Nurohmah, Hidayatul (2015) Peramalan beban jangka pendek untuk hari libur nasional menggunakan interval type-2 fuzzy inference system (studi kasus : sistem kelistrikan Jawa-Bali). Masters thesis, Institut Teknologi Sepuluh Nopember.
Preview |
Text
undergraduated thesis.pdf Download (2MB) | Preview |
Abstract
Kebutuhan energi listrik sangat dipengaruhi oleh perilaku beban yang
tidak menentu. Di sisi lain, penyedia energi listrik dituntut harus mampu
menjamin kontinuitas kebutuhan beban untuk saat ini dan meramalkan kebutuhan
beban untuk masa yang akan datang. Perbedaan hari libur dan hari biasa
mengakibatkan karakteristrik beban listrik menjadi sangat kompleks dan
nonliniear, Oleh karena itu masalah peramalaan beban jangka pendek sangat perlu
didukung oleh metode komputasi untuk simulasi dan validasi.
Fuzzy logic adalah metode yang handal untuk peramalan beban pada
sistem yang kompleks dan non-liniear karena dapat mengubah variabel sistem ke
bentuk linguistik dalam reasoning approximation. Interval type-2 fuzzy inference
system (IT2FIS) merupakan pengembangan metode Interval type-1 fuzzy inference
system (IT1FIS) yang sangat tepat untuk digunakan pada peramalan beban karena
mempunyai kelebihan yang sangat fleksibel dalam perubahan footprint of
uncertainty (FOU), sehingga sangat mendukung untuk membentuk pemrosesan
awal data time series, komputasi, simulasi dan validasi model sistem.
Pada penelitian ini dilakukan simulai peramalan beban jangka pendek
menggunakan Interval type-2 fuzzy logic toolbox (IT2FLT). Performansi error
hasil prediksi yang diperoleh dari perbandingan nilai peramalan dengan nilai-nilai
aktualnya ditunjukkan oleh nilai mean absolute percentage error (MAPE).
Akurasi yang didapat dari hasil forecasting beban jangka pendek dengan metode
permodelan fuzzy type -2 dihasilkan error secara umum lebih kecil dibandingkan
dengan metode type-1. Metode peramalan tersebut memiliki MAPE terendah pada tahun 2010 yaitu sebesar 1,2658% sedangkan MAPE tertinggi terjadi pada tahun
2011yaitu sebesar 5,782%.
====================================================================================================
The electrical energy requirement is strongly influenced by uncertain behavior of
the load. On the other side, the electric energy provider is required to be able to ensure
continuity of load demand at this time, and forecast for the future. The difference of
holidays and ordinary days resulted characteristics of the electrical load becomes very
complex and nonlinear, therefore the problem of short-term load forecasting very need to
be supported by computational methods for simulation and validation.
Fuzzy logic is a reliable method for forecasting the load on the system that
complex and non-linear because it can change system variables into linguistic form
through reasoning approximation. Interval type-2 fuzzy inference system (IT2FIS) as the
development of methods of Interval type-1 fuzzy inference system (IT1FIS), it is
appropriate to be used in load forecasting because it has the advantages that very flexible
on the change of the footprint of uncertainty (FOU), so it supports to establish initial
processing of the data time series , computing, simulation and validation of system
models.
In this research carried out simulations of short-term load forecasting using
Interval type-2 fuzzy logic toolbox (IT2FLT). The error performance of the prediction
result obtained from the comparison of the value of forecasting against actual values
indicated by the mean absolute percentage error (MAPE). The accuracy of the results
obtained from short-term load forecasting using fuzzy type-2 method, generally resulting
error is smaller than the type-1 method. The forecasting method has the lowest MAPE in
2010 in the amount of 1.2658% while the highest MAPE occurred in 2011 in the amount
of 5.782%.
Item Type: | Thesis (Masters) |
---|---|
Additional Information: | RTE 621.31 Nur p |
Uncontrolled Keywords: | Fuzzy type-1, Fuzzy Type–2 Inference System, Peramalan Beban Jangka Pendek. ======================================================================================================= Fuzzy Type-1, Fuzzy Type–2 Inference System Short-term load forecasting |
Subjects: | T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK1322.6 Electric power-plants |
Divisions: | Faculty of Electrical Technology > Electrical Engineering > 20101-(S2) Master Thesis |
Depositing User: | - Taufiq Rahmanu |
Date Deposited: | 01 Apr 2019 02:39 |
Last Modified: | 01 Apr 2019 02:39 |
URI: | http://repository.its.ac.id/id/eprint/62656 |
Actions (login required)
View Item |