

TUGAS AKHIR - SS141501

REGRESI COX DENGAN DUA VARIABEL STRATIFIKASI PADA PASIEN KANKER SERVIKS DI RSUD DR. SOETOMO SURABAYA

PRICILIAN INDAH MUSTIKA NRP 1312 100 024

Dosen Pembimbing Santi Wulan Purnami, M.Si, Ph.D

PROGRAM STUDI S1 JURUSAN STATISTIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2016

FINAL PROJECT - SS141501

COX REGRESSION WITH TWO STRATIFICATION VARIABLES OF CERVICAL CANCER PATIENTS AT DR. SOETOMO HOSPITAL SURABAYA

PRICILIAN INDAH MUSTIKA NRP 1312 100 024

Supervisor Santi Wulan Purnami, M.Si, Ph.D

UNDERGRADUATE PROGRAMME
DEPARTMENT OF STATISTICS
FACULTY OF MATHEMATICS AND NATURAL SCIENCES
INSTITUT TEKNOLOGI SEPULUH NOPEMBER
SURABAYA 2016

LEMBAR PENGESAHAN

REGRESI COX DENGAN DUA VARIABEL STRATIFIKASI PADA PASIEN KANKER SERVIKS DI RSUD DR. SOETOMO SURABAYA

TUGAS AKHIR

Diajukan untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Sains pada

Program Studi S-1 Jurusan Statistika Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Teknologi Sepuluh Nopember

Oleh :
PRICILIAN INDAH MUSTIKA
NRP 1312 100 024

Disetujui oleh Pembimbing Tugas Akhir: Santi Wulan Purnami, M.Si, Ph.D NIP. 19720923 199803 2 001

Mengetahui san Statistika FMIPA-ITS

Dr. Suhartono NIP. 19710929 199512 1 001

SURABAYA, JULI 2016

REGRESI COX DENGAN DUA VARIABEL STRATIFIKASI PADA PASIEN KANKER SERVIKS DI RSUD DR. SOETOMO SURABAYA

Nama Mahasiswa : Pricilian Indah Mustika

NRP : 1312 100 024

Jurusan : Statistika FMIPA-ITS

Dosen pembimbing : Santi Wulan Purnami, M.Si, Ph.D

ABSTRAK

Analisis survival merupakan metode yang digunakan untuk mengetahui hubungan antara waktu kejadian (time to failure) dan variabel independen. Dalam analisis survival ada tiga macam regresi: parametrik, nonparametrik, dan semiparametrik. Salah satu metode semiparametrik yang sering digunakan adalah regresi Cox proportional hazard. Model regresi Cox proportional hazard memiliki asumsi proportional hazard. Jika asumsi tersebut tidak terpenuhi, maka perlu adanya metode lain untuk menganalisis kasus tersebut. Salah satunya adalah model regresi Cox stratifikasi. Pada penelitian ini model Cox stratifikasi diaplikasikan pada kasus ketahanan hidup pasien kanker serviks yang menjalani rawat inap di RSUD dr. Soetomo Surabaya tahun 2014. Berdasarkan hasil analisis, diperoleh model terbaik dengan kriteria AIC terkecil yaitu model regresi Cox stratifikasi dengan dua variabel stratifikasi yaitu stadium dan komplikasi.Variabel yang signifikan mempengaruhi model pada taraf signifikansi 5% adalah jenis pengobatan kemoterapi sekaligus transfusi PRC sedangkan jika menggunakan taraf signifikansi 10%, maka variabel yang berpengaruh signifikan terhadap ketahanan hidup pasien kanker serviks adalah jenis pengobatan berupa transfusi PRC, operasi, dan kemoterapi sekaligus transfusi PRC.

Kata Kunci: Analisis Survival, Kanker Serviks, Proportional Hazard, Regresi Cox Stratifikasi.

COX REGRESSION WITH TWO STRATIFICATION VARIABLES OF CERVICAL CANCER PATIENTS AT DR. SOETOMO HOSPITAL SURABAYA

Name of Student : Pricilian Indah Mustika

ID : 1312 100 024

Department : Statistics FMIPA-ITS

Supervisor : Santi Wulan Purnami, M.Si, Ph.D

ABSTRACT

Survival analysis is a statistical procedure to analyze the relationship between time to failure and the independent variables. There are three kinds approaches: parametric, nonparametric, and semiparametric. One of semiparametric method often is used to analyze the survival data is Cox proportional hazard regression. Cox proportional hazards regression models must meet the assumption of proportional hazard. If this assumption is not meet, need other methods to analyze the case. One is the stratified Cox regression model. In this study, stratified Cox model is applied to survival of cervical cancer patients in RSUD dr. Soetomo Surabaya in 2014. Based on the analysis, it is obtained the best model with the smallest AIC criteria is stratified Cox regression model with two stratification variables. Variable that significantly affect the model at significance level 5% is the type of treatment such as chemotherapy and transfusions PRC but if use significance level 10%, then the variables that significantly affect is a type of of PRC transfusions, surgery and such as treatment chemotherapy + transfusions PRC.

Keywords: Cervical Cancer, Proportional Hazard, Survival Analysis, Stratified Cox Regression.

DAFTAR ISI

	Halaman
HALAMAN JUDUL	i
TITLE PAGE	iii
LEMBAR PENGESAHAN	
ABSTRAK	
ABSTRACT	ix
KATA PENGANTAR	xi
DAFTAR ISI	
DAFTAR GAMBAR	
DAFTAR TABEL	
DAFTAR LAMPIRAN	
BAB I PENDAHULUAN	
1.1 Latar Belakang	
1.2 Rumusan Masalah	
1.3 Batasan Masalah	
1.4 Tujuan Penelitian	
1.5 Manfaat Penelitian	
BAB II TINJAUAN PUSTAKA	
2.1 Analisis <i>Survival</i>	
2.2 Fungsi Survival dan Fungsi Hazard	
2.2.1 Fungsi Survival	
2.2.2 Fungsi <i>Hazard</i>	
2.3 Kurva Survival Kaplan-Meier dan Uji Log-Rank	
2.4 Asumsi Proportional Hazard	
2.5 Model Regresi Cox Stratifikasi	
2.5.1 Pengujian Interaksi	
2.5.2 Estimasi Parameter Model Regresi Cox	
Stratifikasi	15
2.5.3 Pengujian Signifikansi Parameter	16
2.5.4 Hazard Ratio	
2.6 Kriteria Model Terbaik	18

	2.7 Ka	nker Serviks	19
BAB	III ME	TODOLOGI PENELITIAN	23
		mber Data	
	3.2 Va	riabel Penelitian	23
	3.3 Tal	hapan Analisis Data	25
BAB	IV AN	ALISIS DAN PEMBAHASAN	29
		skripsi Waktu Survival Pasien Kanker Servik	
		serta Faktor-Faktor yang Diduga Mempengaruhi	
	4.2 An	alisis Kurva Survival Kaplan-Meier dan Uji Log	3-
	Ra	nk	
	4.2	.1 Karakteristik Waktu Survival Pasien Kanker	
		Serviks Berdasarkan Stadium	36
	4.2	.2 Karakteristik Waktu Survival Pasien Kanker	
		Serviks Berdasarkan Jenis Pengobatan	
	4.2	.3 Karakteristik Waktu Survival Pasien Kanker	
		Serviks Berdasarkan Penyakit Penyerta	
	4.2	.4 Karakteristik Waktu Survival Pasien Kanker	
		Serviks Berdasarkan Komplikasi	39
	4.2	.5 Karakteristik Waktu Survival Pasien Kanker	
		Serviks Berdasarkan Status Anemia	
		ngujian Asumsi Proportional Hazard	
	4.3	.1 Pengujian Asumsi <i>Proportional Hazard</i> untuk	
	4.0	Faktor Stadium	
	4.3	.2 Pengujian Asumsi <i>Proportional Hazard</i> untuk	4.4
	4.2	Faktor Jenis Pengobatan	
	4.3	.3 Pengujian Asumsi <i>Proportional Hazard</i> untuk	
	12	Faktor Penyakit Penyerta	
	4.3	.4 Pengujian Asumsi <i>Proportional Hazard</i> untuk Faktor Komplikasi	
	12	.5 Pengujian Asumsi <i>Proportional Hazard</i> untuk	
	٦.5	Faktor Status Anemia	16
	1 1 De	modelan Ketahanan Hidup Pasien Kanker Servik	
	der	ngan Regresi Cox Stratifikasi	48
		.1 Pengujian Interaksi Model Regresi Cox dengai	
		Satu Variabel Stratifikasi	

4.4.2 Pemodelan Regresi Cox dengan Satu Variabel	
Stratifikasi	49
4.4.2.1 Pemodelan Regresi Cox tanpa Interaksi	
dengan Satu Variabel Stratifikasi	49
4.4.2.2 Pemodelan Regresi Cox Interaksi dengan	
Satu Variabel Stratifikasi	52
4.4.3 Pemodelan Regresi Cox dengan Dua Variabel	
Stratifikasi	54
4.5 Pemilihan Model Terbaik	57
4.6 Interpretasi Model Terbaik	58
BAB V KESIMPULAN DAN SARAN	61
5.1 Kesimpulan	61
5.2 Saran	
DAFTAR PUSTAKA	63
LAMPIRAN	65

DAFTAR TABEL

	halaman
Tabel 3.1	Variabel Dependen24
Tabel 3.2	Variabel Independen24
Tabel 3.3	Struktur Data Penelitian25
Tabel 4.1	Karakteristik Waktu Survival Pasien Kanker
	Serviks
Tabel 4.2	Karakteristik Usia Pasien Kanker Serviks30
Tabel 4.3	Hasil Uji <i>Log-Rank</i> 42
Tabel 4.4	Hasil Uji Goodness of Fit47
Tabel 4.5	Hasil Pengujian Interaksi49
Tabel 4.6	Estimasi Parameter Model Cox Stratifikasi Tanpa
	Interaksi (Satu Variabel Stratifikasi)50
Tabel 4.7	Estimasi Parameter Model Cox Stratifikasi
	Interaksi
Tabel 4.8	Kombinasi Variabel Stadium dan Komplikasi54
Tabel 4.9	Estimasi Parameter Model Cox Stratifikasi Tanpa
	Interaksi (Dua Variabel Stratifikasi)55
Tabel 4.10	Perbandingan Nilai AIC dari Model Regresi Cox58
Tabel 4.11	Hazard Ratio Model Terbaik59

DAFTAR GAMBAR

halaman

Gambar 2.1 Ilustrasi <i>Grafik</i> $\ln(-\ln S(t))$ dan \hat{S} terhadap	
Waktu Survival	
Gambar 3.1 Tahapan Penelitian	.27
Gambar 4.1 Karakteristik Pasien Kanker Serviks Berdasarkan	
Stadium	.30
Gambar 4.2 Karakteristik Pasien Kanker Serviks Berdasarkan	
Jenis Pengobatan	.31
Gambar 4.3 Karakteristik Pasien Kanker Serviks Berdasarkan	
Penyakit Penyerta	.32
Gambar 4.4 Karakteristik Pasien Kanker Serviks Berdasarkan	
Komplikasi	.33
Gambar 4.5 Karakteristik Pasien Kanker Serviks Berdasarkan	
Status Anemia	.34
Gambar 4.6 Kurva Survival Kaplan Meier Penderita Kanker	
Serviks	.35
Gambar 4.7 Kurva Survival Kaplan Meier Berdasarkan	
Stadium	.36
Gambar 4.8 Kurva Survival Kaplan Meier Berdasarkan Jenis	
Pengobatan	.37
Gambar 4.9 Kurva Survival Kaplan Meier Berdasarkan Penyak	
Penyerta	
Gambar 4.10 Kurva Survival Kaplan Meier Berdasarkan	
Komplikasi	.40
Gambar 4.11 Kurva Survival Kaplan Meier Berdasarkan Statu	
Anemia	
Gambar 4.12 Grafik $\ln(-ln\hat{S}(t))$ Faktor Stadium	.43
Gambar 4.13 Grafik $\ln(-ln\hat{S}(t))$ Faktor Jenis Pengobatan	
Gambar 4.14 Grafik $\ln(-ln\hat{S}(t))$ Faktor Penyakit Penyerta	
Gambar 4.14 Grafik $\ln(-ln\hat{S}(t))$ Faktor Komplikasi	
Gambar 4.15 Grafik $\ln(-ln\hat{S}(t))$ Faktor Kompikasi	
Gambar 4.10 Orank III – molt) Faktor Status Anemia	.4/

BAB I PENDAHULUAN

1.1 Latar Belakang

Analisis survival merupkan salah satu analisis statistika yang digunakan untuk menganalisis data dimana data yang digunakan berupa data waktu sampai terjadinya suatu event tertentu. Salah satu tujuan analisis survival adalah untuk mengetahui hubungan antara waktu kejadian (time to failure) dan variabel independen. Analisis ini dapat dilakukan dengan metode regresi. Dalam analisis survival ada tiga macam regresi, yakni regresi parametrik, nonparametrik, dan semiparametrik. Pada data survival time pasien kanker serviks sebelumnya telah dilakukan pengujian distribusi tetapi tidak memenuhi asumsi distribusi apapun. Oleh karena itu metode yang sesuai untuk menganalisis data tersebut adalah regresi semiparametrik. Dalam regresi semiparametrik tidak memerlukan asumsi distribusi waktu survival namun hasil estimasi parameternya mendekati metode regresi parametrik (Kleinbaum & Klein, 2012). Salah satu regresi semiparametrik yang sering digunakan dalam analisis survival adalah regresi Cox proportional hazard. Model Cox proportional hazard memiliki asumsi proportional hazard yaitu asumsi dimana nilai hazard rate suatu individu sebanding dengan hazard rate individu lain dimana perbandingannya konstan sepanjang waktu.

Pada kenyataannya, sering kali terdapat kasus dimana tidak semua variabel independen memenuhi asumsi *proportional hazard*. Oleh karena itu perlu adanya metode lain untuk menganalisis kasus tersebut. Salah satu metode yang dapat digunakan untuk menganalisis kasus yang tidak memenuhi asumsi *proportional hazard* adalah model regresi Cox stratifikasi. Model regresi Cox stratifikasi ini adalah modifikasi dari model regresi Cox *proportional hazard* yang memberikan perhatian atau mengontrol variabel independen yang tidak memenuhi asumsi *proportional hazard* dengan menstratifikasi variabel yang tidak memenuhi asumsi tersebut. Dalam penelitian ini model regresi

Cox stratifikasi akan diaplikasikan pada kasus ketahanan hidup pasien kanker serviks.

Penyakit tidak menular salah satunya adalah kanker menjadi masalah kesehatan utama baik di dunia maupun di Indonesia. Kanker menjadi penyebab kematian nomor 2 di dunia sebesar 13% setelah penyakit kardiovaskular. Diperkirakan pada 2030 insidens kanker dapat mencapai 26 juta orang dan 17 juta di antaranya meninggal akibat kanker, terlebih untuk negara miskin dan berkembang kejadiannya akan lebih cepat. Di Indonesia, prevalensi penyakit kanker juga cukup tinggi. Prevalensi tumor/kanker di Indonesia adalah 1,4 per 1000 penduduk, atau sekitar 330.000 orang (Kemenkes, 2013). Kanker serviks merupakan salah satu kanker yang paling umum diderita oleh wanita. Setiap tahun lebih dari 270.000 wanita meninggal akibat kanker serviks (WHO, 2013). Kanker serviks menduduki urutan tertinggi di negara berkembang, dan urutan ke 10 di negara maju. Di Indonesia kanker serviks menduduki urutan kedua dari 10 kanker setelah kanker payudara. Jumlah wanita penderita baru kanker serviks berkisar 90-100 kasus per 100.000 penduduk dan setiap tahun terjadi 40 ribu kasus kanker serviks (Kemenkes, 2015).

Melihat begitu besarnya masalah kanker serviks, maka perlu adanya penelitian yang bertujuan untuk mengetahui faktorfaktor yang mempengaruhi ketahanan hidup penderita kanker serviks. Penelitian terkait faktor-faktor yang mempengaruhi ketahanan hidup kanker serviks telah dilakukan oleh beberapa peneliti diantaranya adalah (Sirait, Farid & Oemiati, 2003) yang menyimpulkan bahwa faktor yang mempengaruhi *survival* kanker serviks adalah stadium klinik dan kelengkapan pengobatan. Selain itu juga, Inayati (2015) menyimpulkan bahwa komplikasi merupakan faktor yang mempengaruhi keatahanan pasien kanker serviks di RSUD dr. Soetomo Surabaya. Sedangkan Afifah (2015) mendapatkan hasil penelitian bahwa variabel yang signifikan mempengaruhi ketahanan hidup kanker serviks adalah stadium 4, jenis pengobatan berupa kemoterapi sekaligus

transfusi PRC dan status komplikasi penderita kanker serviks. Sedangkan penelitian menggunakan model regresi Cox stratifikasi pernah dilakukan oleh Feriana (2011) untuk memodelkan ketahanan hidup pasien kanker paru-paru dan Inayati (2015) untuk memodelkan ketahanan hidup pasien kanker serviks.

Pada penelitian sebelumnya yang dilakukan oleh Inayati (2015) tentang ketahanan hidup penderita kanker serviks di RSUD dr. Soetomo Surabaya menggunakan model regresi Cox stratifikasi dengan satu variabel stratifikasi. Sedangkan pada penelitian kali terdapat dua variabel yang tidak memenuhi asumsi proportional hazard sehingga perlu menggunakan variabel stratifikasi lebih dari satu. Berdasarkan permasalahan tersebut maka pada penelitian kali ini digunakan metode regresi Cox dengan dua variabel stratikasi untuk memodelkan ketahanan hidup kasus kanker serviks di RSUD dr. Soetomo Surabaya sehingga nantinya diperoleh model terbaik.

1.2 Rumusan Masalah

Model regresi Cox stratifikasi telah dilakukan dalam penelitian sebelumnya tetapi dengan menggunkaan satu variabel stratifikasi. Berdasarkan hasil pengujian asumsi proportional hazard dengan taraf signifikansi 5% terdapat dua variabel yang proportional tidak memenuhi asumsi hazard sehingga penelitian permasalahan dalam ini adalah bagaimana mendapatkan model regresi Cox dengan menggunakan dua variabel stratifikasi untuk memodelkan ketahanan hidup pasien kanker serviks di RSUD dr. Soetomo Surabaya.

1.3 Batasan Masalah

Batasan masalah yang digunakan dalam penelitian ini adalah sebagai berikut

1. Data yang digunakan pada penelitian ini adalah data rekam medik pasien kanker serviks yang melakukan rawat inap di RSUD dr. Soetomo selama selang waktu satu tahun yaitu 1 Januari - 31 Desember 2014.

2. Tipe data tersensor yang digunakan dalam analisis adalah sensor kanan

1.4 Tujuan Penelitian

Berdasarkan rumusan masalah di atas, tujuan yang ingin dicapai dalam penelitian ini adalah sebagai berikut

- 1. Menguji perbedaan kurva *survival* pasien kanker serviks di RSUD dr. Soetomo berdasarkan faktor stadium, jenis pengobatan, penyakit penyerta, komplikasi dan status anemia dengan Uji *Log Rank*.
- 2. Mendapatkan model regresi Cox dengan dua variabel stratifikasi pada data *survival* pasien kanker serviks di RSUD dr. Soetomo Surabaya.
- 3. Mendapatkan model regresi Cox stratifikasi terbaik

1.5 Manfaat Penelitian

Manfaat yang diharapkan pada penelitian ini adalah sebagai berikut.

- 1. Manfaat untuk rumah sakit, dengan diketahuinya faktorfaktor yang mempengaruhi ketahanan hidup kanker serviks dapat dijadikan sebagai masukan yang positif bagi pihak rumah sakit dalam pengambilan tindakan secara medis dalam menangani pasien.
- Manfaat untuk Bidang Keilmuwan, dapat dijadikan pengetahuan mengenai penerapan model regresi Cox stratifikasi khusunya dalam bidang kesehatan sehingga dapat dijadikan referensi untuk penelitian selanjutnya di masa mendatang.

BAB II TINJAUAN PUSTAKA

2.1 Analisis Survival

Analisis survival adalah salah satu metode dalam ilmu statistika dimana variabel yang ingin dilihat adalah waktu hingga terjadinya suatu event. Dalam hal ini event yang dimaksud adalah kematian, terjangkit penyakit, kambuh dari suatu penyakit, kesembuhan dan kejadian lainnya yang bisa terjadi pada seseorang. Pada analisis survival diasumsikan hanya ada satu event yang menjadi fokusan meskipun sebenarnya bisa saja terjadi lebih dari satu event dalam penelitian yang sama (Kleinbaum & Klein, 2012). Waktu survival (survival time) adalah waktu yang diperoleh dari suatu pengamatan terhadap objek yang dicatat dari awal sampai terjadinya event (Collet, 1994). Ada tiga faktor yang harus diperhatikan dalam menentukan waktu survival, yakni:

- 1. waktu awal (time origin/starting point) suatu kejadian.
- 2. event dari keseluruhan kejadian harus jelas.
- 3. skala pengukuran sebagai bagian dari waktu harus jelas.

Waktu *survival* diperoleh dari suatu pengamatan terhadap objek yang dicatat waktu dari awal kejadian sampai terjadinya peristiwa tertentu, yaitu kegagalan dari setiap objek yang disebut *failure event*. Perbedaan antara analisis *survival* dengan analisis statistik lainnya adalah adanya data tersensor. Data dikatakan tersensor jika pengamatan waktu *survival* tidak diketahui secara pasti. Penyebab terjadinya data tersensor (*censored data*) menurut (Kleinbaum & Klein, 2012) antara lain

- 1. Study ends no events, yakni masa penelitian berakhir sementara objek yang diobservasi belum mencapai failure event.
- 2. Lost of follow up, yakni bila objek tidak mengikuti treatment yang diberikan sampai masa penelitian berakhir, misalnya pindah, atau menolak untuk berpartisipasi.

3. Withdraws from the study, yakni treatment dihentikan karena alasan tertentu, misalnya pengobatan yang diberikan memberikan efek yang buruk terhadap kesehatan pasien atau meninggal bukan disebabkan karena penyakit yang diteliti.

Data tersensor dalam analisis *survival* terbagi menjadi tiga kategori yaitu data tersensor kanan, data tersensor kiri dan data tersensor interval (Collet,1994). Berikut adalah penjelasan untuk masing-masing kategori data tersensor.

- 1. Sensor kanan (*Right censored*) yaitu apabila observasi dari awal penelitian belum mengalami *failure event* sampai akhir penelitian.
- 2. Sensor kiri (*Left censored*) yaitu apabila *failure event* dari pasien terjadi sebelum penelitian dimulai
- 3. Sensor interval (*Interval censored*) apabila *failure event* dari pasien terjadi pada interval penelitian akan tetapi tidak teramati.

Dalam analisis *survival*, ada 3 tujuan yang ingin diraih (Kleinbaum & Klein, 2012), antara lain.

- 1. Mengestimasi dan menginterpretasikan fungsi *survival* dan fungsi hazard.
- 2. Membandingkan fungsi survival dan fungsi hazard.
- 3. Menentukan hubungan antara variabel prediktor dengan waktu *survival*

2.2 Fungsi Survival dan Fungsi Hazard

Dalam menggambarkan keadaan data *survival* digunakan kuantitas dasar yang sering digunakan yaitu fungsi *survival* yang dilambangkan dengan S(t) dan fungsi hazard dilambangkan dengan h(t).

2.2.1 Fungsi Survival

Fungsi *survival S(t)*, didefinisikan sebagai probabilitas suatu obyek bertahan setelah waktu ke-t (Collet, 1994). Jika *T* menotasikan waktu *survival* dan merupakan variabel random

kontinyu yang memiliki fungsi distribusi peluang f(t), maka fungsi kepadatan peluang dapat dinyatakan sebagai berikut

$$f(t) = \lim_{\Delta t \to 0} \frac{P(t \le T < t + \Delta t)}{\Delta t}$$
 (2.1)

Sedangkan fungsi distribusi kumulatif dapat dirumuskan sebagai berikut

$$F(t) = P(T \le t) = \int_{0}^{t} f(u)du$$
 (2.2)

Berdasarkan persamaan diatas, maka fungsi *survival* S(t) dinyatakan dengan persamaan sebagai berikut

$$S(t) = P(T > t) = 1 - P(T \le t)$$

$$S(t) = P(T > t) = 1 - F(t)$$
(2.3)

2.2.2 Fungsi Hazard

Fungsi *hazard* h(t) merupakan laju *failure* atau kegagalan sesaat suatu individu untuk mengalami *event* dalam interval waktu dari t sampai $t + \Delta t$ dengan syarat suatu individu telah bertahan sampai waktu ke-t. Berikut merupakan persamaan dari fungsi hazard.

$$h(t) = \lim_{\Delta t \to 0} \frac{P(t \le T < t + \Delta t | T \ge t)}{\Delta t}$$
Dengan menggunakan teori probabilitas bersyarat

Dengan menggunakan teori probabilitas bersyarat $P(A|B) = \frac{P(A \cap B)}{P(B)}$ dengan A sebagai fungsi *hazard* dan B sebagai fungsi *survival* maka diperoleh persamaan sebagai berikut

with make dispersional persamating schagar of that
$$h(t) = \lim_{\Delta t \to 0} \left\{ \frac{P(t \le T < t + \Delta t | T \ge t)}{\Delta t} \right\}$$

$$= \lim_{\Delta t \to 0} \left\{ \frac{P(t \le T < (t + \Delta t) \cap (T \ge t))}{\Delta t P(T \ge t)} \right\}$$

$$= \lim_{\Delta t \to 0} \left\{ \frac{P(t \le T < (t + \Delta t))}{\Delta t S(t)} \right\}$$

$$= \frac{1}{S(t)} \lim_{\Delta t \to 0} \left\{ \frac{P(t \le T < (t + \Delta t))}{\Delta t} \right\}$$
$$= \frac{f(t)}{S(t)}$$

dimana F(t) = 1 - S(t) maka $f(t) = \frac{d(F(t))}{dt} = \frac{d(1-S(t))}{dt}$ sehingga nilai h(t) menjadi

$$h(t) = \frac{\left(\frac{d(1-S(t))}{dt}\right)}{S(t)}$$
$$= \frac{\left(\frac{-d(S(t))}{dt}\right)}{S(t)}$$
$$-h(t)dt = \frac{1}{S(t)}d(S(t))$$

kemudian fungsi diatas diintegralkan maka diperoleh

$$-\int_{0}^{t} h(u)dt = \int_{0}^{t} \frac{1}{S(u)} d\left(S(u)\right)$$
$$= \ln S(u) \Big|_{0}^{t}$$
$$= \ln S(t) - \ln S(0) = \ln S(t)$$

Dari persamaan diatas dapat diketahui bahwa hubungan antara fungsi hazard dan fungsi *survival* sebagai berikut

$$H(t) = -\ln S(t) \tag{2.5}$$

2.3 Kurva Survival Kaplan Meier dan Uji Log Rank

Kurva *survival Kaplan-Meier* adalah suatu kurva yang menggambarkan hubungan antara estimasi fungsi *survival* pada waktu t dengan waktu *survival*. Jika probabilitas dari *Kaplan-Meier* dinotasikan dengan $\hat{S}(t_{(i)})$ maka persamaan umum *Kaplan-Meier* adalah sebagai berikut

$$\hat{S}(t_{(i)}) = \hat{S}(t_{(i-1)}) \times \hat{P}r(T > t_{(i)} | T \ge t_{(i)})$$
(2.6)

Setelah mendapatkan kurva *survival Kaplan-Meier* maka dilanjutkan dengan uji *Log Rank*. Uji Log Rank merupakan uji yang digunakan untuk membandingkan kurva *survival Kaplan-Meier* dalam grup yang berbeda (Kleinbaum & Klein, 2012). Berikut merupakan uji *Log Rank* untuk dua grup.

Hipotesis:

H₀: tidak ada perbedaan antar kurva survival

H₁: ada perbedaan kurva *survival*

Statistik uji

$$X^{2} = \frac{(O_{f} - E_{f})^{2}}{\text{Var}(O_{f} - E_{f})}$$
 (2.7)

dimana

$$O_f - E_f = \sum_{i=1}^n (m_{fi} - e_{fi})$$
 (2.8)

$$e_{fi} = \left(\frac{n_{fi}}{n_{1i} + n_{2i}}\right) (m_{1i} + m_{2i}) \tag{2.9}$$

$$Var\left(O_{f} - E_{f}\right)$$

$$= \sum_{i=1}^{n} \left(\frac{n_{1i}n_{2i(m_{1i} + m_{2i})(n_{1i} + n_{2i} - m_{1i} - m_{2i})}}{(n_{1i} + n_{2i})^{2}(n_{1i} + n_{2i} - 1)}\right)$$
(2.10)

Tolak H_0 jika $\chi^2 > \chi^2_{\alpha,1}$

Sedangkan untuk uji *Log Rank* lebih dari dua grup, maka dinyatakan dengan hipotesis sebagai berikut.

H₀: tidak ada perbedaan antar kurva survival

H₁: paling sedikit ada satu perbedaan kurva survival

Statistik uji

$$X^2 \approx \sum_{f=1}^{F} \frac{\left(O_f - E_f\right)^2}{E_f}$$
 (2.11)

dimana

$$O_f - E_f = \sum_{i=1}^{n} (m_{fi} - e_{fi})$$
 (2.12)

$$e_{fi} = \left(\frac{n_{fi}}{\sum_{f=1}^{F} \sum_{i=1}^{n} n_{fi}}\right) \left(\sum_{f=1}^{F} \sum_{i=1}^{n} m_{fi}\right)$$
(2.13)

Keterangan

 O_f : nilai observasi individu grup ke-f : nilai ekspektasi individu grup ke-f

 m_{fi} : banyaknya individu yang mengalami event dalam grup

ke-f pada waktu $t_{(i)}$

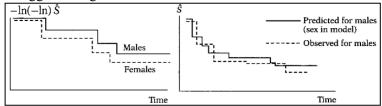
 n_{fi} : banyaknya individu yang beresiko gagal seketika pada

kelompok ke-f sebelum waktu $t_{(i)}$

 e_{fi} : nilai ekspektasi dalam grup ke-f pada waktu $t_{(i)}$

n : banyaknya pengamatan

F : banyaknya grup


Tolak H₀ jika $\chi^2 > \chi^2_{\alpha,(F-1)}$

2.4 Asumsi Proportional hazard

Dalam model Cox *proportional hazard* terdapat asumsi yang harus dipenuhi yaitu asumsi *proportional hazard*. Asumsi *proportional hazard* dapat diartikan sebagai suatu keadaan dimana *hazard ratio* bersifat konstan terhadap waktu. Menurut Kleinbaum & Klein (2012) asumsi *proportional hazard* dapat diuji dengan pendekatan sebagai berikut.

1. Grafik

Grafik dapat digunakan untuk memeriksa apakah variabel independen memenuhi asumsi *proportional hazard* atau tidak secara deskriptif. Ada dua jenis grafik, yang digunakan dalam pemeriksaan asumsi *proportional hazard* yaitu grafik $\ln(-\ln S(t))$ terhadap waktu *survival* dan grafik \hat{S} (estimasi fungsi *survival*) terhadap waktu survival. Berikut merupakan ilustrasi untuk pemeriksaan asumsi *proportional hazard* dengan menggunakan grafik.

Gambar 2.1 Ilustrasi Grafik $\ln(-\ln S(t))$ dan \hat{S} terhadap Waktu Survival

Suatu variabel independen dikatakan memenuhi asumsi proportional hazard jika plot $\ln(-\ln S(t))$ terhadap waktu survival antara masing-masing kategori variabel independen sejajar dan atau grafik \hat{S} (estimasi fungsi survival) terhadap waktu survival antara kurva observasi dengan prediksi saling berhimpit (Kleinbaum & Klein, 2012).

2. Uji Goodness of Fit

Pengujian asumsi *proportional hazard* dapat dilakukan melalui pengujian secara statistik yaitu dengan metode *Gooddness of Fit* menggunakan residual *Schoenfeld*. Asumsi *proprotional hazard* terpenuhi jika residual *Schoenfeld* tidak tergantung pada waktu survival. Adapun langkah pengujian adalah sebagai berikut (Kleinbaum & Klein, 2012).

a. Mendapatkan residual *schoenfeld* dari model Cox *proprotional hazard* untuk setiap variabel independen. Residual *schoenfeld* ada pada setiap variabel independen pada model dan objek yang mengalami *event*.

- b. Membuat variabel *rank survival time* yaitu waktu *survival* yang diurutkan mulai dari individu yang mengalami *event* pertama kali.
- c. Menguji kolerasi antara variabel residual *Schoenfeld* dengan *rank survival time*.

Residul *schoenfeld* dari variabel independen ke-c dari individu yang mengalami *event* pada waktu $t_{(i)}$ dapat dinyatakan dalam persamaan sebagai berikut

$$PR_{ci} = x_{ci} - E\langle x_{ci} | R(t_{(i)}) \rangle$$
 (2.14)

dimana

$$E\langle x_{ci}|R(t_{(i)})\rangle = \frac{\sum_{l\in R(t_{(i)})} x_{ci} \exp(x'\boldsymbol{\beta})}{\sum_{l\in R(t_{(i)})} \exp(x'\boldsymbol{\beta})}$$
(2.15)

Keterangan

$$\mathbf{x}' = (x_1 \ x_2 \ ... x_c)$$

$$\boldsymbol{\beta} = (\beta_1 \, \beta_2 \, \dots \beta_c)'$$

 PR_{ci} : residual *schoenfeld* untuk variabel ke-c indivi-

du yang mengalami event pada waktu $t_{(i)}$.

 x_{ci} : nilai dari variabel ke-c dari individu

yang mengalami event pada waktu $t_{(i)}$.

 $E(x_{ci}|R(t_{(i)}))$: conditional expectation x_{ci} jika diketahui $R_{t(i)}$ RT_i : rank waktu survival individu ke-i

Pengujian korelasi antara residual *schoenfeld* dengan *rank* waktu *survival* untuk setiap variabel menggunakan persamaan sebagai berikut

$$r = \frac{\sum_{i=1}^{n} (PR_{ci} - \overline{PR}_{ci})(RT_i - \overline{RT}_i)}{\sqrt{\sum_{i=1}^{n} (PR_{ci} - \overline{PR}_{ci})^2} \sqrt{\sum_{i=1}^{n} (RT_i - \overline{RT}_i)^2}}$$
(2.16)

Hipotesis

 $H_0: \rho = 0$

 $H_1: \rho \neq 0$

Statistik Uji

$$t_{hitung} = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}} \tag{2.17}$$

Tolak H_0 jika $\left|t_{hitung}\right| > t_{\infty/2,n-2}$ atau *p-value* kurang dari α .

2.5 Model Regresi Cox Stratifikasi

Salah satu model pada metode semiparametrik yang dapat digunakan untuk menganalisis data survival dimana variabel independen tidak memenuhi asumsi proportional hazard adalah model regresi Cox stratifikasi. Model regresi Cox stratifikasi adalah model yang didapatkan dengan memodifikasi model Cox proportional hazard. Modifikasi dilakukan dengan mengontrol variabel independen yang tidak memenuhi asumsi proportional hazard. Variabel independen yang tidak memenuhi asumsi tersebut akan menjadi variabel stratifikasi. Misalkan terdapat k variabel tidak memenuhi asumsi proportional hazard dinotasikan dengan $Z_1, Z_2, ..., Z_k$ dan p variabel yang memenuhi asumsi proportional hazard dinotasikan dengan $X_1, X_2, ..., X_p$, maka untuk menunjukkan model Cox stratifikasi perlu mendefinisikan variabel baru yang dinotasikan dengana Z^* . Jadi Z^* merupakan variabel baru yang biasa disebut variabel stratifikasi yang didapatkan dengan mengkombinasikan kategori dari variabel $Z_1, Z_2, ..., Z_k$ sehingga Z^* mempunyai k^* kategori. Dimana k^* merupakan jumlah kombinasi hasil dari pengkategorian variabel $Z_1, Z_2, ..., Z_k$. Cara mendefinisikan variabel variabel baru Z^* mengikuti langkah-langkah sebagai berikut:

- a. Kategorisasi masing-masing variabel independen $Z_1, Z_2, ..., Z_k$
- b. Kombinasikan seluruh kategori tersebut
- c. Hasil kombinasi tersebut akan digunakan sebagai nilai-nilai dari Z^*

Dalam pembuatan model regresi Cox stratifikasi, variabel Z^* tidak dimasukkan ke dalam model tetapi vaiabel-variabel X

yang memenuhi asumsi *proportional hazard* yang dimasukkan dalam model. Ada dua model Cox stratifikasi sebagai berikut

1. Model Regresi Cox Stratikasi Tanpa Interaksi

Model regresi Cox stratifikasi tanpa interaksi menunjukkan bahwa tidak ada interaksi antara variabel stratifikasi (Z^*) dengan variabel independen yang masuk ke dalam model sehingga dapat dinyatakan pada persamaan berikut.

$$h_g(t, X) = h_{0g}(t) \exp(\beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p)$$
 (2.18)

 $h_{oq}(t)$ = fungsi baseline hazard

g = 1,2,3,....k*

k* = jumlah kategori (stratum) dalam variabel stratifikasi

2. Model Regresi Cox Stratikasi Dengan Interaksi

Model regresi Cox stratifikasi dengan interaksi menunjukkan bahwa terdapat interaksi antara variabel stratifikasi (Z^*) dengan variabel independen dalam model ditunjukkan sebagai berikut.

$$h_g(t, X) = h_{0g}(t) \exp(\beta_{1g} X_1 + \beta_{2g} X_2 + \dots + \beta_{pg} X_p)$$
 (2.19)

Salah satu sifat dari model Cox adalah fungsi baseline hazard dari model tidak dispesifikasikan tetapi masih memungkinkan untuk melakukan estimasi parameter β (Kleinbaum & Klein, 2012). Dari model diatas dapat dihitung nilai hazard ratio tanpa mengestimasi fungsi baseline hazard.

2.5.1 Pengujian Interaksi

Uji *likelihood ratio* digunakan untuk menguji ada tidaknya interaksi pada model Cox stratifikasi. Nilai *likelihood ratio* diperoleh dari membandingkan statistik log *likelihood* untuk model tanpa interaksi dan model dengan interaksi.

Hipotesis

H₀: Tidak terdapat interaksi antara variabel stratifikasi dengan variabel independen yang masuk model

H₁: Terdapat interaksi antara variabel stratifikasi dengan variabel independen yang masuk model

Statistik uji $LR = -2 \ln L_R - (-2lnL_F)$ (2.20) dimana

 L_R = statistik log *likelihood* untuk model tanpa interaksi

 L_F = statistik log *likelihood* untuk model interaksi

Tolak H₀ jika $LR > \chi^2_{p(k^*-1)}$ (Kleinbaum & Klein, 2012)

2.5.2 Estimasi Parameter Model Regresi Cox Stratifikasi

Dalam memperoleh model terbaik maka penaksir koefisien variabel independen $X_1, X_2, ..., X_p$ dalam komponen linear model harus diketahui yaitu $\beta_1, \beta_2, ..., \beta_p$. Estimasi parameter pada model regresi Cox stratifikasi ini menggunakan metode *Maximum Partial Likelihood Estimation (MPLE)*. Menurut Kleinbaum & Klein (2012), fungsi *partial likelihood* untuk model Cox stratifikasi adalah hasil perkalian fungsi *partial likelihood* dari setiap kategori. Persamaan fungsi *partial likelihood* untuk setiap strata yang digunakan adalah sebagai berikut.

$$L(\boldsymbol{\beta}) = \prod_{g=1}^{k*} \left[\prod_{j=1}^{r_S} \frac{\exp(\mathbf{x}'_{gj}\boldsymbol{\beta})}{\sum_{j \in R(tgj)} \exp(\mathbf{x}'_{gj}\boldsymbol{\beta})} \right]$$
(2.21)

dengan

 $\mathbf{x'}_{gj} = (x_{g1} \ x_{g2} \ ... x_{gp})$ $\mathbf{\beta} = (\beta_1 \ \beta_2 \ ... \beta_p)'$

 $R(t_{gj})$ = himpunan individu dalam stratum g yang bertahan hidup pada waktu (t_{gj})

 t_{qj} = waktu observasi ke-j dari stratum ke-g

 r_s = banyaknya individu yang mengalami *failure event*

Selanjutnya diperoleh bentuk fungsi *ln partial likelihood* stratifikasi dari persamann (2.23) sebagai berikut.

$$\ln L(\boldsymbol{\beta}) = \ln \left[\prod_{g=1}^{k*} \prod_{j=1}^{r_{S}} \frac{\exp(\mathbf{x}'_{gj}\boldsymbol{\beta})}{\sum_{j \in R(t_{gj})} \exp(\mathbf{x}'_{gj}\boldsymbol{\beta})} \right]$$

$$\ln L(\boldsymbol{\beta}) = \sum_{g=1}^{k*} \left| \ln \left[\prod_{j=1}^{r_{S}} \frac{\exp(\mathbf{x}'_{gj}\boldsymbol{\beta})}{\sum_{j \in R(t_{gj})} \exp(\mathbf{x}'_{gj}\boldsymbol{\beta})} \right]$$
(2.22)

$$\ln L(\boldsymbol{\beta}) = \sum_{g=1}^{k*} \left[\sum_{j=1}^{r_S} (\mathbf{x}'_{gj}\boldsymbol{\beta}) - \sum_{j=1}^{r_S} \ln \left[\sum_{j \in R(t_{gj})} \exp(\mathbf{x}'_{gj}\boldsymbol{\beta}) \right] \right]$$

$$\ln L(\boldsymbol{\beta}) = \sum_{g=1}^{k*} \left| \sum_{j=1}^{r_S} \sum_{y=1}^{p} (\beta_y x_{gjy}) - \sum_{j=1}^{r_S} \ln \left[\sum_{j \in R(t_{gj})} \exp \left(\sum_{y=1}^{p} \beta_y x_{gjy} \right) \right] \right|$$

$$\ln L(\boldsymbol{\beta}) = \sum_{g=1}^{k*} \left| \sum_{j=1}^{r_{S}} \sum_{y=1}^{p} (\beta_{y} x_{gjy}) - \ln \left[\sum_{j \in R(t_{gj})} \exp \left(\sum_{y=1}^{p} \beta_{y} x_{gjy} \right) \right] \right|$$
(2.23)

Selanjutnya persamaan di atas dimaksimumkan kemudian diselesaikan secara numerik dengan menggunakan metode *newton rhapson* untuk mendapatkan pendugaan parameter model regresi Cox stratifikasi.

2.5.3 Pengujian Signifikansi Parameter

Pengujian signifikansi parameter digunakan untuk mengetahui apakah variabel independen yang terdapat dalam model signifikan atau memiliki kontribusi nyata dalam membentuk model. Pengujian signifikansi parameter terdiri atas uji serentak dan uji parsial sebagai berikut

1. Uji Serentak

Uji signifikansi parameter secara serentak memiliki hipotesis sebagai berikut.

 $H_0 \qquad : \beta_1 = \beta_2 = \dots = \beta_y = 0$

H₁ : minimal terdapat satu $\beta_y \neq 0$, y = 1,2,...p

Statistik uji

$$G^2 = -2\log\left(\frac{L(\boldsymbol{\beta})}{L(0)}\right) \tag{2.24}$$

Dengan

$$L(0) = -\sum_{i=1}^{n} \ln(m_i)$$
 (2.25)

Keterangan

 $L(\beta)$: nilai *likelihood* untuk model dengan variabel prediktor L(0): nilai *likelihood* untuk model tanpa variabel prediktor m_i : jumlah individu yang beresiko gagal pada waktu $t_{(i)}$

n: jumlah pengamatan Tolak H_0 jika $G^2_{hitung} > \chi^2_{\alpha,p}$

2. Uji Parsial

Secara parsial, hipotestis uji signifikansi parameter adalah Hipotesis

 H_0 : $\beta_y = 0$

 H_1 : $\beta_y \neq 0$ dengan y = 1,2,...p

Statistik uji yang digunakan adalah

$$W^2 = \left[\frac{\hat{\beta}_y}{SE(\hat{\beta}_y)}\right]^2 \tag{2.26}$$

Tolak H_0 jika $W^2 > \chi^2_{\alpha,1}$

2.5.4 Hazard Ratio

Hazard Ratio adalah suatu ukuran yang digunakan untuk mengetahui tingkat resiko dari perbandingan antara individu dengan kondisi variabel independen pada kategori sukses dengan kategori gagal (Hosmer, Lameshow, & May, 2008).

Nilai *hazard ratio* yaitu *hazard* untuk individu kategori satu dibagi dengan *hazard* untuk individu yang berbeda seperti dalam persamaan berikut.

$$\widehat{HR} = \frac{\widehat{h}(t, X^*)}{\widehat{h}(t, X)} = \frac{\widehat{h}_0(t)e^{\sum_{i=1}^p \widehat{\beta_y} X_y^*}}{\widehat{h}_0(t)e^{\sum_{i=1}^p \widehat{\beta_y} X_y}} = exp\left[\sum_{y=1}^p \widehat{\beta_y} (X_y^* - X_y)\right]$$
(2.27)

dimana

 $X^* = (X_1^*, X_2^* \dots, X_p^*)$ yaitu salah satu kategori variabel independen contoh : untuk variabel status anemia bernilai 1 jika pasien menderita anemia

 $X = (X_1, X_2, ..., X_p)$ yaitu kategori variabel independen selain yang digunakan pada X^*

contoh : untuk variabel status anemia bernilai 0 jika pasien tidak menderita anemia

Menurut Kleinbaum & Klein (2012), dalam model Cox stratifikasi nilai *hazard ratio* adalah sama pada setiap kategori variabel stratifikasi.

2.6 Kriteria Model Terbaik

Dalam membandingkan kebaikan dari model yang terbentuk dapat menggunakan kriteia *Akaike Information Criterion (AIC)*. Berikut merupakan persamaan untuk mendapatkan nilai AIC.

$$AIC = -2\log L + 2p \tag{2.29}$$

Dimana *L* adalah nilai *likelihood* sedangkan p adalah banyaknya parameter. Model terbaik adalah model dengan nilai AIC terkecil.

2.7 Kanker Serviks

Kanker serviks adalah tumbuhnya sel-sel abnormal pada jaringan leher rahim (serviks) dan merupakan kanker primer yang berasal dari serviks. Serviks adalah bagian ujung depan rahim yang menjulur ke vagina. Beberapa faktor yang dapat meningkatkan resiko terjadinya kanker serviks menurut Rasjidi (2009) antara lain:

a. Hubungan Seksual

Wanita dengan partner seksual banyak dan yang memulai hubungan seksual pada usia muda akan meningkatkan risiko terkena kanker serviks. Karena sel kolumnar serviks lebih peka terhadap metaplasia selama usia dewasa maka wanita yang berhubungan seksual sebelum usia 18 tahun akan berisiko terkena kanker serviks.

b. Karakteristik Partner

Studi kasus kontrol menunjukkan bahwa pasien dengan kanker serviks lebih sering menjalani seks aktif dengan partner yang melakukan seks berulang kali. Selain itu, partner dari pria yang istrinya meninggal terkena kanker serviks juga akan meningkatkan risiko kanker serviks.

c. Riwayat Kehamilan

Riwayat kehamilan seperti hamil di usia muda dan jumlah kehamilan atau manajemen persalinan yang tidak tepat dapat meningkatkan risiko kanker serviks

d. Dietilstilbesterol (DES)

Dalam hal ini terdapat hubungan antara *clear cell adenocarcinoma* serviks dan paparan DES *in utero* telah dibuktikan dapat meningkatkan resiko kanker serviks

e. Agen Infeksius

Mutagen pada umumnya berasal dari agen-agen yang ditularkan melalui hubungan seksual seperti *Human*

Papilloma Virus (HPV) dan Herpes Simpleks Virus Tipe 2 (HSV 2).

Merokok f.

Bahan karsinogenik spesifik dari tembakau dapat dijumpai dalam lendir dari mulut rahim pada wanita perokok. Bahan karsinogenik ini dapat merusak DNA sel epitel skuamosa dan bersama infeksi HPV dapat mencetuskan transformasi keganasan.

Menurut Kemenkes (2015) stadium kanker serviks didasarkan atas pemeriksaan klinik oleh karena itu pemeriksaan harus cermat kalau perlu dilakukan dalam narkose. Stadium klinik tidak berubah bila kemudian ada penemuan baru. Jika ada keraguan dalam penentuan maka dipilih stadium yang lebih rendah. Stadium klinis karsinoma serviks ditunjukkan Tabel 2.1

Tabel 2.1 Stadium Klinis Kanker Serviks

Stadium	Karakteristik
Karsinoma	in situ (Pre Invasif)
0	Karsinoma serviks terbatas di uterus (ekstensi ke korpus
	uterus dapat diabaikan)
Karsinoma	Invasif
IA	Karsinoma mikroinvasif dini, didiagnosis hanya dengan
	mikroskop. Semua lesi yang terlihat secara makroskopik,
	meskipun invasi hanya superfisial
IA1	Invasi stroma tidak lebih dari 3,0 mm kedalamannya dan
	7,0 mm dan tidak lebih dari 5,0 mm atau kurang ukuran
	secara horizontal
IA2	Invasi stroma lebih dari 3,0 mm dantidak lebih dari
	5,0mm dengan penyebaran 7,0 mm atau kurang
IB	Lesi terlihat secara klinik dan terbatas di serviks atau
	secara mikroskopik lesi lebih besar dari IA2
IB1	Lesi terlihat secara klinik berukuran dengan diameter
	terbesar 4,0 cm atau kurang
IB2	Lesi terlihat secara klinik berukuran dengan diameter
	terbesar lebih dari 4,0 cm
II	Invasi tumor keluar dari uterus tetapi tidak sampai
	kedinding panggul atau mencapai 1/3 bawah vagina

Tabel 2.1 Stadium Klinis Kanker Serviks (lanjutan)

Stadium	Karakteristik
IIA	Tanpa invasi ke parametrium
IIB	Invasi ke parametrium
III	Tumor meluas ke dinding panggul/ atau mencapai 1/3 bawahvagina dan/atau menimbulkan hidronefrosis atau afungsi ginjal
IIIA	Tumor mengenai 1/3 bawah vagina tetapi tidak mencapai dinding panggul
IIIB	Tumor meluas sampai ke dinding panggul dan/atau menimbulkan hidronefrosis atau fungsi ginjal
IVA	Tumor menginvasi mukosa kandung kemih atau rektum dan/atau meluas keluar panggul kecil (true pelvis)
IVB	Metastasis jauh

Penelitian sebelumnya terkait kanker serviks pernah dilakukan oleh inayati (2015) menyimpulkan bahwa komplikasi penyakit adalah faktor yang signifikan mempengaruhi ketahanan hidup penderita kanker serviks di RSUD dr. Soetomo Surabaya dan Afifah (2016) menyimpulkan bahwa variabel yang signifikan mempengaruhi ketahanan hidup kanker serviks adalah stadium 4, jenis pengobatan berupa kemoterapi sekaligus transfusi PRC dan status komplikasi penderita kanker serviks.

(Halaman ini sengaja dikosongkan)

BAB III METODOLOGI PENELITIAN

3.1 Sumber Data

Data yang digunakan dalam penelitian ini merupakan data sekunder yaitu data rekam medis pasien kanker serviks yang menjalani rawat inap di RSUD dr. Soetomo Surabaya tahun 2014. Data ini diperoleh dari penelitian sebelumnya yang dilakukan oleh Purnami, S.W (2015) dan Afifah, A.N (2016). Pada penelitian ini unit observasi yang digunakan adalah pasien kanker serviks yang rawat inap di RSUD dr. Soetomo Surabaya dengan *start point* 1 Januari 2014 dan *end point* pada 31 Desember 2014. Unit observasi penelitian sebanyak 817 pasien kanker serviks.

3.2 Variabel Penelitian

Variabel yang digunakan dalam penelitian ini terdiri dari variabel dependen dan variabel independen. Berikut merupakan uraian dari variabel-variabel yang digunakan dalam penelitian.

1. Variabel Dependen

Variabel dependen yang digunakan dalam penelitian ini terdiri dari waktu *survival* (T) dan status pasien (d). Waktu *survival* (T) adalah waktu selama pasien penderita kanker serviks menjalani perawatan di RSUD dr. Soetomo Surabaya hingga pasien dinyatakan meninggal, berhenti atau pindah pengobatan, bertahan atau hidup dalam satuan hari sedangkan status pasien (d) menunjukan terjadi atau tidaknya *failure events* pada saat penelitian berlangsung. Data waktu *survival* tersensor kanan adalah kondisi saat pasien tidak dinyatakan meninggal hingga penelitian berakhir atau selama periode penelitian pasien berhenti atau pindah pengobatan atau pasien kanker serviks meninggal dikarenakan penyebab lain selain kanker serviks.

Variabel dependen yang digunakan pada penelitian ini dapat diringkas pada tabel 3.1 sebagai berikut

Tabel 3.1 Variabel Dependen

Variabel	Deskripsi	Skala
Waktu	Waktu pasien kanker serviks menjalani	Rasio
Survival (T)	perawatan hingga dinyatakan meninggal	
	atau berhenti / pindah saat penelitian	
	berlangsung	
Status	1 : Pasien kanker serviks	Nominal
Penderita (d)	meninggal (tida tersensor)	
	0 : Pasien kanker serviks tidak	
	meninggal, atau pindah pe-	
	ngobatan atau meninggal	
	karena penyebab lain (tersensor)	

2. Variabel Independen

Variabel independen yang digunakan dalam penelitian merupakan faktor-faktor yang diduga mempengaruhi ketahanan hidup pasien kanker serviks sebagai berikut.

Tabel 3.2 Variabel Independen

Variabel	Deskripsi	Skala
Usia (X ₁)	Usia pasien	Rasio
Stadium (X ₂)	0 = Stadium 0	Ordinal
	1 = Stadium I (IA dan IB)	
	2 = Stadium II (IIA dan IIB)	
	3 = Stadium III (IIIA dan IIIB)	
	4 = Stadium IV (IVA dan IVB)	
Jenis Pengobatan	1 = Kemoterapi	Nominal
(X_3)	2 = Transfusi PRC	
	3 = Operasi	
	4 = Kemoterapi + transfusi PRC	
Penyakit penyerta	0 = Tidak (Sebagai penyakit	Nominal
(X_4)	utama)	
	1 = Ya (sebagai penyakit	
	penyerta)	
Komplikasi (X ₅)	0 = Tidak ada komplikasi	Nominal
	1 = Ada komplikasi	
Status Anemia (X ₆)	0 = Tidak menderita anemia	Nominal
	1 = Menderita anemia	

Struktur data yang digunakan dalam penelitian kali ini adalah sebagai berikut

Tabel 3	3.3	Struktur	Data	Penelitian
Tabel.	,	SHUKIUI	Data	1 Chemian

Pasien	T	d	<i>X</i> ₁	X_2	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	<i>X</i> ₆
1	T_1	d_1	X_{11}	X_{12}	<i>X</i> ₁₃	X_{14}	X_{15}	X ₁₆
2	T_2	d_2	X_{21}	X_{22}	X_{23}	X_{24}		
3	T_3	d_3	X_{31}	X_{32}	X_{33}	X_{34}	X_{35}	
:	:	÷	:	:	÷	÷	÷	÷
i	T_i	d_i	X_{i1}	X_{i2}	X_{i3}	X_{i4}	X_{i5}	X_{i6}
:	÷	÷	:	:	÷	÷	÷	÷
n	T_n	d_n	X_{n1}	X_{n2}	X_{n3}	X_{n4}	X_{n5}	X_{n6}

Keterangan:

i = 1, 2, 3, ..., n

T_i = waktu survival untuk pasien ke-i

d_i = status pasien ke-i

X_{i1} = usia pasien ke-i

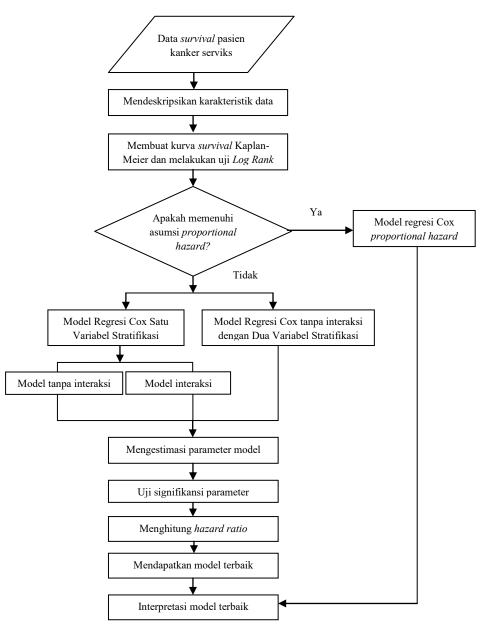
 X_{i2} = stadium pasien ke-i

X_{i3} = jenis pengobatan pasien ke-i

X_{i4} = penyakit peserta pasien ke-i

X_{i5} = komplikasi pada pasien ke-i

X_{i6} = status anemia pada pasien ke-i


3.3 Tahapan Analisis Data

Tahapan analisis yang digunakan dalam penelitian ini adalah sebagai berikut.

- 1. Mendeskripsikan karakteristik waktu *survival* pasien kanker serviks beserta faktor-faktor yang diduga berpengaruh terhadap ketahanan hidup pasien kanker meliputi usia,stadium, jenis pengobatan, penyakit penyerta, komplikasi dan status anemia
- 2. Membuat kurva *survival* Kaplan-Meier dari faktor-faktor yang diduga berpengaruh terhadap ketahanan hidup pasien kanker serviks.
- 3. Melakukan uji *log rank* untuk mengetahui ada tidaknya perbedaan kurva *survival* pasien kanker serviks dari

- beberapa kategori pada variabel stadium, jenis pengobatan, penyakit penyerta, komplikasi dan status anemia.
- 4. Memeriksa asumsi *proportional hazard* untuk menentukan variabel independen yang akan menjadi variabel stratifikasi (Z*). Pengujian ini dilakukan dengan pendekatan grafik dan uji *goodness of fit*.
- 5. Membuat model regresi Cox stratifikasi melalui tahapan sebagai berikut
 - a. Melakukan pengujian interaksi model dengan uji likelihood ratio
 - b. Mengidentifikasi variabel independen yang tidak memenuhi asumsi *proportional hazard*
 - c. Mendefinisikan variabel baru (Z_g^*) yaitu variabel yang distratifikasi, dengan g kategori yang dimiliki oleh variabel tersebut.
 - d. Menghitung estimasi parameter model regresi Cox stratifikasi
 - e. Melakukan uji signifikansi parameter model regresi Cox stratifikasi secara serentak dan parsial
 - f. Menghitung nilai hazard ratio.
- 6. Mendapatkan model terbaik berdasarkan kriteria AIC
- 7. Menginterpretasikan model terbaik

Untuk mempermudah pemahaman, langkah-langkah dalam menyelesaiakan penelitian ini dapat disajikan dalam bentuk *flow chart* pada Gambar 3.1 sebagai berikut

Gambar 3.1 Tahapan Penelitian

(Halaman ini sengaja dikosongkan)

BAB IV ANALISIS DAN PEMBAHASAN

Bab ini akan membahas karakteristik dan faktor-faktor yang diduga mempengaruhi ketahanan hidup pasien kanker serviks yang melakukan rawat inap di RSUD dr. Soetomo Surabaya. Faktor-faktor tesebut adalah usia, stadium, jenis pengobatan, penyakit penyerta, komplikasi dan status anemia.

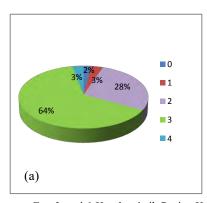
4.1 Deskripsi Waktu *Survival* Pasien Kanker Serviks Beserta Faktor-Faktor yang Diduga Mempengaruhi

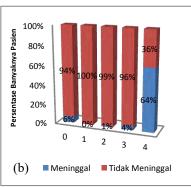
Pada bagian ini akan membahas karakteristik pasien kanker serviks berdasarkan waktu *survival* dan faktor-faktor yang diduga mempengaruhi ketahanan hidup pasien kanker serviks yang melakukan rawat inap di RSUD dr. Soetomo Surabaya. Karakteristik waktu *survival* pasien disajikan dalam Tabel 4.1.

Tabel 4.1 Karakteristik Waktu Survival Pasien Kanker Serviks

Variabel	Status Pasien	N	Mean (hari)
Waktu Survival	Data tersensor	777	47,18
	Data tidak tersensor	40	24,68

Tabel 4.1 menunjukkan dalam jangka waktu satu tahun, pasien kanker serviks yang betahan hidup ada 777 orang dengan rata-rata waktu *survival* 47,18 hari sedangkan 40 orang sisanya meninggal dengan rata-rata watktu *survival* 24,68 hari. Sehingga dari informasi tersebut dapat diketahui bahwa pada penelitian ini lebih banyak data tersensor daripada yang mengalami *event*.

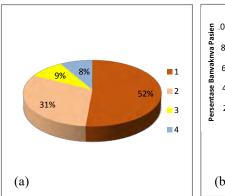

Selanjutnya akan diuraikan karakteristik dari faktor-faktor yang diduga mempengaruhi ketahanan hidup pasien kanker serviks yang melakukan rawat inap di RSUD dr. Soetomo Surabaya. Berikut merupakan karakteristik dari variabel usia yang disajikan dalam Tabel 4.2.

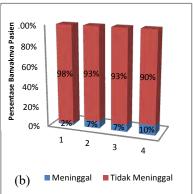

Tabel 4.2 Karakteristik Usia Pasien Kanker Serv	rviks
--	-------

Variabel	Status Pasien	Mean	Minimum	Maximum
Usia	Data tersensor	49,698	27	79
	Data tidak tersensor	49,90	27	75

Berdasarkan Tabel 4.2 dapat diketahui bahwa rata-rata usia pasien kanker serviks yang melakukan rawat inap di RSUD dr. Soetomo Surabaya dan masih bertahan hidup adalah 49,698 tahun dengan usia paling muda 27 tahun dan paling tua 79 tahun. Sedangkan rata-rata usia pasien kanker serviks yang meninggal adalah 49,9 dengan usia paling muda 27 tahun dan paling tua 75 tahun. Selain usia, faktor yang diduga mempengaruhi ketahanan kanker serviks adalah stadium.

Berikut merupakan karakteristik dari stadium pasien kanker serviks yang melakukan rawat inap di RSUD dr. Soetomo Surabaya yang disajikan dalam bentuk *pie chart* dan histogram.

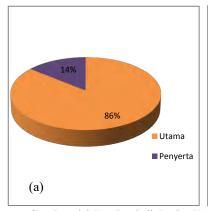

Gambar 4.1 Karakteristik Pasien Kanker Serviks Berdasarkan Stadium

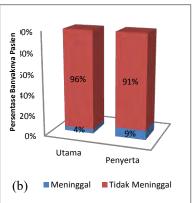

Berdasarkan Gambar 4.1(a) dapat diketahui bahwa pasien kanker serviks yang paling banyak menjalankan rawat inap adalah pasien yang memiliki stadium III yaitu sebanyak 64% sedangkan yang paling sedikit adalah pasien dengan stadium 0 yaitu hanya 2%. Selain karakteristik stadium secara umum, juga dapat ditunjukkan karakteristik pasien kanker serviks berdasarkan

stadium yang diderita dengan status bertahan hidup atau meninggal.

Gambar 4.1(b) menunjukkan bahwa pasien kanker serviks dengan stadium I semuanya masih bertahan hidup. Pasien yang paling banyak meninggal adalah pasien dengan stadium IV yaitu sebesar 64% dan sisanya 36% masih bertahan hidup. Untuk stadium yang lain sebagian besar lebih banyak pasien yang bertahan hidup lebih dari 93%.

Pasien pasien kanker serviks yang melakukan rawat inap di RSUD dr. Soetomo Surabaya menjalani beberapa pengobatan diantaranya jenis pengobatan 1 (kemoterapi), jenis pengobatan 2 (transfusi PRC), jenis pengobatan 3 (operasi) dan jenis pengobatan 4 (kemoterapi sekaligus transfusi PRC). Berikut merupakan karakterisik dari berbagai jenis pengobatan tersebut.


Gambar 4.2 Karakteristik Pasien Kanker Serviks Berdasarkan Jenis Pengobatan

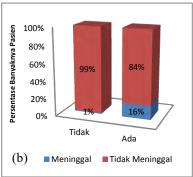

Berdasarkan Gambar 4.2 (a) dapat diketahui bahwa pasien kanker serviks yang menjalankan rawat inap di RSUD dr. Soetomo Surabaya paling banyak menjalankan jenis pengobatan kemoterapi yaitu sebesar 52% dan paling sedikit adalah menjalankan pengobatan kemoterapi sekaligus transfusi PRC sebesar 8%. Selain karakteristik jenis pengobatan yang dijalani

secara umum, juga dapat ditunjukkan karakteristik pasien kanker serviks berdasarkan jenis pengobatan dengan stastus bertahan hidup atau meninggal.

Gambar 4.2 (b) menunjukkan bahwa pasien kanker serviks yang menjalankan jenis pengobatan kemoterapi sebesar 98% masih bertahan hidup sedangkan 2% meninggal. Sedangkan untuk jenis pengobatan 2 dan 3 yaitu transfusi PRC dan operasi memiliki proporsi yang sama yaitu 93% pasien kanker serviks masih hidup dan sisanya meninggal. Untuk jenis pengobatan 4 yaitu kemoterapi sekaligus transfusi PRC jumlah pasien yang meninggal 10% dan sisanya bertahan hidup. Hal ini diduga karena pasien yang menjalankan pengobatan ini telah mendertia stadium IV sehingga pasien yang meninggal juga lebih banyak.

Faktor selanjutnya yang diduga mempengaruhi kanker serviks adalah status penyakit pasien dimana kanker serviks sebagai penyakit penyerta atau penyakit utama. Berikut merupakan karakteristik dari status penyakit kanker serviks dari pasien kanker serviks yang melakukan rawat inap di RSUD dr. Soetomo Surabaya yang disajikan dalam bentuk *pie chart* dan histogram.

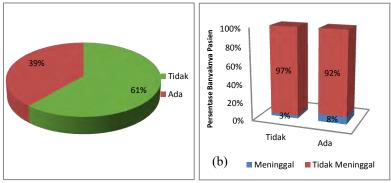




Gambar 4.3 Karakteristik Pasien Kanker Serviks Berdasarkan Penyakit Penyerta

Berdasarkan Gambar 4.3 (a) dapat diketahui bahwa sebagian besar pasien kanker serviks menjalankan rawat inap di RSUD dr. Soetomo Surabaya merupakan pasien dengan penyakit kanker serviks sebagai penyakit utama yaitu sebesar 86% sedangkan sisanya yaitu 14% merupakan pasien dengan kanker serviks sebagai penyakit penyerta. Selain itu pada Gambar 4.3 (b) diketahui bahwa pasien kanker serviks yang meninggal dengan status kanker serviks sebagai penyakit utama sebesar 4% sedangkan sisanya masih bertahan hidup. Sedangkan yang sebagai penyakit penyerta, pasien yang meninggal jauh lebih banyak yaitu 9% dan sisanya bertahan hidup sebesar 91%. Hal ini diduga pasien yang menderita kanker serviks sebagai penyakit penyerta memiliki penyakit utama yang lebih mematikan. Selain itu adanya komplikasi juga diduga berpengaruh terhadap ketahanan hidup pasien kanker serviks.

Berikut merupakan karakteristik dari ada tidaknya komplikasi pasien kanker serviks yang melakukan rawat inap di RSUD dr. Soetomo Surabaya yang disajikan dalam bentuk *pie chart* dan histogram.

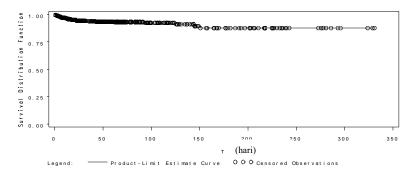


Gambar 4.4 Karakteristik Pasien Kanker Serviks Berdasarkan Komplikasi

Gambar 4.4 (a) menunjukkan pasien kanker serviks yang menjalankan rawat inap di RSUD dr. Soetomo Surabaya

didominasi oleh pasien yang tidak memiliki komplikasi yaitu sebesar 72% sedangkan sisanya 28% memiliki komplikasi. Dari Gambar 4.4 (b) dikeatahui bahwa pasien yang tidak memiliki komplikasi 99% masih bertahan hidup sedangkan pasien yang memiliki komplikasi 84% yang bertahan hidup. Faktor terakhir yang diduga berpengaruh terhadap ketahanan hidup pasien kanker serviks yang menjalankan rawat inap di RSUD dr. Soetomo Surabaya adalah adanya penyakit anemia.

Berikut merupakan karakteristik dari ada tidaknya anemia pada pasien kanker serviks yang melakukan rawat inap di RSUD dr. Soetomo Surabaya yang disajikan dalam bentuk *pie chart* dan histogram.

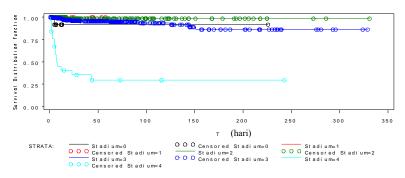


Gambar 4.5 Karakteristik Pasien Kanker Serviks Berdasarkan Status Anemia

Gambar 4.5 (a) menunjukkan pasien kanker serviks yang menjalankan rawat inap di RSUD dr. Soetomo Surabaya sebagian besar merupakan pasien yang tidak memiliki anemia yaitu sebesar 61% sedangkan sisanya 39% memiliki anemia. Dari Gambar 4.5 (b) diketahui bahwa pasien yang tidak memiliki anemia 97% masih bertahan hidup sedangkan pasien yang memiliki anemia 92% yang bertahan hidup dan sisanya yaitu 8% meninggal.

4.2 Analisis Kurva Survival Kaplan-Meier dan Uji Log Rank

Karakteristik waktu *survival* pasien kanker serviks dapat ditunjukkan dengan menggunakan kurva *survival* Kaplain-Meier. Sedangkan untuk mengetahui apakah terdapat perbedaan antara kurva *survival* dari kelompok faktor yang berbeda dapat menggunakan uji *Log Rank*. Berikut adalah kurva *survival* Kaplan-Meier secara umum dari 817 pasien kanker serviks yang melakukan rawat inap di RSUD dr. Soetomo Surabaya.


Gambar 4.6 Kurva Survival Kaplan-Meier Pasien Kanker Serviks

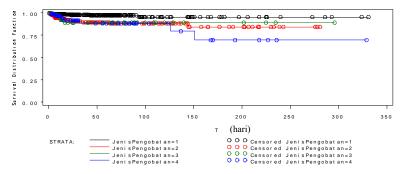
Berdasarkan Gambar 4.6 dapat diketahui bahwa dari hari ke-0 sampai hari ke-331 kurva *survival* turun lambat. Pada rentang waktu ini, probabilitas bertahan hidup pasien kanker serviks yang melakukan rawat inap di RSUD dr. Soetomo diatas 0,8. Nilai ini menunjukkan bahwa probabilitas bertahan hidup pasien kanker serviks selama satu tahun masih tinggi meskipun setelah hari ke 150 kurva *survival* cenderung konstan.

Karakteristik waktu *survival* yang ditunjukkan oleh Gambar 4.6 merupakan kurva *survival* Kaplan-Meier secara umum. Berikut akan diuraikan kurva *survival* Kaplan-Meier berdasarkan faktor-faktor yang diduga mempengaruhi ketahanan hidup kanker serviks yaitu stadium, jenis pengobatan, penyakit penyerta, komplikasi dan status anemia.

4.2.1 Karakteristik Waktu *Survival* Pasien Kanker Serviks Berdasarkan Stadium

Stadium kanker serviks terbagi menjadi 5 yaitu stadium 0, stadium 1, stadium 2, stadium 3 dan stadium 4. Berikut adalah kurva *survival* Kaplan-Meier dari 817 pasien kanker seviks berdasarkan stadium yang diderita.

Gambar 4.7 Kurva Survival Kaplan-Meier Berdasarkan Stadium


Gambar 4.7 menunjukkan bahwa posisi kurva *survival* stadium 4 berada jauh di bawah kurva yang lain. Hal ini berarti bahwa probabilitas ketahanan hidup pasien kanker serviks stadium 4 lebih rendah dibandingkan stadium 0,I,II dan III. Kurva *survival* stadium 4 mengalami penurunan drastis dari awal waktu penelitian hingga hari ke-45 setelah itu konstan dengan probabalitias bertahan hidup sekitar 0,3 hingga penelitian berakhir. Sedangakan untuk keempat stadium lainnya memiliki probabilitas bertahan hidup selama satu tahun yang tinggi yaitu diatas 0,8. Hal ini berarti secara deskriptif ada perbedaan kurva *survival* pasien kanker serviks berdasarkan stadium yang diderita.

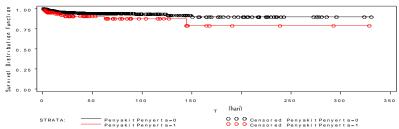
Selain secara deskriptif, untuk melihat perbedaan kurva *survival* dapat dilakukan pengujian secara statistik yaitu dengan menggunakan uji *Log Rank*. Hasil pengujian diperoleh nilai statistik uji sebesar 272,1655 dengan derajat bebas 4 dan *P-value* hasil uji *Log Rank* sebesar <0,001. Nilai *P-value* ini akan dibandingkan dengan nilai α sebesar 5%. Karena nilai *P-value*

kurang dari α maka diperoleh keputusan tolak H_0 yang berarti bahwa ada perbedaan kurva *survival* pasien kanker serviks. Perbedaan kurva *survival* terlihat antara stadium 4 dengan keempat kurva *survival* lainnya.

4.2.2 Karakteristik Waktu *Survival* Pasien Kanker Serviks Berdasarkan Jenis Pengobatan

Jenis Pengobatan yang dijalani pasien kanker serviks ada 4 kategori yaitu kemoterapi, transfusi PRC, operasi, kemoterapi sekaligus tranfusi PRC. Berikut adalah kurva *survival* Kaplan-Meier dari 817 pasien kanker seviks berdasarkan jenis pengobatan yang sedang dijalani.

Gambar 4.8 Kurva Survival Kaplan-Meier Berdasarkan Jenis Pengobatan

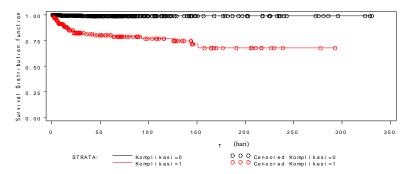

Pada Gambar 4.8 garis hitam menunjukkan kurva *survival* untuk pasien kanker serviks yang menjalani pengobatan kemoterapi, garis merah transfusi PRC, garis hijau operasi dan garis biru untuk pasien yang menjalani kemoterapi sekaligus transfusi PRC. Secara deskriptif, Gambar 4.8 menunjukkan bahwa posisi kurva *survival* pasien kanker serviks yang menjalani kemoterapi sekaligus tranfusi PRC berada di posisi paling bawah. Artinya pasien kanker serviks yang menjalani kemoterapi sekaligus tranfusi PRC memiliki probabilitas ketahanan hidup yang paling rendah yaitu hingga dibawah 0,75 mulai hari ke-150

hingga penelitian berakhir. Pasien kanker serviks yang memiliki probabilitas ketahanan hidup yang paling tinggi adalah pasien yang menjalankan jenis pengobatan 1 yaitu kemoterapi. Kurva survival pasien yang menjalani pengobatan kemoterapi turun sangat lambat dari awal masuk rumah sakit hingga hari ke-90 selanjutnya konstan hingga penelitian berakhir dengan probablitas diatas 0,8. Sehingga dapat dikatakan ada perbedaan kurva survival berdasarkan jenis pengobatan.

Selain secara deskriptif, untuk melihat perbedaan kurva survival dapat dilakukan pengujian secara statistik yaitu dengan menggunakan uji Log~Rank. Hasil pengujian diperoleh nilai statistik uji sebesar 15,7877 dengan derajat bebas 3 dan P-value hasil uji Log~Rank sebesar 0,0013. Nilai P-value ini akan dibandingkan dengan nilai α sebesar 5%. Karena nilai P-value kurang dari α maka diperoleh keputusan tolak H_0 yang berarti bahwa ada perbedaan kurva survival pasien kanker serviks berdasarkan jenis pengobatan yang dijalani.

4.2.3 Karakteristik Waktu *Survival* Pasien Kanker Serviks Berdasarkan Penyakit Penyerta

Faktor penyakit penyerta dari pasien kanker serviks dibagi menjadi 2 kategori yaitu kategori 0 jika kanker serviks bukan merupakan penyakit penyerta dan kategori 1 jika penyakit kanker serviks merupakan penyakit penyerta. Berikut adalah kurva survival pasien berdasarkan faktor penyakit penyerta.

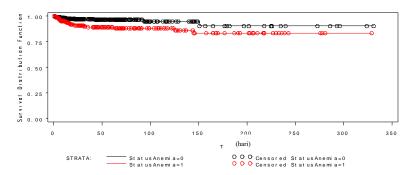

Gambar 4.9 Kurva *Survival* Kaplan-Meier Berdasarkan Faktor Penyakit Penyerta

Gambar 4.9 menunjukkan bahwa kurva survival Kaplan-Meier untuk pasien dimana kanker serviks sebagai penyakit utama berada diatas kurva *survival* pasien dengan kanker serviks sebagai penyakit penyerta. Hal ini berarti probabilitas ketahanan hidup pasien kanker serviks sebagai penyakit utama lebih tinggi dari pasien kanker serviks sebagai penyakit penyerta tetapi keduanya masih memiliki probabilitas ketahanan hidup yang tinggi yaitu diatas 0.75. Pada awal masuk rumah sakit kedua kurva survival pasien kanker serviks turun lambat hingga hari ke-150 kemudian cenderung konstan hingga penelitian berakhir. Kurva *survival* yang diperoleh tentunya tidak sesuai secara medis. Hal ini dikarenakan selama periode penelitian, pasien dengan kanker serviks sebagai penyakit penyerta memiliki penyakit lain yang yang lebih parah sehingga menyebabkan probabilitas bertahan hidupnya rendah. Selain itu jika pasien dengan kanker serviks sebagai penyakit utama memiliki stadium yang masih rendah probabilitas ketahanan hidupnya akan lebih besar karena penelitian ini hanya berlangsung hanya satu tahun.

Selain secara deskriptif, untuk melihat perbedaan kurva *survival* dapat dilakukan pengujian secara statistik yaitu dengan menggunakan uji *Log Rank*. Hasil pengujian diperoleh nilai statistik uji sebesar 4,5633 dengan derajat bebas 1 dan *P-value* hasil uji *Log Rank* sebesar 0,0327. Nilai *P-value* ini akan dibandingkan dengan nilai α sebesar 5%. Karena nilai *P-value* kurang dari α maka diperoleh keputusan tolak H_0 yang berarti bahwa ada perbedaan kurva *survival* pasien kanker serviks berdasarkan faktor penyakit penyerta.

4.2.4 Karakteristik Waktu *Survival* Pasien Kanker Serviks Berdasarkan Faktor Komplikasi

Faktor komplikasi dari pasien kanker serviks dibagi menjadi 2 kategori yaitu kategori 0 jika pasien tidak memiliki komplikasi dan kategori 1 jika pasien memiliki komplikasi. Berikut adalah kurva *survival* Kaplan-Meier dari 817 pasien kanker seviks berdasarkan faktor komplikasi.


Gambar 4.10 Kurva Survival Kaplan-Meier Berdasarkan Faktor Komplikasi

Gambar 4.10 menunjukkan bahwa kurva survival Kaplan-Meier untuk pasien kanker serviks yang tidak memiliki komplikasi berada diatas kurva survival pasien kanker serviks yang memiliki komplikasi. Hal ini sesuai secara medis dimana probabilitas bertahan hisup pasien kanker serviks yang tidak memiliki komplikasi lebih tinggi dari pada yang memiliki komplikasi. Probabilitas bertahan hidup pasien yang tidak memiliki komplikasi mendekati satu dan bentuk kurvanya konstan sedangkan pasien yang memiliki komplikasi memiliki bentuk kurva yang turun lambat dari awal masuk rumah sakit hingga hari ke-150 dan kemudian konstan hingga penelitian berakhir.

Selain secara deskriptif, untuk melihat perbedaan kurva *survival* dapat dilakukan pengujian secara statistik yaitu dengan menggunakan uji *Log Rank*. Hasil pengujian diperoleh nilai statistik uji sebesar 77,5287 dengan derajat bebas 1 dan *P-value* hasil uji *Log Rank* sebesar <0,0001. Nilai *P-value* ini akan dibandingkan dengan nilai α sebesar 5%. Karena nilai *P-value* kurang dari α maka diperoleh keputusan tolak H_0 yang berarti bahwa ada perbedaan kurva *survival* pasien kanker serviks berdasarkan faktor komplikasi.

4.2.5 Karakteristik Waktu *Survival* Pasien Kanker Serviks Berdasarkan Status Anemia

Faktor status anemia dari pasien kanker serviks dibagi menjadi 2 kategori yaitu kategori 0 jika pasien tidak menderita anemia dan kategori 1 jika pasien menderita anemia. Berikut adalah kurva *survival* Kaplan-Meier dari 817 pasien kanker seviks berdasarkan faktor status anemia.

Gambar 4.11 Kurva Survival Kaplan-Meier Berdasarkan Faktor Status Anemia

Gambar 4.11 menunjukkan bahwa kurva *survival* Kaplan-Meier untuk pasien kanker serviks yang tidak menderita anemia berada diatas kurva pasien yang menderita anemia. Hal ini berarti probabilitas bertahan hidup pasien yang tidak menderita anemia lebih tinggi daripada yang menderita anemia. Kurva untuk pasien yang tidak menderita anemia turun sangat lambat dari awal masuk rumah sakit hingga hari ke-150 kemudian konstan hingga penelitian berakhir sedangkan kurva pasien yang menderita anemia turun lebih cepat tetapi kedua kurva tersebut masih memiliki probabilitas yang tinggi yaitu diatas 0,75.

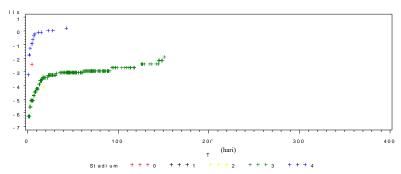
Selain secara deskriptif, untuk melihat perbedaan kurva *survival* dapat dilakukan pengujian secara statistik yaitu dengan menggunakan uji *Log Rank*. Hasil pengujian diperoleh nilai statistik uji sebesar 9,7431 dengan derajat bebas 1 dan *P-value* hasil uji *Log Rank* sebesar 0,0018. Nilai *P-value* ini akan dibandingkan dengan nilai α sebesar 5%. Karena nilai *P-value*

kurang dari α maka diperoleh keputusan tolak H_0 yang berarti bahwa ada perbedaan kurva *survival* pasien kanker serviks berdasarkan faktor status anemia.

Secara ringkas, hasil uji *Log Rank* ditampilkan dalam tabel 4.3 sebagai berikut.

Tabel 4.3 Hasil Uji Log Rank

		0	
Variabel	Log Rank	df	P-value
Stadium	272,1655	4	<0,0001
Jenis Pengobatan	15,7877	3	0,0013
Penyakit Penyerta	4,5633	1	0,0327
Komplikasi	77,5287	1	<0,0001
Status Anemia	9,7431	1	0,0018

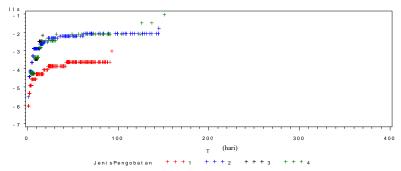

Berdasarkan tabel 4.3 dapat disimpulkan bahwa pada taraf signifikansi 5%, variabel stadium, jenis pengobatan, penyakit penyerta, komplikasi dan status anemia memiliki perbedaan kurva *survival* Kaplan-Meier.

4.3 Pengujian Asumsi Proportional Hazard

Uji asumsi proportional hazard dilakukan sebelum melakukan pembentukan model. Hal ini bertujuan untuk mengetahui faktor-faktor mana saja yang memenuhi asumsi proportional hazard dan yang tidak memenuhi asumsi untuk selanjutkan dilakukan pemodelan berdasarkan hasil pengujian yang diperoleh. Metode yang digunakan ada 2 yaitu secara visual dengan menggunakan grafik $\ln(-\ln \hat{S}(t))$ dan inferensi menggunakan uji Goodness of fit. Kedua metode tersebut digunakan untuk memperoleh hasil yang akurat. Berikut merupakan uji asumsi proportional hazard untuk faktor-faktor yang diduga berpengaruh terhadap ketahanan hidup pasien kanker serviks

4.3.1 Pengujian Asumsi *Proportional Hazard* untuk Faktor Stadium

Grafik $\ln(-\ln \hat{S}(t))$ pasien kanker serviks berdasarkan faktor stadium ditunjukan oleh Gambar 4.12 sebagai berikut

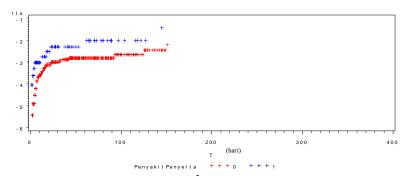


Gambar 4.12 Grafik $\ln(-\ln \hat{S}(t))$ Faktor Stadium

Gambar 4.12 menggambarkan garis merah untuk stadium 0, hitam untuk stadium 1, kuning untuk stadium 2, hijau untuk stadium 3 dan biru untuk stadium 4. Secara deskriptif, grafik $\ln(-\ln \hat{S}(t))$ antar kategori stadium tidak sejajar. Bentuk grafik dari kelima stadium berbeda dan ada yang berpotongan. Selain itu grafik untuk stadium 1 tidak muncul dalam gambar karena semua pasiennya tidak mengalami event. Hal ini menimbulkan dugaan bahwa faktor stadium tidak memenuhi asumsi *proportional hazard*. Untuk mendukung hasil analisis secara deskriptif, maka dilakukan pengujian dengan menggunakan uji *goodness of fit*. Hasil pengujian diperoleh nilai statistik uji sebesar 0.86698 dan *P-value* sebesar <0,0001. Nilai *P-value* ini akan dibandingkan dengan nilai α sebesar 5%. Karena nilai *P-value* kurang dari α maka diperoleh keputusan tolak H_0 yang berarti faktor stadium tidak memenuhi asumsi *proportional hazard*.

4.3.2 Pengujian Asumsi *Proportional Hazard* untuk Faktor Jenis Pengobatan

Grafik $\ln(-\ln \hat{S}(t))$ pasien kanker serviks berdasarkan faktor jenis pengobatan ditunjukan oleh Gambar 4.13 sebagai berikut

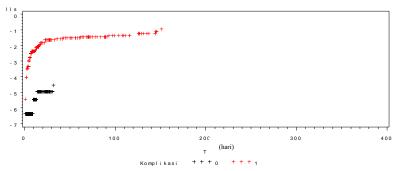

Gambar 4.13 Grafik $\ln(-\ln \hat{S}(t))$ Faktor Jenis Pengobatan

Gambar 4.13 menggambarkan garis merah untuk jenis pengobatan kemoterapi, biru untuk transfusi PRC, hitam untuk operasi dan hijau untuk kemoterapi sekaligus transfusi PRC. Secara deskriptif, grafik $\ln(-\ln \hat{S}(t))$ antar kategori jenis pengobatan sejajar. Hal ini menimbulkan dugaan bahwa faktor jenis pengobatan memenuhi asumsi *proportional hazard*. Untuk mendukung hasil analisis secara deskriptif, maka dilakukan pengujian dengan menggunakan uji goodness of fit.

Hasil pengujian diperoleh nilai statistik uji sebesar 0,11932 dan *P-value* sebesar 0,4633. Nilai *P-value* ini akan dibandingkan dengan nilai α sebesar 5%. Karena nilai *P-value* lebih dari α maka diperoleh keputusan gagal tolak H₀ yang berarti faktor jenis pengobatan memenuhi asumsi *proportional hazard*. Kesimpulan ini telah sesuai dengan hasil analisis secara deskriptif dengan metode grafik diatas.

4.3.3 Pengujian Asumsi Proportional Hazard untuk Faktor Penyakit Penyerta

Grafik $\ln(-\ln \hat{S}(t))$ pasien kanker serviks berdasarkan faktor penyakit penyerta ditunjukan oleh Gambar 4.14 sebagai berikut

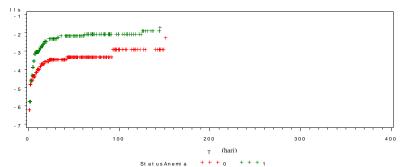


Gambar 4.14 Grafik $\ln(-\ln \hat{S}(t))$ Faktor Penyakit Penyerta

Gambar 4.14 menunjukkan bahwa garis biru untuk pasien dengan kanker serviks sebagai penyakit penyerta sedangkan garis merah untuk pasien dengan kanker serviks sebagai penyakit utama. Secara deskriptif, grafik $\ln(-\ln\hat{S}(t))$ antar kategori tampak sejajar. Hal ini berarti bahwa faktor penyakit penyerta memenuhi asumsi *proportional hazard*. Untuk mendukung hasil analisis secara deskriptif, maka dilakukan pengujian dengan menggunakan uji *Goodness of fit*. Hasil pengujian diperoleh nilai statistik uji sebesar 0,26780 dan *P-value* sebesar 0,0948. Nilai *P-value* ini akan dibandingkan dengan nilai α sebesar 5%. Karena nilai *P-value* lebih dari α maka diperoleh keputusan gagal tolak α yang berarti faktor penyakit penyerta memenuhi asumsi *proportional hazard*.

4.3.4 Pengujian Asumsi *Proportional Hazard* untuk Faktor Komplikasi

Grafik $\ln(-\ln \hat{S}(t))$ pasien kanker serviks berdasarkan faktor komplikasi ditunjukan oleh Gambar 4.15 sebagai berikut



Gambar 4.15 Grafik $\ln(-\ln \hat{S}(t))$ Faktor Komplikasi

Gambar 4.15 menunjukkan bahwa garis hitam untuk pasien kanker serviks yang tidak memiliki komplikasi sedangkan garis merah untuk pasien yang memiliki komplikasi. Secara deskriptif, grafik $\ln(-\ln \hat{S}(t))$ antar kategori tampak tidak sejajar. Hal ini berarti bahwa faktor komplikasi tidak memenuhi asumsi proportional hazard. Untuk mendukung hasil analisis secara deskriptif, maka dilakukan pengujian dengan menggunakan uji Goodness of fit. Hasil pengujian diperoleh nilai statistik uji sebesar -0,32232 dan *P-value* sebesar 0,0425. Nilai *P-value* ini akan dibandingkan dengan nilai α sebesar 5%. Karena nilai *P-value* kurang dari α maka diperoleh keputusan tolak α yang berarti faktor komplikasi tidak memenuhi asumsi proportional hazard.

4.3.5 Pengujian Asumsi *Proportional Hazard* untuk Faktor Status Anemia

Grafik $\ln(-\ln \hat{S}(t))$ pasien kanker serviks berdasarkan faktor status anemia ditunjukan oleh Gambar 4.16 sebagai berikut

Gambar 4.16 Grafik $\ln(-\ln \hat{S}(t))$ Faktor Status Anemia

Gambar 4.16 menunjukkan bahwa garis merah untuk pasien kanker serviks yang tidak menderita anemia sedangkan garis hijau untuk pasien yang menderita anemia. Secara deskriptif, grafik $\ln(-\ln \hat{S}(t))$ antar kategori tampak sejajar. Hal ini berarti bahwa faktor status anemia memenuhi asumsi proportional hazard. Untuk mendukung hasil analisis secara deskriptif, maka dilakukan pengujian dengan menggunakan uji goodness of fit. Hasil pengujian diperoleh nilai statistik uji sebesar -0.13397 dan *P-value* sebesar 0.4098. Nilai *P-value* ini akan dibandingkan dengan nilai α sebesar 5%. Karena nilai *P-value* lebih dari α maka diperoleh keputusan gagal tolak α yang berarti faktor status anemia memenuhi asumsi proportional hazard.

Secara ringkas, hasil uji asumsi *proportional hazard* dengan menggunakan uji *Goodness of fit* ditampilkan dalam tabel 4.4 sebagai berikut.

Tabel 4.4 Hasil Uji Goodness of Fit

Variabel	Korelasi	P-value
Usia	0.01204	0,9412
Stadium	0.86698	<0,0001
Jenis Pengobatan	0,11932	0,4633
Penyakit Penyerta	0,26780	0,0948
Komplikasi	-0,32232	0,0425
Status Anemia	-0.13397	0.4098

Berdasarkan tabel 4.4 dapat disimpulkan bahwa pada taraf signifikansi 1% maka variabel yang tidak memenuhi asumsi proportional hazard adalah stadium sedangkan jika menggunkan taraf signifikasi 5% maka variabel yang tidak memenuhi asumsi proportional hazard adalah stadium dan komplikasi. Sehingga nantinya kedua variabel tersebut akan menjadi variabel stratifikasi dalam model regresi Cox Stratifikasi.

4.4 Pemodelan Ketahanan Hidup Pasien Kanker Serviks dengan Regresi Cox Stratifikasi

Model regresi Cox stratifikasi merupakan salah satu model semiparametrik yang digunakan untuk menganalisis data survival dimana terdapat variabel independen yang tidak memenuhi asumsi proportional hazard. Model ini diperoleh dengan cara memodifikasi model Cox proportional hazard. Modifikasi dilakukan dengan mengontrol variabel independen yang tidak memenuhi asumsi proportional hazard dengan menjadikan variabel tersebut sebagai variabel stratifikasi (Z*). Sesuai dengan hasil pengujian maka variabel yang menjadi variabel stratifikasi adalah stadium dan komplikasi. Terdapat dua pemodelan dalam regresi Cox stratifikasi yaitu model tanpa interaksi dan model dengan interaksi. Dalam pembentukan regresi Cox stratifikasi akan dilakukan dengan menggunakan satu variabel stratifikasi yaitu stadium dan dua variabel stratifikasi yaitu stadium dan komplikasi. Sebelum dilakukan pemodelan, maka dilakukan pengujian interaksi terlebih dahulu. Pengujian ini bertujuan untuk mengetahui apakah terdapat interaksi antara variabel stratifikasi yaitu stadium dengan variabel-variabel lain yang masuk model.

4.4.1 Pengujian Interaksi Model Regresi Cox dengan Satu Variabel Stratifikasi

Pengujian interaksi bertujuan untuk mengetahui apakah terdapat interaksi antara variabel stratifikasi yaitu stadium dengan variabel-variabel yang masuk ke dalam model yaitu usia, jenis pengobatan, penyakit penyerta, komplikasi dan status anemia. Berikut merupkan hasil pengujian interaksi yang disajikan pada Tabel 4.5

Tabel 4.5 Hasil Pengujian Interaksi

Model	-2 ln L	df	P-value
Tanpa interaksi (R)	293.357	28	0.65693
Dengan interaksi (F)	268.895	28	0.03093

Dari Tabel 4.5 maka diperoleh nilai P-value sebesar 0,65693. Nilai ini akan dibandingkan dengan taraf signifikansi sebesar 5%. Hasil perbandingan diperoleh bahwa *P-value* lebih besar dari 5% sehingga keputusannya adalah gagal menolak H₀ yang artinya tidak ada interaksi antara variabel stratifikasi yaitu stadium dengan variabel-variabel yang masuk ke dalam model. Hasil pengujian memang tidak ada interaksi akan tetapi pada penelitian kali akan dicoba pemodelan ini melakukan menggunakan interaksi dengan satu variabel stratifikasi sehingga nantinya model yang didapatkan akan dibandingkan dengan model yang tanpa interaksi.

4.4.2 Pemodelan Regresi Cox dengan Satu Variabel Stratifikasi

Pembentukan model regresi Cox dengan satu variabel stratifikasi (Z^*) dilakukan dengan dua cara yaitu pemodelan dengan intrakasi dan tanpa interaksi. Variabel yang menjadi Z^* merupakan variabel yang tidak memenuhi asumsi *proportional hazard* pada taraf signifikanasi 1% yaitu stadium sedangkan variabel lain yaitu usia, jenis pengobatan, penyakit penyerta, komplikasi dan status anemia akan dimasukkan ke dalam model.

4.4.2.1 Pemodelan Regresi Cox Tanpa Interaksi dengan Satu Variabel Stratifikasi

Dalam pembentukan model ini, menunjukkan bahwa tidak ada interaksi antara variabel stratifikasi (Z^*) dengan variabel independen yang masuk dalam model. Langkah awal sebelum

membentuk model adalah mendefinisikan variabel stratifikasi (Z^*) yaitu stadium. Berdasarkan Tabel 3.1 diketahui bahwa stadium memiliki 5 kategori sehingga strata yang terbentuk sebanyak 5 sebagai berikut.

- Z_1^* =stadium 0
- Z_2^* =stadium 1
- Z_3^* =stadium 2
- Z_4^* =stadium 3
- Z_5^* =stadium 4

Sedangkan variabel lainnya meliputi usia, jenis pengobatan, penyakit penyerta, komplikasi dan status anemia akan dimasukkan ke dalam model. Berikut merupakan hasil estimasi parameter model regresi Cox stratifikasi tanpa interaksi dengan satu variabel stratifikasi (stadium) untuk data waktu *survival* pasien pasien kanker serviks yang melakukan rawat inap di RSUD dr. Soetomo Surabaya.

Tabel 4.6 Estimasi Parameter Model Cox Stratifikasi

Tanpa Interaksi (Satu Variabel Stratifikasi)

Variabel	Estimasi	P-value
Usia (X_1)	0,00795	0,7197
Jenis Pengobatan (2) $(X_{3(2)})$	1,01776	0,1258
Jenis Pengobatan (3) $(X_{3(3)})$	1,12238	0,0781
Jenis Pengobatan (4) $(X_{3(4)})$	1,80451	0,0134
Penyakit Penyerta $(X_{4(1)})$	0,49158	0,2237
Komplikasi $(X_{5(1)})$	2,40407	< 0,0001
Status Anemia $(X_{6(1)})$	-0,79705	0,1481
Likelihood Ratio		<0,0001

Dari tabel 4.6 maka diperoleh model Cox stratifikasi tanpa interaksi secara umum sebagai berikut

$$\hat{h}_g(t) = \hat{h}_{0g}(t) \exp(0.00795X_1 + 1.01776X_3(2) + 1.12238X_3(3) + 1.80451X_3(4) + 0.49158X_4 + 2.40407X_5 - 0.79705X_6)$$

Dari model diatas dapat dibentuk 5 model regresi Cox stratifikasi sebagai berikut.

Model Stadium 0

$$\hat{h}_1(t) = \hat{h}_{01}(t) \exp(0.00795X_1 + 1.01776X_3(2) + 1.12238X_3(3) + 1.80451X_3(4) + 0.49158X_4 + 2.40407X_5 - 0.79705X_6)$$

Model Stadium 1

$$\hat{h}_2(t) = \hat{h}_{02}(t) \exp(0.00795X_1 + 1.01776X_3(2) + 1.12238X_3(3) + 1.80451X_3(4) + 0.49158X_4 + 2.40407X_5 - 0.79705X_6)$$

Model Stadium 2

$$\hat{h}_3(t) = \hat{h}_{03}(t) \exp(0.00795X_1 + 1.01776X_3(2) + 1.12238X_3(3) + 1.80451X_3(4) + 0.49158X_4 + 2.40407X_5 - 0.79705X_6)$$

Model Stadium 3

$$\hat{h}_4(t) = \hat{h}_{04}(t) \exp(0.00795X_1 + 1.01776X_3(2) + 1.12238X_3(3) + 1.80451X_3(4) + 0.49158X_4 + 2.40407X_5 - 0.79705X_6)$$

Model Stadium 4

$$\hat{h}_5(t) = \hat{h}_{05}(t) \exp(0.00795X_1 + 1.01776X_3(2) + 1.12238X_3(3) + 1.80451X_3(4) + 0.49158X_4 + 2.40407X_5 - 0.79705X_6)$$

Selanjutnya dari model yang diperoleh, maka akan dilakukan pengujian parameter secara serentak dan parsial. Secara serentak diperoleh nilai statistik uji *Likelihood Ratio* sebesar <0,001. Jika dibandingkan dengan α sebesar 5% maka diperoleh keputusan tolak H₀. Sehingga dapat disimpulkan bahwa minimal ada satu variabel independen yang berpengaruh signifikan terhadap model pada selang kepercayaan 95%. Oleh karena itu perlu dilanjutkan uji parsial untuk mengetahui variabel mana saja yang berpengaruh secara signifikan terhadap model yang

terbentuk. Berdasarkan tabel 4.6 dapat diketahui bahwa secara parsial dengan α sebesar 5%, variabel yang berpengaruh secara signifikan terhadap ketahanan hidup pasien kanker serviks adalah jenis pengobatan 4 dan komplikasi karena keduanya memiliki *P-value* < 5%. Artinya komplikasi dan jenis pengobatan kemoterapi sekaligus transfusi PRC berpengaruh terhadap ketahanan hidup pasien kanker serviks yang menjalankan rawat inap di RSUD dr. Soetomo Surabaya dalam jangka waktu penelitian satu tahun.

4.4.2.2 Pemodelan Regresi Cox Interaksi dengan Satu Variabel Stratifikasi

Dalam pemodelan ini akan digunakan satu variabel stratifikasi yaitu stadium. Berikut merupakan hasil estimasi parameter model regresi Cox *Stratifikasi* dengan interaksi.

Tabel 4.7 Estimasi Parameter Model Cox Stratifikasi dengan Interaksi

Variabel	Estimasi	p-value
Usia	-2.39080	0,9956
Jenis Pengobatan (2)	32.44165	0,9996
Jenis Pengobatan (3)	9.92141	0,9999
Jenis Pengobatan (4)	64.12847	0,9992
Penyakit Penyerta	6.79261	0,9999
Komplikasi	-26.46496	0,9976
Status Anemia	-20.28181	0,9997
Stadium $(1) \times Usia$	0	-
Stadium (1) × Jenis Pengobatan (2)	0	-
Stadium $(1) \times$ Jenis Pengobatan (3)	0	-
Stadium (1) × Jenis Pengobatan (4)	-81.70704	0,9990
Stadium (1) × Penyakit Penyerta	0	_
Stadium (1) × Komplikasi	0	-
Stadium (1) × Status Anemia	0	-
Stadium $(2) \times Usia$	-0.40685	0,9997
Stadium (2) × Jenis Pengobatan (2)	-24.91612	0,9997
Stadium (2) × Jenis Pengobatan (3)	1.92077	1
Stadium (2) × Jenis Pengobatan (4)	0	-
Stadium (2) × Penyakit Penyerta	-13.99034	0,9998

Tabel 4.7 Estimasi Parameter Model Cox Stratifikasi dengan Interaksi (lanjutan)

Variabel	Estimasi	p-value
Stadium (2) × Komplikasi	63.13691	0,9983
Stadium (2) × Status Anemia	5.55856	0,9999
Stadium (3) × Usia	2.39815	0,9956
Stadium (3) × Jenis Pengobatan (2)	-31.44599	0,9996
Stadium (3) × Jenis Pengobatan (3)	-7.93107	0,9999
Stadium (3) × Jenis Pengobatan (4)	-61.89545	0,9992
Stadium (3) × Penyakit Penyerta	-6.21566	0,9999
Stadium (3) × Komplikasi	28.20288	0,9974
Stadium (3) × Status Anemia	19.79732	0,9998
Stadium (4) × Usia	2.48395	0,9954
Stadium (4) × Jenis Pengobatan (2)	-29.65936	0,9996
Stadium (4) × Jenis Pengobatan (3)	-8.29219	0,9999
Stadium (4) × Jenis Pengobatan (4)	0	-
Stadium (4) × Penyakit Penyerta	-6.20376	0,9999
Stadium (4) × Komplikasi	43.42871	0,9961
Stadium (4) × Status Anemia	17,51195	0,9998
Likelihood Ratio		<0,0001

Berdasarkan Tabel 4.7 akan dilakukan pengujian estimasi parameter. P-value hasil uji parsial dapat dilihat di Tabel 4.7. Nilai ini dibandingkan dengan α sebesar 5%. Hasil perbandingan menunjukkan bahwa semua P-value lebih besar dari α . Bahkan nilainya mendekati satu dan ada beberapa nilai P-value yang tidak keluar. Sehingga diperoleh kesimpulan bahwa tidak ada satupun variabel independen yang signifikan. Hal ini disebabkan oleh tidak adanya interaksi antara variabel independen dengan variabel stratifikasi. (Z*). Artinya stadium sebagai variabel stratifikasi tidak berinteraksi dengan variabel independen yang masuk model dalam mempengaruhi ketahanan hidup pasien kanker serviks. Sehingga model regresi Cox stratifikasi dengan interaksi tidak cocok untuk memodelkan data ketahanan hidup pasien kanker

serviks. Karena hasil estimasi parameter model dengan interaksi tidak cocok untuk memodelkan data ketahanan hidup pasien kanker serviks, maka dilanjutkan dengan pemodelan regresi Cox tanpa interaksi dengan dua variabel stratifikasi

4.4.3 Pemodelan Regresi Cox dengan Dua Variabel Stratifikasi

Dalam pembentukan model ini, variabel yang akan menjadi variabel stratifikasi (Z^*) adalah stadium dan komplikasi. Kedua variabel ini digunakan sebagai Z^* karena pada saat dilakukan uji goodness of fit keduanya memiliki nilai P-value kurang dari 5% sehigga kedua variabel tersebut tidak memenuhi asumsi proportional hazard. Sedangkan variabel lainnya yaitu usia, jenis pengobatan, penyakit penyerta dan status anemia akan dimasukkan ke dalam model. Langkah yang harus dilakukan dalam pembuatan model regresi Cox dengan dua variabel stratifikasi adalah terlebih dahulu mendefinisikan variabel stratifikasi (Z^*) . Berdasarkan data, diketahui variabel stadium memiliki Z^* 0. Berdasarkan data, diketahui variabel stadium memiliki Z^* 1. Selanjutnya kategori dari kedua variabel tersebut dikombinasikan. Hasil kombinasi dapat dilihat pada Tabel Z^* 2.

Tabel 4.8 Kombinasi Variabel Stadium dan Komplikasi

Vamulikasi			Stadiun	n	
Komplikasi	0	1	2	3	4
0	Z_1^*	Z_3^*	Z_5^*	Z_7^*	Z_9^*
1	Z_2^*	Z_4^*	Z_6^*	Z_{8}^{st}	Z_{10}^{*}

Berdasarkan Tabel 4.8 dapat dilihat bahwa strata yang terbentuk sebanyak 10 yang merupakan kombinasi dari kedua variabel yang tidak memenuhi asumsi *proportional hazard* yaitu stadium dan komplikasi. Selanjutnya adalah melakukan pembentukan model regresi Cox dengan dua variabel stratifikasi

Berikut merupakan hasil estimasi parameter model regresi Cox stratifikasi tanpa interaksi dengan dua variabel

stratifikasi (stadium dan komplikasi) untuk data waktu *survival* pasien pasien kanker serviks yang melakukan rawat inap di RSUD dr. Soetomo Surabaya.

Tabel 4.9 Estimasi Parameter Model Regresi Cox Stratifikasi Tanna Interaksi (Dua Variabel Stratifikasi)

Variabel	Estimasi	P-value
Usia (X_1)	0,00928	0.6805
Jenis Pengobatan (2) $(X_{3(2)})$	1.09324	0.0998
Jenis Pengobatan (3) $(X_{3(3)})$	1.24806	0.0539
Jenis Pengobatan (4) $(X_{3(4)})$	1.87631	0.0101
Penyakit Penyerta $(X_{4(1)})$	0.53058	0.1932
Status Anemia $(X_{6(1)})$	-0.78783	0.1565
Likelihood Ratio		0.2314

Dari tabel 4.9 maka diperoleh model regresi Cox dengan dua variabel stratifikasi secara umum sebagai berikut

$$\hat{h}_g(t) = \hat{h}_{0g}(t) \exp(0.00928X_1 + 1.09324X_3(2) + 1.24806X_3(3) + 1.87631X_3(4) + 0.53058X_4 - 0.78783X_6)$$

Dari model diatas dapat dibentuk 10 model regresi Cox dengan dua variabel stratifikasi sebagai berikut.

Model Stadium 0 dan Tidak Ada Komplikasi

$$\hat{h}_1(t) = \hat{h}_{01}(t) \exp(0.00928X_1 + 1.09324X_3(2) + 1.24806X_3(3) + 1.87631X_3(4) + 0.53058X_4 - 0.78783X_6)$$

Model Stadium 0 dan Ada Komplikasi

$$\hat{h}_2(t) = \hat{h}_{02}(t) \exp(0.00928X_1 + 1.09324X_3(2) + 1.24806X_3(3) + 1.87631X_3(4) + 0.53058X_4 - 0.78783X_6)$$

Model Stadium 1 dan Tidak Ada Komplikasi

$$\hat{h}_3(t) = \hat{h}_{03}(t) \exp(0.00928X_1 + 1.09324X_3(2) + 1.24806X_3(3) + 1.87631X_3(4) + 0.53058X_4 - 0.78783X_6)$$

Model Stadium 1 dan Ada Komplikasi

$$\hat{h}_4(t) = \hat{h}_{04}(t) \exp(0.00928X_1 + 1.09324X_3(2) + 1.24806X_3(3) + 1.87631X_3(4) + 0.53058X_4 - 0.78783X_6)$$

Model Stadium 2 dan Tidak Ada Komplikasi

$$\hat{h}_5(t) = \hat{h}_{05}(t) \exp(0.00928X_1 + 1.09324X_3(2) + 1.24806X_3(3) + 1.87631X_3(4) + 0.53058X_4 - 0.78783X_6)$$

Model Stadium 2 dan Ada Komplikasi

$$\hat{h}_6(t) = \hat{h}_{06}(t) \exp(0.00928X_1 + 1.09324X_3(2) + 1.24806X_3(3) + 1.87631X_3(4) + 0.53058X_4 - 0.78783X_6)$$

Model Stadium 3 dan Tidak Ada Komplikasi

$$\hat{h}_7(t) = \hat{h}_{07}(t) \exp(0.00928X_1 + 1.09324X_3(2) + 1.24806X_3(3) + 1.87631X_3(4) + 0.53058X_4 - 0.78783X_6)$$

Model Stadium 3 dan Ada Komplikasi

$$\hat{h}_8(t) = \hat{h}_{08}(t) \exp(0.00928X_1 + 1.09324X_3(2) + 1.24806X_3(3) + 1.87631X_3(4) + 0.53058X_4 - 0.78783X_6)$$

Model Stadium 4 dan Tidak Ada Komplikasi

$$\hat{h}_9(t) = \hat{h}_{09}(t) \exp(0.00928X_1 + 1.09324X_3(2) + 1.24806X_3(3) + 1.87631X_3(4) + 0.53058X_4 - 0.78783X_6)$$

Model Stadium 4 dan Ada Komplikasi

$$\hat{h}_{10}(t) = \hat{h}_{010}(t) \exp(0.00928X_1 + 1.09324X_3(2) + 1.24806X_3(3) + 1.87631X_3(4) + 0.53058X_4 - 0.78783X_6)$$

Selanjutnya dari model yang diperoleh, maka akan dilakukan pengujian parameter secara serentak dan parsial. Secara serentak diperoleh nilai $Likelihood\ Ratio$ sebesar 0,2314. Jika dibandingkan dengan α sebesar 25% maka diperoleh keputusan tolak H_0 . Sehingga dapat disimpulkan bahwa minimal ada satu variabel independen yang berpengaruh signifikan terhadap model dengan selang kepercayaan 75%. Untuk mengetahui variabel mana saja yang berpengaruh, maka dilakukan uji parsial.

Berdasarkan tabel 4.9 dapat diketahui bahwa secara parsial dengan α sebesar 5%, variabel yang berpengaruh secara signifikan terhadap ketahanan hidup pasien kanker serviks adalah jenis pengobatan 4 karena memiliki *P-value* < 5%. Artinya jenis pengobatan kemoterapi sekaligus transfusi PRC berpengaruh secara signifikan terhadap ketahanan hidup pasien kanker serviks. Sedangkan jika menggunakan taraf signifikansi 10% maka variabel jenis pengobatan 2, 3 dan 4 berpengaruh signifikan terhadap model artinya jenis pengobatan transfusi PRC, operasi dan kemoterapi sekaligus transfusi PRC berpengaruh secara signifikan terhadap ketahanan hidup pasien kanker serviks yang menjalankan rawat inap di RSUD dr. Soetomo Surabaya dalam jangka waktu penelitian satu tahun

4.5 Pemilihan Model Terbaik

Model terbaik pada pemodelan data waktu *survival* pasien kanker serviks beserta faktor-faktor yang diduga mempengaruhi adalah model regresi Cox stratifikasi dengan dua variabel stratifikasi. Pemilihan model terbaik didasarkan pada kriteria AIC. Model terbaik adalah model dengan nilai AIC terkecil.

Berikut merupakan perbandingan beberapa model dari data ketahanan hidup pasien kanker serviks yang melakukan rawat inap di RSUD dr. Soetomo Surabaya.

Tabel 4.10 Perbandingan Nilai AIC dari Model Regresi Cox

Model Regresi	AIC
Cox Proportional Hazard	380,975
Cox Stratifikasi tanpa Interaksi dengan	307,357
Satu Variabel Stratifikasi	307,337
Cox Stratifikasi Interaksi dengan	322,895
Satu Variabel Stratifikasi	322,693
Cox Stratifikasi tanpa Interaksi dengan	282,247
Dua Variabel Stratifikasi	202.247
Cox Extended dengan Fungsi Waktu (Arina, 2015)	372,434
Cox Extended Fungsi Heaviside (Arina, 2015)	376,670

Berdasarkan tabel 4.10 nilai AIC yang dihasilkan model regresi Cox stratifikasi tanpa interaksi dengan dua variabel stratifikasi merupakan AIC terkecil sedangkan AIC terbesar dihasilkan oleh model regresi Cox proportional hazard. Sehingga berdasarkan nilai AIC dapat disimpulkan bahwa performansi analisis survival untuk data ketahanan hidup pasien kanker serviks yang melakukan rawat inap di RSUD dr. Soetomo lebih baik menggunakan model regresi Cox stratifikasi tanpa interakasi dengan dua variabel stratifikasi daripada model yang lain. Model regresi Cox proportional hazard memiliki nilai AIC terbesar karena memang pada data ketahanan hidup pasien kanker serviks terdapat variabel independen yang tidak memenuhi asumsi proportional hazard sehingga model regresi Cox proportional hazard tidak sesuai untuk memodelkan data tersebut.

4.6 Interpretasi Model Terbaik

Model terbaik yang dipilih adalah model regresi Cox stratifikasi tanpa interaksi dengan dua variabel stratifikasi yaitu stadium dan komplikasi. Interpretasi dari model yang terbentuk dapat dilihat dari nilai *hazard ratio* masing-masing variabel independen yang ditunjukkan oleh Tabel 4.10.

Tabel 4.11 Hazard Ratio Model Terbaik

Variabel	Hazard Ratio			
Usia (X_1)	1.009			
Jenis Pengobatan (2) $(X_{3(2)})$	2.984			
Jenis Pengobatan (3) $(X_{3(3)})$	3.484			
Jenis Pengobatan (4) $(X_{3(4)})$	6.529			
Penyakit Penyerta $(X_{4(1)})$	1.700			
Status Anemia $(X_{6(1)})$	0,455			

Berdasarkan Tabel 4.11 dapat diketahui bahwa setiap penambahan satu tahun usia pasien kanker serviks, maka probabilitas meninggalnya juga akan meningkat satu kali. Sementara itu pasien kanker serviks yang menjalani pengobatan transfusi PRC memiliki probabilitas meninggal karena kanker serviks 2,984 kali lebih besar dibandingkan pasien kanker serviks yang menjalani jenis pengobatan berupa kemoterapi. Dengan demikian dapat dikatakan bahwa jenis pengobatan kemoterapi lebih baik dari pada transfusi PRC. Nilai hazard ratio dari jenis pengobatan 3 yaitu operasi sebesar 3,484 artinya pasien kanker serviks vang menjalani pengobatan operasi memiliki probabilitas meninggal karena kanker serviks 3,484 kali lebih besar dibandingkan pasien kanker serviks yang menjalani jenis pengobatan berupa kemoterapi. Selain itu pasien kanker serviks yang menjalani pengobatan kemoterapi sekaligus transfusi PRC memiliki probabilitas meninggal karena kanker serviks 6,529 kali lebih besar dibandingkan pasien kanker serviks yang menjalani jenis pengobatan berupa kemoterapi. Nilai hazard ratio untuk penyakit penyerta sebesar 1,7 sehingga pasien kanker serviks dimana kanker serviks sebagai penyakit penyerta memiliki probabilitas meninggal 1,7 kali lebih besar dibandingkan pasien kanker serviks dengan kanker serviks sebagai penyakit utama. Status anemia memiliki nilai hazard ratio sebesar 0,455. Nilai ini menunjukkan bahwa probabilitas meninggal pasien menderita anemia 0,455 kali lebih kecil dibandingkan pasien kanker serviks yang tidak menderita anemia atau dengan kata lain probabilitas meninggal pasien yang tidak menderita anemia (1/0,455=2,197) kali lebih besar dibandingkan pasien yang menderita anemia.

LAMPIRAN

Lampiran 1. Data *Survival* Pasien Kanker Serviks di RSUD dr. Soetomo Surabaya.

ID	T	d	\mathbf{X}_{1}	\mathbf{X}_2	X_3	X_4	X_5	X_6
1	3	0	59	3	1	0	0	0
2	2	1	48	4	2	0	1	0
3	157	0	43	3	1	0	0	0
4	4	0	55	2	1	0	0	0
5	44	0	56	3	2	0	0	1
÷	:	:	:	:	:	:	:	:
817	104	0	36	2	4	1	1	0

Keterangan Data:

T : Waktu Survival

d : Status Pasien

0 = tersensor

1 = meninggal

 X_1 : Usia

X₂ : Stadium Kanker Serviks

0 = Stadium 0

1 = Stadium 1

2 = Stadium 2

3 = Stadium 3

4 = Stadium 4

X₃ : Jenis Pengobatan

1 = Kemoterapi

2 = Transfusi PRC

3 = Operasi

4 = Kemoterapi sekaligus Transfusi PRC

X₄ : Penyakit Penyerta

0 = Penyakit Utama

1 = Penyakit Penyerta

X₅ : Komplikasi

0 = Tidak ada komplikasi

1 = ada komplikasi

X₆ : Status Anemia

0 = Tidak menederita anemia

1 = Menderita anemia

Lampiran 2. *Syntax* SAS Membuat Kurva *Survival* Kaplan Meier dan Uji *Log Rank*.

1. Membuat Kurva Kaplan Meier Seluruh Faktor.

```
proc lifetest data=WORK.FP method=KM plots=(s);
time T*d(0);
run;
```

2. Membuat Kurva Kaplan *Meier* dan Uji *Log Rank* Variabel Stadium.

```
proc lifetest data=WORK.FP method=KM plots=(s,lls);
time T*d(0);
strata Stadium;
run;
```

3. Membuat Kurva Kaplan *Meier* dan Uji *Log Rank* Variabel Jenis Pengobatan.

```
proc lifetest data=WORK.FP method=KM plots=(s,lls);
  time T*d(0);
  strata JenisPengobatan;
  run;
```

4. Membuat Kurva Kaplan *Meier* dan Uji *Log Rank* Variabel Penyakit Penyerta.

```
proc lifetest data=WORK.FP method=KM plots=(s,lls);
time T*d(0);
strata PenyakitPenyerta;
run;
```

5. Membuat Kurva Kaplan *Meier* dan Uji *Log Rank* Variabel Komplikasi

```
proc lifetest data=WORK.FP method=KM plots=(s,lls);
time T*d(0);
strata Komplikasi;
run;
```

6. Membuat Kurva Kaplan *Meier* dan Uji *Log Rank* Variabel Status Anemia.

```
proc lifetest data=WORK.FP method=KM plots=(s,lls);
time T*d(0);
strata StatusAnemia;
run;
```

Lampiran 3. Syntax SAS Uji Asumsi Proportional Hazard dengan Grafik $\ln(-\ln \hat{S}(t))$

1. Stadium

```
proc lifetest data=work.FP method=KM outsurv=graf;
time T*d(0);
strata Stadium;
run:
data final;
set graf;
lls=log(-log(survival));
run;
symbol1 color=red;
symbol2 color=black;
symbol3 color=yellow;
symbol4 color=green;
symbol5 color=blue;
proc gplot data=final;
plot lls*T=Stadium;
run:
```

2. Jenis Pengobatan

```
proc lifetest data=work.FP method=KM outsurv=graf;
time T*d(0);
strata JenisPengobatan;
run;
data final;
set graf;
lls=log(-log(survival));
run;
symbol1 color=red;
symbol2 color=blue;
symbol3 color=black;
symbol4 color=green;
proc gplot data=final;
plot lls*T=JenisPengobatan;
run;
```

3. Penyakit Penyerta

```
proc lifetest data=work.FP method=KM outsurv=graf;
time T*d(0);
strata PenyakitPenyerta;
run;
data final;
set graf;
lls=log(-log(survival));
run;
symbol1 color=red;
symbol2 color=blue;
proc gplot data=final;
plot lls*T=PenyakitPenyerta;
run;
```

4. Komplikasi

```
proc lifetest data=work.FP method=KM outsurv=graf;
time T*d(0);
strata Komplikasi;
run;
data final;
set graf;
lls=log(-log(survival));
run;
symbol1 color=black;
symbol2 color=red;
proc gplot data=final;
plot lls*T=Komplikasi;
run;
```

5. Status Anemia

```
proc lifetest data=work.FP method=KM outsurv=graf;
time T*d(0);
strata StatusAnemia;
run;
data final;
set graf;
lls=log(-log(survival));
run;
symbol1 color=red;
symbol2 color=green;
proc gplot data=final;
plot lls*T=StatusAnemia;
run;
```

Lampiran 4. Syntax SAS Uji Asumsi Proportional Hazard dengan Goodness of Fit.

```
proc tphreg data=work.FP;
class Stadium JenisPengobatan PenyakitPenyerta
Komplikasi StatusAnemia/ref=first;
model T*d(0)=Usia Stadium JenisPengobatan
PenyakitPenyerta Komplikasi StatusAnemia;
output out=resid ressch=RUsia RStadium RJenisPengobatan
RPenyakitPenyerta RKomplikasi RStatusAnemia;
proc print data=resid; run;
data events;
set resid;
if d=1;
run;
proc rank data=events out=ranked ties=mean;
var T;
ranks timerank;
run;
proc print data=ranked;run;
proc corr data=ranked nosimple;
var RUsia RStadium RJenisPengobatan RPenyakitPenyerta
RKomplikasi RStatusAnemia;
with timerank;
run;
```

Lampiran 5. Syntax SAS Regresi Cox

1. Regresi Cox Proportional Hazard

```
proc tphreg data=work.FP;
class Stadium jenisPengobatan/ref=first;
model T*d(0)= Usia Stadium JenisPengobatan
PenyakitPenyerta Komplikasi StatusAnemia;
run;
```

2. Regresi Cox Stratifikasi tanpa Interaksi (Satu Variabel Stratifikasi)

```
proc tphreg data=WORK.FP;
class jenisPengobatan/ref=first;
model T*d(0)= Usia JenisPengobatan
PenyakitPenyerta Komplikasi StatusAnemia;
strata Stadium;
run;
```

3. Regresi Cox Stratifikasi dengan Interaksi (Satu Variabel Stratifikasi)

```
proc tphreg data=work.FP;
class jenisPengobatan/ref=first;
model T*d(0)=Usia JenisPengobatan PenyakitPenyerta
Komplikasi StatusAnemia S1_U S1_JP2 S1_JP3 S1_JP4
S1_PP S1_K S1_SA S2_U S2_JP2 S2_JP3 S2_JP4 S2_PP
S2_K S2_SA S3_U S3_JP2 S3_JP3 S3_JP4 S3_PP S3_K
S3_SA S4_U S4_JP2 S4_JP3 S4_JP4 S4_PP S4_K S4_SA;
STRATA Stadium;
run;
```

4. Regresi Cox Stratifikasi tanpa Interaksi (Dua Variabel Stratifikasi)

```
proc tphreg data=work.FP;
class jenisPengobatan/ref=first;
model T*d(0)= Usia JenisPengobatan
PenyakitPenyerta StatusAnemia;
strata Stadium Komplikasi;
run;
```

Lampiran 6. Output SAS Uji Log Rank

1. Stadium

	The SAS Syster	n 06:23 Mc	onday, Apri	il 26, 2016 59	
		The LIFETEST	Γ Procedure	e	
	Testing Homogene	ity of Surviv	/al Curves	for T over Strata	
		Rank Sta	tistics		
	Stad	ium Log-F	Rank Wi	lcoxon	
	0		.535	379.0	
	1			-536.0	
	2			4969.0	
	3			4722.0	
	4	15.	.124	9848.0	
	Covariance	Matrix for t	he Log-Ran	k Statistics	
Stadium	0	1	2	3	4
0	0.45653	-0.01196	-0.13316	-0.30025	-0.01117
1	-0.01196	0.82636	-0.23894	-0.55524	-0.02022
2	-0.13316	-0.23894	8.13187	-7.51008	-0.24969
3		-0.55524	-7.51008		-0.57347
4	-0.01117	-0.02022	-0.24969	-0.57347	0.85455
	Covariance	Matrix for t	he Wilcoxo	n Statistics	
Stadium	0	1	2	3	4
0	181405	-5784	-51892	-118892	-4837
1	-5784	342220	-99214		-8982
2	-51892	-99214	2548597	-2311091	-86400
3	-118892	-228239	-2311091	2857807	-199585
4	-4837	-8982	-86400	-199585	299804
	Tes	st of Equalit	ty over Str		
				Pr >	
	Test	Chi-Square	DF	Chi-Square	
	Log-Rank		4	<.0001	
	Wilcoxon		4	<.0001	
	-2Log(LR)* 80.0769	4	<.0001	

2. Jenis Pengobatan

1 9.77291 -6.08315 -1.80861 -1.88115 2 -6.08315 8.17656 -1.01144 -1.08197 3 -1.80861 -1.01144 3.13142 -0.31138 4 -1.88115 -1.08197 -0.31138 3.27449 Covariance Matrix for the Wilcoxon Statistics JenisPengobatan 1 2 3 4 1 3123962 -1944895 -603661 -575406 2 -1944895 2599941 -337267 -317775 3 -603661 -337267 1040164 -99235	The SAS S	ystem 06:	23 Monday,	April 26, 2016	119
Denis		The LIF	ETEST Proce	dure	
Pengobatan Log-Rank Wilcoxon 1	Testing Homo	-			Strata
1 -12.245 -6276.0 2 7.305 4421.0 3 1.559 872.0 4 3.381 983.0 Covariance Matrix for the Log-Rank Statistics JenisPengobatan 1 2 3 3 4 1 9.77291 -6.08315 -1.80861 -1.88115 2 -6.08315 8.17656 -1.01144 -1.08197 3 -1.80861 -1.01144 3.13142 -0.31138 4 -1.88115 -1.08197 -0.31138 3.27449 Covariance Matrix for the Wilcoxon Statistics JenisPengobatan 1 2 3 3 4 Covariance Matrix for the Wilcoxon Statistics JenisPengobatan 1 2 3 4 Test of Equality over Strata Pr > Test Chi-Square DF Chi-Square			Jenis		
2 7.305 4421.0 3 1.559 872.0 4 3.381 983.0 Covariance Matrix for the Log-Rank Statistics JenisPengobatan 1 2 3 4 1 9.77291 -6.08315 -1.80861 -1.88115 2 -6.08315 8.17656 -1.01144 -1.08197 3 -1.80861 -1.01144 3.13142 -0.31138 4 -1.88115 -1.08197 -0.31138 3.27449 Covariance Matrix for the Wilcoxon Statistics JenisPengobatan 1 2 3 4 Covariance Matrix for the Wilcoxon Statistics JenisPengobatan 1 2 3 4 Test of Equality over Strata Pr > Test Chi-Square DF Chi-Square	P	engobatan	Log-Rank	Wilcoxon	
3 1.559 872.0 4 3.381 983.0 Covariance Matrix for the Log-Rank Statistics JenisPengobatan 1 2 3 4 1 9.77291 -6.08315 -1.80861 -1.88119 2 -6.08315 8.17656 -1.01144 -1.08197 3 -1.80861 -1.01144 3.13142 -0.31138 4 -1.88115 -1.08197 -0.31138 3.27449 Covariance Matrix for the Wilcoxon Statistics JenisPengobatan 1 2 3 4 Covariance Matrix for the Wilcoxon Statistics JenisPengobatan 1 2 3 4 Test of Equality over Strata Pr > Test Chi-Square DF Chi-Square	1		-12.245	-6276.0	
Covariance Matrix for the Log-Rank Statistics JenisPengobatan 1 2 3 4 1 9.77291 -6.08315 -1.80861 -1.88119 2 -6.08315 8.17656 -1.01144 -1.08199 3 -1.80861 -1.01144 3.13142 -0.31138 4 -1.88115 -1.08197 -0.31138 3.27449 Covariance Matrix for the Wilcoxon Statistics JenisPengobatan 1 2 3 4 Covariance Matrix for the Wilcoxon Statistics JenisPengobatan 1 2 3 4 Test of Equality over Strata Pr > Test Chi-Square DF Chi-Square	2		7.305	4421.0	
Covariance Matrix for the Log-Rank Statistics JenisPengobatan 1 2 3 4 4 1 9.77291 -6.08315 -1.80861 -1.88119 -6.08315 8.17656 -1.01144 -1.08197 -6.08315 -1.80861 -1.81144 3.13142 -0.31138 4 -1.88115 -1.08197 -0.31138 3.27449 Covariance Matrix for the Wilcoxon Statistics JenisPengobatan 1 2 3 4 4 5 1 3123962 -1944895 -603661 -575406 -575406 -317779 -99235 992421 Test of Equality over Strata Pr > Test Chi-Square DF Chi-Square	3		1.559	872.0	
JenisPengobatan 1 2 3 3 4 4 1 9.77291 -6.08315 -1.80861 -1.88115 2 -6.08315 8.17656 -1.01144 -1.08195 3 -1.80861 -1.88115 -1.08197 -0.31138 3.27445 4 -1.88115 -1.08197 -0.31138 3.27445	4		3.381	983.0	
1 9.77291 -6.08315 -1.80861 -1.81119 2 -6.08315 8.17656 -1.01144 -1.08197 3 -1.80861 -1.01144 3.13142 -0.31138 4 -1.88115 -1.08197 -0.31138 3.27449 Covariance Matrix for the Wilcoxon Statistics JenisPengobatan 1 2 3 3 4 1 3123962 -1944895 -603661 -575406 2 -1944895 2599941 -337267 -317779 3 -603661 -337267 1040164 -99239 4 -575406 -317779 -99235 992423 Test of Equality over Strata Pr > Test Chi-Square DF Chi-Square	Covaria	nce Matrix f	or the Log-	Rank Statistic	S
2	JenisPengobatan	1	2	2 3	4
3	1	9.77291	-6.08315	-1.80861	-1.88115
4 -1.88115 -1.08197 -0.31138 3.27449 Covariance Matrix for the Wilcoxon Statistics JenisPengobatan 1 2 3 4 1 3123962 -1944895 -603661 -575406 2 -1944895 2599941 -337267 -317779 3 -603661 -337267 1040164 -99235 4 -575406 -317779 -99235 992421 Test of Equality over Strata Pr > Test Chi-Square DF Chi-Square	2	-6.08315	8.17656	-1.01144	-1.08197
Covariance Matrix for the Wilcoxon Statistics JenisPengobatan 1 2 3 4 1 3123962 -1944895 -603661 -575406 2 -1944895 2599941 -337267 -317779 3 -603661 -337267 1040164 -99235 4 -575406 -317779 -99235 992423 Test of Equality over Strata Pr > Test Chi-Square DF Chi-Square	3	-1.80861	-1.01144	3.13142	-0.31138
<pre>JenisPengobatan 1 2 3 4 1 3123962 -1944895 -603661 -575406 2 -1944895 2599941 -337267 -317775 3 -603661 -337267 1040164 -99235 4 -575406 -317779 -99235 992421</pre> Test of Equality over Strata Pr > Test Chi-Square DF Chi-Square	4	-1.88115	-1.08197	-0.31138	3.27449
1 3123962 -1944895 -603661 -575406 2 -1944895 2599941 -337267 -317775 3 -603661 -337267 1040164 -99235 4 -575406 -317779 -99235 992423 Test of Equality over Strata Pr > Test Chi-Square DF Chi-Square	Covaria	nce Matrix f	or the Wild	coxon Statistic	s
2	JenisPengobatan	1	2	2 3	4
3	1	3123962	-1944895	-603661	-575406
4 -575406 -317779 -99235 992423 Test of Equality over Strata Pr > Test Chi-Square DF Chi-Square	2	-1944895	2599941	-337267	-317779
Test of Equality over Strata Pr > Test Chi-Square DF Chi-Square	3	-603661	-337267	1040164	-99235
Pr > Test Chi-Square DF Chi-Square	4	-575406	-317779	-99235	992421
Test Chi-Square DF Chi-Square		Test of Eq	uality over	Strata	
Test Chi-Square DF Chi-Square			Pr >		
Log-Rank 15.7877 3 0.0013	Test	Chi-Squ		Chi-Square	
	Log-			3 0.0013	
Wilcoxon 12.8090 3 0.0051					
-2Log(LR) 13.8625 3 0.0031	-2Lo	g(LR) 13.	8625	3 0.0031	

3. Penyakit Penyerta

The SAS	System	06:23	Monday,	April	26,	2016	137

The LIFETEST Procedure

Testing Homogeneity of Survival Curves for T over Strata

Rank Statistics

Penyerta	Penyakit Log-Rank	Wilcoxon
0	-4.6078	-2622.0
1	1 6078	2622 0

Covariance Matrix for the Log-Rank Statistics

PenyakitPenyerta	0	1
0	4.65272	-4.65272
1	-4.65272	4.65272

Covariance Matrix for the Wilcoxon Statistics

PenyakitPenyerta	0	1
0	1488754	-1488754
1	-1488754	1488754

Test of Equality over Strata

	Pr >		
Test	Chi-Square	DF	Chi-Square
Log-Rank	4.5633	1	0.0327
Wilcoxon	4.6179	1	0.0316
-2Log(LR)	3.9319	1	0.0474

4. Komplikasi

The SAS System 06:23 Monday, April 26, 2016 156

The LIFETEST Procedure

Testing Homogeneity of Survival Curves for T over Strata ${\sf Rank\ Statistics}$

Komplikasi	Log-Rank	Wilcoxor
0	-24.821	-12954
1	24.821	12954

Covariance Matrix for the Log-Rank Statistics

Komplikasi	0	1
0	7.94679	-7.94679
1	-7.94679	7.94679

Covariance Matrix for the Wilcoxon Statistics

Komplikasi	0	1
0	2517136	-2517136
1	-2517136	2517136

Test of Equality over Strata

	Pr >		
Test	Chi-Square	DF	Chi-Square
Log-Rank	77.5287	1	<.0001
Wilcoxon	66.6655	1	<.0001
-2Log(LR)	67.9102	1	<.0001

5. Status Anemia

٠	5. Status Alicilia
	The SAS System 06:23 Monday, April 26, 2016 175
	The LIFETEST Procedure
	Testing Homogeneity of Survival Curves for T over Strata Rank Statistics
	Status Anemia Log-Rank Wilcoxon
	0 -9.5266 -4885.0 1 9.5266 4885.0
	Covariance Matrix for the Log-Rank Statistics
	StatusAnemia 0 1
	0 9.31485 -9.31485
	1 -9.31485 9.31485
	Covariance Matrix for the Wilcoxon Statistics
	StatusAnemia 0 1
	0 2958452 -2958452
	1 -2958452 2958452
	Test of Equality over Strata
	Pr >
	Test Chi-Square DF Chi-Square
	Log-Rank 9.7431 1 0.0018
	Wilcoxon 8.0661 1 0.0045
	-2Log(LR) 7.2250 1 0.0072

Lampiran 7. Output Regresi Cox Proportional Hazard

	Model	. Fit Stati	stics		
		Witho	ut	With	
	Criterion	Covaria	tes Cova	riates	
	-2 LOG L	487.	912 3	58.975	
	AIC	487.	912 3	80.975	
	SBC	487.	912 3	99.553	
	Testing Glo	bal Null H	ypothesis: B	ETA=0	
	Test	Chi-Squa	re DF	Pr > ChiSq	
	Likelihood Ratio	128.93	66 11	<.0001	
	Score	326.32	62 11	<.0001	
	Wald	106.48	66 11	<.0001	
•	The s	SAS System	23:18 S	aturday, May 1, 201	6
2	The	e TPHREG P	rocedure		
		Type 3 T	ests		
		71 -	Wald		
	Effect	DF	Chi-Square	Pr > ChiSq	
	Usia	1	0.1522	0.6964	
	Stadium	4	61.1053	<.0001	
	JenisPengobatan	3	8.3912	0.0386	
	PenyakitPenyerta	1	1.1648	0.2805	
	Komplikasi	1	18.8097	<.0001	
	StatusAnemia	1	2.3898	0.1221	

Lampiran 7. Output Regresi Cox Proportional Hazard (lanjutan)

		Analysis	of Maximum	Likelihood Est	imates	
			Parameter	Standard		
Parameter		DF	Estimate	Error	Chi-Square	Pr > ChiSo
Usia		1	0.00874	0.02240	0.1522	0.6964
Stadium	1	1	-13.74495	938.24614	0.0002	0.9883
Stadium	2	1	-2.27751	1.24287	3.3579	0.0669
Stadium	3	1	-1.18053	1.04144	1.2849	0.2576
Stadium	4	1	1.66255	1.05573	2.4800	0.1153
JenisPengobatan	2	1	1.11758	0.66706	2.8069	0.0939
JenisPengobatan	3	1	1.38166	0.63253	4.7713	0.0289
JenisPengobatan	4	1	1.90439	0.73570	6.7006	0.0096
PenyakitPenyerta		1	0.43925	0.40699	1.1648	0.280
Komplikasi		1	2.45643	0.56639	18.8097	<.0001
StatusAnemia		1	-0.84446	0.54626	2.3898	0.1221

Analysis of Maximum Likelihood Estimates

Parameter		Hazard Ratio	Variable Label
Usia		1.009	Usia
Stadium	1	0.000	Stadium 1
Stadium	2	0.103	Stadium 2
Stadium	3	0.307	Stadium 3
Stadium	4	5.273	Stadium 4
JenisPengobatan	2	3.057	JenisPengobatan 2
JenisPengobatan	3	3.981	JenisPengobatan 3
JenisPengobatan	4	6.715	JenisPengobatan 4
PenyakitPenyerta		1.552	PenyakitPenyerta
Komplikasi		11.663	Komplikasi
StatusAnemia		0.430	StatusAnemia

Lampiran 8. *Output* Regresi Cox Stratifikasi tanpa Interaksi dengan Satu Variabel Stratifikasi

			Mod	lel Fit 9	Statisti	cs		
			W	ithout		With		
		Criterion	Cova	riates	Cova	riates		
		-2 LOG L	3	38.882	25	93.357		
		AIC		38.882	30	07.357		
		SBC	3	38.882	3:	19.179		
		Testing G	ilobal Nul	1 Hypoth	esis: B	ETA=0		
Te	st		Chi-S	quare	DF	Pr > ChiSq		
Li	kelih	ood Ratio	45	.5251	7	<.0001		
	ore		46	.8995	7	<.0001		
Wa	ld			.7494	7	<.0001		
			The	SAS Syst				2
			The TPHRE	G Proced		:32 Wednesday,	April 28, 2016	
				3 Tests				
			.,,,,		Wald			
E	ffect		DF	Chi-S	quare	Pr > ChiSq		
11	sia		1	а	.1288	0.7197		
		engobatan			.1228	0.0681		
		itPenyerta			.4805	0.2237		
	ompli	-	1		.4763	<.0001		
		Anemia	1		.0917	0.1481		
		Analysis c	of Maximum	Likelih	ood Est	imates		
		P	arameter	Sta	ndard			
Parameter		DF	Estimate		Error	Chi-Square	Pr > ChiSq	
Usia		1	0.00795	0.	02216	0.1288	0.7197	
JenisPengobatan		1	1.01776		66475	2.3441	0.1258	
JenisPengobatan		1	1.12238		63699	3.1047	0.0781	
JenisPengobatan		1	1.80451		72965	6.1163	0.0134	
PenyakitPenyert	a	1	0.49158		40401	1.4805	0.2237	
Komplikasi		1	2.40407		57507	17.4763	<.0001	
StatusAnemia		1	-0.79705	0.	55110	2.0917	0.1481	
		Analysis c	of Maximum	Likelih	ood Est	imates		
				Hazard				
	Param	eter		Ratio	Varia	ble Label		
	Usia			1.008	Usia			
		Pengobatan		2.767		Pengobatan 2		
		Pengobatan		3.072		Pengobatan 3		
		Pengobatan		6.077		Pengobatan 4		
	-	kitPenyert		1.635	-	kitPenyerta		
		ikasi		11.068	Komp1:			
		sAnemia		0.451		sAnemia		

Lampiran 9. *Output* Regresi Cox Stratifikasi Interaksi dengan Satu Variabel Stratifikasi

	М÷	hout	With	
Criterion	Covari		riates	
-2 LOG L	338	3.882 2	268.895	
AIC			322.895	
SBC			368.495	
		Hypothesis: E		
Test	Chi-Squ	iare DF	Pr > ChiSq	
Likelihood Ratio	69.9	873 27	<.0001	
Score	74.1	.646 27	<.0001	
Wald	31.4	741 27	0.2521	
		TPHREG Proced	ure	
	Type 3	Tests		
		Wald		
Effect	DF	Chi-Square	Pr > ChiSq	
Usia	1	0.0000	0.9956	
JenisPengobatan	3	0.0000	1.0000	
PenyakitPenyerta	1	0.0000	0.9999	
Komplikasi	1	0.0000	0.9976	
StatusAnemia	1	0.0000	0.9997	
S1_U	0			
S1_JP2	0	•		
S1_JP3	0	•		
S1_JP4	1	0.0000	0.9990	
S1_PP	0	•		
S1_K	0	•	•	
S1_SA	0			
S2_U	1	0.0000	0.9997	
S2_JP2	1	0.0000	0.9997	
S2_JP3 S2_JP4	1 0	0.0000	1.0000	
S2_PP	1	0.0000	0.9998	
52_FF S2_K	1	0.0000	0.9983	
52_K S2_SA	1	0.0000	0.9999	
S3_U	1	0.0000	0.9956	
S3 JP2	1	0.0000	0.9996	
S3_JP3	1	0.0000	0.9999	
S3_JP4	1	0.0000	0.9992	
S3_PP	1	0.0000	0.9999	
S3_K	1	0.0000	0.9974	
S3_SA	1	0.0000	0.9998	
S4_U	1	0.0000	0.9954	
S4_JP2	1	0.0000	0.9996	
S4_JP3	1	0.0000	0.9999	
S4_JP4	0			
S4_PP	1	0.0000	0.9999	
S4_K	1	0.0000	0.9961	
S4_SA	1	0.0000	0.9998	

Lampiran 9. *Output* Regresi Cox Stratifikasi Interaksi dengan Satu Variabel Stratifikasi (Lanjutan I)

	Ana	lysis of Maximu	m Likelihood E	Estimates	
		Parameter	Standard		
Parameter	DF	Estimate	Error	Chi-Square	Pr > ChiSq
Usia	1	-2.39080	434.79998	0.0000	0.9956
JenisPengobatan	2 1	32.44165	62167	0.0000	0.9996
JenisPengobatan	3 1	9.92141	58319	0.0000	0.9999
JenisPengobatan	4 1	64.12847	64074	0.0000	0.9992
PenyakitPenyerta	1	6.79261	58421	0.0000	0.9999
Komplikasi	1	-26.46496	8769	0.0000	0.9976
StatusAnemia	1	-20.28181	63220	0.0000	0.9997
S1_U	0	0			
S1_JP2	0	0			
S1 JP3	0	0			
S1_JP4	1	-81.70704	64409	0.0000	0.9990
S1_PP	0	0			
S1_K	0	0	•		
S1_SA	0	0			
		The SAS	System		5
				:32 Wednesday,	April 28, 2016
	Analys	sis of Maximum	Likelihood Est	imates	
	Analys	sis of Maximum	Likelihood Est Standard	imates	
Parameter	Analys DF			imates Chi-Square	Pr > ChiSq
	DF 1	Parameter	Standard		Pr > ChiSq 0.9997
S2_U	DF	Parameter Estimate	Standard Error	Chi-Square	·
S2_U S2_JP2	DF 1	Parameter Estimate -0.40685	Standard Error 1069	Chi-Square	0.9997
S2_U S2_JP2 S2_JP3 S2_JP4	DF 1 1 1	Parameter Estimate -0.40685 -24.91612 1.92077 0	Standard Error 1069 63359	Chi-Square 0.0000 0.0000	0.9997 0.9997
S2_U S2_JP2 S2_JP3 S2_JP4 S2_PP	DF 1 1 1 0	Parameter Estimate -0.40685 -24.91612 1.92077 0 -13.99034	Standard Error 1069 63359 439614 58868	Chi-Square	0.9997 0.9997 1.0000
S2_U S2_JP2 S2_JP3 S2_JP4 S2_PP S2_K	DF 1 1 0 1 1	Parameter Estimate -0.40685 -24.91612 1.92077 0 -13.99034 63.13691	Standard Error 1069 63359 439614 58868 29551	Chi-Square 0.0000 0.0000 0.0000 0.0000 0.0000	0.9997 0.9997 1.0000 0.9998 0.9983
S2_U S2_JP2 S2_JP3 S2_JP4 S2_PP S2_K S2_SA	DF 1 1 1 0 1 1 1	Parameter Estimate -0.40685 -24.91612 1.92077 0 -13.99034 63.13691 5.55856	Standard Error 1069 63359 439614 58868 29551 64575	Chi-Square 0.0000 0.0000 0.0000 . 0.0000 0.0000 0.0000	0.9997 0.9997 1.0000 0.9998 0.9983 0.9999
S2_U S2_JP2 S2_JP3 S2_JP4 S2_PP S2_K S2_SA S3_U	DF 1 1 1 0 1 1 1 1 1 1 1 1	Parameter Estimate -0.40685 -24.91612 1.92077 0 -13.99034 63.13691 5.55856 2.39815	Standard Error 1069 63359 439614 58868 29551 64575 434.79998	Chi-Square 0.0000 0.0000 0.0000 . 0.0000 0.0000 0.0000	0.9997 0.9997 1.0000 0.9998 0.9983 0.9999
S2_U S2_JP2 S2_JP3 S2_JP4 S2_PP S2_K S2_SA S3_U S3_JP2	DF 1 1 1 0 1 1 1 1 1 1 1 1	Parameter Estimate -0.40685 -24.91612 1.92077 0 -13.99034 63.13691 5.55856 2.39815 -31.44599	Standard Error 1069 63359 439614 58868 29551 64575 434.79998 62167	Chi-Square 0.0000 0.0000 0.0000 . 0.0000 0.0000 0.0000 0.0000	0.9997 0.9997 1.0000 0.9998 0.9983 0.9999 0.9956
S2_U S2_JP2 S2_JP3 S2_JP4 S2_PP S2_K S2_SA S3_U S3_JP2 S3_JP2 S3_JP3	DF 1 1 1 0 1 1 1 1 1 1 1 1 1 1	Parameter Estimate -0.40685 -24.91612 1.92077 0 -13.99034 63.13691 5.55856 2.39815 -31.44599 -7.93107	Standard Error 1069 63359 439614 58868 29551 64575 434.79998 62167 58319	Chi-Square 0.0000 0.0000 0.0000 . 0.0000 0.0000 0.0000 0.0000	0.9997 0.9997 1.0000 0.9998 0.9983 0.9999 0.9956 0.9996
S2_U S2_JP2 S2_JP3 S2_JP4 S2_PP S2_K S2_SA S3_JU S3_JP2 S3_JP2 S3_JP3 S3_JP4	DF 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1	Parameter Estimate -0.40685 -24.91612 1.92077 0 -13.99034 63.13691 5.55856 2.39815 -31.44599 -7.93107 -61.89545	Standard Error 1069 63359 439614 58868 29551 64575 434.79998 62167 58319 64074	Chi-Square 0.0000 0.0000 0.0000 . 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.9997 0.9997 1.0000 0.9998 0.9983 0.9999 0.9956 0.9996 0.9999
S2_U S2_JP2 S2_JP3 S2_JP4 S2_PP S2_K S2_SA S3_U S3_JP2 S3_JP3 S3_JP4 S3_PP	DF 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1	Parameter Estimate -0.40685 -24.91612 1.92077 0 -13.99034 63.13691 5.55856 2.39815 -31.44599 -7.93107 -61.89545 -6.21566	Standard Error 1069 63359 439614 . 58868 29551 64575 434.79998 62167 58319 64074 58421	Chi-Square 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.9997 0.9997 1.0000 0.9998 0.9983 0.9999 0.9956 0.9999 0.9992
S2_U S2_JP2 S2_JP3 S2_JP4 S2_PP S2_K S2_SA S3_U S3_JP2 S3_JP3 S3_JP4 S3_PP S3_PP	DF 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1	Parameter Estimate -0.40685 -24.91612 1.92077 0 -13.99034 63.13691 5.55856 2.39815 -31.44599 -7.93107 -61.89545 -6.21566 28.20288	Standard Error 1069 63359 439614 58868 29551 64575 434.79998 62167 58319 64074 58421 8769	Chi-Square 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.9997 0.9997 1.0000 0.9998 0.9998 0.9999 0.9996 0.9999 0.9992 0.9999
S2_U S2_JP2 S2_JP3 S2_JP4 S2_PP S2_K S2_SA S3_JU S3_JP2 S3_JP2 S3_JP4 S3_JP4 S3_JP4 S3_JP4 S3_JP4 S3_JP4	DF 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Parameter Estimate -0.40685 -24.91612 1.92077 0 -13.99034 63.13691 5.55856 2.39815 -31.44599 -7.93107 -61.89545 -6.21566 28.20288 19.79732	Standard Error 1069 63359 439614 58868 29551 64575 434.79998 62167 58319 64074 58421 8769 63220	Chi-Square 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.9997 0.9997 1.0000 0.9998 0.9983 0.9999 0.9996 0.9999 0.9992 0.9999 0.9994 0.9998
S2_U S2_JP2 S2_JP3 S2_JP4 S2_PP S2_K S2_SA S3_JP2 S3_JP2 S3_JP3 S3_JP4 S3_PP S3_S3_K S3_JP4 S3_PP S3_K S3_SA	DF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Parameter Estimate -0.40685 -24.91612 1.92077 0 -13.99034 63.13691 5.55856 2.39815 -31.44599 -7.93107 -61.89545 -6.21566 28.20288 19.79732 2.48395	Standard Error 1069 63359 439614 58868 29551 64575 434.79998 62167 58319 64074 58421 8769 63220 434.79998	Chi-Square 0.0000 0.0000 0.0000 . 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.9997 0.9997 1.0000 0.9998 0.9983 0.9999 0.9956 0.9996 0.9999 0.9999 0.9999
S2_U S2_JP2 S2_JP3 S2_JP4 S2_PP S2_K S2_SA S3_JP2 S3_JP2 S3_JP3 S3_JP4 S3_PP S3_S3_K S3_JP4 S3_PP S3_K S3_SA	DF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Parameter Estimate -0.40685 -24.91612 1.92077 0 -13.99034 63.13691 5.55856 2.39815 -31.44599 -7.93107 -61.89545 -6.21566 28.20288 19.79732	Standard Error 1069 63359 439614 58868 29551 64575 434.79998 62167 58319 64074 58421 8769 63220	Chi-Square 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.9997 0.9997 1.0000 0.9998 0.9983 0.9999 0.9996 0.9999 0.9992 0.9999 0.9994 0.9998
S2_U S2_JP2 S2_JP3 S2_JP4 S2_PP S2_K S2_SA S3_U S3_JP2 S3_JP3 S3_JP4 S3_PP S3_K S3_SA S4_U S4_JP2 S4_JP2 S4_JP2	DF 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Parameter Estimate -0.40685 -24.91612 1.92077 0 -13.99034 63.13691 5.55856 2.39815 -31.44599 -7.93107 -61.89545 -6.21566 28.20288 19.79732 2.48395 -29.65936 -8.29219	Standard Error 1069 63359 439614 58868 29551 64575 434.79998 62167 58319 64074 58421 8769 63220 434.79998	Chi-Square 0.0000 0.0000 0.0000 . 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.9997 0.9997 1.0000 0.9998 0.9983 0.9999 0.9956 0.9996 0.9999 0.9999 0.9999
S2_U S2_JP2 S2_JP3 S2_JP4 S2_PP S2_K S2_SA S3_JP2 S3_JP2 S3_JP4 S3_JP4 S3_JP4 S3_JP4 S3_JP4 S3_JP4 S3_JP4 S3_JP4 S3_JP4 S3_JP3 S4_JP3 S4_JP3 S4_JP3	DF 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0	Parameter Estimate -0.40685 -24.91612 1.92077 0 -13.99034 63.13691 5.55856 2.39815 -31.44599 -7.93107 -61.89545 -6.21566 28.20288 19.79732 2.48395 -29.65936 -8.29219	Standard Error 1069 63359 439614 . 58868 29551 64575 434.79998 62167 58319 64074 58421 8769 63220 434.79998 62167 58319	Chi-Square 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.9997 0.9997 1.0000 0.9998 0.9983 0.9999 0.9996 0.9999 0.9992 0.9999 0.9994 0.9998 0.9994 0.9998
S2_U S2_JP2 S2_JP4 S2_PP S2_K S2_SA S3_JP2 S3_JP2 S3_JP4 S3_JP4 S3_JP4 S3_SA S4_U S4_JP2 S4_JP2 S4_JP2 S4_JP2 S4_JP3 S4_JP4 S4_PP	DF 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Parameter Estimate -0.40685 -24.91612 1.92077 0 -13.99034 63.13691 5.55856 2.39815 -31.44599 -7.93107 -61.89545 -6.21566 28.20288 19.79732 2.48395 -29.65936 -8.29219 0 -6.20376	Standard Error 1069 63359 439614 58868 29551 64575 434.79998 62167 58319 64074 58421 8769 63220 434.79998 62167 58319	Chi-Square 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.9997 0.9997 1.0000 0.9998 0.9983 0.9999 0.9996 0.9999 0.9992 0.9999 0.9994 0.9998 0.9998
Parameter S2_U S2_JP2 S2_JP3 S2_JP4 S2_PP S2_K S2_SA S3_U S3_JP2 S3_JP3 S3_JP4 S3_PP S3_K S3_SA S4_U S4_JP2 S4_JP3 S4_JP4 S4_PP S4_S4_S5_K S4_S6_S5_S6	DF 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0	Parameter Estimate -0.40685 -24.91612 1.92077 0 -13.99034 63.13691 5.55856 2.39815 -31.44599 -7.93107 -61.89545 -6.21566 28.20288 19.79732 2.48395 -29.65936 -8.29219	Standard Error 1069 63359 439614 . 58868 29551 64575 434.79998 62167 58319 64074 58421 8769 63220 434.79998 62167 58319	Chi-Square 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.9997 0.9997 1.0000 0.9998 0.9983 0.9999 0.9996 0.9999 0.9992 0.9999 0.9994 0.9998 0.9994 0.9998

Lampiran 9. *Output* Regresi Cox Stratifikasi Interaksi dengan Satu Variabel Stratifikasi (Lanjutan II)

	Hazard	
Danameten		Vanishla Labal
Parameter	Ratio	Variable Label
Usia	0.092	Usia
JenisPengobatan	2 1.228E14	JenisPengobatan 2
JenisPengobatan	3 20361.78	JenisPengobatan 3
JenisPengobatan	4 7.09E27	JenisPengobatan 4
PenyakitPenyerta	891.236	PenyakitPenyerta
Komplikasi	0.000	Komplikasi
StatusAnemia	0.000	StatusAnemia
S1_U		S1_U
S1_JP2	•	S1_JP2
S1_JP3	•	S1_JP3
S1_JP4	0.000	S1_JP4
S1_PP		S1_PP
S1_K		S1_K
S1_SA		S1_SA
S2_U	0.666	S2_U
S2_JP2	0.000	S2_JP2
S2 JP3	6.826	S2 JP3
S2_JP4		S2_JP4
S2 PP	0.000	S2 PP
S2_K	2.63E27	S2_K
S2_SA	259.449	S2 SA
	11.003	S3_U
S3 JP2	0.000	S3 JP2
S3_JP3	0.000	S3_JP3
S3 JP4	0.000	S3 JP4
S3_PP	0.002	S3_PP
S3_K	1.772E12	S3_K
	The SAS System	1 2
	THE SAS SYSEEN	17:32 Wednesday, April 28, 201
Т	he TPHREG Proced	lure
Analysis of	Maximum Likelih	ood Estimates
	Hazard	
Parameter	Ratio	Variable Label
S3 SA	3.9616E8	S3 SA
S4 U	11.989	_
S4_JP2	0.000	S4_JP2
S4_JP3	0.000	S4 JP3
S4 JP4	•	S4 JP4
S4_PP	0.002	_
S4_K	7.259E18	_
S4_SA	40303581	S4_SA

Lampiran 10. *Output* Regresi Cox Stratifikasi tanpa Interaksi dengan Dua Variabel Stratifikasi

		Model Fi	+ 5+2+1	tics			
			thout	SCICS	With		
	Criterion		iates	Covan	riates		
	CLICELION	COVAI.	Tares	COVAL	Tares		
	-2 LOG L	27	8.340	27	0.247		
	AIC	27	8.340	28	32.247		
	SBC	27	8.340	29	2.381		
		The SAS	System	1	.2:31 Sunday, M	lay 2, 2016	2
	Th	ne TPHREG	Procedu	ıre			
	Testing Glo	bal Null	Hypothe	sis: BE	TA=0		
Test		Chi-Sq	uare	DF	Pr > ChiSq		
Likel	hood Ratio	8.	0928	6	0.2314		
Score		9.	1768	6	0.1639		
Wald		8.	9538	6	0.1762		
			- .				
		Type 3		Wald			
Ltto		DE			Do > Chica		
Effe	. L	DF	Chi-So	luare	Pr > ChiSq		
Usia		1	0.	1696	0.6805		
Jenis	Pengobatan	3	7.	7905	0.0505		
Penya	akitPenyerta	1	1.	6931	0.1932		
Stati	ısAnemia	1	2.	0078	0.1565		
	Analysis of	Maydmin	likaliha	ad Fati	mates		
		rameter		idard	.mates		
Parameter		timate		rror	Chi-Square	Pr > ChiSq	
r ur ume cer	D1 E3	, cima cc	-		CIII Squui C	11 / 611254	
Usia	1 0	.00928	0.0	2253	0.1696	0.6805	
JenisPengobatan 2	1 1	.09324	0.6	6434	2.7080	0.0998	
JenisPengobatan 3	1 1	.24806	0.6	4733	3.7173	0.0539	
JenisPengobatan 4		.87631	0.7	2920	6.6209	0.0101	
PenyakitPenyerta		.53058		0777	1.6931	0.1932	
StatusAnemia		78783		5599	2.0078	0.1565	
	Analysis of			od Esti	.mates		
_			azard	.,			
Para	ameter		Ratio	variab	ole Label		
Usia	a .		1.009	Usia			
Jeni	isPengobatan	2	2.984	JenisP	engobatan 2		
Jeni	sPengobatan	3	3.484	JenisP	engobatan 3		
Jeni	isPengobatan	4	6.529	JenisP	engobatan 4		
Peny	/akitPenyerta		1.700	Penyak	itPenyerta		
Stat	usAnemia		0.455	Status	Anemia		

Lampiran 11. Hasil Pengujian Interaksi dan Uji Asumsi *Proportional Hazard* dengan *Goodness of Fit*

Hasil Pengujian Interaksi

The SAS System 4
15:32 Saturday, June 19, 2016

Obs reduced full df p_value

1 293.357 268.895 28 0.65693

2. Output Uji Asumsi Proportional Hazard dengan Goodness Of Fit

```
Pearson Correlation Coefficients, N = 40
                            Prob > |r| under H0: Rho=0
                                           RJenis RPenyakit
                                                                           RStatus
                       RUsia RStadium Pengobatan
                                                  Penyerta RKomplikasi
                                                                            Anemia
timerank
                     0.01204
                              0.86698
                                          0.11932
                                                     0.26780
                                                                -0.32232 -0.13397
Rank for Variable T
                     0.9412
                               <.0001
                                          0.4633
                                                      0.0948
                                                                  0.0425
                                                                            0.4098
```

SURAT PERNYATAAN LEGALITAS DATA

Saya yang bertanda tangan di bawah ini, mahasiswa Jurusan Statistika FMIPA ITS:

Nama: Pricilian Indah Mustika

NRP: 1312100024

menyatakan bahwa data yang digunakan dalam Tugas Akhir ini merupakan data sekunder yang diambil dari penelitian Kompetitif Nasional dengan Skim Kerjasama dan Publikasi Internasional

> Judul: Predicting Survival of Cervical Cancer Based On Support Vector Machine and Bayesian Survival

Peneliti: Santi Wulan Purnami, M.Si, Ph.D

Surat Pernyataan ini dibuat dengan sebenarnya. Apabila terdapat pemalsuan data maka saya siap menerima sanksi sesuai aturan yang berlaku.

Mengetahui Pembimbing Tugas Akhir

(Santi Wulan Purnami, M.Si, Ph.D) NIP. 19720923 199803 2 001 Surabaya, 6 Juni 2016

(Pricilian Indah Mustika) NRP. 1312100024 (Halaman ini sengaja dikosongkan)

DAFTAR LAMPIRAN

halaman

Halan	iuii
Data Survival Pasien Kanker Serviks di RSUD	
	.65
•	
•	.67
3 0	
dengan Grafik $\ln(-\ln \hat{S}(t))$.69
Syntax SAS Uji Asumsi Proportional Hazard	!
dengan Goodness of Fit	.72
Syntax SAS Regresi Cox	.73
Output SAS Uji Log Rank	
Output Regresi Cox Proportional Hazard	.79
Output Regresi Cox Stratifikasi tanpa Interaksi	
dengan Satu Variabel Stratifikasi	.81
Output Regresi Cox Stratifikasi Interaksi dengan	
1 0 1	
- · · · · · · · · · · · · · · · · · · ·	
, v	
	Syntax SAS Uji Asumsi Proportional Hazard dengan Goodness of Fit

BAB V KESIMPULAN DAN SARAN

5.1 Kesimpulan

Berdasarkan analisis yang telah dilakukan, maka diperoleh beberapa kesimpulan sebagai berikut

- 1. Berdasarkan hasil analisis kurva *survival* Kaplan-Meier dan uji *Log Rank*, variabel yang memiliki perbedaan kurva *survival* Kaplan-Meier adalah variabel stadium, jenis pengobatan, penyakit penyerta, komplikasi dan status anemia.
- 2. Hasil pengujian asumsi *proportional hazard* menunjukkan bahwa variabel yang tidak memenuhi asumsi *proportional hazard* pada taraf signifikansi 1% adalah variabel stadium sedangkan jika menggunakann taraf signifikansi 5% adalah stadium dan komplikasi. Sehingga metode yang digunakan untuk memodelkan ketahanan hidup penderita kanker serviks di RSUD dr. Soetomo Surabaya adalah Regresi Cox Stratifikasi.
- 3. Model terbaik pada analisis *survival* untuk data ketahanan hidup pasien kanker serviks yang melakukan rawat inap di RSUD dr. Soetomo Surabaya adalah model regresi Cox stratifikasi tanpa interakasi dengan dua variabel stratifikasi yaitu stadium dan komplikasi. Pemilihan model terbaik didasarkan pada kriteria AIC yang terkecil yaitu sebesar 282,247. Variabel yang signifikan mempengaruhi model pada taraf signifikansi 5% adalah jenis pengobatan kemoterapi sekaligus transfusi PRC sedangkan jika menggunakan taraf signifikansi 10%, maka variabel yang berpengaruh signifikan terhadap ketahanan hidup pasien kanker serviks adalah jenis pengobatan berupa transfusi PRC, operasi dan kemoterapi sekaligus transfusi PRC.

5.2 Saran

Berdasarkan hasil penelitian, terdapat beberapa saran sebagai berikut.

- 1. Pada penelitian selanjutnya, sebaiknya waktu penelitian diperpanjang minimal selama lima tahun karena ketahanan hidup pasien kanker serviks lebih efektif jika diukur selama lima tahun setelah diagnosis. Selain itu juga agar tidak terlalu banyak data tersensor dan bisa mengamati *event* lebih jelas lagi.
- 2. Faktor yang diduga berpengaruh terhadap ketahanan hidup pasien kanker serviks sebaiknya didiskusikan lagi dengan pihak medis agar hasil penelitian yang didapatkan lebih akurat baik secara medis maupun statistika.

DAFTAR PUSTAKA

- Aczel, A.D. dan Sounderpandian, J., 2008, *Complete Business Statistics 7th Edition*, United States of America: The McGraw Hill Companies, Inc
- Afifah, A. N. (2015). Regresi *Cox Extended* untuk Memodelkan Ketahanan Hidup Kanker Serviks di RSUD dr. Soetomo Surabaya. *Tugas Akhir ITS*
- American Cancer Society. (2014). Cancer Facts in Medical Research. Atlanta: American Cancer Society.
- Ata, S., dan Tekin, M., (2007), Cox Regression Model with Nonproportional hazard Applied to Lung Cancer Survival Data. Hacettepe Journal of Mathematics and Statistics, (2), 157 167.
- Collet, D. (1994). *Modelling Survival Data in Medical Research*. London: Chapman & Hall/CRC
- Dinas Kesehatan Republik Indonesia. (2014). *Hilangkan Mitos Tentang Kanker*. Jakarta: Kementerian Kesehatan. Republik Indonesia.
- Feriana, D. A. (2011). Model Cox Stratifikasi. *Skripsi Universitas Indonesia*
- Hosmer, D., Lameshow, S., dan May, S. (2008). *Applied Survival Analysis*. Hokoben, New Jersey: Wiley & Sons, Inc.
- Kementrian Kesehatan RI. (2013). Riset Kesehatan Dasar (RISKESDAS) 2013. Jakarta: Kementrian Kesehatan RI. (2013)
- Kementrian Kesehatan RI. (2014). Info Datin. Stop Kanker , hal. 2-8.
- Kementrian Kesehatan RI. (2015). Panduan Pelayanan Klinis Kanker Serviks. Komisi Penanggulangan Kanker Nasional.
- Inayati, K. D. (2015). Analisis *Survival* pada Pasien Kanker Serviks di RSUD Dr. Soetomo Surabaya Menggunakan Model *Cox* Stratifikasi. Tugas Akhir ITS.

- Kleinbaum, D. G., dan Klein, M. (2012). Survival Analysis A Self-Learning Text Third Edition. Newyork: Springer.
- Purnami, S.W. (2015). Predicting Survival of Cervical Cancer Based On Support Vector Machine and Bayesian Survival. Laporan Penelitian: Dikti
- Rasjidi, I. (2009). Epidemiologi Kanker Serviks. Indonesia *Journal of Cancer* Vol III No. 3, 103-108.
- Schoenfeld, D. (1982). Partial Residual for The Proportional Hazard Regression Model. Biometrika. Vol 69, No. 1,hal 239-241.
- Sirait, A. M., Farid, A., dan Oemiati, R. (2003). Ketahanan Hidup Penderita Kanker Serviks di Rumah Sakit Kanker Dharmais Jakarta. Penelitian Kesehatan Vol. 31, No.1, 2003: 13-24.
- WHO. (2013). Comprehensive Cervical Cancer Prevention and Control: a Healthier Future for Girls and Women. WHO Guidance Note, 1-12.

BIODATA PENULIS

Penulis dengan nama lengkap Pricilian Indah Mustika, lahir di Lumajang pada 8 September 1993. Anak Pertama dari Bambang Mustiko dan Umi Nadhifah. Penulis memiliki 3 orang adik perempuan bernama Selvin Ayu Mustika, Mira Febriana Arum Mustika dan Imelda Nanda Mustika. Pendidikan yang ditempuh penulis adalah Muslimat NU Tempeh Tengah tahun 1998-2000. SDN Tempeh Tengah tahun 2000-2006, SMPN 1

Tempeh tahun 2006-2009, SMAN 2 Lumajang tahun 2009-2012. Setelah lulus SMA, penulis melanjutkan studi S1 di jurusan Statistika ITS melalui jalur SNMPTN Undangan pada tahun 2012.

Selama kuliah, penulis pernah aktif di BEM FMIPA ITS menjadi Staff Departemen Perekonomian dan Sosial Masyarakat 2013/2014. Penulis juga pernah mengikuti pelatihan LKMM Pra-TD FMIPA ITS, Pelatihan Surveyor dan *Goes to* PKM-GT pada tahun 2012. Selain itu penulis juga aktif di berbagai kepanitiaan, diantaranya sie Acara LKMM Pra-TD dan Sie Kestari PRS 2014. Prestasi yang pernah dicapai penulis adalah menjadi semifinalis NSC 2015 dan PKMP didanai Tahun 2015. Untuk informasi maupun saran dari Tugas Akhir ini, pembaca dapat menghubungi penulis di pricilianmustika@gmail.com.