur 30-50°C. Solubilitas gas tidak dapat diukur secara langsung dalam sistem ini, karena akan terjadi reaksi antara pelarut dan gas CO₂. Metode analogi N₂O digunakan untuk mengestimasi semua properti CO₂ terhadap sistem CO₂-K₂CO₃-(PZ+DEA)-H₂O. Hasil dari eksperimen menunjukkan bahwa harga konstanta Henry yang meningkat seiring dengan kenaikan suhu yakni 3179,23-4410,41 kPa.m³/kmol. Pada konsentrasi CO₂ umpan dan promotor yang sama, kenaikan suhu operasi dapat menaikkan tekanan parsial gas CO₂ dalam larutan K₂CO₃ 30% dengan promotor PZ-DEA yakni sebesar 517,34-1462,30 Pa. Meningkatnya konsentrasi CO₂ dalam gas umpan dapat meningkatkan besarnya CO₂ loading rata-rata

sebesar 11,81% untuk 10% CO₂ umpan dan 36,43% untuk 20% CO₂ umpan. Penggunaan model E-NRTL memberikan hasil dengan *Average Absolute Relative Deviation (AARD)* sebesar 3,38%.

EXPERIMENT AND PARAMETER ESTIMATION OF VAPOR-LIQUID EQUILIBRIA FOR ELECTROLYTE SOLUTION OF CO₂-K₂CO₃- (PIPERAZINE+DEA)-H₂O

Student's Name

Department

Advisors

1) Vito Naufal Priyo (2311100133)
2) Bagus Arif Wisnuaji (2311100146)
: Chemical Engineering, FTI-ITS
: Dr. Ir. Kuswandi, DEA Prof. Dr. Ir. Gede Wibawa, M.Eng

ABSTRACT

The process of absorption of CO_{2} by chemical reactions taking K_2CO_3 (potassium carbonate) solution and activator materials such as DEA and Piperazine is widely used in the chemical industry. Data of equilibria vapor-liquid phase CO₂- K_2CO_3 -(PZ+DEA)-H₂O system needed for a rational and optimum design of CO₂ removal unit. This study aims to determine the solubility of CO₂ in the experimental solution of K_2CO_3 with a mixture promoter Piperazine+DEA mixture with a composition of 30 % K₂CO₃, variation of total 5% PZ-DEA, and variation of CO_2 concentration in feed 5-20% at a temperature of 30-50°C. Gas solubility cannot be measured directly in this system, because there will be a reaction between the solvent and gas. N_2O analogy method is used to estimate all the properties of CO₂ in CO₂-K₂CO₃-(PZ+DEA)-H₂O system. The results of this experiment show that the higher the temperature, the higher the value of Henry constant about 3179,23-4410,41 kPa.m³/kmol. At the same CO₂ feed and promotor, increasing the temperature makes partial pressure of CO₂ increase at 517,34-1462,30 Pa. The increasing of CO₂ concentration in feed can increase the amount of CO2 loading with the average of 11,81% for 10% CO₂ and 36,43% for 20%CO₂. Using E-NRTL model gives a result with Average Absolute

Relative Deviation (AARD) about 3,38%.

Segala puji dan syukur atas kehadirat Tuhan YME karena berkat Rahmat dan karunia-Nya yang telah memberi segala kemudahan dan kekuatan kepada penulis, sehingga penulis dapat menyelesaikan penyusunan Tugas Akhir Skripsi yang berjudul "EKSPERIMEN DAN ESTIMASI PARAMETER KESETIMBANGAN FASA UAP-CAIR SISTEM LARUTAN ELEKTROLIT CO₂-K₂CO₃-(PIPERAZINE+DEA)-H₂O" yang merupakan salah satu syarat kelulusan bagi mahasiswa Teknik Kimia FTI-ITS Surabaya.

Keberhasilan penulisan Tugas Akhir Skripsi ini tidak lepas dari dorongan dan bimbingan dari berbagai pihak. Untuk itu dalam kesempatan ini penulis mengucapkan terima kasih yang setulus-tulusnya kepada :

- 1. Bapak Dr. Ir. Kuswandi, DEA selaku Dosen Pembimbing Tugas Akhir Skripsi atas bimbingan dan saran yang telah diberikan.
- 2. Bapak Prof. Dr. Ir. Gede Wibawa, M.Eng. selaku Dosen Pembimbing Tugas Akhir Skripsi dan Kepala Laboratorium Thermodinamika.
- 3. Bapak dan Ibu Dosen Penguji atas saran yang telah diberikan.
- 4. Bapak Prof. Dr. Ir. Tri Widjaja, M.Eng., selaku Ketua Jurusan Teknik Kimia, Fakultas Teknologi Industri, Institut Teknologi Sepuluh Nopember.
- 5. Bapak dan Ibu Dosen pengajar serta seluruh karyawan Jurusan Teknik Kimia.
- 6. Orang Tua dan keluarga kami yang telah banyak memberikan dukungan baik moral maupun spiritual.
- 7. Teman-teman seperjuangan di Laboratorium Thermodinamika Teknik Kimia yang mengagumkan, terima kasih untuk segala support, bantuan dan kerjasamanya.
- 8. Teman-teman angkatan 2011 yang telah memberikan banyak support dan bantuan.

Semua pihak yang telah membantu penyelesaian Tugas Akhir Skripsi ini yang tidak dapat disebutkan satu persatu.Semoga segala kebaikan dan keikhlasan yang telah diberikan mendapat balasan dari Tuhan YME. Penulis mengharapkan saran dan kritik yang bersifat membangun demi kesempurnaan dan untuk penelitian di masa yang akan datang.

Akhirnya, semoga tugas akhir ini dapat memberikan kontribusi yang bermanfaat bagi Penulis dan Pembaca khususnya.

Surabaya, Juli 2015 Penyusun

DAFTAR ISI

Halaman	Iudul	
Lembar	Pengesahan	iii
Abstrak		iv
Abstract		vi
Kata Pen	gantar	viii
Daftar Is		x
Daftar G	ambar	xii
Daftar Ta	abel	xiv
BABI	PENDAHULUAN	
	1.1 Latar Belakang	
	1.2 Perumusan Masalah	5
	1.3 Tujuan Penelitian	6
	1.4 Manfaat Penelitian	6
BAB II	TINJAUAN PUSTAKA	
	2.1 Metode Absorpsi	7
	2.2 Kesetimbangan Fase Uap-Cair	8
	2.3 Solubilitas Fisik	10
	2.4 Kesetimbangan Reaksi Kimia	12
	2.5 Model Elektrolit Non Random Two Liquid	
	(E-NRIL)	14
	2.0 Parameter Interaksi Pada Model ENKIL	23
	2.7 Melode OKO (Generulizea Reaucea Gradiant) Non Linear	24
	Grudent) Non Einear	24
BAB III	METODOLOGI PENELITIAN	
	3.1 Deskripsi Penelitian	27
	3.2 Peralatan Percobaan	28
	3.3 Bahan Percobaan	29
	3.4 Variabel Percobaan	29
	3.5 Pelaksanaan Percobaan	29
	3.6 Evaluasi Data	33

BAB IV	HASIL DAN PEMBAHASAN	
	4.1 Validasi Peralatan Penelitian	37
	4.2 Hasil Eksperimen dan Pembahasan	38
	4.3 Korelasi dengan Model E-NRTL	44
BAB V	KESIMPULAN	51
DAFTA	R PUSTAKA	53
DAFTA	R NOTASI	57
APEND	IKS	59
LAMPII		109

DAFTAR TABEL

Tabel 4.1	Hasil Validasi Peralatan Penelitian	37
Tabel 4.3	Hasil Perhitungan Tekanan Parsial CO2 untuk 0- 5% PZ-DEA	45
Tabel 4.4	Hasil Perhitungan Tekanan Parsial CO2 untuk 1- 4% PZ-DEA	46
Tabel 4.5	Hasil Perhitungan Tekanan Parsial CO2 untuk 2- 3% PZ-DEA	46
Tabel 4.6	Hasil Perhitungan Tekanan Parsial CO2 untuk 3- 2% PZ-DEA	47
Tabel A.1	Perhitungan Massa Tiap Komponen Untik 1% Massa PZ dan 4% Massa DEA	59
Tabel A.2	Perhitungan Mol N ₂ O Terabsorb %PZ dan %DEA	60
Tabel A.3	Perhitungan Mol H _{N20} dan H _{C02} Untuk %PZ dan %DEA	63
Tabel A.4	Nilai Konstanta C pada Persamaan	66
Tabel A.5	Hasil Perhitungan Konstanta Kesetimbangan Pada Analisa Awal Untuk 5% Mol CO ₂ pada	00
Tabel A 6	suhu 40°C Nilai Konstanta C pada Persamaan	67
1400111.0	Kesetimbangan	69
Tabel A.7	Hasil Perhitungan Konstanta Kesetimbangan Pada Analisa Akhir Untuk 5% Mol CO ₂ pada	
	suhu 40°C	70
Tabel A.8	Hasil Perhitungan Mol dan Komposisi di Liquid Untuk 5% Mol CO ₂ pada suhu 40° C	75
Tabel A.9	Hasil Perhitungan Mol dan Komposisi (Fraksi Mol) di Liquid Untuk 0% PZ dan 5% DFA	
	Komposisi Gas CO ₂ 5%	76

Tabel A.10	Hasil Perhitungan Mol dan Komposisi (Fraksi	
	Mol) di Liquid Untuk 1% PZ dan 4% DEA	
	Komposisi Gas CO ₂ 5%	77
Tabel A.11	Hasil Perhitungan Mol dan Komposisi (Fraksi	
	Mol) di Liquid Untuk 2% PZ dan 3% DEA	
	Komposisi Gas CO ₂ 5%	77
Tabel A.12	Hasil Perhitungan Mol dan Komposisi (Fraksi	
	Mol) di Liquid Untuk 3% PZ dan 2% DEA	
	Komposisi Gas CO ₂ 5%	78
Tabel A.13	Hasil Perhitungan Mol dan Komposisi (Fraksi	
	Mol) di Liquid Untuk 0% PZ dan 5% DEA	
	Komposisi Gas CO ₂ 10%	78
Tabel A.14	Hasil Perhitungan Mol dan Komposisi (Fraksi	
	Mol) di Liquid Untuk 1% PZ dan 4% DEA	
	Komposisi Gas CO ₂ 10%	79
Tabel A.15	Hasil Perhitungan Mol dan Komposisi (Fraksi	
	Mol) di Liquid Untuk 2% PZ dan 3% DEA	
	Komposisi Gas CO ₂ 10%	79
Tabel A.16	Hasil Perhitungan Mol dan Komposisi (Fraksi	
	Mol) di Liquid Untuk 3% PZ dan 2% DEA	
	Komposisi Gas CO ₂ 10%	80
Tabel A.17	Hasil Perhitungan Mol dan Komposisi (Fraksi	
	Mol) di Liquid Untuk 0% PZ dan 5% DEA	
	Komposisi Gas CO ₂ 20%	80
Tabel A.18	Hasil Perhitungan Mol dan Komposisi (Fraksi	
	Mol) di Liquid Untuk 1% PZ dan 4% DEA	
	Komposisi Gas CO ₂ 20%	81
Tabel A.19	Hasil Perhitungan Mol dan Komposisi (Fraksi	
	Mol) di Liquid Untuk 2% PZ dan 3% DEA	
	Komposisi Gas CO ₂ 20%	81
Tabel A.20	Hasil Perhitungan Mol dan Komposisi (Fraksi	
	Mol) di Liquid Untuk 3% PZ dan 2% DEA	
	Komposisi Gas CO ₂ 20%	82
Tabel A.21	Hasil Perhitungan C _i Untuk 1% PZ 4% DEA	83
Tabel A.22	Data Nonrandomness Parameter	84

Tabel A.23	Data Konstanta Binary Interaction Parameter	
	antar Molekul-Pasangan ion dan Pasangan Ion-	
	Molekul untuk Sistem PZ-DEA	85
Tabel A.24	Perhitungan Binary Interaction Parameter	
	(Molekul:CO ₂)	93
Tabel A.25	Perhitungan Binary Interaction Parameter	
	(Molekul:H ₂ O)	94
Tabel A.26	Perhitungan Binary Interaction Parameter	
	(Molekul:DEA)	95
Tabel A.27	Perhitungan Binary Interaction Parameter	
	(Molekul:PZ)	96
Tabel A.28	Data Konstanta Binary Interaction Parameter	
	antar Molekul	97
Tabel A.29	Perhitungan Binary Interaction Parameter antar	
	Molekul	99
Tabel A.30	Perhitungan Koefisien Aktivitas H ₂ O	106

DAFTAR GAMBAR

Gambar 3.1	Skema Peralatan Solubilitas CO ₂	28
Gambar 3.2	Diagram Alir Metodologi Penelitian	31
Gambar 3.3	Diagram Alir Perhitungan Parameter dengan	
	Persamaan E-NRTL	32
Gambar 4.1	Hasil Validasi Peralatan Eksperimen	38
Gambar 4.2	Solubilitas CO ₂ pada 30% K ₂ CO ₃ dengan	
	Promotor PZ-DEA	39
Gambar 4.3	Pengaruh Suhu terhadap CO ₂ Terabsorp	
	dengan Konsentrasi Gas Umpan 5% CO ₂	42
Gambar 4.4	Pengaruh Suhu terhadap CO ₂ Terabsorp	
	dengan Konsentrasi Gas Umpan 10% CO ₂	42
Gambar 4.5	Pengaruh Suhu terhadap CO ₂ Terabsorp	
	dengan Konsentrasi Gas Umpan 5% CO ₂	43
Gambar 4.6	Hubungan Tekanan Parsial $CO_2(P_{CO_2})$	
	Eksperimen dan Korelasi dengan CO ₂	
	Loading Promotor 0-5% PZ-DEA	48
Gambar 4.7	Hubungan Tekanan Parsial $CO_2(P_{CO_2})$	
	Eksperimen dan Korelasi dengan CO ₂	
	Loading Promotor 1-4% PZ-DEA	48
Gambar 4.8	Hubungan Tekanan Parsial $CO_2(P_{CO_2})$	
	Eksperimen dan Korelasi dengan CO2	
	Loading Promotor 2-3% PZ-DEA	49
Gambar 4.9	Hubungan Tekanan Parsial CO ₂ (P_{CO})	5
	Eksperimen dan Korelasi dengan CO	
	Logding Promotor 3, 2% PZ DEA	/10
	Louding Homotor 5-270 FL-DEA	49

DAFTAR NOTASI

A _φ	Parameter Debye-Huckel
C	Konsentrasi (mol/L)
D_i	Konstanta Dielektrik spesies i
D_s	Konstanta Dielektrik pelarut
D_m	Konstanta Dielektrik campuran pelarut
D_w	Konstanta Dielektrik air
е	Muatan elektron
G	Energi Gibbs
G^{ex}	Energi Gibbs ekses
G^{id}	Energi Gibbs ideal
ΔG^0	Perubahan energi Gibbs
H_{CO2}	Konstanta Henry CO ₂ di larutan
H°_{CO2}	Konstanta Henry CO ₂ di air
H _{N2O}	Konstanta Henry N ₂ O di larutan
H^{o}_{N2O}	Konstanta Henry N ₂ O di air
ΔH^0	Perubahan entalpy reaksi standard
I_x	Daya ionik
k	Konstanta Boltzmann
K	Konstanta kesetimbangan
No	Bilangan Avogadro
P^s_w	Tekanan uap air (Pa)
Р	V Tekanan total (Pa)
p	Tekanan parsial (Pa)
R	Konstanta gas ideal (J.K ⁻¹ .mol ⁻¹)
T	Temperatur (K)
$\overline{v}_{mw}^{\infty}$	Parsial molar volume <i>solute</i> m (m ³)
v_w^l	Parsial molar volume untuk air murni (m ³)
Ÿ	Volume (m ³)
x	Fraksi komponen di liquid
v	Fraksi komponen di vapor
Z	Muatan ion

Huruf Latin

BIODATA PENULIS

VITO NAUFAL PRIYO adalah anak pertama dari dua bersaudara pasangan Bapak Yuswanto dan Ibu Evie. Penulis dilahirkan di Jakarta pada tanggal 15 November 1993. Jenjang pendidikan yang ditempuh dimulai dari TK Islam Pondok Duta, SD Islam Pondok Duta, SMPN 103 Jakarta, dan SMAN 39 Jakarta. Selepas lulus SMA, penulis melanjutkan kuliah tahap sarjana di Jurusan Teknik Kimia Institut Teknologi Sepuluh Nopember (ITS)

Surabaya dan tergabung dalam angkatan 2011 (K-51). Penulis menunjukkan kegigihan dalam menempuh perkuliahan dengan semangat tinggi dan pantang menyerah. Selain aktif sebagai mahasiswa, penulis juga aktif dalam berbagai organisasi kemahasiswaan yaitu sebagai staff Competency Development HIMATEKK FTI-ITS dan staff Chemical Departement Engineering Photography (CEPOT). Dalam kegiatan akademis, penulis pernah kerja praktik di Total E&P Indonesie Balikpapan. Pada tahun terakhir perkuliahan, penulis memilih Laboratorium Thermodinamika sebagai laboratorium vang meniadi spesialisasinya. Penulis menyelesaikan tugas akhir "Pra Desain Pabrik Liquefied Natural Gas (LNG) dari Coal Bed Methane" pada semester 7 dan skripsi pada semester 8 dengan judul "Eksperimen dan Estimasi Parameter Kesetimbangan Fasa Uap-Cair Sistem Elektrolit CO₂-K₂CO₃-(Piperazine+DEA)-H₂O" dengan Dosen Pembimbing Dr. Ir. Kuswandi, DEA dan Prof. Dr. Ir. Gede Wibawa, M.Eng. Penulis menerima kritik dan saran yang dapat dikirimkan lewat email: vitonaufal@gmail.com.

(Halaman ini sengaja dikosongkan)

BIODATA PENULIS

Bagus Arif Wisnuaji, lahir di Denpasar pada tanggal 22 Agustus 1993. merupakan anak pertama dari pasangan bapak Bagus Nyoman Putra dan Ibu Diah Sintawati. Penulis memulai pendidikan di SD Cipta Dharma Denpasar, kemudian melanjutkan sekolah ke SMP Negeri 1 Denpasar dan SMA Negeri 4 Denpasar. Setelah lulus SMA, penulis melanjutkan kuliah tahap sarjana di Jurusan Teknik Kimia Institut Teknologi Sepuluh Nopember (ITS) Surabaya, dan

tergabung dalam angkatan 2011 (K-51). Semasa kuliah, penulis juga aktif dalam kegiatan organisasi kemahasiswaan seperti staff Social Development (SOSDEV) HIMATEKK FTI-ITS dan Ketua Teknik Kimia Basketball Club (TBC). Dalam kegiatan akademis, penulis pernah kerja praktik di Total E&P Indonesie, Balikpapan pada bulan Juli-Agustus 2014. Memasuki tahun terakhir diawali bergabung anggota dengan sebagai Laboratorium Themodinamika Teknik Kimia ITS. Penulis menyelesaikan "Pra Desain Pabrik Liquiefied Natural Gas (LNG) dari Coal Bed Methane" pada semester 7 dan skripsi pada semester 8 dengan judul "Eksperimen dan Estimasi Parameter Kesetimbangan Fasa Uap-Cair Sistem Elektrolit CO₂-K₂CO₃-(Piperazine+DEA)" dengan Dosen Pembimbing bapak Dr. Ir. Kuswandi, DEA dan bapak Prof. Dr. Ir. Gede Wibawa, M.Eng. Penulis sangat terbuka dalam menerima kritik dan saran, silakan menghubungi penulis lewat email: arif.bagus7@gmail.com

BAB I PENDAHULUAN

1.1 Latar Belakang

Indonesia merupakan salah satu negara penghasil gas alam papan atas di dunia. Data BP Statistics tahun 2014 menunjukkan cadangan gas alam terbukti Indonesia mencapai 103,3 TCF. Dengan angka cadangan tersebut menempatkan Indonesia berada pada posisi ke-14 pemilik cadangan terbesar di dunia. Bahkan, di kawasan Asia, Indonesia merupakan pemilik cadangan gas terbesar kedua setelah China yang memiliki 115.6 TCF. Kendati memiliki cadangan gas yang cukup besar, namun gas alam belum digunakan secara maksimal di Indonesia. Sebagian besar gas alam tersebut dijual ke pasar ekspor. Untuk konsumsi domestik, proporsi pemakaian gas alam hanya mencakup 17% dari total kebutuhan energi Indonesia. Mengacu pada tingkat produksi sekarang, cadangan gas alam Indonesia bisa bertahan untuk jangka waktu 50 tahun. Dengan tingkat cadangan yang masih melimpah dan berharga jauh lebih murah ketimbang bahan bakar minyak (BBM), salah satu solusi yang ditawarkan oleh pemerintah adalah menerapkan kebijakan konversi BBM ke gas secara masif. Langkah ini diperkirakan akan berdampak signifikan bagi pengurangan subsidi BBM yang selama ini selalu membebani anggaran negara (Dudley, 2014).

Kualitas gas alam penting untuk diperhatikan, gas alam mengandung kontaminan berupa H_2O , N_2 , Hg, CO_2 dan H_2S . Dalam hal ini, penghilangan kontaminan atau pemurnian gas alam memiliki peranan penting dalam penentuan harga produksi gas alam yang dihasilkan, sehingga dibutuhkan teknologi pemurnian gas alam yang efisien dan ekonomis. Permasalahan utama adalah kandungan CO_2 , dikarenakan CO_2 termasuk kategori gas yang bersifat asam (*acid gas*). Adanya gas CO_2 dapat menyebabkan korosi pada utilitas pabrik dan sistem perpipaannya, dikarenakan CO_2 dan uap air dalam gas alam akan

1

menghasilkan senyawa Carbonic Acid (H₂CO₃) yang sangat korosif. Disamping itu gas CO₂ dapat mengurangi nilai kalor dari gas alam, yang akan menyebabkan penurunan harga produk gas alam. Pada kilang LNG, gas CO2 harus dihilangkan untuk mencegah pembekuan atau pembuntuan sewaktu proses pendinginan. Dalam pabrik sintesa ammonia, CO₂ harus dipisahkan dari gas proses untuk menghindari keracunan promotor sintesa ammonia. Namun demikian, gas CO₂ yang telah dipisahkan tersebut diupayakan untuk ditangkap agar dapat dimanfaatkan dan mengurangi penumpukan Gas Rumah Kaca di atmosfer yang menyebabkan pemanasan global. Namun hanya sebagian kecil saja CO₂ yang dimanfaatkan, diantaranya adalah sebagai bahan baku pembuatan urea, industri minuman berkarbonat (minuman ringan), industri logam dan karoseri sebagai pendingin pada pengelasan logam (welding) dan pengecoran, industri makanan sebagai media pengawetan sayuran, buah-buahan, gabah, daging dan lain-lain (Suprapto, 2007).

Berbagai teknologi pemisahan CO₂ secara luas telah banyak dikembangkan, diantaranya yaitu metode membran, kriogenik, adsorpsi, dan yang paling umum digunakan adalah metode absorpsi dengan larutan kimia. Membran merupakan metode pemisahan dengan menggunakan sistem semacam selaput/membran, dimana feed dilewatkan melalui membran tersebut. Membran merupakan filter yang sangat spesifik, dimana hanya molekul dengan ukuran tertentu saja yang dapat melewati membran, sedangkan sisanya akan tertahan di permukaan membran. Pada proses pemisahan ini tidak memerlukan zat kimia tambahan, tidak ada limbah buangan *by-product* yang dihasilkan, serta memerlukan tekanan operasi yang rendah dan umumnya bisa beroperasi pada suhu lingkungan. Namun kelemahan dari proses pemisahan ini yaitu terkadang perlu dilakukan pretreatment feed terlebih dahulu untuk mendapatkan feed yang murni. Hal ini dikarenakan membran rentan terdegradasi oleh impurities. Sementara kriogenik dapat dipakai untuk tekanan parsial CO₂ yang besar, namun dengan adanya proses pendinginan, biaya yang dikeluarkan tidak sedikit. Bila digunakan untuk kandungan gas CO₂ yang rendah metode ini tidak efektif dari segi ekonomi, metode ini biasanya hanya digunakan pada aliran gas dengan kandungan CO₂ yang sangat besar. Sedangkan metode pemisahan adsorpsi merupakan CO_2 dengan menggunakan suatu adsorben yang dapat menyerap CO₂. Proses adsorpsi telah diterapkan namun kapasitas dan selektivitas yang rendah tidak berpotensi untuk pengambilan CO₂ dari aliran gas dengan baik. Apabila adsorben sudah mulai jenuh, regenerasi secara menyeluruh dan pembersihan perlu dilakukan sebelum adsorben digunakan kembali (Suprapto, 2007)

Metode absorpsi adalah metode pemisahan CO₂ dari aliran gas yang paling ekonomis. Absorpsi CO₂ dengan larutan kimia atau fisika adalah teknologi yang dikembangkan dengan baik dan telah diaplikasikan pada berbagai proses komersial, termasuk pemurnian gas dan produksi ammonia. Banyak penelitian telah dilakukan pada teknologi ini lebih dari 50 tahun yang lalu, terutama pada pengembangan pengetahuan terhadap spesifikasi dan karakteristik dari jenis pelarut. Sebagai contoh yang telah banyak dipublikasikan vaitu jenis pelarut seperti amine. Sedangkan pengembangan pengetahuan mengenai campuran pelarut yang kompleks masih sedikit dilakukan, di mana teknologi ini merupakan teknologi yang paling efektif. Salah satu proses absorpsi/stripping yang banyak dipakai dan dikembangkan adalah dengan sirkulasi larutan kimia. Proses semacam ini banyak dipakai pada produksi ammonia dan pemurnian gas alam. Sedangkan untuk proses absorpsi fisika biasanya diaplikasikan pada tekanan yang tinggi. Beberapa pelarut yang umum digunakan vaitu Selexol, Rectisol, dan Purisol. Karena pelarut fisika tidak bereaksi dengan CO₂, maka pelarut tidak terkonsumsi (tidak berkurang). Sebagai tambahan, panas absorpsi dibatasi pada enthalpy absorpsi fisika, yang mana nilainya jauh lebih rendah dibandingkan dengan menggunakan pelarut yang reaktif.

Proses dibatasi oleh selektivitas dan laju absorpsi yang rendah (http://www.owlnet.rice.edu/~ceng403/co2abs.html).

Beberapa penelitian terdahulu telah dilakukan, dimulai dari *Kuswandi et al* (2008) yang melakukan penelitian mengenai data solubilitas gas CO₂ dalam larutan *Potassium Carbonat* (K₂CO₃) untuk meningkatkan kinerja proses absorpsi. Penelitian ini dilakukan dengan menggunakan *wetted wall column* sebagai absorber dari berbagai konsentrasi *Potassium Carbonat* yaitu 10,

15, 20, 25 dan 30% massa dan suhu operasi 30, 40, 50 dan 60 °C. Perhitungan estimasi menggunakan persamaan *vapour liquid equilibrium* (VLE) dan reaksi kimia dengan metode NRTL. Hasil penelitian menunjukkan penurunan jumlah mol CO₂ yang terlarut dengan naiknya suhu serta konsentrasi larutan *Potassium Carbonat*.

Hilliard (2008), memprediksi model termodinamika untuk larutan campuran K_2CO_3 , Piperazine, dan MEA untuk mengabsorbsi CO₂. Percobaan dilakukan pada suhu 40° C dan 60° C dan campuran K_2CO_3 , Piperazine, dan MEA yang bervariasi. Dari hasil percobaan didapatkan campuran 2,5 m K⁺ +7 m MEA+ 2 m PZ memiliki kapasitas diferensial tertinggi yaitu 0,17.

Winarno et al (2008), melakukan penelitian mengenai proses absorbsi disertai reaksi kimia gas CO₂ memakai larutan K_2CO_3 dengan promotor *Diethanolamine* (DEA). Penelitian ini bertujuan untuk menentukan data kesetimbangan fasa uap-cair sistem larutan elektrolit CO₂-K₂CO₃-*Diethanolamine*-H₂O memakai kolom absorpsi tipe *wetted wall column* (WWC) pada tekanan atmosfer. Penelitian dilakukan dengan konsentrasi larutan K₂CO₃ 30% dan DEA 2% dengan variabel suhu 30°C,50°C, dan 70°C dan gas umpan CO₂ antara 1-7%. Hasil ekperimen menunjukkan bahwa kenaikan konsentrasi CO₂ dalam gas umpan pada temperatur konstan akan menyebabkan kenaikan CO₂ loading, penurunan kadar CO₃²⁻, kenaikan kadar HCO₃⁻, kenaikan consentrasi larutan kadar CO₂ dan penurunan tekanan parsial kesetimbangan H₂O. Hasil

eksperimen juga dikorelasikan dengan model *Electrolyte Non-Random Two Liquid* (ENRTL) dengan deviasi absolut 3,5%.

Thee et al (2012), melakukan penelitian mengenai evaluasi reaksi kinetik absorpsi CO₂ kedalam larutan K₂CO₃ dengan promotor *monoethanolamine* (MEA) dibawah kondisi seperti yang terjadi pada industri CO₂ *capture plant*. Hasil yang ditunjukkan disini memperlihatkan bahwa pada 63° C, penambahan MEA pada jumlah kecil 1,1 M (5% berat) mempercepat laju *overall* absorpsi CO₂ pada 30% berat pelarut K₂CO₃ dengan faktor 16 dan pada penambahan MEA 2,2 M (10% berat) mempercepat laju *overall* absorpsi CO₂ pada 30% berat pelarut K₂CO₃ dengan faktor 45.

Altway et al (2014), melakukan prediksi dengan pelarut K_2CO_3 -MDEA-H₂O, didapatkan bahwa dengan penambahan jumlah MDEA dapat meningkatkan besarnya loading dari CO₂ dan dapat menurunkan tekanan parsial CO₂ dalam gas keluaran.

Kurniati et al (2014), dengan adanya MDEA (1%) dan DEA (0-3%) dalam larutan K_2CO_3 dapat meningkatkan konstanta Henry sehingga dengan kata lain MDEA-DEA dapat menurunkan kelarutan CO_2 dalam larutan.

Zulfetra dan Nuharani (2014), melakukan penelitian dengan pelarut K_2CO_3 -MDEA-DEA dan K_2CO_3 -PZ-DEA, didapatkan hasil pelarut K_2CO_3 -PZ-DEA dapat mengabsorbsi gas CO_2 komposisi 20% lebih baik dibandingkan dengan pelarut K_2CO_3 -MDEA-DEA. Hal ini dikarenakan pelarut K_2CO_3 -PZ-DEA memiliki nilai tekanan parsial lebih kecil dibandingkan pelarut K_2CO_3 -MDEA-DEA.

1.2 Perumusan Masalah

Penelitian-penelitian mengindikasikan bahwa *potassium* carbonate (K_2CO_3) mempunyai panas regenerasi yang rendah tetapi laju reaksinya lambat bila dibandingkan dengan *amine*. Beberapa penelitian telah menunjukkan bahwa penambahan promotor *amine* dapat mempercepat proses absorpsi. Adapun salah satu contoh penelitian terdahulu adalah dengan penambahan

promotor PZ (Piperazine) dan promotor DEA (*Diethanolamine*) pada larutan K_2CO_3 kemudian dikorelasikan dengan model E-NRTL. Tetapi kelemahan dari DEA yaitu produk degradasinya bersifat korosif dan juga *foaming* larutan sering terjadi pada konsentrasi DEA yang tinggi. Sedangkan kelemahan PZ adalah panas reaksinya tinggi dan harganya mahal.

1.3 Tujuan Penelitian

Penelitian ini bertujuan untuk mendapatkan data kesetimbangan fasa uap-cair CO_2 dalam larutan K_2CO_3 dengan promotor campuran Piperazine-DEA dalam berbagai konsentrasi *solvent*, konsentrasi gas umpan CO_2 dan suhu pada tekanan atmosferik.

1.4 Manfaat Penelitian

Data kesetimbangan fasa uap-cair CO_2 di dalam larutan K_2CO_3 dengan penambahan promotor campuran Piperazine-DEA dapat dijadikan sebagai acuan pada perancangan kolom absorpsi untuk proses mereduksi gas CO_2 pada dunia industri.

BAB II TINJAUAN PUSTAKA

2.1 Metode Absorpsi

Absorpsi adalah suatu proses pemisahan suatu komponen fluida dari campurannya dengan menggunakan solvent atau fluida lain. Cairan yang digunakan juga umumnya tidak mudah menguap dan larut dalam gas. Sebagai contoh yang umum dipakai adalah absorpsi amonia dari campuran udara-amonia oleh air. Setelah absorpsi terjadi, campuran gas akan di-recovery dengan cara distilasi.

Terdapat beberapa hal lain yang perlu dipertimbangkan dalam pemilihan solvent, yaitu:

1. Kelarutan Gas

Kelarutan gas harus tinggi, sehingga menaikkan rate absorpsi dan mengurangi jumlah solvent yang dibutuhkan. Umumnya suatu solvent yang memiliki sifat kimia hampir sama dengan solute yang diabsorpsi akan memberikan kelarutan yang baik. Reaksi kimia antara solvent dan solute akan terjadi pada kelarutan gas yang sangat tinggi.

2. Volatilitas

Pelarut atau solvent harus memiliki tekanan uap yang rendah dimana gas saat meninggalkan suatu proses absorpsi biasanya saturated dengan solvent dan mungkin banyak yang mungkin hilang.

3. Korosivitas

Pelarut hendaknya memiliki korosivitas kecil, sehingga material konstruksi alat tidak terlalu mahal.

- 4. Harga pelarut harus murah, dan mudah untuk didapat.
- 5. Viskositas

Pelarut harus mempunyai harga viskositas yang rendah sehingga proses absorpsi berjalan cepat, pressure drop kecil pada saat pemompaan, memberikan sifat perpindahan panas yang baik dan meningkatkan karakteristik flooding dalam menara absorpsi.

6. Hal-hal lain yang meliputi : s olvent harus nontoxic, nonflammable, memiliki komposisi kimia yang stabil dan titik bekunya rendah.

2.2 Kesetimbangan Fase Uap-Cair

Syarat terjadinya kesetimbangan fase pada sistem tertutup meliputi kesamaan suhu, tekanan, potensial kimia setiap komponen pada masing-masing fasa dan energi bebas Gibbs total mencapai minimum.

Potensial kimia suatu komponen ditransformasikan sebagai fugasitas komponen tersebut, yaitu :

Lewis/Randal mendefinisikan fugasitas untuk larutan ideal adalah fungsi dari konsentrasi :

$$\hat{f}_i^{ideal} = x_i f_i \tag{2.2}$$

Dimana *xi* adalah fraksi mol dari spesies *i*. Apabila larutan tidak ideal, maka faktor koreksi digunakan untuk menyatakan koefisien aktifitas γ sebagai koefisien aktivitas dari *liquid*.

$$\gamma_i = \frac{\hat{f}_i}{\hat{f}_i^{ideal}} = \frac{\hat{f}_i}{x_i f_i}$$
(2.3)

Kesetimbangan uap-cair direpresentasikan dalam fugasitas sebagai fungsi dari konsentrasi dan tekanan. Untuk spesies *i* dalam campuran uap:

$$\hat{f}_i^V = y_i \,\hat{\phi}_i \, P \tag{2.4}$$

Untuk spesies i dalam larutan cair:

$$\hat{f}_i^L = x_i \gamma_i f_i \tag{2.5}$$

Pada kondisi kesetimbangan maka berlaku (formulasi gamma phi VLE):

$$y_i \hat{\phi}_i P = x_i \gamma_i f_i$$
(2.6)

Persamaan fugasitas spesies i murni adalah:

$$f_i = \phi_i^s P_i^s \exp\left(\frac{V_i^L(P - P_i^s)}{RT}\right)$$
(2.7)

Faktor eksponensial tersebut dikenal sebagai faktor poynting. Substitusi persamaan (2.7) ke (2.6) maka didapat:

$$y_i \hat{\phi}_i P = x_i \gamma_i \phi_i^s P_i^s \exp\left(\frac{V_i^L (P - P_i^s)}{RT}\right)$$
(2.8)

atau

$$y_i \Phi_i P = x_i \gamma_i P_i^s$$
(2.9)

dimana:

$$\Phi_i = \frac{\phi_i}{\phi_i^s} \exp\left(-\frac{V_i^L(P - P_i^s)}{RT}\right)$$
(2.10)

Pada tekanan rendah, persamaan VLE yang lebih realistis hanya menganggap fasa uap sebagai model gas ideal dimana:

$$\hat{\phi}_i = \hat{\phi}_i = 1$$
 dan $P = P_i^s \cong 0$ atau faktor
 $\exp\left(-\frac{V_i^L(P - P_i^s)}{RT}\right) = 1$

Sehingga harga $\Phi_i = 1$, atau persamaan (2.9) menjadi :

$$y_i P = x_i \gamma_i P_i^s \tag{2.11}$$

Kondisi kesetimbangan dinyatakan dengan energi Gibbs (G) yang dimiliki sistem tersebut, perubahan energi Gibbs yang terjadi untuk semua proses irreversibel dinyatakan :

Energi Gibbs total memberikan kondisi umum suatu kesetimbangan. Untuk larutan, digunakan istilah energi Gibbs ekses yang merepresentasikan penyimpangan dari larutan ideal.

$$G_i^{ex} = G_i - G_i^{ideal}$$

1CTot < 0

(2.13)

Dimana Gi merupakan energi Gibbs molar untuk spesies i :

$$G_i = \Gamma(T) + RT \ln \hat{f}_i \tag{2.14}$$

 $\Gamma(T)$ adalah konstanta integrasi.

Substitusi Persamaan (2.14) ke Persamaan (2.13) dan menggabungkan dengan aturan *Lewis/Randal* maka diperoleh :

$$G_i^{ex} = RT \ln \frac{f_i}{x_i f_i} = RT \ln \gamma_i$$
(2.15)

2.3 Solubilitas Fisik

Solubilitas fisik adalah kesetimbangan antara molekul CO₂ gas dan molekul CO₂ larutan aqueous *amine* :

$$CO_2(v) \leftrightarrow CO_2(l)$$

Hal ini dapat dinyatakan dengan hukum Henry.

Hukum Henry ini dapat diterapkan untuk menghubungkan konsentrasi kesetimbangan gas dalam liquid sebagai fungsi

tekanan parsialnya dalam fase gas. Solubilitas memiliki berbagai definisi, tetapi definisi yang digunakan yaitu:

$$H_A = \frac{p_A}{C_A^*} \tag{2.16}$$

Dimana C_A^* konsentrasi kesetimbangan gas yang dapat dihitung dari mol gas total yang secara fisik terserap dalam volume liquid pengabsorb.

Dalam kesetimbangan gas-cair hukum Henry dinyatakan :

$$P_{CO_2}\phi_{CO_2} = H_{CO_2}\gamma^*_{CO_2}x_{CO_2}$$
(2.17)

Dimana P adalah tekanan sistem, y_{CO_2} adalah fraksi mol CO₂ dalam fase gas, ϕ_{CO_2} koefisien fugasitas dalam fase gas, H_{CO_2} konstanta hukum Henry CO₂ dalam solven campuran air dan amine, x_{CO_2} , fraksi mol CO₂ kesetimbangan dalam fase liquid, dan $\gamma^*_{CO_2}$ koefisien aktivitas unsimetris CO₂ dalam campuran air dan amine.

Sebagai *reference state* digunakan pengenceran tak berhingga dalam air sehingga $\gamma_{CO_2}^* \rightarrow 1$, dan konstanta *Henry* untuk air murni adalah :

$$H_{CO_2}^w = \frac{P_{CO_2}}{x_{CO_2}}$$
(2.18)

Koefisien aktifitas dalam campuran solvent dinyatakan :

$$\gamma_{CO_2}^* = \frac{H_{CO_2}}{H_{CO_2}^w}$$
(2.19)

Konstanta Henry CO_2 dalam campuran *solvent* dicari dari data kelarutan CO_2 (eksperimen), sedangkan konstanta Henry CO_2 dalam air murni ditentukan dari persamaan korelasi sebagai berikut (*Austgen et al*, 1991) :

$$\ln H_{CO_2}^w = 170,7126 - 8477,711/T - 21,95743 \ln T + 0,005781T \quad (2.20)$$

konstanta Henry dalam satuan Paskal, T adalah temperatur sistem dalam Kelvin.

Pengukuran solubilitas CO_2 tidak dapat dilakukan langsung dalam pelarut amine, karena reaksi antara CO_2 dan amine mungkin dapat mempengaruhi keakuratan data. Umumnya, solubilitas CO_2 secara fisik ditentukan dengan menggunakan metode analogi N_2O sebagaimana yang dilakukan oleh Clarke (1964). Jadi setelah solubilitas N_2O didapatkan secara eksperimen, solubilitas N_2O dapat dihitung dengan :

$$\frac{H_{CO_2,a\min e}}{H_{N_2O,a\min e}} = \frac{H_{CO_2,water}}{H_{N_2O,water}}$$
(2.21)

Berdasarkan studi yang dilakukan oleh Versteeg dan Swaaij (1988), diperoleh dua persamaan untuk solubilitas CO_2 dan N_2O dalam air.

$$H_{N_2O,water}(kPa\,m^3kmol^{-1}) = (8.5470\,x10^6)\exp(\frac{-2284}{T}) \quad (2.22)$$
$$H_{CO_2,water}(kPa\,m^3kmol^{-1}) = (2.8249\,x10^6)\exp(\frac{-2044}{T}) \quad (2.23)$$

2.4 Kesetimbangan Reaksi Kimia

Permasalahan dalam menentukan komposisi kesetimbangan pada sistem reaktif membutuhkan sebuah kondisi dan informasi spesifik mengenai komponen yang ada dalam sistem tertutup. Konstanta kesetimbangan untuk tiap-tiap reaksi dalam sistem tertutup diberikan oleh *Smith et al* (2001), yaitu :

$$K = \prod_{i} (x_{i} \gamma_{i})^{v_{i}} = \exp\left(\frac{-\Delta G^{o}}{RT}\right)$$
(2.24)

Sedangkan hubungan ΔG° dan ΔH° diberikan oleh persamaan :

$$\Delta H^{o} = -RT^{2} \frac{d(\Delta G^{o} / RT)}{dT}$$
(2.25)

 ΔH° merupakan perubahan *enthalpy* reaksi standart.

Kombinasi Persamaan (2.24) dan Persamaan (2.25) :

$$d(\ln K) = \int \frac{\Delta H^o}{RT^2} dT$$
(2.26)

Di dalam sistem larutan CO₂-K₂CO₃-PZ-DEA-H₂O terjadi kesetimbangan reaksi kimia sebagai berikut (Ma Xiaoguang, 2010) :

$\mathrm{CO}_{2\mathrm{(g)}} \leftrightarrow \mathrm{CO}_{2\mathrm{(aq)}}$	(2.27)
$CO_2 + 2H_2O \leftrightarrow HCO_3^- + H_3O^+$	(2.28)
$HCO_3^- + H_2O \iff H_3O^+ + CO_3^{2-}$	(2.29)
$2 H_2O \leftrightarrow H_3O^+ + OH^-$	(2.30)
$PZ + H_2O + CO_2 \leftrightarrow PZCOO^- + H_3O^+$	(2.31)
$PZH^{+} + H_2O + \leftrightarrow PZ + H_3O^{+}$	(2.32)
$PZCOO^{-} + H_2O + CO_2 \iff PZ(COO^{-})_2 + H_3O^{+}$	(2.33)
$H^+PZCOO^- + H_2O \iff PZCOO^- + H_3O^+$	(2.34)
$H_2O + DEAH^+ \leftrightarrow H_3O^+ + DEA$	(2.35)

 $DEACOO^{-} + H_2O \iff DEA + HCO_3^{-}$ (2.36)

Pada larutan Potassium Karbonat encer, gas CO₂ bereaksi dengan prinsip mekanisme reaksi asam basa berpenyangga dengan senyawa *alkanolamine* dimana reaksi kesetimbangannya dapat dituliskan seabagai reaksi disosiasi kimia. Untuk molekular *solute* CO₂, kesetimbangan fisika diekspresikan oleh :

$$y_m \varphi_m P = x_m \gamma_m^* H_{m,W}^{(P_W^S)} \exp \frac{\overline{v}_{m,W}^{\infty} (P - P_W^S)}{RT} \quad (2.37)$$

Di mana $H_{m,w}^{(P_w^s)}$ adalah konstanta *Henrysolute* dalam air pada temperatur sistem, φ_m koefisien fugasitas, P tekanan sistem, P_w^s tekanan uap pada air murni pada temperatur sistem T, dan $\overline{v}_{m,w}^{\infty}$ adalah parsial molar volume untuk molekular *solute* m pada pelarutan tak berhingga dalam air.

Untuk air, VLE diekspresikan oleh :

$$y_{H_20}\varphi_{H_20}P = x_{H_20}\gamma_{H_20}\varphi_w^S P_w^S \exp\frac{v_w^*(P-P_w^S)}{RT}$$
(2.38)

Di mana φ_w^s adalah koefisien fugasitas untuk air jenuh pada temperatur sistem dan v_w^l molar volume untuk air murni pada temperatur sistem.

Molar volume air murni dapat dicari dengan cara massa molekul relatif dari air murni dibagi dengan densitasnya, sedangkan tekanan uap *saturated* dari air murni diperoleh dari persamaan *Antoine*.

2.5 Model Elektrolit Non Random Two Liquid (E-NRTL)

Secara umum energi Gibbs ekses pada model E-NRTL merupakan gabungan dari dua faktor yaitu *long range* (LR) *forces*

dan *short range* (SR) *forces.* Pada larutan encer dimana jarak antar molekul cukup jauh maka energi Gibbs ekses didominasi oleh interaksi LR *force.* Sedangkan pada larutan pekat dimana jarak antar molekul lebih dekat maka energi Gibbs ekses didominasi oleh interaksi SR *force.*

Austgen et al (1989) mengembangkan model elektrolit NRTL yang dalam hal ini terdiri dari tiga kontribusi. Pertama, *Long Range force* terdiri dari dua kontribusi yaitu model PDH (Pitzer-Debye-Huckel) yang menghitung adanya kontribusi elektrostatik antar semua ion. Kontribusi kedua yaitu kontribusi *ion-reference-state-transfer* yang dinyatakan dengan, model persamaan Born. Ketiga adalah kontribusi *short range* yang dinyatakan dengan persamaan *local composition* elektrolit NRTL yang menghitung adanya interaksi *short range* semua spesies.

Total kontribusi terhadap energi Gibbs ekses adalah:

$$\frac{g_{i}^{ex^{*}}}{RT} = \frac{g_{LR,i}^{ex^{*}}}{RT} + \frac{g_{SR,i}^{ex^{*}}}{RT} = \left(\frac{g_{PDH,i}^{ex^{*}}}{RT} + \frac{g_{Born,i}^{ex^{*}}}{RT}\right) + \frac{g_{lc,i}^{ex^{*}}}{RT}$$
(2.39)

Atau

$$\ln \gamma_i = \left(\ln \gamma_{PDH,i} + \ln \gamma_{Born,i} \right) + \ln \gamma_{lc,i}$$
(2.40)

2.5.1 Long Range Forces

Model Pitzr-Debye-Huckel adalah ekspresi untuk energi Gibbs ekses, dimana nilai fraksi mol adalah satu untuk pelarut dan nol untuk ion-ion. Model Pitzer-Debye-Huckel ini merepresentasikan energi Gibbs ekses sebagai:

$$g_{PDH}^{ex^{*}} = -RT\left(\sum_{k} x_{k}\right) \left(\frac{1000}{MW}\right)^{0.5} \left(\frac{4A_{\phi}I_{x}}{\rho}\right) \ln\left(1 + \rho I_{x}^{0.5}\right)$$
(2.41)

dimana:

x

= fraksi mol

MW = berat molekul dari pelarut

= parameter pendekatan model PDH yang terdekat

= Daya ionik yang dinyatakan dalam fraksi mol dan muatan z

$$I_x = \frac{1}{2} \sum_{i} x_i z_i^2$$
 (2.42)

Tanda (*) merujuk pada nergi Gibbs ekses tak simetris.

Parameter Debye-Huckel, A didapat dari :

$$A_{\phi} = \frac{1}{3} \left(\frac{2\pi N_0 \rho_s}{1000} \right)^{0.5} \left(\frac{e^2}{D_s kT} \right)^{1.5}$$

dimana:

 $\rho \\ I_x$

No = bilangan Avogadro (6.02×10^{23}) ρ_s = densitas pelarut e = muatan elektron (1.6x10⁻¹⁹ Coulomb) D_s = konstanta dielektrik pelarut k = konstanta Boltzmann (1.38x10⁻²³ J/K)

Konstanta dielektrik dri pelarut dihitung sebagai :

$$D_s = \sum_i x_i D_i$$

(2.44)

(2.43)

dimana:

Xi

= fraksi massa spesies i

 D_i = konstanta dielektrik spesies i

2.5.2 Persamaan Born

Pada pelarut campuran, kondisi acuan untuk ion-ion menjadi kacau karena perubahan konstanta dielektrik. Persamaan Born diperkenalkan untuk kontribusi long-range terhadap energi Gibbs guna mempertahankan kondisi acuan pada pengenceran tak berhingga dengan air untuk ion-ion tersebut. Bentuk persamaannya adalah :

$$g_{Born}^{ex} = RT\left(\frac{e^2}{2kT}\right)\left(\sum_{i}\frac{x_i z_i^2}{r_i}\right)\left(\frac{1}{D_m} - \frac{1}{D_w}\right)^{1/2} x 10^{-2}$$
(2.45)

Dimana D_m dan D_w masing-masing adalah konstanta dielektrik campuran pelarut dan air. Koreksi ini menentukan perbedaan energi Gibbs diantara ion-ion dalam campuran pelarut dan dalam air.

2.5.3 NRTL Term Sebagai Kontribusi Local Composition

Saat larutan menjadi lebih pekat, term yang mendeskripsikan interaksi diantara spesies netral dan spesies ionik dan spesies netral dan spesies netral dan spesies netral menjadi penting. Interaski tersebut digambarkan secara lokal, ataiu *short-range forsces*. Wilson (1964) menurunkan persamaan untuk energi pencampuran non-elektrolit. Dasar penurunan adalah distribusi molekul *i* dan *j*, di sekitar pusat molekul *i*, diberikan oleh :

$$\frac{x_{ij}}{x_{ii}} = \frac{x_j \exp\left(-\frac{g_{ji}}{RT}\right)}{x_k \exp\left(-\frac{g_{ii}}{RT}\right)}$$
(2.46)

Renon dan Praunitz (1968) merumuskan ulang persamaan di atas dalam model NRTL, hingga pada modifikasi distribusi molekuler untuk menghitung pencampuran *non-random* :

$$\frac{x_{ij}}{x_{ii}} = \frac{x_j \exp\left(-\alpha_{ij} \frac{g_{ji}}{RT}\right)}{x_i \exp\left(-\alpha_{ij} \frac{g_{ii}}{RT}\right)}$$
(2.47)

 α adalah parameter variabel. Nilainya berkisar antara 0,1 hingga 0,4 tergantung dari molekul dan molekul dan pelarut dalam sistem (Cullinane, 2004). Penambahan parameter non-random α , memperluas aplikasi model NRTL.

Baik antara model Wilson dan NRTL, keduanya menggunakan persamaan energi Gibbs bebas pencampuran dalam bentuk :

$$\frac{g^M}{RT} = \sum_i x_i \ln \xi_i \tag{2.48}$$

(2.49)

Dimana ξ adalah fraksi volume *i* sekitar pusat molekul. Fraksi volume diturunkan dari distribusi molekuler yang diberikan di atas dan dapat ditulis :

$$\xi_{i} = \frac{x_{i}V_{i}\exp\left(-\frac{g_{ij}}{RT}\right)}{\sum_{j}x_{j}V_{j}\exp\left(-\frac{g_{ij}}{RT}\right)}$$

Dimana V menunjukkan volume molar. Energi dari pencampuran dihubungkan dengan energi Gibbs ekses melalui ekses melalui persamaan:

$$\frac{g^{ex}}{RT} = \frac{g^{M}}{RT} - \sum_{i} x_{i} \ln x_{i}$$
(2.50)

Pengembangan persamaan ini dilakukan oleh Chen et al (1986) mengembangkan persamaan ini untuk larutan multi-komponen dari spesies netral maupun ionik. Pengembangan model ini oleh Chen, menggabungkan tiga sel atau grup yang berbeda dari interaksi ion dan molekul, dengan membuat 2 asumsi untuk gambaran fisik dari interaksi spesies:

- 1. Dua sel termasuk pusat kation, c at au pusat anion, a, dan diasumsikan mengalami saling tolakutnuk ion sejenis. Ini berarti pusat ion dikelilingi oleh molekul dan ion yang berbeda muatan.
- 2. Satu sel terdiri dari sebuah pusat molekul lokal, m, dengan muatan netral, yaitu muatan sekitar pusat molekul sama dengan nol.

Interaksi antar sel dapat didefinisikan sebagai interaksi dua spesies. Energi Gibbs dapat dmodelkan sebagai fungsi dari interaksi model berikut :

$$\tau_{ji,ki} = \frac{G_{ji} - G_{ki}}{RT}$$
(2.51)

Dalam sistem elektrolit, semua komponen dapat dikategorikan dalam tiga tipe :

- a. Spesies molekul (m) : solute dan solvent
- b. Spesies *cationic* (c) : kation
- c. Spesies *anionic* (a) : anion

Sebuah model global dapat disusun sebagai jumlah ineteraksi spesifik spesies pada komposisi rerata larutan. Sehingga energi Gibbs ekses dari *local interaction* dapat diprediksi dari model NRTL sebagai berikut :

$$\frac{G_{lc}^{ex}}{RT} = \sum_{m} \left(X_m \frac{\sum_{j}^{T} X_j G_{jm} \tau_{jm}}{\sum_{k}^{T} X_k G_{km}} \right) + \sum_{c}^{T} X_c \left(\sum_{a'} \left(\frac{X_{a'} \sum_{j}^{T} G_{jc,a'c} \tau_{jc,a'c}}{\sum_{a''} X_{a''} \sum_{k}^{T} X_k G_{kc,a'c}} \right) \right) + \sum_{a''}^{T} X_a \left(\sum_{c'} \left(\frac{X_{c'} \sum_{j}^{T} G_{ja,c'a} \tau_{ja,ca}}{\sum_{c''} X_{c''} \sum_{k}^{T} X_k G_{ka,c'a}} \right) \right) \right)$$

$$(2.52)$$

$$X_{j} = C_{j} x_{j}$$
 (2.53) ; $j = m, c, a$

$$x_j = \frac{n_j}{\sum_j n_j} \tag{2.54}$$

$$G_{ja,c'a} = \exp(-\alpha_{ja,c'a}\tau_{ja,c'a})$$
(2.55)

$$G_{jc,a'c} = \exp(-\alpha_{jc,a'c}\tau_{jc,a'c})$$
(2.56)

$$G_{jm} = \exp(-\alpha_{im}\tau_{im})$$
(2.57)

dimana :

 $X_j = x_j C_j ;$

 $\alpha = \text{parameter nonrandomness}^{(C_j = Z_j \text{ untuk ion-ion dan sama dengan 1 untuk molekul)}}$

T = parameter interaksi biner

$$\ln \gamma_{m}^{lc} = \frac{\sum_{j} X_{j} G_{jm} \tau_{jm}}{\sum_{k} X_{k} G_{km}} - \sum_{m'} \frac{X_{m'} G_{mm'}}{\sum_{k} X_{k} G_{km'}} \left(\tau_{mm'} - \frac{\sum_{k} X_{k} G_{km'} \tau_{km'}}{\sum_{k} X_{k} G_{km'}} \right)$$
$$+ \sum_{c} \sum_{a} \frac{Y_{a} X_{c} G_{mc,ac}}{\sum_{k} X_{k} G_{kc,ac}} \left(\tau_{mc,ac} - \frac{\sum_{k} X_{k} G_{kc,ac} \tau_{kc,ac}}{\sum_{k} X_{k} G_{kc,ac}} \right)$$
$$+ \sum_{a} \sum_{c} \frac{Y_{c} X_{a} G_{ma,ca}}{\sum_{k} X_{k} G_{ka,ca}} \left(\tau_{ma,ca} - \frac{\sum_{k} X_{k} G_{ka,ca} \tau_{ka,ca}}{\sum_{k} X_{k} G_{ka,ca}} \right)$$
(2.58)

Untuk spesies kation :

$$\frac{1}{z_c} \ln \gamma_c^{lc} = \sum_a Y_a \frac{\sum_k^X k^G kc, ac^{\tau} kc, ac}{\sum_k^X k^G kc, ac} + \sum_m \frac{X_m G_{cm}}{\sum_k^X k^G km} \left(\tau_{cm} - \frac{\sum_k^X k^G km^{\tau} km}{\sum_k^X k^G km} \right)$$

$$+ \sum_a \sum_c^Y \frac{Y_c X_a G_{ca,c'a}}{\sum_k^X k^G ka, c'ac} \left(\tau_{ca,c'a} - \frac{\sum_k^X k^G km, c'a^{\tau} km, c'a}{\sum_k^X k^G km'c'a} \right)$$

$$(2.59)$$

Untuk spesies anion :

$$\frac{1}{z_{a}}\ln\gamma_{a}^{lc} = \sum_{c}Y_{aca}\frac{\sum_{k}X_{k}G_{ka,ca}^{\tau}ka,ca}{\sum_{k}X_{k}G_{ka,ca}} + \sum_{m}\frac{X_{m}G_{am}}{\sum_{k}X_{k}G_{km}}\left(\tau_{am} - \frac{\sum_{k}X_{k}G_{km}^{\tau}km}{\sum_{k}X_{k}G_{km}}\right)$$
$$+ \sum_{c}\sum_{a'}\frac{Y_{a'}X_{c}G_{ac,a'c}}{\sum_{k}X_{k}G_{kc,a'cc}}\left(\tau_{ac,a'c} - \frac{\sum_{k}X_{k}G_{ka,a'c}^{\tau}kc,a'c}{\sum_{k}X_{k}G_{kc,a'c}}\right)$$
(2.60)

Dari persamaan (2.52)-(2.60) dibutuhkan parameter-parameter sebagai berikut :

Nonrandomness parameter

$$\alpha_{mm'} = \alpha_{m'm'}, \ \alpha_{m,cm} = \alpha_{cm,m}, \ \alpha_{ca,ca'} = \alpha_{ca'ca}, \ \alpha_{ca,c'a} = \alpha_{ca'ca}, \ \alpha_{ca,c'a} = \alpha_{c'a,ca}, \ \alpha_{cm}, \ \alpha_{am}, \ \alpha_{mc,ac}, \ \alpha_{ma,ca}$$

Binary interaction parameter

$$\tau_{mm'}, \tau_{m'm'}, \tau_{m,ca}, \tau_{ca,m}, \tau_{ca,ca'}, \tau_{ca'ca}, \tau_{ca,c'a}, \tau_{c'a,ca'}$$

 $\tau_{cm}, \tau_{am}, \tau_{mc,ac}, \tau_{ma,ca}$

Binary interaction parameter dihitung dari model binary parameter yang telah disesuaikan. Dan, dapat dihitung sebagai berikut :

$$\alpha_{cm} = \sum_{a} Y_a \alpha_{m,ca}$$
(2.61)
$$\alpha_{am} = \sum_{c} Y_c \alpha_{m,ca}$$
(2.62)

Jumlah fraksi komposisi muatan anion, Y_a, dan jumlah fraksi komposisi muatan kation, Y_c, dapat dihitung sebagai berikut :

$$Y_{a} = \frac{X_{a}}{\sum_{a'} X_{a'}}$$
(2.63)
$$Y_{c} = \frac{X_{c}}{\sum_{i} X_{c'}}$$
(2.64)

Kemudian, G_{cm} dan G_{am} dapat dihitung sebagai berikut :

$$G_{cm} = \sum_{a} Y_a G_{ca,m}$$
(2.65)
$$G_{am} = \sum_{a} Y_c G_{ca,m}$$
(2.66)

Kemudian, au_{cm} dan au_{am} dapat dihitung sebagai berikut :

$$\tau_{cm} = -\frac{\ln(G_{cm})}{\alpha_{cm}}$$

$$\tau_{am} = -\frac{\ln(G_{am})}{\alpha_{am}}$$
(2.67)
(2.67)
(2.68)

Selanjutnya dapat dihitung parameter-parameter yang lain sebagai berikut :

$$\alpha_{mc,ac} = \alpha_{cm} \tag{2.69}$$

$$\alpha_{ma,ca} = \alpha_{am} \tag{2.70}$$

$$\tau_{ma,ca} = \tau_{am} - \frac{\alpha_{ca,m}}{\alpha_{ma,ca}} (\tau_{ca,m} - \tau_{m,ca})$$
(2.71)

$$\tau_{mc,ac} = \tau_{cm} - \frac{\alpha_{ca,m}}{\alpha_{mc,ac}} (\tau_{ca,m} - \tau_{m,ca})$$
(2.72)

$$G_{mc,ac} = \exp(\alpha_{mc,ac}\tau_{mc,ac}) = \exp(\alpha_{cm}\tau_{mc,ac})$$
(2.73)

$$G_{ma,ca} = \exp(\alpha_{ma,ac}\tau_{ma,ac}) = \exp(\alpha_{am}\tau_{ma,ac})$$
(2.74)

Kondisi acuan kontribusi NRTL dapat dikonversikan ke bentuk asimetri dengan koreksi terhadap koefisien aktivitas pelarutan tak berhingga.

$$g_{NRTL}^{ex'} = \frac{g_{NRTL}^{ex}}{RT} + \left(\sum_{m \neq w} x_m \ln \gamma_m^{\infty} + \sum_c x_c \ln \gamma_c^{\infty} + \sum_a x_a \ln \gamma_a^{\infty}\right) (2.75)$$

$$\ln \gamma_m^\infty = \tau_{wm} + G_{mw} \tau_{mw}$$

$$\ln \gamma_{c}^{\infty} = Z_{c} \left(G_{cw} \tau_{cw} + \frac{\sum_{a'} x_{a'} \tau_{wc,a'c}}{\sum_{a''} x_{a''}} \right)$$

$$\ln \gamma_{a}^{\infty} = Z_{a} \left(G_{aw} \tau_{aw} + \frac{\sum_{c'} x_{c'} \tau_{wa'a}}{\sum_{a''} x_{c'} \tau_{wa'a}} \right)$$
(2.77)

(2.78)

(2.76)

Subskrip w menunjukkan air.

2.6 Parameter Interaksi Pada Model E-NRTL

Ada tiga jenis parameter interaksi biner dalam kotribusi NRTL untuk energi Gibbs ekses yaitu, molekul-molekul, molekul-pasangan ion, pasangan ion-pasangan ion (anion-kation). Parameter interaksi molekul-molekul *T* dinyatakan dengan persamaan :

$$\tau = A + B/T(K) \tag{2.79}$$

Parameter interaksi untuk molekul-pasangan ion dan pasangan ion-molekul sesuai persamaan berikut :

$$\tau = A + B \left(\frac{1}{T(K)} - \frac{1}{353.15(K)} \right)$$
(2.80)

Nilai faktor *non-randomness* NRTL adalah 0,2 untuk molekul-molekul, air-pasangan-ion dan pasangan ion-air (Liu, 1999). Sedangkan untuk pasangan amine-ion adalah 0,1. Interaksi antar pasangan ion pada umumnya tidak signifikan dan tidak dimasukkan dalam model ini.

2.7 Metode GRG (*Generalized Reduced Gradient*) Non Linear Comparison (Comparison (Comparison)) Linear Comparison (Comparison)

Arora (2012) menjelaskan metode *reduced gradient* berdasarkan teknik eliminasi variabel sederhana untuk permasalahan dengan constrain berupa persamaan. Metode *Generalized Reduced Gradient* merupakan perluasan metode *reduced gradient* untuk menangani permasalahan dengan constrain berupa pertidaksamaan nonlinear. Algoritma metode GRG Untuk meminimalkan fungsi f(x), $x=[x_1, x_2,...,x_n]$ dengan constrain h_k(x)=0, k=1,2,...K, adalah sebagai berikut:

1.

2.

3.

4.

5. 6.

7.

8.

Tentukan nilai awal x⁰ dan search parameter α^0 , serta error ε dan reduction parameter γ , $0 < \gamma < 1$.

Bagi x menjadi \hat{x} (basic variable) dan \bar{x} (non-basic variable), dengan ketentuan jumlah non-basic variable merupakan selisih antara jumlah total variabel dengan jumlah persamaan constrain

Hitung nilai turunan $\nabla \overline{f}(x^{(t)})$ dan $\nabla \hat{f}(x^{(t)})$

Hitung nilai $C = [\nabla_1 \overline{h}_k; \nabla_2 \overline{h}_k; ...; \nabla_K \overline{h}_k]$ dan $J = [\nabla_1 \hat{h}_k; \nabla_2 \hat{h}_k; ...; \nabla_K \hat{h}_k]$

Hitung $\nabla \tilde{f}(x^{(t)}) = \nabla \bar{f}(x^{(t)}) - \nabla \hat{f}(x^{(t)}) \mathbf{J}^{-1} \mathbf{C}$

If
$$\|\nabla \tilde{f}(x^{(i)})\| \leq \varepsilon$$
, berhenti. Jika tidak, tetapkan $\bar{d} = (\nabla \tilde{f})^{\mathrm{T}}$, $\hat{d} = -\mathbf{J}^{-1}\mathbf{C}\,\bar{d}$, dan $d = (\hat{d}, \bar{d})^{\mathrm{T}}$

Tetapkan search parameter $\alpha = \alpha^0$

Untuk *i*=1,2,3,...:

- a. (Hitung $v^{(i)} = x^{(i)} + \alpha d$. Jika $|h_k(v^{(i)})| \leq |\epsilon|$
 - $k=1,2,\ldots,K$. lanjut ke (d). Jika tidak, lanjutkan.
- b. $\hat{v}^{(i+1)} = \hat{v}^{(i)} J^{-1} \hat{v}^{(i)} \cdot h(v^{(i)}) \operatorname{dan} \overline{v}^{(i+1)} = \overline{v}^{(i)}$

- c. Jika $\|\hat{v}^{(i+1)} \hat{v}^{(i)}\| > \varepsilon$, kembali ke (b). Jika tidak, jika $h_k(v^{(i)}) \le \varepsilon$, k=1,2,...,K, lanjut ke langkah (d), jika tidak, $\alpha = \alpha \gamma$ dan kembali ke langkah (a)
- d. Jika $f(x^{(t)}) \leq f(v^{(t)}), \alpha = \alpha \gamma$ dan kembali ke langkah (a). Jika tidak, $x^{(t+1)} = v^{(t)}$ dan kembali ke tahap (2).

(Halaman ini sengaja dikosongkan)

BAB III METODOLOGI PENELITIAN

3.1 Deskripsi Penelitian

Penelitian ini dilakukan untuk mendapatkan data kesetimbangan fasa uap-cair gas CO₂ dalam sistem K₂CO₃-(PZ+DEA)-H₂O pada tekanan atmosfer dan suhu 30°C, 40°C dan 50°C dalam berbagai konsentrasi promotor Piperazine-DEA dan berbagai konsentrasi gas CO₂. Data kesetimbangan fasa uap-cair ini dapat dijadikan sebagai acuan pada perancangan kolom absorpsi untuk proses mereduksi gas CO₂ pada dunia industri dalam menetukan kinetika reaksi dengan *amine* atau memprediksi rate absorpsi gas menggunakan model.

Semua sifat ini tidak selalu dapat diukur secara langsung dengan metode eksperimen karena gas akan terjadi reaksi kimia dengan *solvent*nya. Clarke (1964) dalam penelitiannya mengatakan adanya kemiripan struktur molekul dan parameter interaksi molekular antara CO₂ dan N₂O. Clarke (1964) mengasumsi bahwa rasio solubilitas CO₂ dan N₂O dalam air dan dalam larutan encer dari solven organik mendekati 5% pada temperatur sama, hal ini berarti ratio H_{CO2}/H_{N2O} dalam air dan larutan dengan konsentrasi *amine* yang berbeda dianggap konstan pada temperatur konstan.

Metode penelitian yang akan dilakukan terdiri dari beberapa langkah, yakni langkah pertama melakukan eksperimen dengan menggunakan gas N_2O untuk memperoleh nilai konstanta Henry CO_2 . Langkah kedua, melakukan eksperimen dengan menggunakan gas CO_2 , dan dapat diperoleh nilai tekanan parsial CO_2 . Langkah terakhir melakukan korelasi dengan model E-NRTL.

3.2 Peralatan Percobaan

Peralatan yang digunakan dalam percobaan ini didasarkan pada peralatan yang digunakan dalam eksperimen Haimour and Sandall (1984) yang dimodifikasi. Skema alat dapat dilihat pada gambar 3.1. Prinsip kerja dari metode ini yaitu mengkontakkan volume tertentu suatu *liquid* dengan sejumlah gas pada temperatur dan tekanan konstan. Kesetimbangan bisa dicapai dengan adanya pengadukan hingga waktu tertentu sampai tercatat tidak ada perubahan dalam volume gas. Perubahan pada volume gas menyatakan bahwa ada sejumlah gas yang terlarut dalam *liquid*.

Gambar 3.1 Skema Peralatan Solubilitas CO₂

Keterangan :

- A. Gas CO₂
- B. Saturation Flask
- C. Absorption Flask
- D. Injeksi Liquid
- E. Ke udara luar
- F. Buret 50 mL
- G. Waterbath shaker
- H. Movable barometric leg
- I. Termometer

3.3 Bahan Percobaan

Bahan-bahan utama yang digunakan dalam percobaan :

- 1. Gas Carbon Dioxide (CO_2) 5, 10, 20 % CO_2
- 2. Gas Nitrogen Oxide (N_2O)
- 3. Potassium Karbonat (K₂CO₃)
- 4. Diethanolamine (DEA)
- 5. Piperazine (PZ)
- 6. Hydrogen Cloride 3 N (HCl)
- 7. Metil Orange (MO)
- 8. Phenolphthaline (PP)

3.4 Variabel Percobaan

Variabel dalam percobaan ini adalah:

- 1. Temperatur : 30, 40, 50°C
- 2. Komposisi larutan PZ-DEA : 5% total campuran
- 3. Konsentrasi gas umpan CO_2 : 5, 10, 20%

3.5 Pelaksanaan Percobaan

3.5.1 Persiapan Percobaan

Larutan *amine* disiapkan terlebih dahulu, yakni melarutkan K_2CO_3 dan Piperazine+DEA dengan aquades dengan kemurnian >99%. Konsentrasi larutan diukur dengan metode titrasi. Densitas larutan *amine* dan komponen-komponen murni ditentukan dengan menggunakan alat piknometer. Temperatur *bath* dikontrol dengan perbedaan ±0,05°C.

3.5.2 Prosedur Penelitian

- 1. Membuat sampel penelitian dengan campuran 30% K₂CO₃ dan 5% PZ-DEA
- 2. Mempersiapkan kondisi peralatan dengan cara mengalirkan gas CO_2 ke dalam rangkaian alat selama ± 5 menit.
- 3. Menutup kedua keran sehingga gas CO₂ berada di dalam *Absorption Flask*

- ≥98 % Sigma-Aldrich
- \geq 99 % MERCK

>99%

- 4. Mengkondisikan *Movable Manometric Leg* hingga level pada manometer air sama.
- 5. Melakukan injeksi larutan sebanyak 20 m L dengan *Syringe* kedalam *Absorption Flask* dan mencatat perubahan level pada manometer air.
- 6. Mengaduk sampel dengan shaker pada waterbath.
- 7. Mengukur volume gas setiap 4-5 menit sampai kesetimbangan tercapai. Kesetimbangan dikatakan tercapai ketika level pada manometer air tidak berubah.
- 8. Mengukur konsentrasi larutan dengan metode titrasi.
- 9. Melakukan langkah yang sama untuk ni lai variabel penelitian yang lain.
- 10. Mengkorelasikan hasil penelitian dengan model E-NRTL.

3.5.2 Diagram Alir Metodologi Penelitian

Diagram alir percobaan ini ditampilkan dalam Gambar 3.2 dimana dari hasil eksperimen dengan gas CO_2 , dilakukan perhitungan tekanan parsial CO_2 secara eksperimen. Setelah itu, dilakukan *fitting* parameter untuk menentukan tekanan parsial CO_2 dengan menggunakan model E-NRTL, dimana untuk memperoleh parameter yang ditunjukkan pada Gambar 3.3.

Persamaan E-NRTL

3.6 Evaluasi Data

Berdasarkan data hasil percobaan dan data lain dari literatur maka dilakukan perhitungan-perhitungan sebagai berikut: Perhitungan konsentrasi kesetimbangan $N_2O(C_{A^*})$

V gas terabsorb = V sampel – ΔV gas (3.1)

mol total gas terabsorp ((n) =
$$\frac{PV}{RT}$$
 (3.2)

$$C_{A^*} = \frac{mol \ total \ gas \ terabsorp}{Volume \ liquid}$$
(3.3)

Perhitungan konstanta Henry N₂O dalam larutan K₂CO₃

$$H_A = \frac{p_A}{C_A^*} \tag{3.4}$$

Perhitungan konstanta Henry CO₂ dalam larutan air

$$H_{CO_2,water} (kPa m^3 kmol^{-1}) = (2.8249 x 10^6) \exp(\frac{-2044}{T})$$
 (3.5)

Perhitungan konstanta Henry N₂O dalam larutan air $H_{N_2O,water} (kPa m^3 kmol^{-1}) = (8.5470 x 10^6) \exp(\frac{-2284}{T})$ (3.6)

Perhitungan konstanta Henry CO₂ dalam larutan K₂CO₃

$$\frac{H_{CO_2,a\min e}}{H_{N_2O,a\min e}} = \frac{H_{CO_2,water}}{H_{N_2O,waer}}$$
(3.7)

Menghitung parameter Parameter nonrandom

 $\alpha_{mm'} = \alpha_{m'm'}, \ \alpha_{m,cm} = \alpha_{cm,m}, \ \alpha_{ca,ca'} = \alpha_{ca'ca}, \ \alpha_{ca,c'a}$ $= \alpha_{c'a,ca}, \ \alpha_{cm}, \ \alpha_{am}, \ \alpha_{mc,ac}, \ \alpha_{ma,ca}$

Parameter interaksi biner

$$\tau_{mm'}, \tau_{m'm'}, \tau_{m,ca}, \tau_{ca,m}, \tau_{ca,ca'}, \tau_{ca'ca}, \tau_{ca,c'a}, \tau_{ca,ca'}, \tau_{ca'ca}, \tau_{ca,c'a}, \tau_{c$$

Dengan nilai konstanta A dan B didapatkan dari hasil fitting parameter.

$$\begin{aligned} \alpha_{mc,ac} &= \alpha_{cm} & (3.11) \\ \alpha_{ma,ca} &= \alpha_{am} & (3.12) \\ \alpha_{cm} &= \sum_{a} Y_{a} \alpha_{m,ca} & (3.13) \\ \alpha_{am} &= \sum_{c} Y_{c} \alpha_{m,ca} & (3.14) \\ G_{am} &= \sum_{c} Y_{c} G_{ca,m} & (3.15) \\ G_{cm} &= \sum_{a} Y_{a} G_{ca,m} & (3.16) \\ \tau_{cm} &= -\frac{\ln(G_{cm})}{\alpha_{cm}} & (3.17) \end{aligned}$$

$$\tau_{am} = -\frac{\ln(G_{am})}{\alpha_{am}} \tag{3.18}$$

$$\tau_{ma,ca} = \tau_{am} - \frac{\alpha_{ca,m}}{\alpha_{ma,ca}} (\tau_{ca,m} - \tau_{m,ca})$$
(3.19)

$$\tau_{mc,ac} = \tau_{cm} - \frac{\alpha_{ca,m}}{\alpha_{mc,ac}} (\tau_{ca,m} - \tau_{m,ca})$$
(3.20)

$$G_{mc,ac} = \exp(\alpha_{mc,ac}\tau_{mc,ac}) = \exp(\alpha_{cm}\tau_{mc,ac})$$
(3.21)

$$G_{ma,ca} = \exp(\alpha_{ma,ac}\tau_{ma,ac}) = \exp(\alpha_{am}\tau_{ma,ac})_{(3.22)}$$

Menghitung nilai estimasi koefisien aktifitas (Y) masingmasing komponen

$$\ln \gamma_m^{lc} = \frac{\sum X_j G_{jm} \tau_{jm}}{\sum X_k G_{km}} - \sum \frac{X_{m'} G_{mm'}}{\sum X_k G_{km'}} \left(\tau_{mm'} - \frac{\sum X_k G_{km'} \tau_{km'}}{\sum X_k G_{km'}} \right)$$
$$+ \sum \sum \frac{Y_a X_c G_{mc,ac}}{\sum X_k G_{kc,ac}} \left(\tau_{mc,ac} - \frac{\sum X_k G_{kc,ac} \tau_{kc,ac}}{\sum X_k G_{kc,ac}} \right)$$
$$+ \sum \sum \frac{Y_c X_a G_{ma,ca}}{\sum X_k G_{ka,ca}} \left(\tau_{ma,ca} - \frac{\sum X_k G_{ka,ca} \tau_{kc,ac}}{\sum X_k G_{ka,ca}} \right)$$
$$(3.23)$$

$$\frac{1}{z_{c}}\ln\gamma_{c}^{lc} = \sum_{a}Y_{a}\frac{\sum_{k}X_{k}G_{kc,ac}\tau_{kc,ac}}{\sum_{k}X_{k}G_{kc,ac}} + \sum_{m}\frac{X_{m}G_{cm}}{\sum_{k}X_{k}G_{km}}\left(\tau_{cm} - \frac{\sum_{k}X_{k}G_{km}\tau_{km}}{\sum_{k}X_{k}G_{km}}\right) + \sum_{a}\sum_{c'}\frac{Y_{c'}X_{a}G_{ca,c'a}}{\sum_{k}X_{k}G_{ka,c'ac}}\left(\tau_{ca,c'a} - \frac{\sum_{k}X_{k}G_{km,c'a}\tau_{km,c'a}}{\sum_{k}X_{k}G_{km'c'a}}\right)$$
(3.24)

$$\frac{1}{z_{a}}\ln\gamma_{a}^{lc} = \sum_{c}Y_{aca}\frac{\sum_{k}^{K}X_{k}G_{ka,ca}^{\tau}ka,ca}{\sum_{k}X_{k}G_{ka,ca}} + \sum_{m}\frac{X_{m}G_{am}}{\sum_{k}X_{k}G_{km}}\left(\tau_{am} - \frac{\sum_{k}X_{k}G_{km}^{\tau}km}{\sum_{k}X_{k}G_{km}}\right)$$
$$+ \sum_{c}\sum_{a'}\frac{Y_{a'}X_{c}G_{ac,a'c}}{\sum_{k}X_{k}G_{kc,a'cc}}\left(\tau_{ac,a'c} - \frac{\sum_{k}X_{k}G_{ka,a'c}^{\tau}kc,a'c}{\sum_{k}X_{k}G_{kc,a'c}}\right)$$
(3.25)

- Membuat kurva solubilitas pada berbagai suhu, perbandingan hasil eksperimen dengan data hasil estimasi.
- Membuat kurva pengaruh suhu terhadap CO₂ terabsorp pada berbagai konsentrasi umpan gas CO₂.
- Membuat kurva hubungan antara P_{CO2} dengan CO_2 loading dengan membandingan hasil eksperimen dengan hasil estimasi.

BAB IV HASIL DAN PEMBAHASAN

Penelitian ini dilakukan untuk mengetahui pengaruh penambahan campuran Piperazine-DEA terhadap solubilitas CO_2 dalam larutan 30% berat K_2CO_3 untuk berbagai variabel penambahan Piperazine-DEA dengan total 5% berat campuran menggunakan konsentrasi CO_2 umpan yang berbeda dari 5% hingga 20% dalam range suhu 30-50 °C.

Penelitian ini bertujuan untuk mendapatkan data kesetimbangan fasa uap-cair CO_2 dalam larutan K_2CO_3 dengan promotor campuran Piperazine-DEA dalam berbagai konsentrasi *solvent*, konsentrasi CO_2 dan suhu pada tekanan atmosferik. Data penelitian yang didapatkan akan dikorelasikan dengan menggunakan metode E-NRTL sehingga bisa memprediksi kondisi di luar data penelitian.

4.1 Validasi Peralatan Penelitian

Validasi peralatan penelitian dilakukan menggunakan air sebagai pelarut. Validasi ini mengacu pada hasil eksperimen penelitian sebelumnya yaitu Versteeg (1988) dan Lee (2006) yang dilakukan pada suhu 30–50°C. Hasil uji validasi ditunjukkan pada Tabel 4.1 berikut:

H _{N2O} (kPa.m ³ /kmol)	H _{N2O} (kPa.m ³ /kmol)	H _{N2O} (kPa.m ³ /kmol)
(Penelitian ini)	(Versteeg, 1988)	(Lee, 2006)
4352	4568	4450
5889	5811	5504
7261	7282	7184

Tabel 4.1 Hasil Validasi Peralatan Penelitian

Dari Tabel 4.1 tersebut terlihat bahwa harga konstanta Henry hasil validasi telah sesuai dengan harga yang diperoleh dari hasil eksperimen Versteeg (1988) dan Lee (2006). Hal ini menunjukkan bahwa peralatan penelitian telah memadai untuk digunakan dalam melakukan penelitian pengaruh penambahan Piperazine dan DEA terhadap solubilitas karbondioksida dalam larutan potassium karbonat (K_2CO_3).

Gambar 4.1 Hasil Validasi Peralatan Eksperimen

4.2 Hasil Eksperimen dan Pembahasan

a. Solubilitas CO₂ secara Fisik

Data solubilitas gas CO_2 dalam pelarut alkanolamine tidak dapat diukur secara langsung. Oleh karena itu, analogi gas N_2O dipakai untuk mengestimasi solubilitas gas CO_2 dalam pelarut alkanolamine. Dalam penelitian ini, dilakukan dengan variabel konsentrasi awal larutan K_2CO_3 30%, PZ-DEA 0-5%, 1-4%, 2-3%, dan 3-2% menggunakan konsentrasi CO_2 umpan yang berbeda 5%, 10%, dan 20% CO_2 dalam range suhu 30-50 °C. Data solubilitas fisik CO_2 dalam pelarut diperoleh dari persamaan analogi N_2O yang telah dikemukakan oleh Clarke (1964):

$$\frac{H_{CO_{amine}}}{H_{N_2O,amine}} = \frac{H_{CO_{amine}}}{H_{N_2O,water}}$$
(4.1)

Untuk mendapatkan data solubilitas N_2O dan CO_2 dalam air, dapat digunakan persamaan (2.22) dan (2.23) berdasarkan studi yang dilakukan oleh Versteeg dan Swaaij (1988). Sedangkan untuk data solubilitas N_2O dalam pelarut didapatkan dari hasil penelitian ini, sehingga data-data yang dibutuhkan untuk menghitung data solubilitas CO_2 dalam pelarut dengan persamaan (4.1) telah terpenuhi. Data solubilitas N_2O yang dihasilkan dalam setiap pelarut $K_2CO_3+PZ+DEA-H_2O$ pada konsentrasi ini ditunjukkan pada Gambar 4.2 di bawah ini:

PZ-DEA

Dari Gambar 4.2 menunjukkan bahwa hubungan antara 1/suhu dan konstanta Henry berbanding terbalik, semakin tinggi harga 1/suhu maka nilai konstanta Henry semakin kecil. Hal ini berarti dengan peningkatan suhu menyebabkan peningkatan harga dari konstanta Henry dan semakin tinggi harga dari konstanta Henry menunjukkan bahwa gas semakin sulit terlarut dalam larutan. Sehingga dengan kata lain meningkatnya nilai 1/suhu menyebabkan kelarutan gas oleh liquid semakin besar dan itu terjadi pada suhu yang lebih rendah, CO₂ lebih banyak terlarut di larutan. Dari grafik diatas menunjukkan bahwa pelarut 3-2% PZ-DEA memiliki nilai konstanta Henry terkecil jika dibandingkan dengan campuran lainnya, Hal ini menunjukkan bahwa daya solubilitas CO₂ secara fisik dengan pelarut 3-2% PZ-DEA lebih baik dan melarutkan gas lebih banyak jika dibandingkan dengan pelarut lainnya.

b. Solubilitas CO₂ secara Kimia

Penelitian ini dilakukan dengan tujuan mengetahui pengaruh penambahan zat aditif atau promotor Piperazine-DEA terhadap solubilitas gas karbon dioksida (CO₂) dalam larutan kalium karbonat (K₂CO₃) pada tekanan atmosferik. Setelah terjadi kesetimbangan dilakukan pengambilan sampel larutan untuk pengukuran densitas larutan dan analisa larutan dengan titrasi. Titrasi dilakukan untuk mengetahui kadar $CO_3^{2^-}$ dan HCO_3^- dalam larutan. Analisa kadar HCO_3^- dalam larutan dilakukan untuk mengetahui jumlah gas CO_2 yang bereaksi dengan larutan K₂CO₃ karena CO_2 yang terabsorp ada yang bereaksi dan terlarut dengan larutan K₂CO₃. Pengukuran densitas dilakukan dengan cara yang sederhana dengan menggunakan piknometer.

Reaksi yang terjadi dalam kesetimbangan larutan:

 $K_2CO_3 + CO_2 + H_2O \leftrightarrow 2 \text{ KHCO}_3$ (4.2)

Di dalam larutan, aditif PZ akan meningkatkan jumlah terbentuknya HCO₃-

 $PZ + CO_2 + H_2O \leftrightarrow PZH^+ + HCO_3^-$ (4.3)

Sehingga akan meningkatkan jumlah CO2 yang bereaksi.

$$\text{CO}_2 + 2\text{H}_2\text{O} \leftrightarrow \text{H}_3\text{O}^+ + \text{HCO}_3^- \tag{4.4}$$

$$HCO_3^{-} + H_2O \leftrightarrow H_3O^{+} + CO_3^{-2}$$

$$(4.5)$$

Hasil perhitungan besarnya CO_2 yang terabsorb dengan larutan dapat dilihat pada Tabel 4.2 :

1751		Suhu	C	O ₂ Terabsorp (n	nol)
PZ	DEA	(°C)	Umpan 5% CO ₂	Umpan 10% CO ₂	Umpan 20% CO ₂
YS.		30	0,0234	0,0252	0,0294
0 5	5	40	0,0233	0,0251	0,0292
	50	0,0232	0,0250	0,0290	
S.		30	0,0235	0,0253	0,0295
1 4	4	40	0,0233	0,0251	0,0293
	50	0,0232	0,0250	0,0292	
2	533	30	0,0235	0,0253	0,0295
2 3	3	40	0,0234	0,0252	0,0294
	50	0,0233	0,0251	0,0293	
3 2	277V	30	0,0238	0,0254	0,0296
	2	40	0,0235	0,0253	0,0295
		50	0,0234	0,0252	0,0294

Tabel 4.2 Hasil Perhitungan CO₂ Terabsorp

Dari Tabel 4.2, dapat dilihat hasil perhitungan dari jumlah mol CO_2 terabsorp, CO_2 terabsorp merupakan jumlah antara CO_2 bereaksi dan CO_2 terlarut. CO_2 terlarut disini merupakan CO_2 dalam larutan yang tidak bereaksi. Untuk perhitungan jumlah CO_2 terlarut dengan menggunakan rumus konstanta kesetimbangan dari Austgen and Rochelle (1991) yaitu:

$$\ln K_{x} = C_{1} + \frac{C_{2}}{T} + C_{3}T + C_{4}\ln T$$

(4.6)

Hubungan CO_2 yang terabsorp dengan suhu dapat dilihat pada Gambar 4.3 - 4.5:

Gambar 4.5 Pengaruh Suhu terhadap CO₂ Terabsorp dengan Konsentrasi Gas Umpan 20% CO₂ T

Dari Gambar 4.3-4.5 terlihat bahwa, pada konsentrasi umpan CO_2 dan campuran promotor yang sama, dengan meningkatnya suhu dari 30-50°C maka jumlah mol CO_2 yang terabsorp mengalami penurunan. Hal ini disebabkan K_2CO_3 dengan promotor piperazine adalah larutan yang memiliki panas reaksi yang rendah dan bersifat *eksoterm*, sehingga kenaikan suhu akan menurunkan laju reaksi larutan benfield dengan gas CO_2 . Kenaikan suhu berdampak pada penurunan kadar ion $HCO_3^$ dalam larutan.

Di samping itu, pada suhu dan campuran promotor yang sama, jumlah CO₂ terabsorp lebih banyak pada konsentrasi CO₂ umpan yang lebih tinggi. Pada umpan 5% CO₂, terabsorp sebanyak 0,23164-0,23763 mol. CO₂ terabsorp mengalami kenaikan pada umpan 10% CO₂, yaitu 0,24965-0,25444 mol. Pada umpan 20% CO₂, berkisar diantara 0,29047-0,029646 mol CO₂ yang dapat terabsorp, nilai pada umpan 20% CO₂ merupakan yang tertinggi apabila dibandingkan dengan konsentrasi CO₂ umpan yang lainnya.

Selain itu, dapat dilihat pula bahwa promotor 3-2% PZ-DEA memiliki nilai CO_2 terabsorp tertinggi pada tiap konsentrasi umpan. Hal ini disebabkan oleh PZ yang dapat bereaksi lebih cepat dengan CO_2 dibandingkan *amine* lainnya. PZ adalah diamine, sehingga dapat mengabsorb 2 mol CO_2 per mol *amine* berdasarkan Cullinane (2005). Dari hasil yang didapatkan, terdapat beberapa data yang memiliki nilai CO_2 terabsorb berhimpit. Hal ini terjadi dikarenakan adanya pembulatan pada nilai CO_2 terabsorb yang sebenarnya nilai tersebut tidak persis sama, dimana nilai tersebut merupakan penjumlahan dari CO_2 terlarut dan CO_2 bereaksi. Nilai CO_2 terabsorb yang hampir sama ini dikarenakan adanya penambahan konsentrasi PZ yang seiringan dengan pengurangan konsentrasi DEA atau sebaliknya pada tiap variabel. Hal yang serupa terjadi pada penelitian *Zulfetra dan Nuharani* (2014).

Dari harga CO_2 terabsorp dalam larutan akan dapat diperoleh nilai CO_2 loading. CO_2 loading merupakan rasio antara jumlah total mol CO_2 yang mampu diabsorp terhadap total mol K^+ dan mol *amine* yang terkandung dalam larutan.

4.3 Korelasi dengan Model E-NRTL

Untuk melakukan perhitungan korelasi tekanan kesetimbangan dengan menggunakan data fraksi mol komponen pada kondisi kesetimbangan dari eksperimen, dihitung dengan model E-NRTL. Model E-NRTL ini telah cukup baik untuk memprediksi kelakuan larutan elektrolit lemah hingga elektrolit kuat. Selain itu, berdasarkan Chen dan Song (2004) menyatakan bahwa model E-NRTL (Electrolyte Non Random Two Liquid) telah diaplikasikan secara luas untuk menunjukkan sifat-sifat thermodinamika dari berbagai macam sistem elektrolit. Misalnya, model ini dapat digunakan untuk menghitung koefisien aktivitas komponen-komponen larutan elektrolit. Untuk mendapatkan parameter biner yang digunakan dalam perhitungan koefisien aktivitas CO₂ dengan model E-NRTL, maka dilakukan *fitting* Average Absolute Relative Deviation (AARD) antara (P_{CO_2})yang

didapatkan dari eksperimen dengan (P_{CO_2}) hasil perhitungan korelasi menggunakan *solver tool* pada *Microsoft Excel* dengan metode GRG (Generalized Reduced Gradient) Non Linear.

Dari metode *fitting* yang telah dilakukan, kemudian digunakan untuk menghitung tekanan parsial CO₂ hasil korelasi (P_{CO_2}) dapat ditabelkan hasilnya dalam Tabel 4.3 sampai 4.6 yang merupakan perbandingan antara P_{CO_2} hasil eksperimen dan hasil korelasi untuk metode *fitting* dapat dilihat pada berikut:

		DLA		
Konsentrasi Gas CO ₂	Suhu	P CO ₂ Experiment	P CO ₂ Korelasi	Error P CO ₂
Umpan	(°C)	(Pa)	(Pa)	(%)
UT SQ	30	579,40	539,64	6, <mark>86%</mark>
5%	40	668,33	671,16	0,42%
	50	827,07	827,12	0,01%
W R W W	30	721,74	718,14	0,50%
10%	40	830,49	856,87	3,18%
	50	1016,75	993,49	2,29%
TYDE WY	30	1060,96	1060,96	0,00%
20%	40	1208,06	1259,55	4,26%
in all	50	1477,89	1462,30	1,05%

Tabel 4.3 Hasil Perhitungan Tekanan Parsial CO₂ untuk 0-5% PZ-

Konsentrasi	Suhu	P CO ₂	P CO ₂	Error	
Gas CO ₂		Experiment	Korelasi	P CO ₂	
Umpan	(°C)	(Pa)	(Pa)	(%)	
	30	567,24	546,25	3,70%	
5%	40	623,61	590,09	5,38%	
	50	787,64	788,29	0,08%	
	30	704,85	703,48	0,19%	
10%	40	774,04	773,42	0,08%	
	50	961,19	975,25	1,46%	
1	30	1032,64	1029,05	0,35%	
20%	40	1133,73	1130,04	0,33%	
	50	1406,95	1382,82	1,72%	

Tabel 4.4 Hasil Perhitungan Tekanan Parsial CO₂ untuk 1-4% PZ-DEA

Tabel 4.5 Hasil Perhitungan Tekanan Parsial CO₂ untuk 2-3% PZ-DEA

Konsentrasi Gas CO ₂	Suhu	P CO ₂ Experiment	P CO ₂ Korelasi	Error P CO ₂
Umpan	(°C)	(Pa)	(Pa)	(%)
C.S.S.S.S.	30	538,26	549,84	2,15%
5%	40	618,04	591,92	4,23%
	50	772,34	762,77	1,24%
CONT.	30	667,27	685,84	2,78%
10%	40	768,16	773,67	0,72%
17.1	50	919,98	928,96	0,98%
	30	974,94	997,00	2,26%
20%	40	1122,15	1149,22	2,41%
	50	1342,21	1342,22	0,00%

Konsentrasi Gas CO ₂	Suhu	P CO ₂ Experiment	P CO ₂ Korelasi	Error P CO ₂
Umpan	(°C)	(Pa)	(Pa)	(%)
	30	517,51	517,34	0,03%
5%	40	557,54	557,83	0,05%
	50	700,08	687,11	1,85%
	30	637,07	634,49	0,41%
10%	40	688,10	688,46	0,05%
TORN	50	822,08	804,07	2, <mark>19%</mark>
	30	927,01	927,00	0,00%
20%	40	1000,26	1000,36	0,01%
AP 1 1 17/1	50	1193,54	1149,97	3,65%

Tabel 4.6 Hasil Perhitungan Tekanan Parsial CO₂ untuk 3-2% PZ DEA

Dari Tabel 4.3 sampai 4.6 dapat terlihat bahwa, pada konsentrasi CO_2 umpan dan promotor yang sama, suhu berbanding lurus dengan tekanan parsial CO_2 . Meningkatnya suhu akan menaikkan tekanan parsial CO_2 didalam larutan. Dapat dilihat juga bahwa pada hasil korelasi untuk setiap tekanan parsial gas CO_2 meningkat seiring dengan kenaikan suhu.

Selain itu, dari Tabel 4.3 sampai 4.6 dapat dilihat juga pada suhu dan campuran promotor yang sama, tekanan parsial CO_2 semakin tinggi pada konsentrasi gas umpan CO_2 yang lebih tinggi.

Untuk hubungan antara tekanan parsial CO_2 (P_{CO_2}) baik eksperimen maupun korelasi dari setiap campuran larutan terhadap CO_2 *loading* seperti yang ditunjukkan pada Gambar 4.6 -4.9:

Gambar 4.7 Hubungan Tekanan Parsial CO₂ (P_{CO_2}) Eksperimen dan Korelasi dengan CO₂ Loading Promotor 1-4% PZ-DEA

Dari Gambar 4.6 s ampai 4.9 da pat dilihat untuk hasil eksperimen maupun hasil korelasi menunjukkan bahwa, pada konsentrasi CO_2 umpan dan promotor yang sama, semakin besar gas CO_2 loading maka tekanan parsial juga semakin besar. Hal ini disebabkan karena terjadinya kenaikkan konsentrasi CO_2 didalam larutan yang pada dasarnya selalu berkesetimbangan dengan konsentrasi CO_2 didalam fase gas (Kurniati, Y. dan Panca S.U, 2013). Pada konsentrasi CO_2 umpan dan promotor yang sama pula, suhu berbanding lurus dengan tekanan parsial CO_2 . Meningkatnya suhu akan menaikkan tekanan parsial CO_2 didalam larutan. Dapat dilihat juga bahwa pada hasil korelasi untuk setiap tekanan parsial gas CO_2 meningkat seiring dengan kenaikkan suhu. Dari Gambar 4.6 sampai 4.9 juga dapat dilihat bahwa, pada suhu dan campuran promotor yang sama, jumlah CO_2 *loading* lebih banyak pada konsentrasi CO_2 umpan yang lebih tinggi.

Penelitian ini dapat dibandingkan dengan penelitian Harimurti (2011) yang menggunakan 30% K₂CO₃ tanpa promotor pada suhu dan konsentrasi CO₂ umpan yang sama. Dalam penelitian Harimurti (2011) didapatkan CO₂ *loading* sebesar 0,027 (mol CO₂ / mol K⁺). Apabila dibandingkan dengan penelitian ini pada suhu dan konsentrasi CO₂ umpan yang sama, nilai yang CO₂ *loading* didapatkan bernilai 0,1386 hingga 0,1536 (mol CO₂ / mol K⁺ + mol PZ + mol DEA). Sehingga dapat disimpulkan bahwa penambahan promotor PZ-DEA dapat menaikkan CO₂ *loading* secara signifikan sebesar 413-468% dari nilai sebelumnya.

Hilliard (2008) melakukan penelitian menggunakan sistem CO_2 -K₂ CO_3 -PZ-H₂O dengan suhu dan konsentrasi promotor PZ yang berbeda dengan penelitian ini, namun tren yang dihasilkan sama. Pada penelitian Hilliard (2008) menghasilkan nilai *Average Absolute Relative Deviation (AARD)* sebesar 15,48%, sedangkan pada penelitian ini model E-NRTL memberikan hasil yang lebih baik pada sistem CO_2 -K₂ CO_3 -(PZ+DEA)-H₂O dengan *Average Absolute Relative Deviation (AARD)* 3,38% untuk *fitting* pada tiap variasi komposisi gas umpan.

DAFTAR PUSTAKA

Al-Rashed, O. A., S. H. Ali. Modeling the solubility of CO₂ and H₂S in DEA–MDEA alkanolamine solutions using the electrolyte–UNIQUAC model. *Sep Purif Technol.* 2012, 94, 71–8.

- Altway, S. dan K. D. Marhetha. Prediksi Solubilitas Gas CO₂ di Dalam Larutan Potasium Karbonat dan MDEA Menggunakan Model Elektrolit UNIQUAC. Skripsi Jurusan Teknik Kimia Institut Teknologi Sepuluh Nopember. 2010.
- Altway. S, Kuswandi, dan A.Altway. Prediction of Gas-Liquid Equilibria of CO₂-K₂CO₃-MDEA-H₂O System by Electrolyte UNIQUAC Model. *IPTEK Journal of Engineering.* **2014**, *1*, 1.
- Arora, J. S. Introduction to Optimum Design 3rd edition. Academic Press. USA. 2012. 567-569.
- Austgen, D.M., G.T. Rochelle, X. Peng, dan C.C. Chen. Model of Vapor-Liquid Equilibria for Aqueous Acid Gas-Alkanolamine Systems Using the Electrolyte-NRTL Equation. Ind. Eng. Chem. Res. 1989, 28, 1060-1073.
- Austgen, D.M., G.T. Rochelle, X. Peng, dan C.C. Chen. Model of Vapor-Liquid Equilibria for Aqueous Acid Gas-Alkanolamine Systems. 2. Representation of H₂S and CO₂ Solubility in Aqueous MDEA and CO₂ Solubility in Aqueous Mixtures of MDEA with MEA or DEA. *Ind. Eng. Chem. Res.* **1991**, *30*, 543-555.

- Chen, C.C., Song, Y. Solubility Modeling with Nonrandom Two-Liquid Segment Activity Coefficient Model. *Ind. Eng. Chem. Res.* 2004, 43, 8354.
- Clarke, J. K. A. Kinetics of Absorption of Carbon Dioxide In Monoethanolamine Solutions tt Short Contact Times. *Ind. Eng. Chem. Fundamental.* **1964**, *3*.
- Cullinane, J. Tim, G.T. Rochelle. Carbon dioxide Absorption with Aqueous Potassium Carbonate Promoted by Piperazine. *Chem Eng Sci.* **2004**, *59*, 3619-3630
- Dudley, Bob. BP Statistical Review of World Energy June 2014. BP. London. 2014
- Dang, H. dan G.T. Rochelle. CO2 Absorption Rate and Solubility in Monoethanolamine / Piperazine / Water. Journal, Department of Chemical Engineering, University of Texas at Austin. 2001.
- Haimour, N., O.C. Sandall, Absorption of Carbon Dioxide Into Aqueous Methyldiethanolamine. *Chem. Eng. Science*. **1984**, *39*.
- Hilliard, M.D. A Predictive Thermodynamic Model or an Aqueous Blend of Pottasium Carbonate, Piperazine, and Monoethanolamine for Carbon Dioxide Capture from Flue Gas. Dissertation, Department of Chemical Engineering, The University of Texas at Austin. 2008.
- Kuswandi, K. Anam, dan Y.P. Laksana. Solubilitas Gas CO2 dalam Larutan Potassium Karbonat. *Jurnal Teknik Kimia, Universitas Pembangunan Nasional.* **2008**.
- Kurniati, Y., A.Altway, Kuswandi. Eksperimental Penentuan Kesetimbangan Uap-Cair dalam Sistem Larutan Elektrolit

CO₂-K₂CO₃-MDEA+DEA-H₂O. *Prosiding Seminar Nasional Teknik Kimia "Kejuangan"*. **2014**.

- Lee, Seungmoon; Song, Ho-Jun; Maken, Sanjeey; Park, Jong-Jin; Park, Won-Jin. Physical Solubilities and Diffusivity of N₂O and CO₂ in Aqueous Solutions of Sodium Glycinate. *J Chem Eng Data*. **2006**, *51*, 504-509.
- Liu, Y., L. Zhang, S. Watanasiri. Representing Vapor-Liquid Equilibrium for an Aqueous MEA-CO₂. *Ind. Eng. Chem.* **1999**, 38.
- Ma, Xiaoguang. Inna Kim. Ralf Beck. Hanna Knuutila dan Jens Petter Andreassen. Precipitation of Piperazine in The Piperazine-H2O-CO2 System. *Journal, Department of Chemical Engineering, NTNU, Norway.* 2010.
- Renon, H. Prausnitz, J.M. Local Compositions in Thermodynamic Excess Functions for Liquid Mixtures. *AIChE J.* **1968**, 14, 135-144

Suprapto, Y. The World of Energy Volume I. PT Badak NGL. Samarinda. 2007

Suprapto, Y. The World of Energy Volume IV. PT Badak NGL. Samarinda. 2007

Thee, H., Y. A. Suryaputradinata, K. A. Mumford, K. H. Smith, G.D. Silva, S.E. Kentish, G. W. Stevens. A kinetic and process modeling study of CO₂ capture with MEApromoted potassium carbonate solutions. *Chem Eng J.* 2012, 210, 271-279. Versteeg, G. F., van Swaaij, W. P. M., Solubility and Diffusivity of Acid Gases (CO₂, N₂O) in Aqueous Alkanolamine Solutions. *J Chem Eng Data*. **1988**, *33*, 29-34.

Winarno, H., G. Wibawa, dan Kuswandi. Eksperimental dan Estimasi Kesetimbangan Fase Uap-Cair Sistem Larutan Elektrolit CO₂-K₂CO₃-Diethanolamine-H₂O. Jurnal Teknik Industri, Institut Teknologi Sepuluh Nopember. 2008.

Zhang Y., H. Que, C.C. Chen. Thermodynamic modeling for CO₂ absorption in aqueous MEA solution with electrolyte NRTL model. *Fluid Phase Equilib.* **2011**, *311*, 67-75.

Zulfetra, I. dan F. Nuharani. Eksperimen dan Estimasi Kesetimbangan Fasa Uap-Cair Sistem Larutan Elektrolit CO₂-K₂CO₃-(MDEA+DEA) dan CO₂-K₂CO₃-(Piperazine+DEA). Skripsi Jurusan Teknik Kimia Institut Teknologi Sepuluh Nopember. **2014**.

(<u>http://www.owlnet.rice.edu/~ceng403/co2abs.html</u>), ta akses 21 Maret 2015

tanggal

BAB V KESIMPULAN

5.1 Kesimpulan

Dari hasil eksperimen diperoleh harga konstanta Henry untuk absorpsi gas CO₂ dalam larutan K₂CO₃ 30% dengan promotor campuran PZ-DEA sebesar 3179,23-4410,41 kPa.m³/kmol dengan cara analogi gas N₂O. Nilai konstanta Henry yang diperoleh meningkat seiring dengan kenaikan suhu pada range 30-50°C. Pada konsentrasi CO₂ umpan dan promotor yang sama, kenaikan suhu operasi dapat menaikkan tekanan parsial gas CO₂ dalam larutan K₂CO₃ 30% dengan promotor PZ-DEA yakni sebesar 517,34-1462,30 Pa. Meningkatnya konsentrasi CO₂ dalam gas umpan dapat meningkatkan besarnya CO₂ loading rata-rata sebesar 11,81% untuk 10% CO₂ umpan dan 36,43% untuk 20% CO₂ umpan. Penggunaan model E-NRTL memberikan hasil dengan Average Absolute Relative Deviation (AARD) sebesar 3,38%.

(Halaman ini sengaja dikosongkan)

APENDIKS

A.1 Perhitungan Eksperimen

1.

Eksperimen ini dilakukan dengan variabel sebagai berikut:

Untuk Sistem K ₂ CO	93-(PZ+DEA) :
Suhu (T)	$= 30 ^{\circ}\text{C}, 40 ^{\circ}\text{C}, \text{dan } 50 ^{\circ}\text{C}$
Kadar K ₂ CO ₃	= 30% massa
Kadar PZ+DEA	= 5% massa

Berikut contoh perhitungan dan penabelan hasil perhitungan:

a. Sebagai contoh perhitungan, diambil suhu 40 °C dengan variabel larutan 30% massa K₂CO₃ dan 1% massa PZ dan 4% massa DEA. Contoh perhitungan sebagai berikut:

Perhitungan massa tiap komponen: Basis: Massa larutan $(m_{larutan awal}) = 150$ g larutan Dengan komposisi larutan sebagai berikut: % massa K₂CO₃ = 30% % massa PZ = 1% % massa DEA = 4% % massa H₂O = 100% - (% massa K₂CO₃ + % massa PZ + % massa DEA) = 100% - (30% + 1% +4%) = 100% - 35% = 65%

Massa tiap-tiap larutan dapat dihitung dengan rumus berikut: Massa = % massa x m_{larutan awal} Contoh perhitungan massa K₂CO₃ sebagai berikut: m K₂CO₃ = % massa K₂CO₃ x m_{larutan awal}

Perhitungan massa PZ, massa DEA dan massa H₂O dapat dilihat pada Tabel A.1 berikut:

Tabel A.1 Perhitungan Massa Tiap Komponen Untuk 1% Massa PZ dan 4% Massa DEA

Senyawa	Komposisi	Massa (gram)	n (mol)	Fraksi
K ₂ CO ₂	30	45	0 324	0.05571
PZ	1	1,5	0,018	0,00309
DEA	4	6	0,057	0,00981
H ₂ O	65	97,5	5,417	0,93139
Total	100	150	5,816	1

Menghitung adanya N2O terabsorb

Untuk menghitung mol N_2O terabsorb, dapat digunakan rumus sebagai berikut:

P = 1,01325 x 10⁵ Pa T = 40 °C = 313,15 K Volume sampel : 20 mL = 2 x 10⁻⁵ m³ ΔV gas = 10,3 mL = 10,3 x 10⁻⁶ m³ Volume gas yang terabsorb = Volume sampel – ΔV gas = 2 x 10⁻⁵ - 12 x 10⁻⁶

 $= 0,0000097 \text{ m}^3$

Perhitungan konsentrasi kesetimbangan N₂O (C_A*)

 $mol\ total\ gas\ terabsorp\ (n) = \frac{PV}{RT}$

8.3<mark>14 x</mark> 313,15

=0,0003775mol

Hasil Perhitungan untuk mol N_2O terabsorb ditunjukkan pada Tabel A.2.dan %DEA pada Tabel A.2.

%PZ	%DEA	Suhu (°C)	N ₂ O Terabsorb (mol)
		30	0,0004261
0	5	40	0,0003580
en reens	N. C. S. N.	50	0,0002829
the second second		30	0,0004382
1	1 4	40	0,0003775
No Contractor	a service and a	50	0,0002942
		30	0,0004382
2	3	40	0,0003853
		50	0,0003017
		30	0,0004462
3	2	40	0,0004048
DR LUDE	AUDAN	50	0,0003243

Menghitung Konstanta Henry N2O Dalam Solvent

Mol total yang terabsorp (n) = 3,775.10⁻⁷ kmol

$$C_{A^*} = \frac{mol total gas terlarut}{Volume liquid}$$

$$= \frac{3,775.10^{-7}}{20}$$

$$= 0,019 \frac{kmol}{m^3}$$
Perhitungan konstanta Henry N₂O dalam K₂CO₃+PZ+DEA

 $\frac{P_{H_20}^{\nu}}{bar} = \frac{1.33567 \times 10^6 \exp(-5243/T(K))}{=7.24547 k P a}$

larutan

61

$$P_{N_{2}O} = P_{total} - x_{H_{2}O} \cdot P^{v}_{H_{2}O} - x_{K_{2}CO_{3}} - x_{solvent} \cdot P_{a\min e}$$

$$= 1,01325x10^{5} - (0,93139)(7.24547) - 0 - 0$$

$$= 94,5758kPa$$

$$H_{A} = \frac{p_{A}}{C_{A}^{*}}$$

$$= \frac{94,5758}{0,019}$$

$$= 5010,5359 \frac{kPa.m^{3}}{kmol}$$

Menghitung Konstanta Henry CO₂ Dalam Solvent (analogi N₂O)

Perhitungan konstanta Henry CO₂ dalam air

$$H_{CO_2,water}$$
 $(kPa m^3 kmol^{-1}) = (2.8249 x 10^6) \exp(\frac{-2044}{T})$

Perhitungan konstanta Henry N₂O dalam air

$$H_{N_20,water}$$
 (kPa m³ kmol⁻¹) = (8.5470 x 10⁶) exp($\frac{-2284}{T}$)

Perhitungan konstanta Henry CO_2 dalam larutan K_2CO_3 +PZ+DEA dengan menggunakan rumus analogi N_2O

 $\frac{H_{CO_2,a\min e}}{H_{N_2O,a\min e}} = \frac{H_{CO_2,water}}{H_{N_2O,waer}}$

	%DEA				
-	0/07 0/05		Suhu	H N ₂ O	H CO ₂
Tarte	70PZ	70DEA	(°C)	(kPa.m ³ /kmol)	(kPa.m ³ /kmol)
			30	4573,0194	3328,9821
	0	5	40	5282,6447	3749,5594
	× 2		50	6362,8356	4410,4154
1 sole			30	4530,3781	3297,9409
	1	4	40	5010,5359	3556,4198
			50	6118,5258	4241,0714
1			30	4447,3473	3237,4976
	2	3	40	4909,5013	3484,7066
			50	5965,9664	4135,3245
		Line of the second seco	30	4367,3084	3179,2324
	3	2	40	4673,6467	3317,2997
			50	5550,1114	3847,0736

Hasil Perhitungan untuk Konstanta Henry (H) tercantum pada Tabel A.3

Tabel A.3 Perhitungan Mol H_{N20} dan H_{C02} Untuk %PZ dan

Berikut perhitungan menggunakan gas CO₂ b.

Sebagai contoh perhitungan, diambil variabel gas 5% mol CO₂ dengan variabel larutan 30% massa K₂CO₃ dan 1% massa PZ dan 4% massa DEA. Contoh perhitungan sebagai berikut:

Perhitungan volume larutan awal:

Untuk menghitung volume larutan, sebelumnya harus diketahui terlebih dahulu massa dan densitas larutan dan didapatkan data sebagai berikut :

massa piknometer kosong	= 13,378 g
massa piknometer + aquades	r = 23,4248 g
massa aquades	=(13,5279 - 13,1756) g
AND AND AND	= 10,0467 g
dengan massa jenis aquades	= 1 g/mL

dengan massa jenis aquades

volume piknometer	=(10,0467 g)/(1 g/mL)
	= 10,0467 mL
massa piknometer + larutan	= 26,1747 g
massa larutan	= (26,1747 - 13,378) g
	= 12,7969 g
densitas larutan awal	= (12,7969 g) / (10,0467)
	- 1 2727 a/mI

volume larutan awal

= 1,2737 g/mL = (150 g)/(1,2737 g/mL)

= 117,7663 mL

Untuk analisa komposisi karbonat dan bikarbonat mulamula, diambil 10 ml larutan.

Analisa Awal Larutan:

a. Menganalisa Adanya Bikarbonat (HCO₃⁻) Mula-Mula Untuk menganalisa adanya bikarbonat (HCO₃⁻) mulamula, dilakukan titrasi dengan menggunakan titran HCl. Titrasi 1

Volume sampel larutan Molaritas HCl (M_{HCl}) = 5 mL Dibutuhkan larutan HCl sebesar: Volume HCl (V_{HCl}) = 5 mL Dari hasil titrasi tersebut dapat dihitung mol karbonat (CO_3^2) mula-mula dalam 10 ml sampel larutan sebagai berikut: Mol CO_3^{2-} mula-mula = $M_{HCl} \times V_{HCl}$

 $= 3 \text{ M} \times 5 \text{ mL}$ = 15 mmol

Sehingga dapat dihitung mol karbonat (CO_3^{2-}) mula-mula dalam 20 mL larutan sebagai berikut:

```
mol CO_3^{2-} mula - mula = \frac{15 \text{ mmol x } 20 \text{ mL}}{1000 \text{ mL}}
```

5 mL= 60 mmol = 0,060 mol

Titrasi 2:

Volume sampel larutan = 5 mL Molaritas HCl (M_{HCl}) = 3,015 M Dibutuhkan larutan HCl sebesar: Volume HCl (V_{HCl}) = 9 mL Dari hasil titrasi tersebut dapat dihitung mol bikarbonat (HCO₃) mula-mula dalam 10 ml sampel larutan sebagai berikut:

Mol HCO₃⁻ mula-mula = $(M_{HCl} \times V_{HCl}) - Mol CO_3^{2-}$ mula-mula = $(3 M \times 9 mL) - 60 mmol$

Sehingga dapat dihitung mol bikarbonat (HCO₃⁻) dalam 20 ml larutan sebagai berikut:

 $mol HCO_3^{-} mula - mula = \frac{12 \text{ mmol } x \text{ 20 } \text{mL}}{12 \text{ mmol } x \text{ 20 } \text{mL}}$

5mL= 48 mmol

= 0,048 mol

 Menghitung Adanya CO₂ Terlarut Mula-Mula Untuk menghitung mol CO₂ terlarut mula-mula, dapat digunakan rumus konstanta kesetimbangan dari reaksireaksi berikut:

Reaksi 1: $CO_2 + 2H_2O \rightleftharpoons H_3O^+ + HCO_3^- K_1$ Reaksi 2: $HCO_3^- + H_2O \rightleftharpoons H_3O^+ + CO_3^{2-} K_2$ Konstanta kesetimbangan masing-masing reaksi dapat dihitung dengan menggunakan persamaan berikut:

$$\ln K_{x} = C_{1} + \frac{C_{2}}{T} + C_{3}T + C_{4}\ln T$$

(Austgen dan Rochelle tahun 1991)

Konstanta C pada persamaan tersebut juga diperoleh dari Jurnal Autsgen dan Rocelle tahun 1991, seperti pada Tabel A.4 berikut:

Tabel A.4 Nilai Konstanta C pada Persamaan Kesetimbangan

Keterangan	C ₁	C ₂	C ₃	C ₄
Reaksi 1	231,465	-12.092,1	-36,7816	0
Reaksi 2	216,049	-12.431,7	-35,4819	0

Sehingga dapat dilakukan perhitungan konstanta kesetimbangan pada masing-masing reaksi kesetimbangan tersebut sebagai berikut : Dengan T sistem = 40 °C

 $= (40 \ ^{\circ}C + 273.15) \text{ K}$

Perhitungan konstanta kesetimbangan reaksi 1:

$$\ln K_1 = 231,465 + \frac{-12.092,1}{313,15} + (-36,7816 \ln 313,15) + (0 \times 313,15)$$

= -18.,52 $K_1 = 9,04 \cdot 10^{-9}$ Perhitungan konstanta kesetimbangan reaksi 2:

$$\ln K_2 = 216,049 + \frac{-12.431,7}{305,15} + (-35,4819 \ln 305,15) + (0 \times 305,15)$$

= -27,55K₂ = 1,081 . 10⁻¹²

Hasil perhitungan konstanta kesetimbangan untuk kedua reaksi tersebut dapat dilihat pada Tabel A.5 berikut:

Tabel A.5 Hasil Perhitungan Konstanta Kesetimbangan Pada Analisa Awal Untuk 5% Mol CO₂ pada suhu 40°C

Keterangan	K _x	
Reaksi 1	9,04 . 10 ⁻⁹	
Reaksi 2	1,081.10 ⁻¹²	

Perhitungan CO_2 terlarut dapat dihitung dengan persamaan berikut:

$$[CO_2 \text{ terlarut}] = \frac{K_2 [\text{HCO}_3^-]^2}{K_1 [\text{CO}_3^{2-}]}$$

dengan:

$$[HCO_{3}^{-}] = \frac{\text{mol HCO}_{3}^{-}}{V_{\text{larutan}}}$$
$$= \frac{0,048 \text{ mol}}{20 \text{ ml}}$$
$$= 2,4 \text{ mol/ml}$$

$$\begin{bmatrix} CO_{3}^{2-} \end{bmatrix} = \frac{\text{mol}\ CO_{3}^{2-}}{V_{\text{larutan}}} = \frac{0,06 \text{ mol}}{20 \text{ ml}} = 0,003$$

maka:

$$\begin{bmatrix} CO_2 \text{ terlarut} \end{bmatrix} = \frac{K_2 \begin{bmatrix} \text{HCO}_3^- \end{bmatrix}^2}{K_1 \begin{bmatrix} \text{CO}_3^{-2} \end{bmatrix}}$$
$$= \frac{1,081.10^{-12} \text{ x } 0,00241^2}{9,04.10^{-9} \text{ x } 0,0030}$$
$$= 0,000 \text{ mol/ml}$$
$$CO_2 \text{ terlarut mula-mula} = \begin{bmatrix} \text{CO}_2 \text{ terlarut} \end{bmatrix} \text{ x } \text{V}_{\text{larutar}}$$
$$= 0 \text{ mol/mL } \text{ x } 20 \text{ mL}$$
$$= 0 \text{ mol}$$

Analisa Akhir Larutan:

a. Menganalisa Jumlah Bikarbonat (HCO₃⁻) Akhir Untuk menganalisa jumlah bikarbonat (HCO₃) akhir, dilakukan titrasi dengan menggunakan titran HCl. Titrasi 1: Volume sampel larutan = 5 mLMolaritas HCl (M_{HCl}) = 3 MDibutuhkan larutan HCl sebesar: Volume HCl (V_{HCl}) $= 6.16 \, \text{mL}$ Dari hasil titrasi tersebut dapat dihitung mol karbonat (CO_3^{2-}) akhir dalam 5 ml sampel larutan sebagai berikut: Mol CO_3^{2-} akhir $= M_{HCI} \times V_{HCI}$ $= 3 M \times 6.16 mL$ = 18,48 mmolSehingga dapat dihitung mol karbonat (CO₃²⁻) akhir

dalam 20 ml larutan sebagai berikut: mol $CO_3^{2^2}$ akhir = $\frac{18,48 \text{ mmol x } 20 \text{ ml}}{5 \text{ ml}}$

= 73,92 mmol= 0,07392 mol

Titrasi 2:

Volume sampel larutan = 5 mL Molaritas HCl (M_{HCl}) = 3 M Dibutuhkan larutan HCl sebesar: Volume HCl (V_{HCl}) = 10,04 mL Dari hasil titrasi tersebut dapat dihitung mol bikarbonat (HCO₃⁻) akhir dalam 5 ml sampel larutan sebagai berikut:

Mol HCO₃⁻ akhir = $(M_{HCl} \times V_{HCl}) - Mol CO_3^{2-}$ akhir = $(3 M \times 10,04 ml) - 15,075 mmol$ = 11,64 mmol
Sehingga dapat dihitung mol bikarbonat (HCO₃⁻) dalam 20 ml larutan sebagai berikut :

mol HCO: akhir =
$$\frac{11,64 \text{ mmol x } 20 \text{ ml}}{1000 \text{ ml}}$$

46,56

mmol = 0,04656 mol

b. Menghitung adanya CO₂ terlarut akhir

Untuk menghitung mol CO₂ terlarut akhir, dapat digunakan rumus konstanta kesetimbangan dari reaksi-reaksi berikut:

Reaksi 1:

 $\begin{array}{c} \textbf{CO}_2 + 2\textbf{H}_2\textbf{O} \\ \textbf{Reaksi 2:} \\ \textbf{HCO}_3^- + \textbf{H}_2\textbf{O} \end{array} \qquad \overleftarrow{\textbf{Z}} \qquad \textbf{H}_3\textbf{O}^+ + \textbf{HCO}_3^{-1} \quad \textbf{K}_1 \\ \overrightarrow{\textbf{K}}_1 \\ \textbf{K}_2 \\ \overrightarrow{\textbf{K}}_2 \\ \textbf{K}_3 \\ \textbf{K}_4 \\ \textbf{K}_4 \\ \textbf{K}_4 \\ \textbf{K}_5 \\$

Konstanta kesetimbangan masing-masing reaksi dapat dihitung dengan menggunakan persamaan berikut :

$$\ln K_{x} = C_{1} + \frac{C_{2}}{T} + C_{3}T + C_{4}\ln T$$

(Jurnal Autsgen dan Rocelle tahun 1991)

Konstanta C pada persamaan tersebut juga diperoleh dari Jurnal Autsgen dan Rochelle tahun 1991, seperti pada Tabel A.6 berikut:

Tabel A.6 Nilai Konstanta C pada Persamaan

Kesetimbangan

Keterangan	C ₁	C_2	C ₃	C ₄
Reaksi 1	231,465	-12.092,1	-36,7816	0
Reaksi 2	216,049	-12.431,7	-35,4819	0

Sehingga dapat dilakukan perhitungan konstanta kesetimbangan pada masing-masing reaksi kesetimbangan tersebut sebagai berikut:

Dengan T sistem

 $= 40 \ ^{\circ}C$ = (40 \ ^{\circ}C + 273.15) K

$$= 313,15 \text{ K}$$

Perhitungan konstanta kesetimbangan reaksi 1:

 $\ln K_{1} = 231,465 + \frac{-12.092,1}{313,15} + (-36,7816 \ln 313,15) + (0 \times 313,15)$ = -18,52 K₁ = 9,04 . 10⁻⁹ Perhitungan konstanta kesetimbangan reaksi 2: $\ln K_{2} = 216,049 + \frac{-12.431,7}{313,15} + (-35,4819 \ln 313,15) + (0 \times 313,15)$

 $\begin{array}{r} = -27,55 \\ K_2 &= 1,081 \cdot 10^{-12} \end{array}$

Hasil perhitungan konstanta kesetimbangan untuk kedua reaksi tersebut dapat dilihat pada Tabel A.7 berikut:

Tabel A.7 Hasil Perhitungan Konstanta Kesetimbangan Pada Analisa Akhir Untuk 5% Mol CO₂ pada suhu 40° C

Keterangan	K _x
Reaksi 1	9,04 . 10 ⁻⁹
Reaksi 2	1,081 . 10 ⁻¹²

Perhitungan CO₂ terlarut dapat dihitung dengan persamaan berikut:

$$[CO_2 \text{ terlarut}] = \frac{K_2 [\text{HCO}_3^-]^2}{K_1 [\text{CO}_3^{2-}]}$$

dengan:

$$\left[\text{HCO}_{3}^{-}\right] = \frac{\text{mol HCO}_{3}^{-}}{\text{V}_{\text{larutan}}}$$
$$= \frac{0,07392 \text{mol}}{20 \text{ ml}}$$
$$= 0,003696 \text{ mol/ml}$$

$$\begin{bmatrix} CO_{3}^{2-} \end{bmatrix} = \frac{\text{mol } CO_{3}^{2-}}{V_{\text{larutan}}}$$
$$= \frac{0,04656 \text{ mol}}{20 \text{ ml}}$$
$$= 0.002328 \text{ mol/m}$$

maka:

$$\begin{bmatrix} CO_2 \text{ terlarut} \end{bmatrix} = \frac{K_2 \begin{bmatrix} \text{HCO}_3^{-1} \end{bmatrix}^2}{K_1 \begin{bmatrix} \text{CO}_3^{-2} \end{bmatrix}}$$
$$= \frac{1,081 \text{ x } 10^{-12} \text{ x } (0,003696)^2}{9.,04 \text{ x } 10^{-9} \text{ x } 0,002328}$$
$$= 1,753 \cdot 10^{-7} \text{ mol/mL}$$

Mol CO₂ terlarut = [CO₂ terlarut] x V_{larutan}
= 1,753 .
$$10^{-7}$$
 mol/mL x 20 mL
= 3,507 . 10^{-6} mol

a. Menghitung Mol CO₂ yang bereaksi Reaksi kesetimbangan yang terjadi: $K_2CO_3 + CO_2 + H_2O \cong 2KHCO_3$

Berdasarkan reaksi kesetimbangan tersebut, dapat dihitung jumlah mol CO₂ yang bereaksi sebagai berikut:

Mol CO₂ bereaksi =
$$\frac{1}{2}x \mod \text{HCO}_3^\circ$$
 akhir
= $\frac{1}{2}.0,04656 \mod 1$

$$= 0,02328 \text{ mol}$$

b. Menghitung Mol CO₂ yang terabsorb
Mol CO₂ terabsorb = Mol CO₂ bereaksi + Mol CO₂ terlarut
= 0,02328 mol + 3,507 . 10⁻⁶ mol
= 0,02328 mol

Menghitung Densitas Larutan:

Untuk menghitung densitas larutan akhir, dilakukan penimbangan massa larutan dengan menggunakan piknometer. Penimbangan tersebut dilakukan sebanyak tiga kali.

Data yang diperoleh sebagai berikut:

Massa pikno dan larutan

Massa pikno dan larutan = 26,2247 g

Massa larutan

Massa larutan dapat dihitung dengan cara berikut:

Massa larutan	= Massa pikno dan larutan - Massa
pikno kosong	= 26,2247 g $-$ 12,8467 g $-$ 12

$$=$$
 13,378 g

Densitas larutan

Densitas larutan dapat dihitung dengan cara berikut:

Densitas larutan = $\frac{\text{Massa larutan}}{\text{Volume pikno}}$ = $\frac{13,378 \text{ g}}{10,0468 \text{ ml}}$ = 1,2737 g/mL

Menghitung massa tiap-tiap komponen di larutan akhir: Massa tiap-tiap komponen di larutan akhir dapat dihitung dengan persamaan berikut:

Untuk kalium karbonat (K₂CO₃)

Mol K_2CO_3 = Mol $CO_3^{2^2}$ = 0,0739 mol = 138 g/mol maka: Massa K_2CO_3 = Mol K_2CO_3 x BM K_2CO_3 = 0,0739 mol x 138 g/mol = 10,2 gram

Untuk kalium bikarbonat (KHCO₃) Mol KHCO₃ = Mol HCO₃⁻ = 0.04656 molBM KHCO₃ = 100 g/molmaka: Massa $KHCO_3 = Mol KHCO_3 \times BM KHCO_3$ = 0,04656 mol x 100 g/mol = 4,66 gram Untuk Methyl diethanolamine (PZ) Massa PZ = 1,5 gram mol PZ = massa PZ / BM PZ= (1,5 g)/(86 g/mol)= 0.017 molUntuk diethanolamine (DEA) Massa DEA = 6 gmol DEA = massa DEA / BM DEA = (6 g)/(105 g/mol)= 0.057 molUntuk gas karbon dioksida (CO₂) = Mol CO_2 terlarut Mol CO₂ $= 3.507 \cdot 10^{-6} \text{ mol}$ = 44 g/molBM CO₂ maka: = Mol $CO_2 \times BM CO_2$ Massa CO₂ $= 3,507 \cdot 10^{-6} \text{ mol x } 44 \text{ g/mol}$ $= 1,543 . 10^{-4}$ gram Untuk Air (H₂O) Massa H₂O = Massa larutan akhir – (Massa K_2CO_3 + Massa KHCO₃ + Massa PZ + Massa $DEA + Massa CO_2$) = 9,22 gram Mol H₂O = (9,22 g) / (18 g/mol)= 0,51 mol

Menghitung mol tiap-tiap komponen di larutan akhir: Mol tiap-tiap komponen di larutan akhir dapat dihitung dengan persamaan berikut: Untuk ion karbonat (CO_3^{2-}) Berdasarkan titrasi 1 pada analisa larutan akhir, diperoleh: $Mol CO_3^{2-}$ = 0.0739 molUntuk ion bikarbonat (HCO_3) titrasi 1 pada analisa larutan Berdasarkan akhir. diperoleh: Mol HCO₃ = 0.04656 molUntuk ion kalium (K^+) Mol $K^+ = (2 \times Mol CO_3^{2^-}) + Mol HCO_3^{-1}$ $= (2 \times 0.0739 \text{ mol}) + 0.04656 \text{ mol}$ = 0.1478 molUntuk *Piperazine* (PZ) = 0.017 molMol PZ Untuk *diethanolamine* (DEA) Mol DEA = 0.0571 molUntuk gas karbon dioksida (CO₂) hasil perhitungan mol CO₂ terlarut, Berdasarkan diperoleh: = Mol CO₂ terlarut Mol CO₂ $= 3.507 \cdot 10^{-6} \text{ mol}$ Untuk Air (H₂O) Berdasarkan hasil perhitungan massa H₂O dalam larutan akhir, diperoleh: Mol H₂O = 0,512 molUntuk Larutan Mol Larutan akhir = $(Mol CO_3^2 + Mol HCO_3^2 + Mol K^+)$ + Mol PZ + Mol DEA + Mol CO₂ + Mol H₂O) = 0.0739 + 0.04656 + 0.1478 + $0.0174 + 0.0571 + 3.507.10^{-6} + 0.512$ = 0.8549 mol

Mol dan komposisi tiap-tiap komponen dapat dilihat pada Tabel A.10.

Komponen	mol	fraksi mol
CO ₃ ²⁻	0,0739	0,0865
HCO ₃ ⁻	0,0466	0,0545
K ⁺	0,1478	0,1729
PZ	0,0174	0,0204
DEA	0,0571	0,0668
CO ₂	3,507,E-06	4,102E-06
H ₂ O	0,5120	0,5989
total	0,8549	1,0000

Tabel A.8 Hasil Perhitungan Mol dan Komposisi di Liquid Untuk5% Mol CO2 pada suhu 40° C

Menghitung CO₂ Loading:

CO2 loading dapat dihitung dengan rumus berikut:

 $CO_{2} Loading = \frac{mol CO_{2} terabsorb}{mol K^{+} + mol PZ + mol DEA}$ $= \frac{0,02328}{0,1478 + 0,0174 + 0,0571}$ = 0,1047

Fraksi mol H₂O di gas :

Air di fasa gas dalam keadaan jenuh sehingga, $P_{H_{2}O} = P_{H_{2}O}^{sat}$ $= \exp (16.2620 - (3799.89/((T-273.15)+226.35)))$ Pada T = 313,15 K

maka,

 $P_{H_2O}^{sat}$ = 7355,67 Pa

Menghitung Tekanan Parsial secara Eksperimen pada larutan :

$$P_{CO_{2}} = H_{CO_{2}} x_{CO_{2}}$$

= 3556,4198 $\frac{kPa.m^{3}}{kmol}$.3,507.10⁻⁶ kmol. $\frac{1}{2.10^{-5}m^{3}}$
= 0,6236139kPa
= 623,6139Pa

Berikut penabelan hasil perhitungan komposisi masing-masing komponen di liquid :

Tabel A.9 Hasil	Perhitungan Mol	l dan Komposisi	(Fraksi Mol) di
Liquid Untuk	0% PZ dan 5% I	DEA Komposisi	Gas CO ₂ 5%

Vannanan	30° C		40° C		50° C	
Komponen	Mol	Fraksi Mol	Mol	Fraksi Mol	Mol	Fraksi Mol
CO ₃ ²⁻	0,0696	0,0726	0,0727	0,0768	0,0739	0,0786
HCO ₃ -	0,0468	0,0488	0,0466	0,0491	0,0463	0,0493
K ⁺	0, <mark>1392</mark>	0,1452	0,1454	0,1535	0,1478	0,1572
PZ	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
DEA	0,0714	0,0745	0,0714	0,0754	0,0714	0,0759
CO ₂	3,4 <mark>81.10⁻</mark>	3,6322.10 ⁻⁶	3,565.10 ⁻	3,763.10 ⁻⁶	3,739.10 ⁻	3,976.10 ⁻⁶
H ₂ O	0,6313	0,6588	0,6112	0,6452	0,6010	0,6390
Total	0,9584	1,0000	0,9474	1,0000	0,9405	1,0000

Y	30° C		40° C		50° C	
Komponen	Mol	Fraksi <mark>Mol</mark>	Mol	Fraksi Mol	Mol	Fraksi Mol
CO3 ²⁻	0,0713	0,0821	0,0739	0,0865	0,0746	0,0878
HCO ₃ -	0,0470	0,0542	0,0466	0,0545	0,0463	0,0545
K ⁺	0,1426	0,1642	0,1478	0,1729	0,1493	0,1756
PZ	0, <mark>0174</mark>	0,0201	0,0174	0,0204	0,0174	0,0205
DEA	0,0571	0,0658	0,0571	0,0668	0,0571	0,0672
CO ₂	3,434.10-6	3,956.10-6	3,507.10-6	4,102.10-6	3,703.10-6	4,356.10-6
H ₂ O	0,5326	0,6136	0,5120	0,5989	0,5053	0,5944
Total	0,8681	1,0000	0,8549	1,0000	0,8501	1,0000

Tabel A.10 Hasil Perhitungan Mol dan Komposisi (Fraksi Mol) di *Liquid* Untuk 1% PZ dan 4% DEA Komposisi Gas CO₂ 5%

Tabel A.11 Hasil Perhitungan Mol dan Komposisi (Fraksi Mol) diLiquid Untuk 2% PZ dan 3% DEA Komposisi Gas CO2 5%

V	30° C		40° C		50° C	
Komponen	Mol	Fraksi Mol	Mol	Fraksi Mol	Mol	Fraksi Mol
CO3 ²⁻	0,0737	0,0955	0,0754	0,0984	0,0749	0,0912
HCO ₃ -	0,0470	0,0610	0,0468	0,0611	0,0466	0,0567
K ⁺	0,1474	0,1910	0,1507	0,1968	0,1498	0,1823
PZ	0,0348	0,0451	0,0348	0,0455	0,0348	0,0424
DEA	0,0429	0,0555	0,0429	0,0560	0,0429	0,0522
CO ₂	3,322.10-6	4,306.10 ⁻⁶	3,476.10-6	4,538.10-6	3,729.10-6	4,541.10 ⁻⁶
H ₂ O	0,4258	0,5518	0,4153	0,5423	0,4725	0,5752
Total	0,7715	1,0000	0,7659	1,0000	0,8213	1,0000

Komponen	30° C		4(40° C		50° C	
	Mol	Fraksi Mol	Mol	Fraksi Mol	Mol	Fr <mark>aksi M</mark> ol	
CO3 ²⁻	0,0768	0,1140	0,0787	0,1183	0,0778	0,1159	
HCO ₃ -	0,0475	0,0705	0,0470	0,0707	0,0470	0,0701	
K ⁺	0,1536	0,2280	0,1574	0,2366	0,1555	0,2317	
PZ	0,0522	0,0775	0,0522	0,0785	0,0522	0,0778	
DEA	0,0286	0,0424	0,0286	0,0429	0,0286	0,0426	
CO_2	3,252.10-6	4,827.10-6	3,361.10-6	5,052.10-6	3,666.10-6	5,461.10-6	
H ₂ O	0,3151	0,4676	0,3013	0,4528	0,3101	0,4620	
Total	0,6738	1,0000	0,6653	1,0000	0,7558	1,0000	

Tabel A.12 Hasil Perhitungan Mol dan Komposisi (Fraksi Mol) di *Liquid* Untuk 3% PZ dan 2% DEA Komposisi Gas CO₂ 5%

Tabel A.13 Hasil Perhitungan Mol dan Komposisi (Fraksi Mol) di Liquid Untuk 0% PZ dan 5% DEA Komposisi Gas 10%

V	30° C		40° C		50° C	
Komponen	Mol	Fraksi Mol	Mol	Fraksi Mol	Mol	Fraksi Mol
CO ₃ ²⁻	0,0648	0,0672	0,0679	0,0712	0,0698	0,0741
HCO ₃ -	0,0504	0,0523	0,0502	0,0526	0,0499	0,0529
K ⁺	0,1296	0,1344	0,1358	0,1425	0,1397	0,1481
PZ	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
DEA	0,0714	0,0741	0,0714	0,0749	0,0714	0,0757
CO ₂	4,336.10-6	4,496.10-6	4,430.10-6	4,646.10-6	4,597.10-6	4,874.10-6
H ₂ O	0,6481	0,6721	0,6280	0,6587	0,6122	0,6492
Total	0,9644	1,0000	0,9534	1,0000	0,9431	1,0000

Komponen	30° C		40° C		50° C	
	Mol	Fraksi Mol	Mol	Fraksi Mol	Mol	Fraksi Mol
CO3 ²⁻	0,0665	0,0761	0,0691	0,0803	0,0710	0,0835
HCO ₃ -	0,0506	0,0579	0,0502	0,0583	0,0490	0,0587
	0,1330	0,1521	0,1382	0,1606	0,1421	0,1671
PZ	0,0174	0,0199	0,0174	0,0202	0,0174	0,0205
DEA	0,0571	0,0654	0,0571	0,0664	0,0571	0,0672
CO ₂	4,267.10-6	4,882.10-6	4,353.10-6	5,056.10-6	4,519.10-6	5,313.10-6
H ₂ O	0,5494	0,6286	0,5288	0,6143	0,5129	0,6030
Total	0,8741	1,0000	0,8609	1,0000	0,8505	1,0000

Tabel A.14 Hasil Perhitungan Mol dan Komposisi (Fraksi Mol) di *Liquid* Untuk 1% PZ dan 4% DEA Komposisi Gas 10%

Tabel A.15 Hasil Perhitungan Mol dan Komposisi (Fraksi Mol) diLiquid Untuk 2% PZ dan 3% DEA Komposisi Gas 10%

V	30° C		40° C		50° C	
Komponen	Mol	Fraksi Mol	Mol	Fraksi Mol	Mol	Fraksi Mol
CO3 ²⁻	0,0689	0,0886	0,0703	0,0910	0,0730	0,0896
HCO ₃ -	0,0506	0,0651	0,0504	0,0652	0,0502	0,0616
K ⁺	0,1378	0,1772	0,1406	0,1819	0,1459	0,1793
PZ	0,0348	0,0448	0,0348	0,0451	0,0348	0,0428
DEA	0,0429	0,0551	0,0429	0,0554	0,0429	0,0527
CO ₂	4,118.10-6	5,297.10 ⁻⁶	4,320.10 ⁻⁶	5,588.10-6	4,442.10-6	5,458.10-6
H ₂ O	0,4426	0,5692	0,4339	0,5614	0,4672	0,5740
Total	0,7775	1,0000	0,7730	1,0000	0,8139	1,0000

V	30)° C	40	40° C		° C
Komponen	Mol	Fraksi Mol	Mol	Fraksi Mol	Mol	Fr <mark>aksi Mo</mark> l
CO3 ²⁻	0,0715	0,1047	0,0739	0,1101	0,0768	0,1163
HCO ₃ -	0,0509	0,0745	0,0506	0,0754	0,0504	0,0763
K ⁺	0,1430	0,2094	0,1478	0,2202	0,1536	0,2326
PZ	0,0522	0,0765	0,0522	0,0778	0,0522	0,0791
DEA	0,0286	0,0418	0,0286	0,0426	0,0286	0,0433
CO ₂	4,004.10-6	5,861.10-6	4,149.10-6	6,180.10-6	4,261.10-6	6,452.10-6
H ₂ O	0,3369	0,4922	0,3181	0,4738	0,2988	0,4524
Total	0,6832	1,0000	0,6713	1,0000	0,6604	1,0000

Tabel A.16 Hasil Perhitungan Mol dan Komposisi (Fraksi Mol) di *Liquid* Untuk 3% PZ dan 2% DEA Komposisi Gas 10%

Tabel A.17 Hasil Perhitungan Mol dan Komposisi (Fraksi Mol) di Liquid Untuk 0% PZ dan 5% DEA Komposisi Gas 20%

Vomnonon	30	°C	40	40° C		50° C	
Komponen	Mol	Fraksi Mol	Mol	Fraksi Mol	Mol	Fraksi Mol	
CO ₃ ²⁻	0,0600	0,0612	0,0631	0,0655	0,0650	0,0681	
HCO ₃ -	0,0588	0,0600	0,0583	0,0606	0,0581	0,0608	
K ⁺	0,1200	0,1224	0,1262	0,1311	0,1301	0,1362	
PZ	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	
DEA	0,0714	0,0728	0,0714	0,0742	0,0714	0,0748	
CO ₂	6,374.10 ⁻⁶	6,501.10 ⁻⁶	6,444.10 ⁻⁶	7690.10 ⁻⁶	6,997.10 ⁻⁶	6,997.10 ⁻⁶	
H ₂ O	0,6703	0,6836	0,6440	0,6687	0,6302	0,6600	
Total	0,9805	1,0000	0,9631	1,0000	0,9548	1,0000	

	30	° C	40	° C	50)° C
Komponen	Mol	Fraksi <mark>Mol</mark>	Mol	Fraksi Mol	Mol	Fraksi Mol
CO3 ²⁻	0,0617	0,0700	0,0643	0,0739	0,0662	0,0769
HCO ₃ -	0,0590	0,0670	0,0586	0,0673	0,0583	0,0677
	0,1234	0,1400	0,1286	0,1478	0,1325	0,1503
PZ	0,0174	0,0198	0,0174	0,0200	0,0174	0,0202
DEA	0,0571	0,0648	0,0571	0,0656	0,0571	0,0663
CO ₂	6,251.10-6	7,092.10-6	6,376.10-6	7,323.10-6	6,615.10-6	7,677.10-6
H ₂ O	0,5628	0,6385	0,5446	0,6255	0,5300	0,6151
Total	0,8814	1,0000	0,8706	1,0000	0,8616	1,0000

Tabel A.18 Hasil Perhitungan Mol dan Komposisi (Fraksi Mol) di *Liquid* Untuk 1% PZ dan 4% DEA Komposisi Gas 20%

Tabel A.19 Hasil Perhitungan Mol dan Komposisi (Fraksi Mol) diLiquid Untuk 2% PZ dan 3% DEA Komposisi Gas 20%

V	30)° C	4	0° C	50)° C
Komponen	Mol	Fraksi Mol	Mol	Fraksi Mol	Mol	Fraksi Mol
CO32-	0, <mark>0641</mark>	0,08 <mark>02</mark>	0,0655	0,0825	0,0682	0,0886
HCO ₃ -	0,0590	0,0739	0,0588	0,0740	0,0586	0,0761
K ⁺	0,1282	0,1603	0,1310	0,1650	0,1363	0,1771
PZ	0, <mark>0348</mark>	0,04 <mark>36</mark>	0,0348	0,0439	0,0348	0,0453
DEA	0,0429	0,0536	0,0429	0,0540	0,0429	0,0557
CO ₂	6,017.10 ⁻⁶	7,528.10-6	6,310.10-6	7,946.10-6	6,481.10-6	8,421.10-6
H ₂ O	0, <mark>4703</mark>	0,58 <mark>84</mark>	0,4611	0,5806	0,4289	0,5573
Total	0,7993	1,0000	0,7941	1,0000	0,7697	1,0000

V	30	30° C		40° C)° C
Komponen	Mol	Fraksi Mol	Mol	Fraksi Mol	Mol	Fraksi Mol
CO3 ²⁻	0,0667	0,0918	0,0691	0,0997	0,0720	0,1061
HCO ₃ -	0,0593	0,0816	0,0590	0,0851	0,0588	0,0867
K ⁺	0,1334	0,1836	0,1382	0,1993	0,1440	0,2112
PZ	0,0522	0,0719	0,0522	0,0753	0,0522	0,0770
DEA	0,0286	0,0393	0,0286	0,0412	0,0286	0,0421
CO ₂	5,826.10-6	8,018.10-6	6,031.10-6	8,695.10-6	6,186.10-6	9,116.10-6
H ₂ O	0,3864	0,5317	0,3464	0,4994	0,3229	0, <mark>4759</mark>
Total	0,7266	1,0000	0,6936	1,0000	0,6785	1,0000

Tabel A.20 Hasil Perhitungan Mol dan Komposisi (Fraksi Mol) di *Liquid* Untuk 3% PZ dan 2% DEA Komposisi Gas 20%

A.2 Perhitungan dengan Persamaan Korelasi E-NRTL

Tahap korelasi ini dilakukan untuk menghitung koefisien aktivitas H₂O dan CO₂ dengan menggunakan persamaan model E-NRTL. Persamaan model E-NRTL yang digunakan adalah untuk *molekular species* karena H₂O dan CO₂ berbentuk *molekular species*

Berikut contoh perhitungan dan penabelan hasil perhitungan:

a. Sebagai contoh perhitungan, diambil variabel larutan 30% massa K₂CO₃, dengan 1% massa PZ dan 4% massa DEA pada suhu 30°C dengan komposisi gas 10%. Contoh perhitungannya sebagai berikut:

Dari eksperimen diperoleh data komposisi (fraksi mol) tiaptiap komponen di fase liquid yang dapat dilihat pada Tabel A.14

Menghitung C_i, dimana:

 $C_i = z_i$ (jumlah muatan) untuk *ionic species*

No.	Spesies	Ci
1. 🔬	CO_{3}^{2}	-2
2.	HCO ₃ ⁻	-1
3.	K ⁺	1
4.	PZ	
5.	DEA	1
6.	CO ₂	1
7.	H ₂ O	Gr 1 3

Tabel A.21 Hasil Perhitungan C_i Untuk 1% PZ 4% DEA

Menghitung X_i, : Sehingga:

X_{CO_2}	$= C_{CO_2} . x_{CO_2}$
	$= 1 \times 5,056.10^{-6}$
	$= 5,056.10^{-6}$
X_{H_2O}	$= C_{H_2O} . x_{H_2O}$
	$= 1 \times 0,6143$
	= 0,6143
X_{PZ}	$= C_{PZ} . x_{PZ}$
	$= 1 \times 0,0202$
	= 0,0202
X _{DEA}	$= C_{DEA} \cdot x_{DEA}$
	$= 1 \ge 0,0664$
	= 0,0664
X_{K^+}	$= C_{K^+} . x_{K^+}$
	$= 1 \ge 0,1606$
	= 0,1606
$X_{CO_3^{2-}}$	$= C_{CO_3^{2-}} x_{CO_3^{2-}}$
	$= -2 \ge 0.0803$
	= -0,1606
$X_{HCO_3^-}$	$= C_{HCO_3} x_{HCO_3}$
	$= -1 \ge 0.0583$
	= -0,0583
	83

Menghitung *Binary Interaction Parameter* antara Molekul-Pasangan Ion dan Pasangan Ion-Molekul

Menghitung jumlah fraksi komposisi muatan anion, Y_a dan jumlah fraksi komposisi muatan kation, Y_c, sebagai berikut :

Sehingga:

$$Y_{CO_{3}^{2-}} = \frac{X_{CO_{3}^{2-}}}{X_{CO_{3}^{2-}} + X_{HCO_{3}^{-}}}$$

$$= \frac{-0,1606}{-0,1606 + -0,0583}$$

$$= 0,7338$$

$$Y_{HCO_{3}^{-}} = 1 - 0,7338$$

$$= 0,2662$$

$$Y_{K^{+}} = \frac{X_{K^{+}}}{X_{K^{+}}}$$

(2005): Diketahui nonrandomness parameter dari Cullinane

Interaksi 🚽 👔	α	Harga α
Molekul-Molekul	<u>α m,m'</u>	0,2
H ₂ O-Pasangan ion	α H ₂ O,ca	0,2
Pasangan ion-H ₂ O	α ca,H ₂ O	0,2
PZ-Pasangan ion	α PZ,ca	0,1
DEA-Pasangan ion	α DEA,ca	0,1
CO ₂ - Pasangan ion	α CO ₂ ,ca	0,1

Tabel A.22 Data Nonrandomness Parameter

Dari hasil fitting diperoleh konstanta *Binary* Interaction Parameter antar molekul-pasangan ion dan pasangan ion-molekul seperti pada Tabel A.23 untuk sistem PZ-DEA

interaksi	A	В
$H_2O-K^+, CO_3^=$	12,4147	1582,0155
$K^+, CO_3^H_2O$	21,8084	-376,9975
H ₂ O-K ⁺ ,HCO ₃ ⁻	14,6031	2862,9845
$K^+,HCO_3^H_2O$	-4,3939	-600,8536
$CO_2 - K^+, CO_3^=$	80,9726	0,0209
$K^+, CO_3^CO_2$	73,5904	0,0223
CO ₂ -K ⁺ ,HCO ₃ ⁻	28,8741	0,0018
$K^+,HCO_3^CO_2$	11,2491	0,0090
PZ-K ⁺ ,CO ₃ ⁼	24,1544	0,0051
$K^+, CO_3^=-PZ$	-0,5691	-0,0028
PZ-K ⁺ ,HCO ₃ -	16,0216	0,0094
K ⁺ ,HCO ₃ ⁻ -PZ	-9,0928	0,0026
$DEA-K^+, CO_3^=$	8,8020	-0,0005
K ⁺ ,CO ₃ ⁼ -DEA	-8,0502	0,0056
DEA-K ⁺ ,HCO ₃ ⁻	13,5856	0,0171
K ⁺ ,HCO ₃ ⁻ -DEA	-4,0565	-0,0066

Tabel A.23 Data Konstanta *Binary Interaction Parameter* antar Molekul-Pasangan ion dan Pasangan Ion-Molekul untuk Sistem

Menghitung *Binary Interaction Parameter* antara molekulpasangan ion dan pasangan ion-molekul untuk molekul CO₂: maka,

molekular anion cation $= CO_2$ = CO₃⁼,HCO₃⁻ = K⁺ Dari eksperimen didapatkan suhu sistem pada saat terjadi kesetimbangan:

T sistem $= 40^{\circ}C = 313,15 \text{ K}$

Rumus yang digunakan untuk menghitung *Binary Interaction Parameter* antara molekul-pasangan ion dan pasangan ionmolekul adalah :

Menghitung τ ca,m

Untuk anion (a) CO3

Konstanta *Binary Interaction Parameter* yang digunakan adalah konstanta interaksi pasangan ion-molekul yaitu K⁺,CO₃⁼-CO₂ dengan data sebagai berikut:

A = 73,5904; B = 0,0223 sehingga:

$$\tau_{ca,m} = A + B \left[\frac{1}{T(K)} - \frac{1}{353,15(K)} \right]$$

= 73,5904 + 0,0223 $\left[\frac{1}{313,15(K)} - \frac{1}{353,15(K)} \right]$
= 73,590

Untuk anion (a) HCO3

Konstanta *Binary Interaction Parameter* yang digunakan adalah konstanta interaksi pasangan ion-molekul yaitu K^+ , $HCO_3^--CO_2$ dengan data sebagai berikut:

A = 11,2491; B = 0,0090Sehingga:

$$\tau_{ca,m} = A + B \left[\frac{1}{T(K)} - \frac{1}{353,15(K)} \right]$$

= 11,2491 + 0,0090 $\left[\frac{1}{313,15(K)} - \frac{1}{353,15(K)} \right]$
= 11,249

Menghitung τ m,ca

Untuk anion (a) CO₃⁼

Konstanta *Binary Interaction Parameter* yang digunakan adalah konstanta interaksi molekul-pasangan ion yaitu CO₂-pasangan ion lain dengan data sebagai berikut:

 $\begin{array}{l} A \\ B \\ B \\ \end{array} = 80,9726 \\ = 0,0209 \end{array}$

sehingga:

$$\tau_{m,ca} = A + B \left[\frac{1}{T(K)} - \frac{1}{353,15(K)} \right]$$

= 80,9726 + 0,0209 $\left[\frac{1}{313,15(K)} - \frac{1}{353,15(K)} \right]$
= 80,973

Untuk anion (a) HCO3⁻

Konstanta *Binary Interaction Parameter* yang digunakan adalah konstanta interaksi molekul-pasangan ion yaitu CO₂-pasangan ion lain dengan data sebagai berikut:

A = 28,8741B = 0,0018sehingga:

$$\tau_{m,ca} = A + B \left[\frac{1}{T(K)} - \frac{1}{353,15(K)} \right]$$

= 28,8741 + 0,0018 $\left[\frac{1}{313,15(K)} - \frac{1}{353,15(K)} \right]$
= 28,874

 $\begin{array}{l} \textbf{Menghitung } \alpha \textbf{ m,ca} \\ \textbf{Untuk anion (a) CO_3} \\ \alpha_{m,ca} &= \alpha_{CO_2,ca} \\ &= 0,1 \end{array}$

Untuk anion (a) HCO3

 $\alpha_{m,ca}$

 $Menghitung \alpha c,m$ $\underline{\text{Untuk anion (a) CO}_{3}^{=}}$ $\alpha_{c,m} = \sum_{a} Y_{a} \alpha_{m,ca}$ $= [Y_{CO_{3}^{2-}} \times \alpha_{m,ca} (a = CO_{3}^{=})]$ = 0,072 $\underline{\text{Untuk anion (a) HCO}_{3}^{=}}$ $\alpha_{c,m} = \sum_{a} Y_{a} \alpha_{m,ca}$ $= [Y_{HCO_{3}^{-}} \times \alpha_{m,ca} (a = HCO_{3}^{-})]$

 $= \alpha_{CO_2,ca}$

= 0,1

= 0,028

$$Menghitung \alpha a,m$$
Untuk anion (a) CO₃⁼

$$\alpha_{a,m} = \sum_{c} Y_{c} \alpha_{m,ca}$$

$$= Y_{K^{+}} \times \alpha_{m,ca}$$

$$= 1 \times 0,1$$
Untuk anion (a) HCO₃⁻

$$\alpha_{a,m} = \sum_{c} Y_{c} \alpha_{m,ca}$$

$$= Y_{K^{+}} \times \alpha_{m,ca}$$

$$= 1 \times 0,1$$

$$= 0,1$$
Menghitung G ca,m
Untuk anion (a) CO₃⁼
G_{ca,m} = exp(-\alpha_{ca,m} \tau_{ca,m})
$$= exp (-0,072 \times 73,590)$$

= 0,0001
Untuk anion (a) HCO₃⁻

$$G_{ca,m}$$
 = exp($-\alpha_{ca,m}\tau_{ca,m}$)
= exp (-0,028 x 11,249)
= 0,325

 $\begin{array}{l} \textbf{Menghitung } G \ c,m \\ \underline{\text{Untuk anion } (a) CO_3}^{=} \\ G_{c,m} &= \sum_{a} Y_a G_{ca,m} \\ &= [Y_{CO_3^{2-}} \times G_{ca,m} \ (a = CO_3^{-})] \\ &= (0,7338 \times 0,001) \\ &= 0,0007 \\ \underline{\text{Untuk anion } (a) \text{HCO}_3}^{-} \\ G_{c,m} &= \sum_{a} Y_a G_{ca,m} \\ &= [Y_a \times G_a \ (a = HCO_3^{-})] \\ &= (Y_a \times G_a \ (A = HCO_3^{-})] \\ &= (Y_a \times G_a \ (A = HCO_3^{-})] \\ &= (Y_a \times G_a \ (A = HCO_3^{-})] \\ &= (Y_a \times (Y_a \otimes Y_a \ (Y_a \otimes Y_a \otimes Y_a \ (Y_a \otimes Y_a \otimes Y_a \otimes Y_a \ (Y_a \otimes Y_a \otimes Y_a \ (Y_a \otimes Y_a \otimes Y_a \otimes Y_a \ (Y_a \otimes Y_a \ (Y_a \otimes Y_a \otimes Y_a \ (Y_a \otimes Y_a \ (Y_a$

 $= [Y_{HCO_3^-} \times G_{ca,m} (a = HCO_3^-)]$ = (0,2662 x 0,325) = 0,091

Menghitung G a,m <u>Untuk anion (a) CO₃⁼</u> $G_{a,m} = \sum_{c} Y_{c}G_{ca,m}$ $= Y_{K^{+}} \ge G_{ca,m}$ $= 1 \ge 0,001$ <u>Untuk anion (a) HCO₃ $G_{a,m} = \sum_{c} Y_{c}G_{ca,m}$ $= Y_{K^{+}} \ge G_{ca,m}$ </u>

$$= 1 \ge 0.325$$

= 0.325

Menghitung τ c,m $= \exp(-\alpha \tau)$ G $\ln G$ $-\alpha\tau$ $\ln G$ τ α Untuk anion (a) CO3 $\ln G_{c,m}$ $\tau_{c,m}$ $\alpha_{c,m}$ ln(0,0007) 0,1 = 106,772 Untuk anion (a) HCO3⁻ $\ln G_{c,m}$ $\tau_{c,m}$ $\alpha_{c,m}$ ln(0,091)0,1 = 85,638

Menghitung $\tau a,m$ Untuk anion (a) CO₃⁼ $\tau_{a,m}$ (= $-\frac{\ln G_{a,m}}{\alpha_{a,m}}$) = $-\frac{\ln(0,001)}{0,1}$ = 73,590 Untuk anion (a) HCO₃⁻

 $\ln G_{a,m}$ $\tau_{a,m}$ $\alpha_{a,m}$ ln(0,325)0,1 = 11,249

Menghitung T mc,ac Dari Cullinane (2005):

 $\alpha_{mc,ac} = \alpha_{cm}$ Untuk anion (a) CO3 $=\tau_{cm}-\frac{\alpha_{ca,m}}{\alpha_{mc,ac}}(\tau_{ca,m}-\tau_{m,ca})$

 $\tau_{mc,ac}$

= 117,025Untuk anion (a) HCO3

 $\tau_{mc,ac}$

$$=\tau_{cm}-\frac{\alpha_{ca,m}}{\alpha_{mc,ac}}(\tau_{ca,m}-\tau_{m,ca})$$

Menghitung T ma,ca Dari Cullinane (2005): $\alpha_{ma,ca} = \alpha_{am}$ Untuk anion (a) $CO_3^{=}$ = 1 $\tau_{ma,ca}$

$$\tau_{am} - \frac{\alpha_{ca,m}}{\alpha_{ma,ca}} (\tau_{ca,m} - \tau_{m,ca})$$

= 80,973

Untuk anion (a) HCO3⁻

 $\tau_{ma,ca}$

 $-\frac{\alpha_{ca,m}}{\alpha_{ma,ca}}(\tau_{ca,m}-\tau_{m,ca})$ $= \tau_{am}$ -

= 28,874

 $\begin{array}{l} \textbf{Menghitung G mc,ac} \\ \underline{\text{Untuk anion (a) CO}_3^{=}} \\ G_{mc,ac} &= \exp(-\alpha_{cm}\tau_{mc,ac}) \\ &= 0,0002 \\ \underline{\text{Untuk anion (a) HCO}_3^{-}} \\ G_{mc,ac} &= \exp(-\alpha_{cm}\tau_{mc,ac}) \\ &= 0,016 \end{array}$

 $\begin{array}{l} Menghitung G ma, ca \\ \underline{\text{Untuk anion (a) CO}_3^{=}} \\ G_{ma,ca} &= \exp(-\alpha_{am}\tau_{ma,ca}) \\ &= 0,0003 \\ \underline{\text{Untuk anion (a) HCO}_3^{-}} \\ G_{ma,ca} &= \exp(-\alpha_{am}\tau_{ma,ca}) \\ &= 0,056 \end{array}$

Perhitungan *Binary* Interaction Parameter antara molekul-pasangan ion dan pasangan ion-molekul untuk molekul CO_2 tersebut dapat dilihat pada Tabel A.24.

(1)	Torental. CO	2)
Devenator	m = CO ₂ , o	c = K+
Parameter	a = CO ₃ =	a = HCO ₃ -
Ya	0,736	0,264
Yc	1,000	1,000
τ ca,m	73,590	11,249
τm,ca	80,973	28,874
α ca,m	0,100	0,100
α m,ca	0,100	0,100
<mark>α c,m</mark>	0,074	0,026
α a,m	0,100	0,100
G ca,m	0,001	0,325
G c,m	0,0005	0,086
G a,m	0,001	0,325
τ c,m	104,123	93,147
τa,m	73,590	11,249
τ mc,ac	114,151	159,9 <mark>54</mark>
τ ma,ca	80,973	28,874
G mc,ac	0,0002	0,015
G ma,ca	0,0003	0,056

Tabel A.24 Perhitungan *Binary Interaction Parameter* (Molekul:CO₂)

Binary Interaction Parameter antara molekul-pasangan ion dan pasangan ion-molekul untuk molekul H₂O dapat dihitung dengan cara yang sama seperti Perhitungan *Binary Interaction Parameter* antara molekul-pasangan ion dan pasangan ionmolekul untuk molekul H₂. Perhitungan tersebut dapat dilihat pada Tabel A.25.

	$m = H_2 0, c$	= K+
Parameter	$a = CO_3^{=}$	a = HCO ₃ -
Ya	0,736	0,264
Yc	1,000	1,000
τ ca,m	21,672	-4,611
τm,ca	12,987	15,639
α ca,m	0,200	0,200
α m,ca	0,200	0,200
<mark>α c,</mark> m	0,147	0,053
αa,m	0,200	0,200
G ca,m	0,013	2,515
G c,m	0,010	0,663
G a,m	0,013	2,515
τ c,m	31,519	7,775
τa,m	21,672	-4,611
τ mc,ac	19,721	84,532
τ ma,ca	12,987	15,639
G mc,ac	0,055	0,012
G ma,ca	0,074	0,044

Tabel A.25 Perhitungan *Binary Interaction Parameter* (Molekul:H₂O)

Binary Interaction Parameter antara molekul-pasangan ion dan pasangan ion-molekul untuk molekul DEA dapat dihitung dengan cara yang sama seperti Perhitungan *Binary Interaction Parameter* antara molekul-pasangan ion dan pasangan ionmolekul untuk molekul CO₂. Perhitungan tersebut dapat dilihat pada Tabel A.26 berikut:

	(WIOICKUI.DL/I)					
	D	m = DEA, c	c = K+			
	Parameter	$a = CO_3^{=}$	a = HCO ₃ -			
Y	Ya	0,736	0,264			
6	Yc	1,000	1,000			
h	τ ca,m	-7,151	-5,528			
Ŷ	τm,ca	9,790	15,233			
1	α ca,m	0,100	0,100			
1	α m,ca	0,100	0,100			
8	α c,m	0,074	0,026			
Y	α a,m	0,100	0,100			
-	G ca,m	2,044	1,738			
2	G c,m	1,505	0,459			
Y	G a,m	2,044	1,738			
	τ c,m	-5,553	29,556			
12 U	τa,m	-7,151	-5,528			
	τ mc,ac	17,459	108,247			
ľ	τ ma,ca	9,790	15,233			
ĥ	G mc,ac	0,277	0,058			
N.	G ma,ca	0,376	0,218			

Tabel A.26 Perhitungan *Binary Interaction Parameter* (Molekul:DEA)

Binary Interaction Parameter antara molekul-pasangan ion dan pasangan ion-molekul untuk molekul PZ dapat dihitung dengan cara yang sama seperti Perhitungan *Binary Interaction Parameter* antara molekul-pasangan ion dan pasangan ionmolekul untuk molekul CO₂. Perhitungan tersebut dapat dilihat pada Tabel A.27

	m = PZ, c = K+			
Parameter	$a = CO_3^=$	a = HCO ₃ -		
Ya	0,736	0,264		
Yc	1,000	1,000		
τ ca,m	-1,016	-7,509		
τm,ca	24,542	18,247		
α ca,m	0,100	0,100		
α m,ca	0,100	0,100		
<mark>α c,</mark> m	0,074	0,026		
αa,m	0,100	0,100		
G ca,m	1,107	2,119		
G c,m	0,815	0,559		
G a,m	1,107	2,119		
τ c,m	2,780	22,044		
τa,m	-1,016	-7,509		
τmc,ac	37,497	119,672		
τ ma,ca	24,542	18,247		
G mc,ac	0,063	0,043		
G ma,ca	0,086	0,161		

Tabel A.27 Perhitungan *Binary Interaction Parameter* (Molekul:PZ)

Menghitung *Binary Interaction Parameter* **antar Molekul** Diketahui *Binary interaction parameter* dari hasil fitting seperti pada Tabel A.28.

	monental			
Interaksi	A	В		
CO ₂ -H ₂ O	48,792	-8428,918		
H ₂ O-CO ₂	-2,772	1080,043		
H ₂ O-PZ	-9,311	-0,026		
PZ-H ₂ O	-1,773	-0,040		
PZ-CO ₂	5,198	0,021		
CO ₂ -PZ	0,000	0,000		
H ₂ O-DEA	-7,696	1317,608		
DEA-H ₂ O	0,916	-718,126		
DEA-CO ₂	12,905	0,025		
CO ₂ -DEA	-0,568	-0,001		
DEA-PZ	-0,755	-0,002		
PZ-DEA	-4,776	-0,016		

Tabel A.28 Data Konstanta *Binary Interaction Parameter* antar Molekul

Menghitung *Binary Interaction Parameter* antar molekul untuk molekul CO₂:

molekular = CO_2 , H_2O , PZ dan DEA

Dari eksperimen didapatkan suhu sistem pada saat terjadi kesetimbangan:

T sistem

 $= 40^{\circ}C$ = (40°C + 273,15) K = 313,15 K

Rumus yang digunakan untuk menghitung *Binary Interaction Parameter* antar molekul adalah : parameter antar molekul adalah :

Menghitung τ m,m'

<u>Untuk m' CO₂</u> *Binary Interaction Parameter* antar molekul CO₂- CO₂: $\tau_{m,m'}$ = 0 Untuk m' H₂O, m' PZ, m' DEA Konstanta *Binary Interaction Parameter* yang digunakan adalah konstanta interaksi molekul-molekul yaitu CO₂- H₂O, CO₂- PZ, CO₂-DEA dengan persamaan berikut:

$$\tau_{m,m'} = A + \frac{B}{T(K)}$$

Menghitung a m.m' Untuk m' CO₂ Nonrandomness parameter antar molekul CO₂- CO₂: = 0.2 $\alpha_{m m'}$ Untuk m' H₂O Nonrandomness parameter antar molekul CO₂- H₂O: = 0,2 $\alpha_{m m'}$ Untuk m' PZ Nonrandomness parameter antar molekul CO₂- PZ: = 0.2 $\alpha_{m m'}$ Untuk m' DEA Nonrandomness parameter antar molekul CO₂- DEA: = 0,2 $\alpha_{m,m'}$

Menghitung G m,m' <u>Untuk m' CO₂, m' H₂O, m' PZ, m' DEA</u> $G_{m,m'} = \exp(-\alpha_{m,m'}\tau_{m,m'})$

Binary Interaction Parameter antar molekul untuk molekul H₂O, PZ dan DEA dapat dihitung dengan cara yang sama seperti Perhitungan *Binary Interaction Parameter* antar molekul untuk molekul CO₂. Perhitungan tersebut dapat ditabelkan sebagai berikut:

 Tabel A.29 Perhitungan Binary Interaction Parameter antar

 Molekul

m	$m' = CO_2$		$m' = H_2O$		m' = DEA		m' =PZ	
	τ m,m'	G m,m'	τ m,m'	G m,m'	τ m,m'	G m,m'	τ m,m'	G m,m
H2O	0,000	1,000	0,791	0,854	-3,350	1,954	-9,311	6,438
CO2	20,987	0,015	0 <mark>,000</mark>	1,000	<mark>-0,5</mark> 68	1,120	0,000	1,000
DEA	-1,453	1,337	12,905	0,076	0,000	1,000	-0,755	1,163
PZ	-1,773	<mark>1,</mark> 426	5 <mark>,198</mark>	0,354	<mark>-4,7</mark> 76	2,599	0,000	1,000

Menghitung Koefisien Aktivitas H₂O dan CO₂

Perhitungan koefisien aktivitas H₂O dan CO₂ sebagai berikut : Menghitung $\sum_{i} X_{j}G_{jm}\tau_{jm}$

 $\sum_{j} X_{j} G_{jm} \tau_{jm} = X_{CO_{2}} G_{CO_{2},H_{2}O} \tau_{CO_{2},H_{2}O} + X_{H_{2}O} G_{H_{2}O,H_{2}O} \tau_{H_{2}O,H_{2}O}$ + $X_{PZ} G_{PZ,H_{2}O} \tau_{PZ,H_{2}O} + X_{DEA} G_{DEA,H_{2}O} \tau_{DEA,H_{2}O} + X_{CO_{3}^{2-}} G_{CO_{3}^{2-},H_{2}O} \tau_{CO_{3}^{2-},H_{2}O} + X_{HCO_{3}^{-}} G_{HCO_{3}^{-},H_{2}O} \tau_{HCO_{3}^{-},H_{2}O} + X_{K^{+}} G_{K^{+},H_{2}O} \tau_{K^{+},H_{2}O}$

Menghitung $\sum_{k} X_{k} G_{km}$

$$\sum_{k} X_{k} G_{km} = X_{CO_{2}} G_{CO_{2},H_{2}O} + X_{H_{2}O} G_{H_{2}O,H_{2}O} + X_{PZ} G_{PZ,H_{2}O} + X_{DEA} G_{DEA,H_{2}O} + X_{CO_{3}^{2-}} G_{CO_{3}^{2-},H_{2}O} + X_{CO_{3}^{2-}} G_{CO_{3}^{2-},H_{2}O} + X_{CO_{3}^{2-}} G_{CO_{3}^{2-},H_{2}O} + X_{CO_{3}^{2-},H_{2}O} + X_{CO_{3}^{2-},$$

 $X_{_{HCO_{3}^{-}}}G_{_{HCO_{3}^{-},H_{2}O}} + X_{_{K^{+}}}G_{_{K^{+},H_{2}O}}$

$$Menghitung \sum_{m'} \frac{X_{m'}G_{mm'}}{\sum_{k} X_{k}G_{km'}}$$

$$\frac{Untuk m' = CO_{2}}{\sum_{m'} \frac{X_{m'}G_{mm'}}{\sum_{k} X_{k}G_{km'}}} = \frac{X_{CO_{2}}G_{H_{2}O,CO_{2}}}{X_{CO_{2}}G_{CO_{2},CO_{2}} + X_{H_{2}O}G_{H_{2}O,CO_{2}} + X_{PZ}G_{PZ,CO_{2}}}$$

$$\frac{Vntuk m' = PZ}{\sum_{m'} \frac{X_{m'}G_{mm'}}{\sum_{k} X_{k}G_{km'}}} = \frac{X_{PZ}G_{H_{2}O,PZ}}{X_{CO_{2}}G_{CO_{2},PZ} + X_{H_{2}O}G_{H_{2}O,PZ} + X_{PZ}G_{PZ,PZ}}$$

$$\frac{Vntuk m' = PZ}{\sum_{m'} \frac{X_{m'}G_{mm'}}{\sum_{k} X_{k}G_{km'}}} = \frac{X_{PZ}G_{H_{2}O,PZ}}{X_{CO_{2}}G_{CO_{2},PZ} + X_{H_{2}O}G_{H_{2}O,PZ} + X_{PZ}G_{PZ,PZ}}$$

$$\frac{Vntuk m' = DEA}{Vntuk m' = DEA}$$

 $\sum_{m'} \frac{X_{m'}G_{mm'}}{\sum_{k} X_{k}G_{km'}} = \frac{X_{DEA}G_{H_{2}O,DEA}}{X_{CO_{2}}G_{CO_{2},DEA} + X_{H_{2}O}G_{H_{2}O,DEA} + X_{PZ}G_{PZ,DEA}}$

+ $X_{DEA}G_{DEA,DEA}$ + $X_{CO_3^2}G_{CO_3^2}$,DEA

 $+ X_{HCO_3} G_{HCO_3}, DEA + X_{K} G_{K}, DEA$

 $\begin{array}{l} Menghitung \ \tau \ m,m'\\ \underline{Untuk \ m' = CO_2}\\ \tau_{m,m'} &= \tau_{H_2O,CO_2}\\ \underline{Untuk \ m' = PZ}\\ \tau_{m,m'} &= \tau_{H_2O,PZ}\\ \underline{Untuk \ m' = DEA}\\ \tau_{m,m'} &= \tau_{H_2O,DEA} \end{array}$

 $\begin{aligned} & \textit{Menghitung } \sum_{k} X_{k} G_{km'} \tau_{km'} \\ & \underline{\textit{Untuk m'} = CO_{2}} \\ & \sum_{k} X_{k} G_{km'} \tau_{km'} = X_{CO_{2}} G_{CO_{2},CO_{2}} \tau_{CO_{2},CO_{2}} + X_{H_{2}O} G_{H_{2}O,CO_{2}} \tau_{H_{2}O,CO_{2}} + \\ & X_{PZ} G_{PZ,CO_{2}} \tau_{PZ,CO_{2}} + X_{DEA} G_{DEA,CO_{2}} \tau_{DEA,CO_{2}} + \\ & X_{CO_{3}^{2-}} G_{CO_{3}^{2-},CO_{2}} \tau_{CO_{3}^{2-},CO_{2}} + \\ & X_{HCO_{3}} G_{HCO_{3},CO_{2}} \tau_{HCO_{3},CO_{2}} + X_{K^{+}} G_{K^{+},CO_{2}} \tau_{K^{+},CO_{2}} \end{aligned}$

 $\frac{\text{Untuk m'} = PZ}{\sum_{k} X_{k} G_{km'} \tau_{km'}} = X_{CO_{2}} G_{CO_{2},PZ} \tau_{CO_{2},PZ} + X_{H_{2}O} G_{H_{2}O,PZ} \tau_{H_{2}O,PZ} + X_{PZ} G_{PZ,PZ} \tau_{PZ,MDEA} + X_{DEA} G_{DEA,PZ} \tau_{DEA,PZ} + X_{DEA,PZ} \tau_{DEA,PZ} \tau_{DEA,PZ} + X_{DEA,PZ} \tau_{DEA,PZ} \tau_{DEA,PZ} + X_{DEA,PZ} \tau_{DEA,PZ} \tau_{DEA,PZ} \tau_{DEA,PZ} \tau_{DEA,PZ} + X_{DEA,PZ} \tau_{DEA,PZ} \tau_{D$

 $X_{CO_3^{2^-}}G_{CO_3^{2^-},PZ}\tau_{CO_3^{2^-},PZ} + X_{HCO_3^-}G_{HCO_3^-,PZ}\tau_{HCO_3^-,PZ}$ $+ X_{K^+} G_{K^+, PZ} \tau_{K^+, PZ}$

$$\underbrace{\text{Untuk m' = DEA}}_{\sum_{k} X_{k} G_{km'} \tau_{km'}} = X_{CO_{2}} G_{CO_{2}, DEA} \tau_{CO_{2}, DEA} + X_{H_{2}O} G_{H_{2}O, DEA} \tau_{H_{2}O, DEA} + X_{PZ} G_{PZ, DEA} \tau_{PZ, DEA} + X_{DEA} G_{DEA, DEA} \tau_{DEA} \tau_{DEA} \tau_{DEA} + X_{CO_{3}^{2-}} G_{CO_{3}^{2-}, DEA} \tau_{CO_{3}^{2-}, DEA} + X_{HCO_{3}^{2-}, DEA} \tau_{HCO_{3}^{2-}, DEA} \tau_{HCO_{3}^{2-}, DEA} + X_{K^{+}} G_{K^{+} DEA} \tau_{K^{+} DEA}$$

$$\begin{aligned} & \textit{Menghitung } \sum_{k} X_{k} G_{km'} \\ & \underline{\textit{Untuk } m' = CO_{2}} \\ & \sum_{k} X_{k} G_{km'} = X_{CO_{2}} G_{CO_{2},CO_{2}} + X_{H_{2}O} G_{H_{2}O,CO_{2}} + X_{PZ} G_{PZ,CO_{2}} + \\ & X_{DEA} G_{DEA,CO_{2}} + X_{CO_{3}^{2-}} G_{CO_{3}^{2-},CO_{2}} + \\ & X_{HCO_{3}^{-}} G_{HCO_{3}^{-},CO_{2}} + X_{K^{+}} G_{K^{+},CO_{2}} \end{aligned}$$

$$\frac{\text{Untuk m'} = PZ}{\sum_{k} X_{k} G_{km'}} = X_{CO_{2}} G_{CO_{2},PZ} + X_{H_{2}O} G_{H_{2}O,PZ} + X_{PZ} G_{PZ,PZ} + X_{DEA} G_{DEA,PZ} + X_{CO_{3}^{2-}} G_{CO_{3}^{2-},PZ} + X_{HCO_{3}^{-}} G_{HCO_{3}^{-},PZ} + X_{K^{+}} G_{K^{+},PZ}$$

$$\underbrace{\text{Untuk m' = DEA}}_{k} X_{k} G_{km'} = X_{CO_{2}} G_{CO_{2}, DEA} + X_{H_{2}O} G_{H_{2}O, DEA} + X_{PZ} G_{PZ, DEA} + X_{DEA} G_{DEA, DEA} + X_{CO_{3}^{2-}} G_{CO_{3}^{2-}, DEA} + X_{HCO_{3}^{-}} G_{HCO_{3}^{-}, DEA} + X_{K^{+}} G_{K^{+}, DEA}$$

$$Menghitung \sum_{c} \sum_{a} \frac{Y_a X_c G_{mc,ac}}{\sum_{k} X_k G_{ka,ac}}$$

$$\frac{\sum_{c} \sum_{a} \frac{Y_{a} X_{c} G_{mc,ac}}{\sum_{k} X_{k} G_{ka,ac}} = \frac{Y_{CO_{3}^{2-}} X_{K^{+}} G_{H_{2}O-K^{+},CO_{3}^{2-}-K^{+}}}{X_{CO_{2}} G_{CO_{2}-CO_{3}^{2-},CO_{3}^{2-}-K^{+}} + X_{H_{2}O} G_{H_{2}O-CO_{3}^{2-},CO_{3}^{2-}-K^{+}}}$$

$$+ X_{PZ}G_{PZ-CO_3^2,CO_3^2-K^+} + X_{DEA}G_{DEA-CO_3^2,CO_3^2-K^+}$$

$$\frac{\text{Untuk } a = \text{HCO}_{3}}{\sum_{c} \sum_{a} \frac{Y_{a} X_{c} G_{mc,ac}}{\sum_{k} X_{k} G_{ka,ac}}} = \frac{Y_{HCO_{3}} X_{K^{+}} G_{H_{2}O-K^{+},HCO_{3}-K^{+}}}{X_{CO_{2}} G_{CO_{2}-HCO_{3},HCO_{3}-K^{+}} + X_{H_{2}O} G_{H_{2}O-HCO_{3},HCO_{3}-K^{+}}}$$

$$+X_{PZ}G_{PZ-HCO_{3}^{-},HCO_{3}^{-}-K^{+}}X_{DEA}G_{DEA-HCO_{3}^{-},HCO_{3}^{-}-K^{+}}$$

$$\frac{Menghitung \tau}{Untuk a = CO_3^{=}}$$

$$\tau_{mc,ac} = \tau_{H_2O-K^+,CO_3^{2-}-K^+}$$
Untuk a = HCO₃⁻

$$\tau_{mc,ac} = \tau_{H_2O-K^+,HCO_2^{-}-K^+}$$

$$\frac{Menghitung}{Untuk a = CO_3^{=}} X_k G_{kc,ac} \tau_{kc,ac}$$

$$\sum_{k} X_{k} G_{kc,ac} \tau_{kc,ac} = X_{CO_{2}} G_{CO_{2}-K^{+},CO_{3}^{2-}-K^{+}} \tau_{CO_{2}-K^{+},CO_{3}^{2-}-K^{+}} + X_{H_{2}O} G_{H_{2}O-K^{+},CO_{3}^{2-}-K^{+}} \tau_{H_{2}O+-K^{+},CO_{3}^{2-}-K^{+}} + X_{PZ} G_{PZ-K^{+},CO_{3}^{2-}-K^{+}} + X_{DEA} G_{DEA-K^{+},CO_{3}^{2-}-K^{+}} + X_{DEA-K^{+},CO_{3}^{2-}-K^{+}} + X_{H_{2}O} G_{DEA-K^{+},CO_{3}^{2-}-K^{+}} \tau_{DEA-K^{+},CO_{3}^{2-}-K^{+}} + X_{H_{2}O} G_{H_{2}O-K^{+},HCO_{3}^{-}-K^{+}} \tau_{CO_{2}-K^{+},HCO_{3}^{-}-K^{+}} + X_{H_{2}O} G_{H_{2}O-K^{+},HCO_{3}^{-}-K^{+}} \tau_{D2A-K^{+},HCO_{3}^{-}-K^{+}} + X_{DEA} G_{DEA-K^{+},HCO_{3}^{-}-K^{+}} \tau_{D2A-K^{+},HCO_{3}^{-}-K^{+}} + X_{DA} G_{DEA-K^{+},HCO_{3}^{-}-K^{+}} \tau_{DA-K^{+},HCO_{3}^{-}-K^{+}} + X_{DA} G_{DEA-K^{+},HCO_{3}^{-}-K^{+}} \tau_{DA-K^{+},HCO_{3}^{-}-K^{+}} + X_{DA} G_{DA-K^{+},HCO_{3}^{-}-K^{+}} \tau_{DA-K^{+},HCO_{3}^{-}-K^{+}}} + X_{DA} G_{DA-K^{+},HCO_{3$$

$$\frac{Menghitung \sum_{k} X_{k} G_{kc,ac}}{\sum_{k} X_{k} G_{kc,ac}} = X_{CO_{2}} G_{CO_{2}-K^{+},CO_{3}^{2}-K^{+}} + X_{H_{2}O} G_{H_{2}O-K^{+},CO_{3}^{2}-K^{+}} + X_{PZ} G_{PZ-K^{+},CO_{3}^{2}-K^{+}} + X_{DEA} G_{DEA-K^{+},CO_{3}^{2}-K^{+}} + K_{DEA} G_{DEA-K^{+},CO_{3}^{2}-K^{+}} + K_{D$$

$$\frac{\text{Untuk } a = \text{HCO}_{3}}{\sum_{k} X_{k} G_{kc,ac}} = X_{CO_{2}} G_{CO_{2}-K^{+},HCO_{3}^{-}-K^{+}} + X_{H_{2}O} G_{H_{2}O-K^{+},HCO_{3}^{-}-K^{+}} + X_{PZ} G_{PZ-K^{+},HCO_{3}^{-}-K^{+}} + X_{DEA} G_{DEA-K^{+},HCO_{3}^{-}-K^{+}} + M_{CO} M_{CO} M_{2} M_{2}$$
$$\frac{+X_{PZ}G_{PZ-CO_{3}^{2-},K^{+}-CO_{3}^{2-}}X_{DEA}G_{DEA-CO_{3}^{2-},K^{+}-CO_{3}^{2-}}}{\sum_{a}\sum_{c}\frac{Y_{c}X_{a}G_{ma,ca}}{\sum_{k}X_{k}G_{ka,ca}}}{\sum_{k}X_{k}G_{ka,ca}} = \frac{Y_{K^{+}}X_{HCO_{3}}G_{H_{2}O-HCO_{3},K^{+}-HCO_{3}}}{X_{CO_{2}}G_{CO_{2}-HCO_{3},K^{+}-HCO_{3}} + X_{H_{2}O}G_{H_{2}O-HCO_{3},K^{+}-HCO_{3}}}$$

$$\frac{+X_{PZ}G_{PZ-HCO_{3},K^{+}-HCO_{3}}X_{DEA}G_{DEA-HCO_{3},K^{+}-HCO_{3}}}{\sum_{k}X_{k}G_{ka,ca}\tau_{ka,ca}}$$

$$\frac{Untuk \ a = CO_{3}^{=-}}{\sum_{k}X_{k}G_{ka,ca}\tau_{ka,ca}} = X_{CO_{2}}G_{CO_{2}-CO_{3}^{2-},K^{+}-CO_{3}^{2-}}\tau_{DZ-CO_{3}^{2-},K^{+}-CO_{3}^{2-}} + X_{H_{2}O}G_{H_{2}O-CO_{3}^{2-},K^{+}-CO_{3}^{2-}} + X_{DZ}G_{DZ-CO_{3}^{2-},K^{+}-CO_{3}^{2-}} + X_{DZ}G_{DZ-HCO_{3}^{2-},K^{+}-HCO_{3}^{2-}} + X$$

$$\sum_{k} X_{k} G_{ka,ca} = X_{CO_{2}} G_{CO_{2}-CO_{3}^{2^{-}},K^{+}-CO_{3}^{2^{-}}} + X_{H_{2}O} G_{H_{2}O-CO_{3}^{2^{-}},K^{+}-CO_{3}^{2^{-}}} + X_{PZ} G_{PZ-CO_{3}^{2^{-}},K^{+}-CO_{3}^{2^{-}}} + X_{DEA} G_{DEA-CO_{3}^{2^{-}},K^{+}-CO_{3}^{2^{-}}}$$

Untuk $a = HCO_3$

$$\sum_{k} X_{k} G_{ka,ca} = X_{CO_{2}} G_{CO_{2} - HCO_{3}^{-}, K^{+} - HCO_{3}^{-}} + X_{PZ} G_{PZ - HCO_{3}^{-}, K^{+} - HCO_{3}^{-}}$$

$$X_{H_{2}O} G_{H_{2}O - HCO_{3}^{-}, K^{+} - HCO_{3}^{-}} + X_{DEA} G_{DEA - HCO_{3}^{-}, K^{+} - HCO_{3}^{-}}$$

Perhitungan koefisien aktivitas H_2O dapat dilihat pada Tabel A.30 dan untuk perhitungan koefisien aktivitas CO_2 dapat dilihat pada Tabel A.31.

No.	Persamaan E-NRTL	Hasil Perhitungan						
1a	$\sum_{j} X_{j} G_{jm} \tau_{jm}$	0,660						
1b	$\sum_{k} X_{k} G_{km}$	0,515						
1c	1a/1c	1,283						
A		m' = CO ₂	m' = DEA	m' = DEA				
2a	$\sum_{m'} \frac{X_{m'}G_{mm'}}{\sum_{k} X_{k}G_{km'}}$	8,46E- 06 0,1060325		0,0825				
2b	τm,m'	1,605	0,404	-8,649				
2c	$\Sigma_k X_k G_{km'} \tau_{km'}$	0,390	2,297	-25,7561				
2d	$\Sigma_k X_k G_{km'} \tau_{km'}$	19,424	0,482	3,080263				
2e	$2a\left(2b-\frac{2c}{2d}\right)$	-0,226 -0,042388		1,4E-01				
2f	Jumlah 2e	J.F.S.U	-0,268	WR-NU				
		$a = CO_3^{=}$	$a = HCO_3^-$	PY - 44				

No.	Persamaan E-NRTL		Hasil Perhitungan				
3a	$\sum_{c} \frac{Y_a X_c G_{mc,ac}}{\sum_k X_k G_{ka,ac}}$	0,000		0,000			
3b	τ mc,ac	114,151		1	159,954	1	
3c	$\sum_k X_k G_{kc,ac} \tau_{kc,ac}$	0,013			1,123	1	
3d	$\sum_{k} X_{k} G_{kc,ac}$	0,049		1	,16 <mark>E-02</mark>		
3e	$3a\left(3b-\frac{3c}{3d}\right)$	0,051		0,015		2	
3f	Jumlah 3e		TY YE	0,067		1	
1	Nes Nes	$a = CO_3^{=}$		$a = HCO_3$			
4a	$\sum_{a \ c} \sum_{c} \frac{Y_c X_a G_{ma,ca}}{\sum_k X_k G_{ka,ca}}$	-0,001		-0,083		G	
4b	τ ma,ca	80,973		15	28,874	18	
4c	$\Sigma_k X_k G_{ka,ca} \tau_{ka,ca}$		0,8		0,701	-	
4d	$\sum_k X_k G_{ka,ca}$		0,1	0,044		1	
4e	$4a\left(4b-\frac{4c}{4d}\right)$		-0,053		-1,068	L.S.	
4f	Jumlah 4e		-1,125				
5	$\ln \gamma \frac{lc}{H_2 O} = 1c + 2f + 3f + 4f$		f -0,511				
6	$\ln \gamma \frac{PHD}{H_2O} = \ln \gamma \frac{Born}{H_2O} = 0$		0,000				
7	γ _{H2} Ο		0,600				
8	P _{H2} O		773,67				

Tabel A.31 Perhitungan Koefisien Aktivitas H₂O (lanjutan)

(Halaman ini sengaja dikosongkan)