

TUGAS AKHIR - TL141584

ANALISA PENGARUH DOPAN Ni-Zn DENGAN VARIASI TEMPERATUR SINTERING DAN VARIASI pH TERHADAP STRUKTUR MIKRO DAN SIFAT MAGNETIK BARIUM HEKSAFERRIT DENGAN METODE SOL-GEL AUTO COMBUSTION

A MARSHA ALVIANI NRP. 2711 100 094

Dosen pembimbing Dr. Widyastuti, S.Si, M.Si

JURUSAN TEKNIK MATERIAL DAN METALURGI Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember Surabaya 2015 (Halaman Ini Sengaja Dikosongkan)

FINAL PROJECT - TL141584

MAGNETIC PROPERTIES AND MORPHOLOGICAL ANALYSIS OF BARIUM HEXAFERRITE DOPING Ni-Zn PREPARED BY SOL GEL AUTO COMBUSTION METHOD WITH THE VARIATION OF pH AND SINTERING TEMPERATURE

A MARSHA ALVIANI NRP. 2711 100 094

Advisor Dr. Widyastuti, S.Si, M.Si

DEPARTMENT OF MATERIALS AND METALURGICAL ENGINEERING Faculty of Industrial Technology Sepuluh Nopember Institute of Technology Surabaya 2015 (Halaman Ini Sengaja Dikosongkan)

ANALISA PENGARUH DOPAN Ni-Zn DENGAN VARIASI TEMPERATUR SINTERING DAN VARIASI pH TERHADAP STRUKTUR MIKRO DAN SIFAT MAGNETIK BARIUM HEKSAFERRIT DENGAN METODE SOL-GEL AUTO COMBUSTION

TUGAS AKHIR

Diajukan Untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Teknik Pada Bidang Studi Material Inovatif

Program Studi S-1 Jurusan Teknik Material dan Metalurgi Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember

> Oleh : A Marsha Alviani NRP. 2711100094

Disetujui oleh Tim Penguji Tugas Akhir Dr. Widyastuti, S.Si, M.Si embimbing I) DAN METALUR SAN SURABAYA

JANUARI 2015

ANALISA PENGARUH pH DAN TEMPERATUR SINTERING TERHADAP STRUKTUR MIKRO DAN SIFAT MAGNETIK BARIUM HEKSAFERRIT DIDOPING Ni-Zn DENGAN METODE SOL-GEL AUTO COMBUSTION

Nama	: A.Marsha Alviani			
NRP	: 2711100094			
Jurusan	:Teknik	Material	dan	Metalurgi
	FTI-ITS			
Dosen Pembimbing	: Dr. Widyastuti, S.Si, M.Si			

Abstrak

Barium Heksaferrit ($BaFe_{12}O_{19}$) termasuk dalam material magnetik yang diteliti untuk penggunaan Radar Absorbing Material (RAM). Agar dapat digunakan sebagai aplikasi RAM, diperlukan adanya substitusi ion Fe pada Barium Heksaferrit. Adanya substitusi tersebut dapat mempengaruhi sifat kemagnetan berupa magnetisasi saturasi dan koersivitas. Pada penelitian ini dilakukan penambahan unsur paduan Ni – Zn. Barium Heksaferrit disintesa menggunakan metode Sol Gel Autocombustion dengan dopan Ni – Zn fraksi mol 0,6 serta variasi pH 7, 9, dan 11. Kemudian diberikan perlakuan dengan temperatur sintering pada 850, 950, dan 1050 °C selama 3 jam. Temperatur sintering akan berpengaruh pada pertumbuhan ukuran kristal Barium Heksaferrit. Analisa mengenai sifat kemagnetan dan struktur mikro dari Barium Heksaferrit dilakukan dengan pengujian SEM, XRD, dan VSM. Pengaruh penambahan unsur Ni-Zn pada Barium Heksaferrite yaitu semakin tinggi pH yang ditambahkan ukuran kristal akan semakin besar. Sehingga didapatkan ukuran kristal terkecil dengan nilai 70,29 nm pada pH 9 dengan temperatur sintering 1050°C dan terbesar yaitu 588,049 nm pada pH 11 dengan

temperature sintering 850. Peningkatan pH akan mempengaruhi sifat kemagnetan dari Barium Heksaferrite. Nilai koersivitas paling rendah terjadi pada pH 9 Temperatur Sinter $1050^{\circ}C$ dengan nilai koersivitas 0,05 Tesla. Pengaruh penambahan unsur Ni-Zn pada Barium Heksaferrite terhadap temperature sintering yaitu meningkatnya temperatur akan memperkecil ukuran kristal BaFe₁₂O₁₉. Temperatur Sinter semakin tinggi maka akan menyebabkan semakin naiknya nilai koersivitas dan saturasi magnet dari barium heksaferrit yang telah didoping Ni dan Zn. Nilai magnetik saturasi tertinggi terdapat pada pH 11 dengan temperature sintering 1050°C yaitu 95 emu/g dan nilai koersifitas 0,13T.

Kata Kunci : Barium Heksaferrit, pH dan Temperatur Sintering

MAGNETIC PROPERTIES AND MORPHOLOGICAL ANALYSIS OF BARIUM HEXAFERRITE DOPING Ni-Zn PREPARED BY SOL GEL AUTO COMBUSTION METHOD WITH THE VARIATION OF pH AND SINTERING TEMPERATURE

Name	: A.Marsha Alviani
NRP	: 2711100094
Department	: Materials and Metallurgical Engineering
	FTI-ITS
Advisor	: Dr. Widyastuti, S.Si, M.Si

Abstract

Barium Hexaferrite ($BaFe_{12}O_{19}$) is magnetic materials for use at Radar Absorbing Material (RAM). Barium Hexaferrite is hard magnetic with high coercivity and magnetization. However, the specification for RAM need high magnetization but with low coercivity. Therefore, it is necessary to change the magnetic properties by substituting Fe ions with Ni, Zn, Co, Mn, Cu, and others to meet the requirement properties for RAM. In this study, we conduct the addition of alloying elements Ni - Zn on Barium Hexaferrite so that it can be applied as a RAM. Barium Hexaferrite synthesized using Sol Gel autocombustion method with dopant Ni – Zn; nole fraction of 0.6 and variation of pH 7, 9, and 11. Sintering treatment at a temperature of 850, 950 and 1050°C for 3 hours. An analysis of the magnetic properties and microstructure of barium Hexaferrite one performed by SEM, XRD, and VSM. Addition Ni-Zn in Barium Heksaferrite is to increase the crystal size of sample. The smallest value of crystal size is 70.29 nm at pH 9 with the sintering temperature $1050^{\circ}C$. And the largest is 588.049 nm at pH 11 to 850°C. Increasing of *pH* and sintering temperature will affect to magnetic properties of barium Heksaferrite. The lowest coercivity value occurs at pH 9 Temperature Sintered 1050°C, 0.05 Tesla. The influence of addition Ni-Zn to element Barium Heksaferrite against sintering temperature is rising temperatures and will reduce the size of $BaFe_{12}O_{19}$ crystals. Sintered higher temperatures will increase the value of coercivity and magnetic saturation of barium heksaferrite that has been doped Ni and Zn. Magnetic saturation value is highest at pH 11 with sintering temperature 1050°C is 95 emu / g and the value coercivity is 0,13T.

Keywords: Barium Hexaferrite, pH, and Sintering Temperature

KATA PENGANTAR

Puji syukur kehadirat Allah SWT atas limpahan rahmat dan karunia-Nya sehingga penulis mampu menyelesaikan Tugas Akhir ini dengan judul :

"Analisa Pengaruh Dopan Ni-Zn dengan Variasi Temperatur Sintering dan Variasi pH terhadap Struktur Mikro dan Sifat Magnetik Barium Heksaferrit dengan Metode Sol-Gel Auto Combustion"

Tugas akhir ini disusun untuk memenuhi syarat memperoleh gelar Sarjana Teknik (ST) Jurusan Teknik Material dan Metalurgi Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember Surabaya.

Penulis juga mengucapkan terima kasih yang sebesar – besarnya kepada :

- 1. Allah SWT yang selalu memberikan rahmat dan karunia serta kelancaran dalam menyelesaikan tugas akhir ini.
- 2. Ayah, Ibu, dan adik serta keluarga atas doa, dukungan, dan pengertian yang telah diberikan selama ini.
- 3. Segenap keluarga besar beasiswa ETOS Dompet Dhuafa dan Karya Salemba Empat (KSE) yang telah memberikan dukungan selama berkuliah di ITS
- 4. Ibu Dr. Widyastuti, S.Si, M.Si selaku dosen pembimbing Tugas Akhir, yang telah memberi bimbingan dan motivasi pada saya.
- 5. Bapak Dr. Sungging Pintowantoro, S.T, M.T selaku Ketua Jurusan Teknik Material dan Metalurgi yang telah memberikan bimbingan dan arahan selama kuliah di Jurusan Teknik Material dan Metalurgi.
- 6. Bapak Tubagus Noor Rochmanudin, S.T., M.Sc. selaku dosen wali.
- Dosen Tim Penguji seminar dan sidang serta seluruh dosen Teknik Material dan Metalurgi, salam hormat saya.

- 8. Teman-Teman satu laboratorium bimbingan bu Widyastuti, wanita-wanita tangguh Yaya dan Ratna. Serta Metrim, Aji, Romlan, mas Vicko, mas Fanny, yang telah memberikan dukungan moril kepada penulis dalam mengerjakan tugas akhir.
- 9. Teman satu tim Barium Heksaferrite mas Kiki dan Febri yang telah menemani serta membantu penulis melewati masa yang penuh dengan berbagai rasa ini.
- 10. Kru ITS Online, dengan tim terbaik ali, fin, man, oly, ady, guh, akh, hil, gol, riz, oti, ila, imb, mis, pus, ao, ayi, sho, ven, owi, dza, nan atas kehangatan yang telah kalian torehkan dalam empat tahun kuliah di ITS ini.
- 11. Keluarga #KMF48, tim kreatif dan aktif yang telah mengajarkan banyak hal dalam bidang media informasi.
- 12. Squad terbaik MEDFO HMMT 13/14 yang telah memberikan kisah unik dalam perjalanan kuliah ini.
- 13. Retno, Arma, Irma dan rekan-rekan pengurus LDJ Ash Habul Kahfi yang telah menemani berjuang di jurusan tercinta.
- 14. Keluarga keren Kementerian Inovasi Karya dan Keluarga BEM ITS Kolaborasi 14/15 yang kembali membuat hari semakin berwarna dengan keberadaan kalian.
- 15. Seluruh pihak yang telah mendukung atas penulisan tugas akhir ini.

Penulis menyadari bahwa penyusunan Tugas Akhir ini masih jauh dari kesempurnaan, untuk itu kritik dan saran yang membangun dari berbagai pihak sangat diharapkan.

Surabaya, Januari 2015

Penulis

DAFTAR ISI

HALAMAN JUDUL	i
LEMBAR PENGESAHAN	v
ABSTRAK	vii
KATA PENGANTAR	xi
DAFTAR ISI	xiii
DAFTAR GAMBAR	XV
DAFTAR TABEL	xvii

BAB I PENDAHULUAN

1.1 Latar Belakang	. 1
1.2 Perumusan Masalah	. 2
1.3 Batasan Masalah	. 3
1.4 Tujuan Penelitian	. 3
1.5 Manfaat Penelitian	. 3

BAB II TINJAUAN PUSTAKA

2.1 Radar Absorbent Material (RAM)	5
2.2 Barium Heksaferrit sebagai RAM	7
2.3 Pengaruh Doping Ni-Zn	14
2.4 Pengaruh Perlakuan Sintering	22
2.5 Metode Sol Gel Auto Combustion	. 23
2.6 Kajian Penelitian Sebelumnya	. 24

BAB III METODOLOGI PENELITIAN

3.1 Bahan	27
3.2 Alat	
3.3 Diagram Alir Penelitian	
3.4 Rancangan Penelitian	
3.5 Langkah Percobaan	
3.4.1 Pembuatan Larutan	
3.4.2 Proses Heat treatment	
3.6 Karakterisasi Spesimen	38
-	

3.6.1 Pengujian Scanning Electron Microscope
(SEM)
3.6.2Pengujian XRD
3.6.3Pengujian Vibrating Sample
Magnetometer (VSM)
3.6.4 Pengujian Fourier Transform
Infra Red (FTIR) 40
BAB IV ANALISA DATA dan PEMBAHASAN
4.1 Analisa Data 41
4.1.1 Proses Pembuatan Barium
Heksaferrite Dengan Substitusi
unsur Ni-Zn dengan Metode
Sol Gel Auto Combustion41
4.1.2 Analisa XRD 46
4.1.3 Analisa Struktur Mikro SEM 53
4.1.4 Analisa Pengujian FTIR
4.1.5 Analisa Pengujian VSM
4.2 Pembahasan
4.2.1 Pengaruh pH pada Barium
Heksaferrit doping Ni-Zn
terhadap Struktur Mikro dan
Sifat Magnetik70
4.2.3 Pengaruh Temperatur Sintering pada
Barium Heksaferrit doping
Ni-Zn terhadap Struktur Mikro
dan Sifat Magnetik
BAB V KESIMPULAN dan SARAN
5.1 Kesimpulan79
5.2 Saran 80
DAFTAR PUSTAKA
LAMPIRAN xix

DAFTAR TABEL

11
12
13
16
19
24
Nitrat
27
nitrat
28
O 29
nitrate
29
Sitrit
30
31
36
45
g
51
53

(Halaman ini sengaja dikosongkan)

DAFTAR GAMBAR

Gambar 2.1	Blok diagram dari sistem radar (Courtesy	
	of Wave Around Us)	6
Gambar 2.2	Diagram fase komposisi untuk hexagonal	
	ferrite (Pooja,2010)	9
Gambar 2.3	(a) struktur kristal, (b) struktur magnetic	
	(Pooja Chauhan, 2010)	. 10
Gambar 2.4	Diagram Fase Fe ₂ O ₃ -BaO (Pooja, 2010)	. 11
Gambar 2.5	Kurva histerisis ferroelectric keramik	
	BaFe ₁₂ O ₁₉ yang disinter pada temperatur	
	1.300°C (Guolong Tan, 2012)	. 14
Gambar 2.6	Kurva histerisis BaFe _{12=2x} NiCoO ₁₉	
	(S.Kanagesan,dkk ,2011)	. 15
Gambar 2.7	Spesifik magnetic saturasi (Ms) dan	
	koersifitas (Hc) disinter dengan microwave	
	$BaFe_{12-x}Zn_xNb_xO_{19}$ pada temperatur kamar	. 17
Gambar 2.8	Grafik hasil pengujian XRD	
	dari BaFe ₁₁ Ni _{0,5} La _{0,5} O ₁₉ (Taliwander, 2013)	. 18
Gambar 2.9	Hasil VSM untuk temperature sinter (a) 750°C,	
	(b)850oC, dan (c)950oC pada variasi x=0.2, 0.4	ŀ,
	dan 0.6 (Rizky D, 2014)	. 21
Gambar 2.10	Grafik hubungan antara Temperatur Sinter	
	dengan besar nilai saturasi magetik dan	
	Koersivitas dengan Fraksi Mol x=0,4	. 22
Gambar 3.1	Barium Nitrat Ba(NO ₃) ₂	. 22
Gambar 3.2	Besi (III) nitrat nonahidrat (Fe(NO3)3.9H20)	. 22
Gambar 3.3	Serbuk Zn(NO ₃) ₂ .4H ₂ O	. 23
Gambar 3.4	Serbuk Ni(NO ₃) ₂ .6H ₂ O	. 24
Gambar 3.5	Asam Sitrit	. 25
Gambar 3.6	Amoniak	. 32
Gambar 3.7	Diagram Alir Penelitian	. 35
Gambar 3.8	SEM dan prinsip kerjanya	. 38
Gambar 3.9	Mesin Uji XRD, Philips Analycal	. 28
Gambar 4.1	Proses Pembuatan Barium Heksaferrit doping	

	Ni-Zn pada Fasa Sol 42
Gambar 4.2	Proses Pembuatan Barium Heksaferrite doping
	Ni-Zn pada Fasa Gel 43
Gambar 4.3	Proses Pembentukan Barium heksaferrite doping
	Ni-Zn pada Fasa Autocombustion
Gambar 4.4	Spesimen Hasil Sintering 45
Gambar 4.5	Hasil XRD untuk 7/850, 7/950, dan 7/1050 47
Gambar 4.6	Hasil XRD untuk 9/850, 9/950, dan 9/1050 48
Gambar 4.7	Hasil XRD untuk 9/850, 9/950, dan 9/1050 49
Gambar 4.8	Hasil XRD berdasarkan temperatur
	(a) 850, (b) 950, dan (c) 1050°C 51
Gambar 4.9	Grafik Perhitungan Ukuran Kristal 52
Gambar 4.10	Struktur Mikro dari serbuk BaFe ₁₂ O ₁₉
	doping Ni-Zn pada perbesaran 5000x 55
Gambar 4.11	Struktur Mikro BaFe ₁₂ O ₁₉ doping Ni-Zn
	pH 9 perbesaran 50.000x 57
Gambar 4.12	Hasil SEM-EDX (a) 7/850, (b) 7/950,
	(c) 7/1050 59
Gambar 4.13	Hasil SEM-EDX pada (a) 9/850, (b) 9/950
	(c) 9/105061
Gambar 4.14	Hasil SEM-EDX pada (a) 11/850, (b) 11/950
	dan (c) 11/1050
Gambar 4.15	Hasil FTIR dari serbuk BaFe ₁₂ O ₁₉
	Doping Ni-Zn pada (a) pH 7, (b) pH 9,
	dan (c) pH 1165
Gambar 4.16	Hasil VSM barium Heksaferrite
Gambar 4.17	Grafik hubungan antara pH dengan Magnetik
	Saturasi dan Koersifitas dengan variasi
	temperature sintering
Gambar 4.18	Hasil Pengujian XRD sampel 7/850, 7/950,
	dan 7/1050
Gambar 4.19	Hasil Pengujian XRD sampel 7/850, 9/850,
	dan 11/85075

BAB I PENDAHULUAN

I.1 Latar Belakang

Barium Heksaferrit (BaFe₁₂O₁₉) merupakan salah satu jenis material keramik yang sering digunakan dalam berbagai aplikasi dan menjadi pilihan utama dalam pasar magnet permanen dunia. Hal tersebut disebabkan karena biaya produksi maupun jumlah ketersediaan bahan baku yang murah dan kemudahan dalam memproduksi. Seiring dengan perkembangannya, karakteristik sifat kemagnetan yang dimiliki Barium Hexaferrite cocok untuk aplikasi RAM. Barium heksaferrit termasuk *hard* magnetik dengan memiliki ciri-ciri koersivitas dan magnetisasi yang tinggi. Sedangkan RAM memiliki sifat magnetisasi yang tinggi dan Sehingga, diperlukan koersivitas yang rendah. adanva substitusi ion Fe pada Barium heksaferrit untuk aplikasi RAM. Biasanya sejumlah ion Fe dalam komposisi heksaferrite dapat diganti dengan unsur-unsur lain seperti Ti, Zn, Mn, Ni, Co, dan lain-lain sering digunakan karena persamaan jari – jari ionik serta konfigurasi elektronnya (Mallick dkk, 2007).

Sebelumnya telah ada beberapa penelitian yang mendoping Barium Heksaferrite tipe M dengan beberapa ion pengganti. Seperti halnya M Jazireh Pour (2012) yang mendoping Barium Heksaferrite dengan Mg-Ti variasi jumlah dopan 0, 1, 2, 3, 4, 5 menggunakan metode Sol-Gel. Namun magnetic saturasi yang didapatkan masih belum maksimal yakni sebesar 30 emu/gr. Hal tersbeut juga dilakukan oleh Talwinder (2013) yang mendoping Barium Heksaferrite dengan La-Ni menggunakan metode Sol Gel. Magnetik saturasi yang didapatkan mencapai 60,73 emu/gr. Sedangkan koesivitas sebesar 2,617 T.

Pada penelitian kali ini, Barium Heksaferrit ditambahkan unsur paduan Ni-Zn sebagai material doping. Metode yang digunakan pada penelitian kali ini adalah dengan *Sol-Gel Auto*

Combustion. Dengan menggunakan metode tersebut, terdapat beberapa kelebihan seperti reagen yang dipakai lebih mudah didapat dan waktu lebih singkat. Perhatian utama pada penelitian ini ditujukan pada pengaruh variasi pH dan temperatur sintering terhadap sifat magnetik dan struktur mikronya.

I.2 Perumusan Masalah

Masalah yang akan dibahas pada penelitian kali ini adalah:

- 1. Bagaimana pengaruh penambahan dari unsur paduan Ni-Zn dan pH terhadap struktur mikro dan sifat magnetik dari Barium Heksaferrit dengan metoda *sol gel auto combustion*?
- 2. Bagaimana pengaruh variasi temperatur sintering terhadap struktur mikro dan sifat magnetik dari Barium Heksaferrit dengan metoda *sol gel auto cumbustion*?

1.3 Batasan Masalah

Agar diperoleh hasil akhir yang baik dan sesuai dengan yang diinginkan serta tidak menyimpang dari permasalahan yang ditinjau, maka batasan masalah pada penelitian ini adalah sebagai berikut:

- 1. Serbuk Ba(NO₃)₂ dan Fe(NO₃)₃.9H₂O dianggap tidak ada pengotor.
- 2. Kecepatan *stirring hot plate* dianggap konstan.
- 3. Serbuk Ni dan Zn dianggap homogen dan tidak ada pengotor
- 4. Temperatur *holding* dianggap konstan

1.4 Tujuan Penelitian

Tujuan dari diadakannya penelitian ini adalah :

- 1. Menganalisa pengaruh penambahan dari unsur paduan Ni-Zn dan pH terhadap struktur mikro dan sifat magnetik dari barium hexaferrite dengan metoda sol gel *auto cumbustion*
- 2. Menganalisa pengaruh variasi temperatur sintering terhadap struktur mikro dan sifat magnetik dari Barium Heksaferrit dengan metoda sol *gel auto cumbustion*

1.5 Manfaat Penelitian

Manfaat penelitian ini diharapkan diperoleh data tentang unsur pemaduan terbaik untuk Radar Absorbent Material (RAM) sehingga menghasilkan Barium Heksaferrit dengan tingkat penyerapan gelombang mikro yang optimum dan pengaruhnya variasi temperatur sintering yang tepat untuk memperoleh fasa tunggal sifat magnetik Barium Heksaferit yang optimum dengan metode *sol gel auto combustion*.

Halaman ini sengaja dikosongkan

JURUSAN TEKNIK MATERIAL DAN METALURGI FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI SEPULUH NOPEMBER

BAB II TINJAUAN PUSTAKA

2.1 Radar Absorbent Material (RAM)

Pengenalan gelombang mikro radar telah ada sebelum serangkaian Perang Dunia ke II diubah menjadi skenario pertahanan udara. Sejak gelombang elektromagnetik (EM) dioperasikan sebagai radar transverse dengan kecepatan cahaya untuk mendeteksi pesawat, kecepatan secara temporer dari bom sangat sulit untuk menyamai kemampuan radar. Karena itu, membutuhkan banyak waktu saat mengaktifkan mekanisme pertahanan. Sehingga akan mempengaruhi tidak hanya misi yang berjalan sukses namun dapat bertahan hidup saat pesawat berada di wilayah musuh. (Vinoy, 1996)

Radar merupakan kependekan dari Radio Detection and Ranging. Radar merupakan sistem gelombang elektromagnetik yang digunakan untuk mendeteksi, mengukur jarak dan benda-benda seperti pesawat membuat terbang. map dan informasi cuaca/hujan. Gelombang kendaraan bermotor vang dipancarkan radio/sinval dari suatu benda dapat ditangkap oleh radar kemudian dianalisa untuk mengetahui lokasi dan bahkan jenis benda tersebut. Walaupun sinyal yang diterima relatif lemah, namun radar dapat dengan mudah mendeteksi dan memperkuat sinyal tersebut. (Akhyar,2008)

RAM menyerap gelombang radar yang ditransmisikan oleh antena sehingga energi pantulan gelombang minimal atau bahkan hilang. RAM mengandung karbon besi ferrit sebagai susunan aktif yang dapat menyerap gelombang radar (Felly,2010). RAM adalah bahan berlapis-lapis yang mengandung dengan setidaknya satu lapisan resistif. (Bill Marker, 2009).

Radar bekerja dengan cara melepaskan gelombang elektromagnetik. Pada **Gambar 2.1** digambarkan gelombang

elektromagnetik yang merupakan kombinasi medan listrik (E) dan medan magnet (H) yang masing masing merambat secara transversal dan arah keduanya tegak lurus terhadap arah rambat gelombang.

Gambar 2.1 Blok diagram dari sistem radar (Courtesy of Wave Around Us)

Pada perambatan gelombang ada beberapa karakter yang bisa diukur yaitu panjang gelombang, frekuensi, dan amplitudo. Amplitudo adalah tinggi gelombang, sedangkan panjang gelombang adalah jarak antara dua puncak. Frekuensi adalah jumlah gelombang yang melalui suatu titik dalam satuan waktu.

Ketika gelombang radar mengenai lapisan RAM, suatu medan magnetik akan dihasilkan oleh elemen metalik dari lapisan RAM. Medan magnetik tersebut akan menghasilkan polarisasi dan disipasi gelombang radar. Energi yang tidak diserap oleh individual karbon besi ferrit dipantulkan ke elemen lainnya.

RAM merupakan salah satu jenis material yang dapat digunakan dalam teknolgi *stealth* untuk menyamarkan kendaraan atau struktur dari deteksi radar. Kemampuan serap bahan terhadap gelombang radar pada frekuensi apapun, tergantung pada komposisinya. RAM tidak bisa menyerap dengan sempurna radar pada frekuensi apapun, tetapi setiap komposisi tertentu memang memiliki daya serap lebih besar pada beberapa frekuensi dari

yang lain, tidak ada RAM yang cocok untuk semua frekuensi radar.

Sebuah kesalahpahaman yang umum terjadi adalah RAM dapat membuat objek tidak terdeteksi oleh radar. Radar absorbent material bekerja dengan cara mengurangi pemantulan gelombang elektromagnetik yang ditembakkan oleh radar sehingga ketika gelombang tersebut diterima oleh penerima informasi yang didapat tidak akan sesuai dengan yang terjadi. Sebuah RAM dapat secara signifikan mengurangi radar cross-section objek pada frekuensi radar tertentu, tetapi tidak dapt membuatnya "invisibility" pada semua frekuensi radar. Cuaca buruk dapat berkontribusi pada kemampuan "*invisibility*" RAM. Contohnya adalah selama perang Kosovo, karena kelembaban yang tinggi pada permukaan F-117 Nighthwark maka digunakan gelombang radar yang lebih pajang untuk melacak dan menembak ke bawah. RAM hanya salah satu bagian dari teknologi *stealth* (Putu Indra Wirya Dharma. 2012).

2.2 Barium Heksaferrit sebagai Radar Absorbent Material (RAM)

Material magnetik dapat dibedakan menjadi dua jenis yaitu soft dan hard. Soft magnetic material merupakan material yang mudah dibuat menjadi magnet dan mudah dihilangkan sifat kemagnetannya. Sedangkan hard magnetic material merupakan material yang sulit diberi dan dihilangkan sifat kemagnetannya.

Hard magnetic material sendiri memiliki koersifitas yang tinggi. Dengan nilai koersifitas yang tinggi tersebut dapat menahan sifat magnetic material. Perbedaan dasar dari dua jenis tipe material tersebut dapat dijelaskan dalam kurva hysteresis. Soft magnetic material memiliki bentuk kurva yang sempit, berbeda dengan hard magnetic material yang menunjukkan bentuk kurva luas. Kurva hysteresis sendiri menjelaskan tentang

variasi dari medan magnet tanpa adanya *significant lose* kurva hysterisis yang luas. Maka dari itu energi magnetik yang disimpan pun semakin besar. Diantara material magetik permanen terdapat beberapa material yang penting seperti alnio, hard ferrite, samanium cobalt, dan neodymium-iron-boron. Masing-masing dari material tersebut memiliki properties yang berbeda. Jika dibandingkan dari segi harga produksi, hard ferrite merupakan material yang paling cocok untuk digunakan.

Istilah ferrite sendiri sering kali digunakan untuk mendeskripsikan jenis dari paduan magnetic oksida dan didalamnya terdapat ferro yang berikatan dengan oksida. Magnetite, Fe2O4 sering disebut loadstone, merupakan ferrite asli dan menjadi material magnetik yang diketahui oleh orang. Ferrite dapat diklasifikasikan berdasarkan struktur kristal atau sifat magnetic. Hard magnetic material biasanya digunakan pada aplikasi magnetic permanen. Hard ferrite memiliki struktur hexagonal dan dapat diklasifikasikan menjadi M-,W-,X-,Y-, Z-tipe ferrite. Hal tersebut dapat ditunjukkan di masing-masing komposisi kimia pada **Tabel 2.1** di bawah ini.

Tabel 2.1 Perbandingan material hard ferrite			
Tipe	Rumus Kimia	Keterangan	
M-	$RFe_{12}O_{19}$	R=Ba, Sr, Pb	
W-	RMe_2Fe_{16}	Me= Fe^{2+} , Ni ²⁺ ,	
		Mn^{2+} etc	
Х-	RMeFe ₂₈		
Y-	$R_2Me_2Fe_{12}O_{22}$		
Z-	$R_3Me_2Fe_{12}O_{41}$		

W-, X-, Y-, Z- merupakan tipe yang kurang ekonomis karena proses proses yang relative sulit. Komposisi kimia dari berbagai macam komposisi heksagonal ditunjukkan pada gambar 1.2 sebagai bagian dari ternary diagram fasa untuk sistem BaO-

```
JURUSAN TEKNIK MATERIAL DAN METALURGI
FAKULTAS TEKNOLOGI INDUSTRI
INSTITUT TEKNOLOGI SEPULUH NOPEMBER
```


BeO-Fe₂O₃. Di sini MeO mempresentasikan ion divalen di antara elemen transisi pertama Zn, Mg atau kombinasi ion yang mempunyai valensi dua.

Gambar 2.2 Diagram fase komposisi untuk hexagonal ferrite (Pooja Chauhan, 2010)

Struktur kristal dari tipe M ferrite telah dijabarkan oleh Adelskold. Pada **Gambar 2.3** menunjukkan unit sel dari barium heksaferrite. Struktur kristal terdiri dari dua formula. Karakter simetrinya masuk kedalam grup P63/mmc. Dalam unit sel, ion O2- membentuk heksagonal lattice. Setiap lima layer oksigen terdapat satu ion O²⁻ yang digantikan oleh Ba karena memiliki diameter yang hampir sama. Di sisi lain, dapat diketahui dari konsep magnetik bahwa paduan tipe M memiliki tipe struktur ferromagnetik. Pada magnet BaFe₁₂O₁₉ merupakan ferritic iron dengan momen magnetic sebesar 5µ_B.

JURUSAN TEKNIK MATERIAL DAN METALURGI FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI SEPULUH NOPEMBER

Gambar 2.3 (a) Struktur kristal, (b) Struktur magnetic (Pooja Chauhan, 2010)

Pada ambar tersebut menunjukkan \bigcirc merupakan O^{2^-} , sedangkan \bullet merupakan Sr^{2_+} , \blacksquare , dan seluruh Fe^{2_+} pada 4f1, 2b, 12k, 4f2, dan 2a dengan posisi berturut-turut. Struktur magnetik dengan anak panah akan merepresentasikan ukuran dan direksi spin electron yang tidak berpasangan dengan posisi macammacam kristalografi.

JURUSAN TEKNIK MATERIAL DAN METALURGI FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI SEPULUH NOPEMBER

Pada diagram fase rentang homogenisasi sangat menyempit dan pada rentang eutektik diagram bergeser ke kanan sejajar dengan bertambahnya prosentase dari BaO. Hal tersebut dapat dilihat dalam **Gambar 2.4** berikut.

Barium heksaferrit dengan rumus kimia stoikiometri BaFe₁₂O₁₉ memiliki magnetisasi saturasi besar, koersivitas tinggi, suhu curie tinggi, anisotropi magnetik uniaksial besar dan stabilitas kimia yang sangat baik. Bahan-bahan ini telah diselidiki karena aplikasi teknologi dalam magnet permanen, media perekaman magnetik kepadatan tinggi dan perangkat microwave (S. Kanagesan, 2013).

Tabe	el 2.2 Tabel Material Proper	ties dari Barium Heksaferrite
	Material Properties	Barium Heksaferit
	Melting point	1500 [°] C
	Curie Temperatur	450^{0} C
	Bentuk	Serbuk
	Specific Gravity	5.3 g/cc pada 20° C
	Kelarutan dalam air	Sukar larut
	(H ₂ O)	$\pm 1500^{0}$ C
	Titik leleh	Cokelat kehitam-
	Warna	hitaman
	Aroma	Tidak beraroma
	Koersifitas	6700 oe
	Saturasi	78 emu/g

Senyawa penyusun Barium Heksaferit adalah Barium Karbonat dan Besi (III) Oksida. Barium karbonat merupakan persenyawaan antara barium dan karbonat, yang memiliki karakteristik seperti pada Tabel 2.3

Tabel 2.3 Karakteristik Barium Karbonat (BaCO ₃)					
Sifat Fisis	Sifat Kimia				
Berat Molekul 197,37 gr/mol	Kelarutan normal				
Warna Putih	Larut dalam air atau asam				
Titik lebur 1740 ⁰ C	lemah				
Titik didih 1450 ⁰ C	Terbentuk akibat adanya reaksi				
Merupakan material yang	oleh asam karbonat yang				
langka	berlebihan				
-	Digunakan untuk racun tikus				

Besi (III) oksida atau bijih besi adalah senyawa oksida dari besi dengan rumus kimia Fe₂O₃ dan bersifat paramagnetik. Ada beberapa fasa besi (III) oksida, yaitu α -Fe₂O₃, β -Fe₂O₃, γ - Fe_2O_3 dan ϵ - Fe_2O_3 . Pada temperatur tinggi fasa α - Fe_2O_3 JURUSAN TEKNIK MATERIAL DAN METALURGI FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI SEPULUH NOPEMBER

(hematite) merupakan fasa paling stabil. Senyawa ini bersifat antiferromagnetik dibawah -260 K (temperatur transisi Morin), dan ferromagnetik lemah antara 260 K dan 950 K (temperatur Neel). Sifat magentiknya dipengaruhi oleh banyak faktor, seperti tekanan, ukuran partikel, dan intensitas medan magnet.

=				
Sifat Fisis	Metrik			
Massa	159,69 g/mol			
Temperatur Meleleh	$1566^{0}C$			
Temperatur didih	2861 ⁰ C			
Warna	Abu – abu gelap			

Tabel 2.4 Karakteristik Besi (III) Oksida (Fe₂O₃)

Secara teori, barium heksaferrit memiliki magnetisasi saturasi (Ms) sebesar 72 emu/gr, medan koersivitas (Hc) sebesar 6700 Oe dan temperatur curie sebesar 450^{0} C (Zainuri, 2010).

Material softmagnetik, dapat mencapat magnetisasi jenuh dengan pemberian medan magnet dari luar relatif rendah, sehingga akan mudah dimagnetiasasi maupun demagnetisasi. Material hard magnetik memiliki kurva histerisis yang lebih lebar karena energi yang hilang untuk proses magnetisasi tinggi sehingga koersivitasnya besar. Jadi semakin besar koersivitas, maka semakin keras sifat magnetnya. Material hard magnetik banyak diaplikasikan sebagai bahan magnet permanen. Material hard magnetik memiliki koersivitas di atas 10 kA/m, sedangkan untuk soft magnetic material adalah material yang mempunyai nilasi koersivitas di bawah 1 kA/m.Barium Heksaferrit memiliki medan koersivitas yang besar, dikarenakan sifat anisotropik krisatalin yang dimiliki. Magnet barium heksaferrit mudah dimagnetisasi dalam sumbu c. Harga medan koersivitas akan sangat besar jika ukuran partikel mencapai ukuran dimana dalam partikel hanya terdapat satu domain. Oleh karena itu, menyebabkan akan semakin sulit dihilangkan medan induksinya

(B=0) sampai arah domainnya kembali menjadi random, sehingga nilai koersivitasnya makin tinggi (Linda,2011).

Gambar 2.5 Merupakan kurva histerisis hasil sintesis Barrium Heksaferite dengan menggunakan barium asetat dan ferric acetylacetonate sebagai precursor.

Gambar 2.5 Kurva histerisis ferroelectric keramik BaFe₁₂O₁₉ yang disinter pada temperature 1.300°C (Guolong Tan, 2012)

BaFe₁₂O₁₉ merupakan material ferromagnetic konvensional yang memiliki sifat magnetic. Magnetik properties dari BaFe₁₂O₁₉ disinterring temperature dilakukan yang pada 1.300°C Quantum Design physical pengukuran dengan property measurement system (PPMS). Medan magnetik pada gambar 5 menunjukkan bahwa remnant magnetic polarization (Mr) dari tBaFe₁₂O₁₉ adalah 32 emu/g, dan magnetic saturasinya sebesar 55 emu/g. Sedangkan koersivitas (Hc) dari BaFe₁₂O₁₉ yakni 1607 Oe. Magnetisasi dari sampel BaFe₁₂O₁₉ adalah kurang dari of 67.7 emu/g. (Guolong Tan, 2012)

JURUSAN TEKNIK MATERIAL DAN METALURGI FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI SEPULUH NOPEMBER

2.3 Pengaruh Doping Ni dan Zn

Pada tipe M barium heksaferrite, spesifik magnetic saturasi yang konstan dan variasi koersifitas (Hc) bisa didapatkan dengan mensubsitusikan ion Fe dengan Co^{2+} dan Ti^{4+} Hal tersebut sangat penting untuk meyakinkan pengaruh dari ion substitusi dapat mengatur jumlah Ms dan Hc dengan barium heksaferrite. Tak hanya Co^{2+} dan Ti^{4+} , ternyata terdapat ion Ni-Zr yang disubstitusi degan barium heksaferrite yang menjanjikan particulate material untuk high-density magnetic seperti pada **Gambar 2.6**.

Gambar 2.6 Kurva histerisis BaFe_{12=2x}Ni_xCoO₁₉ (x=0,8 mol%) dengan metode mechanically milled disinterring pada 1.150°C selama 3 jam

(S. Kanagesan, 2010)

Subtitusi ion terjadi apabila terjadi perpindahan atom yang memiliki ukuran yang relatif sama atau lebih kecil 15% dari atom induknya.Banyak dan sedikitnya ion pendoping dalam barium Mheksaferrit mempengaruhi perbedaan frekuensi absorber. Semakin JURUSAN TEKNIK MATERIAL DAN METALURGI FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI SEPULUH NOPEMBER

banyak ion yang dapat didoping, semakin banyak pula material tersebut menyerap gelombang.

Pendopingan ion Ni dalam barium M-Heksaferrit mempengaruhi banyaknya dipol-dipol yang terbentuk. Semakin acak dan semakin banyak dipol-dipol dalam material mengakibatkan perubahan besar sifat kemagnetan material. Ketika terjadi substitusi ion Ni pada ion Fe, maka konsentrasi ion doping sangat menentukan momen total material yang terbentuk. Ini menyatakan bahwa dengan mendoping ion Ni pada Fe berpotensi menurunkan magnetisasi saturasi yang berakibat pada menurunnya medan koersivitas magnetokristalnya.

Tabel 2.5 Jari-jari ion penyusun b	barium heksaferrit
------------------------------------	--------------------

(Rizky A, 2014)				
Ion	Jari-jari (nm)			
Ba ²⁺	0,135			
Fe ²⁺	0,078			
Fe ³⁺	0,065			
Ni ²⁺	0,069			
Co^{2+}	0,075			
Co^{3+}	0,055			
O^{2+}	0,140			
Zn	0,072			

Selain itu juga terdapat penelitian (S. Kanagesan, 2014) barium heksaferrite yang didoping dengan Zn-Nb. Pada penambahan Zn (II)-Nb (IV) tidak merubah struktur setelah diuji dengan XRD. Penambahan level substitusi dapat mengubah sifat magnetik seperti meningkatkan pertumbuhan butir dan menurunkan ukuran butir, seperti pada **Gambar 2.6**.

0.5

Substitution 'x' mol%

0.6

0.7

0.8

0.2

0.3

0.4

Senada dengan penelitian yang dilakukan oleh Taliwander, 2013, melalui pengujian X-Ray Diffraction (XRD) dapat diketahi ukuran kristal dari Barium Heksaferrite yang didoping dengan La-Ni.

Gambar 2.8 Grafik hasil pengujian XRD dari BaFe₁₁Ni_{0,5}La_{0,5}O₁₉.(Taliwander,2013)

Setelah didapatkannya grafik hasil XRD dapat diketahui fasa Barium Heksaferrite yang terbentuk. Sehingga dapat dihitung ukuran kristal dengan rumus Scherrer :

$$D = k \frac{\lambda}{\beta \cos \theta}$$

Dimana, λ adalah panjang gelombang XRD yaitu sama dengan 1.54060 Å, sedangkan ß merupakan lebar setengah peak, θ sendiri yaitu Brag's angle, dan k adalah shape factor yang sama dengan satu sistem heksagonal.

```
JURUSAN TEKNIK MATERIAL DAN METALURGI
FAKULTAS TEKNOLOGI INDUSTRI
INSTITUT TEKNOLOGI SEPULUH NOPEMBER
```


Tabel 2.6 Rata-Rata Ukuran Partikel, Magnetik saturasi, Retentivitas, dan Koersivitas dari BaFe₁₁Ni_{0,5}La_{0,5}O₁₉ .(Taliwander.2013)

(1411)(411401)(2010)							
Nama	Variasi	Rata-Rata	Magnetik	Mr	Hc		
Sample		Pertumbuhan	Saturasi	(emu/g)			
		Butir (D)	(Ms)				
		(nm)	(emu/g)				
В	4.00	34	44.41	26.17	4379.46		
С	8.00	33	60.73	36.55	4996.21		

Dari nilai dalam tabel 2.6 tersebut nilai magnetic saturasi, rentetivitas, dan koersivitas meningkat dan ukuran butir menurun dengan bertambahnya pH. Hal tersebut mengindikasikan bahwa rat-rata ukuran domain magnetic dari partikel meningkat dan spin atom terus bertambah dan terus searah dengan diberikan pada aplikasi medan magnetic.(Taliwander,2013)

Untuk mengetahui sifat magnetik dari pengaruh subtitusi unsur Ni-Zn pada material barium heksaferrit dilakukan uji VSM. Hasil dari pengujian VSM ini diperoleh sebuah kurva histerisis yang menunjukkan magnetik sampel. Nilai dari koervitas, saturasi magnetik dan nilai remanensi magnetic dari sampel akan dapat diketahui. Besar kecilnya nilai koersivitas ini akan mempengaruhi dari kesesuaian untuk diaplikasikan sebagai material penyerap radar. Pengujian ini dilakukan pada semua sampel yang ada.

Gambar 2.9 Hasil VSM untuk Temperatur Sinter (a) $750 \,^{\circ}$ C, (b) $850 \,^{\circ}$ C, (c) $950 \,^{\circ}$ C pada variasi x = 0.2, 0.4, dan 0.6 (Rizky D, 2014)

Berdasarkan kurva tersebut dapat diketahui bahwa Barium Heksaferrit yang didoping Ni dan Zn memiliki nilai saturasi magnetik lebih besar dari Barium Heksaferrit tanpa doping yaitu sebesar 82emu/gr. Hal ini menyatakan doping Ni sangat membantu dalam meningkatkan nilai saturasi magnetik, dan doping Zn sangat membantu dalam menurunkan nilai koersivitas. Sehingga dapat ditarik kesimpulan peningkatan fraksi mol Ni-Zn pada barium heksaferrit dapat menurunkan nilai saturasi magnet (Ms) dan koersivitas (Hc). (Rizky D, 2014)

2.4 Pengaruh Perlakuan Sintering

Menurut (Hessien,dkk 2011), adanya temperatur Sintering menyebabkan perubahan pada kemurnian dari Barium Heksaferrit. Dengan semakin meningkatnya temperatur sintering maka akan mengurangi ada fasa pengotor yang menyebabkan perubahan sifat kemagnetan, seperti fasa hematit yang bersifat antiferromagnetik yang tentung akan mengubah sifat kemagnetan dari Barium heksaferrit itu sendiri.

Gambar 2.10 Grafik hubungan antara Temperatur Sinter dengan besar nilai Saturasi Magnetik dan Koersivitas dengan Fraksi Mol X=0,4 (Hessien,dkk 2011)

Gambar 2.10 Grafik hubungan antara Temperatur Sinter dengan besar nilai Saturasi Magnetik dan Koersivitas dengan fraksi mol X=0,4. berdasarkan grafik terlihat memiliki tren kenaikan pada koersivitas dan saturasi magnetik. Kenaikan Temperatur Sinter menyebabkan terjadinya kenaikan Saturasi magnetik. Hal ini karena proses sintering meningkatkan fasa barium heksaferrit dan juga menghilangkan fasa pengotor pada JURUSAN TEKNIK MATERIAL DAN METALURGI FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI SEPULUH NOPEMBER

barium heksaferrit. Pada koersivitas terjadi peningkatan dengan kenaikan temperatur sinter. Karena domain yang terdapat pada fraksi mol x=0,4 dari temperatur sinter 750-950°C berupa single domain sehingga memiliki koersivitas yang tinggi. Pernyataan tersebut juga disampaikan oleh H. Sozeri bahwa jika koersivitas meningkat dengan meningkatnya temperatur sinter karena pada temperatur hingga 1100°C memiliki domain tunggal (Rizky D, 2014)

2.5 Metode Sol Gel Auto Combustion

Pada metode ini sol secara berangsur-angsur berkembang kearah sistem dwifasa yang melingkupi bukan hanya fasa liquid namun turut menyertakan fasa solid. Pada kasus koloid, volume fraksi atau partikel densitas akan menurun jumlahnya secara signifikan dan cairan akan berangsur-angsur berubah menjadi gel. Untuk menghilangan fase liquid, diperlukan proses pemanasan. (Pooja, Chauhan, 2010)

Pada proses sol-gel, ada banyak parameter yang bekerja dalam proses sol-gel, tetapi beberapa aspek seperti pH, CA/M, dan EG/CA mungkin lebih penting. Untuk mendapatkan gel yang homogen, kekomplekan dari unsur penyusunnya harus sestabil mungkin dalam sol, yang merupakan titik kunci sukses dalam proses sol-gel. Dalam kerja teoritis pada perhitungan stabilitas untuk mendapatkan kekomplekan, Lee dan Fang membuktikan bahwa dalam rentang pH 7-9, adalah bagian utama dari ion Ba²⁺ dan Fe³⁺ dapat membentuk kompleks sitrat stabil. Ada banyak agen chelating yang dapat digunakan untuk membentuk kompleks, tetapi asam sitrat, karena rantai molekul pendek dan daya chelating yang tinggi, maka sering digunakan dalam proses sol-gel. Oleh karena itu, parameter yang berkaitan dengan asam sitrat dalam proses sol-gel dipelajari lagi.

Menurut Mali Sintesa Barium heksaferrit dengan sol gel autocombustion adalah metode terbaru dari sol gel, dengan

sesuatu hal yang baru pada proses sol gel dan proses combustion, berdasar gel dan kemudian combustion pada solution yang mengandung garam, dan menghasilkan produk yang melimpah dan berbentuk bulu-bulu halus. Proses sol gel ini memiliki keuntungan membutuhkan prekursor dengan biaya yang murah, metode preparasi yang mudah dan serbuk yang dihasilkan berukuran nano.

2.6 Kajian Penelitian Sebelumnya

Tabel 2.7 dibawah ini merupakan beberapa penelitian sebelumnya yang telah dilakukan dengan beberapa metode sintesis dengan variasi material doping untuk mendapatkan Mbarium heksaferit yang sesuai dengan aplikasi RAM.

51			Ma	IIa		
Nama	Tahun	Metode, Variabel	IVIS	HC		
1 (01110)	1 411 411		(emu/gr)	(Tesla)		
		Tanpa doping	62,95	2,821		
MM		Ceramic Processing Route,				
Hossion	2006	Temperatur Reducing				
TIESSIEII		pada 600, 700, 800, dan				
		900°C				
Pooja	2010	Tanpa doping				
Chauhan	2010	Ball mill,				
		Tanpa doping	63,51	3,542		
Fally	2011	Sol gel, Temperatur				
гепу	2011	sintering pada 750, 850,				
		dan 950°C				
		Tanpa doping	54,86	0,3		
Endah	2012	Sol gel; pH=7.5, 9; 11;				
		waktu stirrer 1, 2, 3				
А		Doping Ni	65,1	0,907		
Gonzales	2005	Ball milling, BPR=15:1,				
Angeles,	2003	t=28 jam, Fe/Ba=10				
dkk		annealing 1050°C, t=1,5				
JURUSAN TEKNIK MATERIAL DAN METALURGI						
EARLITAS TERNOLOCI INDUSTRI						

Tabel 2.7 Penelitian Barium Heksaferrite

Laporan Tugas Akhir 25 Jurusan Teknik Material dan Metalurgi

		jam annealing 1050°C, t=1, jam Doping Mg-Ti	30	3,5
M Jazireh Pour dkk	2012	Sol Gel; Jumlah doping 0, 1, 2, 3, 4, 5		
SK Chawla dkk	2012	Doping Co-Zr Jumlah doping 0,0.4, 1		
Rizki Agustianto	2013	Doping Co-Zr Sol Gel, Fe/Ba = 11, Sintering 950° C 3 jam pH = 7; 9; 11, M : CA = 1 : 3	62,49	0,111
Talwander	2013	Doping La-Ni Sol-gel citrate precursor method; jumlah doping 0.29, 4.00,8.00	60,73	2,617
Rizky Dekatama	2014	Doping Ni-Zn Sol-gel, temperature sintering 750, 850, 950 Jumlah mol 0 2 0 4 0 6	56,7	0,15
Putu Arya	2014	Doping Co-Zn Sol-gel; temperature sintering 750, 850	88,49	0,2815

Halaman ini sengaja dikosongkan

BAB III METODOLOGI PENELITIAN

3.1 Bahan

Bahan yang digunakan pada penelitian ini adalah

1. Serbuk Barium Nitrat $Ba(NO_3)_2$

Barium Nitrat $Ba(NO_3)_2$ memiliki wujud berupa serbuk berwarna putih, larut dalam air dan akhohol. Secara umum karakteristik dari serbuk barium nitrat dapat dilihat pada **Tabel 3.1** dibawah ini.

Tabel 3.1 Karakteristik umum dari serbuk Barium Nitrat

$Ba(NO_3)_2$					
Karakteristik	Nilai				
Rumus Molekul	$Ba(NO_3)_2$				
Massa Molar (Mr)	261, 337 g/mol				
Kelarutan dalam air	34,4 g/100ml (100 ^o C)				
Kepadatan	$3,24 \text{ g/cm}^3$				
Bentuk Molekul	Putih Kristal				
Kelarutan	Tidak Larut dalam alkohol				

Gambar 3.1 Barium Nitrat Ba(NO₃)₂

 Serbuk Besi (III) nitrat nonahidrat (Fe(NO₃)₃.9H₂0) Ciri dari Serbuk Besi (III) nitrat nonahidrat yaitu berwarna abu-abu, mudah sekali terkorosi bila terkontaminasi di udara terbuka dengan adanya perubahan warna serbuk dari abu-abu berubah menjadi berwarna kekuningan dan Serbuk Besi (III) nitrat nonahidrat sangat mudah larut dalam air. Secara umum karakteristik dari Serbuk Besi (III) nitrat nonahidrat dapat dilihat pada **Tabel 3.2** dibawah ini.

Tabel 3.2 Karakteristik umum dari Serbuk Besi (III) nitrat nonahidrat (Fe(NO₂)₂ 9H₂0)

nonunuu							
Karakteristik	Nilai						
Rumus Molekul	$(Fe(NO_3)_3.9H_20)$						
Molekul Berat	404 g/mol						
Kelarutan dalam air	0,05 %						
Bentuk molekul	Putih Kristal						
Kandungan Cu	0,005 %						
Kandungan Fe (II)	0,01 %						
Kandungan Mg	0,02 %						
Kandungan Zn	0,01 %						

Gambar 3.2 Besi (III) nitrat nonahidrat (Fe(NO₃)₃.9H₂0)

 Serbuk Zn(NO₃)₂.4H₂O Zn(NO₃)₂.4H₂O memiliki wujud berwarna putih dan termasuk memiliki sifat diamagnetik. Secara umum karakteristik dari serbuk Zn(NO₃)₂.4H₂O dapat dilihat pada Tabel 3.3 dibawah ini.

Tabel 3.3 Karakteristik umum dari serbuk Zn(NO ₃) ₂ .4H ₂ C

Karakteristik	Nilai
Rumus Molekul	$Zn(NO_3)_2.4H_2O$
Berat Molekul	261.4472
Bentuk Molekul	Putih tulang Kristal

Gambar 3.3 Serbuk Zn(NO₃)₂.4H₂O

 Serbuk Ni(NO₃)₂.6H₂O Serbuk Ni(NO₃)₂.6H₂O merupakan material yang bersifat karsinogenik jika terhirup. Serbuk ini memiliki wujud berwarna hijau kebiru-biruan

Tabel 3.3 Karakteristik umum dari serbuk Zn(NO ₃) ₂ .4H ₂ (
Karakteristik	Nilai					
Rumus Molekul	$Ni(NO_3)_2.6H_2O$					
Berat Molekul	290.7949					
Penampilan	hijau kebiru-biruan					

Gambar 3.4 Serbuk Ni(NO₃)₂.6H₂O

 Serbuk Asam Sitrit (C₆H₈O₇.H₂O) Asam Sitrit (C₆H₈O₇.H₂O) memiliki karakteristik serbuk berwarna putih bening. Secara umum karakteristik dari serbuk serbuk Asam Sitrit dapat dilihat pada Tabel 3.5 dibawah ini.

Tabel 3.5	Karakteristik	umum dari	Asam Si	itrit(C ₆ H ₈ O ₇	H_2O
-----------	---------------	-----------	---------	--	--------

Nilai
$(C_6H_8O_7.H_2O)$
210.137
3,15
Putih Kristal
$1,665 \text{ x } 10^3 \text{ kg/m}^3$

Gambar 3.5 Asam Sitrit

5. Amoniak (NH₄OH)

Amoniak berbentuk cair dengan konsentrasi 25%. Secara umum karakteristik amoniak dapat dilihat pada **Tabel 3.6** dibawah ini.

Tabel 3.6 Karakteristik umum dari Amoniak (NH₄OH)

Karakteristik	Nilai
Rumus Molekul	(NH ₄ OH)
Massa Jenis	0,6942 g/mol
Titik Lebur	-77.73 g/mol
рКа	9.25
pKb	4.75
Bentuk Molekul	Piramida segitiga
Penampilan	Gas tak berwarna berbau tajam

Gambar 3.6 Amoniak

7.Ali suling (aquades) (H₂O) Air suling memiliki pH netral (pH = 7)

3.2 Alat

Adapun peralatan yang digunakan pada percobaan ini adalah sebagai berikut :

- 1. *Hot Plate* dengan *magnetic stirrer* dan *magnetic bar* Alat ini digunakan untuk mengaduk dan mencampur larutan agar menjadi homogen dengan dilengkapi pemanas.
- 2. Neraca Analitik

Alat ini digunakan untuk menimbang massa serbuk Barium Nitrat, Besi (III) nitrat nonahidrat, $Zn(NO_3)_2.4H_2O$, Ni $(NO_3)_2.6H_2O$, dan Asam Citrid. Selain itu juga untuk menimbang sampel setelah disintering.

- Kertas indikator pH Kertas indicator ini digunakan untuk mengukur pH larutan. Dilakukan dengan mencocokkan warna pada wadah indikator yang tersedia sesuai dengan tingkat pH. Cara kerjanya dengan memasukkan kedalam larutan beberapa saat.
- 4. Crucible

Alat ini digunakan untuk wadah serbuk prekursor saat proses sintering dalam *furnace*. *Crucible* yang digunakan ini terbuat dari keramik.

- 5. Gelas Beaker Alat ini digunakan sebagi wadah untuk melarutkan bahan dasar dan mengendapkan serbuk prekursor.
- 6. Tabung Ukur Alat ini berfungsi untuk mengukur volume larutan
- 7. Pengaduk Alat ini digunakan sebagai pengaduk larutan
- 8. Pipet Alat ini digunakan untuk mengambil larutan amoniak
- 9. Furnace Alat ini digunakan untuk proses sintering serbuk precursor
- 10. Difraksi sinar-X (XRD)

Alat uji XRD digunakan bertujuan untuk mengetahui fasa yang terbentuk, struktur kristal, material.

11. Mikroskop Elektron (SEM)

Scaning Electron Microscope (SEM) berfungsi sebagai alat untuk melihat struktur permukaan material dengan resolusi tinggi. Pengujian SEM dilakukan untuk mengamati morfologi partikel dan distribusi ukuran partikel serbuk barium heksaferrit yang telah ditambahkan Ni dan Zn

12. VSM (Vibrating Sample Magnetometer)

Alat ini digunakan untuk memperoleh kurva magnetisasi suatu bahan, baik sebagai fungsi temperatur (maksimal 300 K) maupun sebagai fungsi medan luar (maksimal \pm 1,2 T). Hasil uji VSM berupa kurva magnetik sampel, temperatur transisi magnetik (Tc) dan konstanta anisotropi bahan.

3.3 Diagram Alir Penelitian

Untuk mempermudahkan dalam pengerjaan penelitian tersebut, maka dibuat perencanaan urutan proses kerja secara sistematis. Sehingga, tujuan dari penelitian dapat tercapai secara optimal. Urutan dari proses tersebut ditunjukkan pada diagram alir berikut

3.4 Rancangan Penelitian

Berdasarkan rumusan masalah yang telah dipaparkan, maka penelitian ini menggunakan rancangan penelitian sebagai berikut Tabel **3 7** Bancangan Penelitian

Tuber 5.7 Raneangan Tenentian										
Material		Sol Gel Auto Combustion				Pengujian				
Ba se	Un Pen (m	sur nadu ol)	Rasio Asam Sitrit : Metal	Waktu (jam)	рН	T. Sinter	SEM	XRD	FTIR	VSM
						850				
		0,6	3:1	3	7	950				
						1050				
Do	N;		0,6 3:1	3 9		850				
Ба М	Zn	n = 0,6 = 3:1			9	950				
	211				1050					
		0,6 3:1 3			850					
			3	11	950					
						1050				

3.5 Langkah Percobaan

Penelitian ini memiliki beberapa tahan percobaan yang akan dilakukan sehingga mendapat hasil barium heksaferrit yang disubtiitusi dengan unsur paduan Ni-Zn,secara terperinci akan dibawah dibawah ini.

3.5.1 Pembuatan larutan

Langkah pertama sebelum melakukan proses percobaan adalah pembuatan larutan sebagai berikut

- 1. Menimbang bahan bahan yang diperlukan menggunakan neraca analitik.
- 2. Mengukur aquades sebagai pelarut bahan.
- 3. Melarutkan serbuk barium nitrat dan besi (III) nitrat hidrat menggunakan aquades dalam gelas beaker

kemudian dicampur dengan menggunaka ratio mol Fe/Ba 11. Dengan penamaan disebut larutan A .

- 4. Menganduk larutan A dengan *magnetic stirrer* selama 15 menit.
- 5. Menambahkan larutan A dengan unsur paduan Ni dan Zn dengan jumlah mol 0,6
- 6. Menambahkan larutan A dengan asam sitrit dengan perbandingan mol rasio 3 : 1.
- 7. Menambahkan larutan amoniak dengan konsentrasi 5M ke dalam larutan A menggunakan pipet sambil di aduk hingga mencapai variasi pH yang diiinginkan yaitu 7, 9, dan 11 yang kemudian disebut larutan B.
- 8. Mengaduk larutan B selama 1 jam agar homogen

3.5.2 Proses *Heat treatment*

Setelah proses pembuatan larutan, kemudian langkah selanjutnya adalah sebagai berikut

- 1. Memberikan perlakuan panas pada larutan dengan temperatur 80°C dan tetap mengaduk selama 1 jam, akan terjadi gel basah.
- 2. Memanaskan larutan pada temperatur $\pm 250^{\circ}$ C selama 2 jam, akan terbentuk gel kering.
- 3. Gel yang sudah terbentuk mengembang kemudian diambil dan digerus dengan penumbuk.
- 4. Gel yang sudah digerus dengan ukuran sangat halus dan siap untuk disintering.
- 5. Proses sintering dilakukan dengan furnace pada temperatur 850, 950, 1050°C dan ditahan selama 3 jam.

3.6 Karakterisasi Spesimen

Barium heksaferrit yang didapat akan dilakukan beberapa pengujian untuk dapat dianalisis hasil yang setelah dilakukan.

3.6.1 Pengujian Scanning Electron Microscope (SEM)

Pengujian struktur permukaan dari sampel pada penelitian ini menggunakan alat SEM FEI S50 dengan pembesaran maksimum sebesar 10000 kali, dengan pengujian ini akan didapatkan morfologi dari permukaan sampel uji. Langkah langkah dari pengujian SEM ini adalah :

- 1. Mempersiapkan sampel uji yang akan di SEM, termasuk memotong sampel uji.
- 2. Membersihkan permukaan sampel uji
- 3. Meletakkan sampel uji pada *holder* dengan menempelkan karbon tipe terlebih dahulu sebagai perekat.
- 4. Memasukkan sampel uji kedalam mesin SEM
- 5. Hasil yang diperoleh akan ditampilkan di layar komputer.

Gambar 3.7 Scanning Electron Microscope (SEM) dan prinsip kerjanya

3.6.2 Pengujian XRD

Pengamatan dengan menggunakan XRD bertujuan untuk

mengidentifikasi unsur atau senyawa yang terbentuk, penentuan komposisi, penentuan struktur kristal, dan lain-lain. Data hasil pengujian ini berupa grafik puncak intensitas terhadap sudut 2theta (2θ). Data XRD dapat digunakan sebagai penentuan unsur atau senyawa major maupun minor, perhitungan ukuran kristal, penentuan struktur kristal dan penentuan komposisi unsur atau senyawa. Tahapan untuk melakukan pengujian ini sebagai berikut :

- 1. Serbuk sampel diletakkan pada holder, dan ditekan agar kompak. Supaya penembakan dengan XRD sesuai dengan yang diharapkan, oleh karena itu preparasi spesimen harus memiliki permukaan rata pada holder.
- 2. Holder diletakkan ke dalam mesin XRD. Setting pengukuran sudut dilakukan dengan rentang $20-80^{\circ}$.
- 3. Data tampil pada layar komputer berupa grafik horizontal dengan puncak-puncak grafik pada sudut tertentu.

Gambar 3.8 Mesin Uji XRD, Philips Analycal

3.6.3 Pengujian Vabrating Sample Magnetometer (VSM)

Pengujian VSM pada penelitian ini dilakukan dengan tahapan sebagai berikut

1. Serbuk sampel dimasukkan dalam pipa kecil kemudian ditimbang.

- 2. Pipa kecil dimasukkan dalam pipa holder kemudian dimasukkan dalam mesin uji VSM.
- 3. Proses magnetisasi dilakukan pada salah satu koil terhadap sampel hingga mencapai kondisi saturasi dimana sampel tidak menunjukkan peningkatan momen magnet meskipun dengan penambahan medan magnet induksi yang lebih besar.
- 4. Medan magnet pada koil kemudian dikurangi perlahan hingga nol dan diikuti pemberian medan magnet induksi oleh koil yang lainnya hingga proses yang sama seperti sebelumnya.
- 5. Hasil yang diperoleh berupa kurva histerisis yang menunjukkan kemapuan sampel di magnetisasi dan di demagnetisasi.

3.6.4 Pengujian Fourier Transform Infra Red (FTIR)

Langkah-langkah yang dilakukan pada pengujian ini adalah sebagai berikut:

- 1. Preparasi Spesimen
- 2. Meletakkan spesimen pada papan objek.
- 3. Detektor akan mengukur signal interferogram.
- 4. Signal terukur akan diterjemahkan dalam bentuk digital dan dikirim ke komputer ketika transformasi Fourier terjadi.
- 5. Pembacaan spektrum infrared

Halaman ini sengaja dikosongkan

BAB IV ANALISA DATA DAN PEMBAHASAN

4.1 Analisa data

4.1.1 Proses Pembuatan Barium Heksaferrit Dengan Subtitusi unsur Ni-Zn Dengan Metode Sol-Gel *Auto Combustion*

Pada pembuatan Barium Heksaferrit (BaFe₁₂O₁₉) yang disubstitusi dengan unsur Ni-Zn, digunakan serbuk Ba(NO₃)₂ dan serbuk Besi (III) nitrat nonahidrat (Fe(NO₃)₂.9H₂O). Masingmasing dari serbuk tersebut dilarutkan dalam aquades sehingga menghasilkan larutan berwarna kuning kemerahan untuk serbuk Besi (III) nitrat nonahidrat dan berwarna putih keruh untuk serbuk $Ba(NO_3)_2$. Kemudian kedua larutan tersebut dicampur menggunakan magnetic stirring dan menghasilkan larutan yang berwarna kuning kemerahan. Setelah 15 menit kemudian larutan pun ditambahkan dengan larutan Asam Sitrit serta larutan doping Nikel (II) nitrate hexahydrate dan serbuk Zn(NO₃)₂.4H₂O. Dari hasil pencampuran tersebut didapatkan warna laruta yang berubah menjadi hijau kenuning-kuningan. Kemudian diberikan ammonia untuk mengatur pH larutan. Variasi pH 7, 9, dan 11 dilakukan dengan banyak sedikitnya penambahan Amonia yang dimasukan kedalam larutan. Hal tersebut ditunjukkan pada Gambar 4.1 dibawah ini.

Fase Sol

dan Ba (precursor)

 $BaO + Fe_2O_3 + HNO_3 + CO_2$

Gambar 4.1 Proses Pembuatan Barium Heksaferrite doping Ni-Zn pada Fasa Sol

Usai menjadi larutan dalam fasa sol (campuran semua bahan), kemudian larutan dinaikkan temperaturnya hingga 80°C. Pemanasan tersebut dilakukan selama tiga jam hingga terbentuk fasa gel karena kandungan H₂O yang menguap. Pada pemanasan tersebut HNO₃ juga turut menguap karena temperature didihnya pada 83°C. Hal tersebut ditunjukkan pada Gambar 4.2.

Fasa Gel

 $\begin{array}{c} BaFe_2O_4+Fe_2O_3+\\ HNO_3 \end{array}$

 $BaFe_2O_4 + Fe_2O_3$

Gambar 4.2 Proses Pembuatan Barium Heksaferrite doping Ni-Zn pada Fasa Gel

Pemanasan kembali dilakukan setelah sample berbentuk fasa gel. Pemanasan kali ini berfungsi untuk menghilangkan kandungan air dalam fasa gel. Sample kemudian dimasukkan kedalam furnace dengan temperatur 250°C dengan waktu *holding* selama 3 jam. Sehingga terbentuk gel yang menggumpal dan megembang. Proses *autocombustion* terjadi selama proses *holding* dalam oven. Hal tersebut ditunjukkan pada **Gambar 4.3**. Gel kering yang menggumpal hasil dari proses dalam oven selanjutnya di tumbuk hingga menjadi serbuk yang halus seperti dengan menggunakan *crucible* (cawan keramik).

Auto Combustion

Gambar 4.3 Proses Pembentukan Barium Heksaferrite doping Ni-Zn pada Fasa Autocombustion

Setelah dilakukan penumbukan, proses selanjutnya dengan *stirring* serbuk dalam furnace pada temperatur 850, 950, dan 1050°C dengan waktu tahan selama 3 jam. Hasil serbuk pada proses tersebut dapat dilihat pada **Gambar 4.4**.

Laporan Tugas Akhir 45 Jurusan Teknik Material dan Metalurgi

Gambar 4.4 Spesimen Hasil Sintering (a) 7/850; (b) 7/950; (c) 7/1050; (d) 9/850; (e) 9/950; (f) 9/1050; (g) 11/850; (h) 11/950; (i) 11/1050

Setelah di sintering, sampel yang dihasilkan seperti pada **Tabel 4.1** dilakukan pengujian untuk mengetahui sifat magnetik, struktur mikro, pengaruh pH, dan pengaruh temperatur sintering pada Barium Heksaferrit (BaFe₁₂O₁₉).

14.1 S	14.1 Samper yang uluji									
N	No	Nama Sampel	pН	Temperatur						
				Sintering						
	1	7/850	7	850						
	2	7/950	7	850						

Laber 4.1 Sumper yang ang	Tabel	4.1	Sampel	yang	diuji
----------------------------------	-------	-----	--------	------	-------

3	7/1050	7	850	
4	9/850	9	950	
5	9/950	9	950	
6	9/1050	9	950	
7	11/850	11	1050	
8	11/950	11	1050	
9	11/1050	11	1050	

4.1.2 Analisa XRD

Untuk mengetahui perubahan fasa yang terjadi dan fasa yang terbentuk dari pengaruh penambahan unsur doping Ni-Zn maka dilakukan pengujian XRD. Pengujian XRD dilakukan dengan metode pengujian difraksi serbuk menggunakan Philips X'Pert MPD System dengan menggunakan serbuk kira-kira 0,5 gram.

Berdasarkan hasil pengujian X-Ray Diffraction (XRD) dapat diketahui data hasil pembuatan Barium Heksaferite $(BaFe_{12}O_{19})$ dengan metode sol gel auto combustion doping Ni-Zn pada **Gambar 4.5**.

Angle (20)

Gambar 4.5 Hasil XRD untuk 7/850, 7/950, dan 7/1050

Pada grafik tersebut didapatkan pick tertinggi dari masing-masing temperature 850, 950, dan 1050°C terbentuk pada puncak 28.4887, 34.2000, serta 34.1974. Hal tersebut didapatkan dengan pengujian XRD menggunakan radiasi Cu-K α (λ = 1,54060 A°) dan rentang sudut antara 10° hingga 90°. Setelah melakukan pencocokan menggunakan PDF card 01-075-9113, pada temperatur 850°C terbentuk fasa Barium Monoferrit (BaFe₂O₄). Sedangkan semakin bertambahnya temperatur pada 950°C fasa Barium Heksaferrite (BaFe₁₂O₁₉) telah terbentuk. Begitu pula saat temperature 1050°C, single fasa Barium Heksaferrite (BaFe₁₂O₁₉) juga terbentuk. Hal tersebut sesuai dengan penelitian H Sozeri et al (2012), yang menyatakan masih adanya fasa pengotor Fe₂O₃ saat temperature pemanasan baru mencapai sekitar 800°C.

Sedangkan pengaruh pH 9 pada pembuatan Barium Heksaferrite doping Ni-Zn pada temperatur sintering 850, 950, dan 1050°C, juga disajikan grafik hasil XRD pada **Gambar 4.6**.

Gambar 4.6 Hasil XRD untuk 9/850, 9/950, dan 9/1050

Pada grafik tersebut didapatkan peak tertinggi dengan nilai 35.4463, 34.1976, dan 34.1786. Pada temperatur 850° C didapatkan adanya fasa pengotor berupa Fe₂O₃. Semakin meningkatnya temperature fasa tersebut pun berubah menjadi single fasa Barium Heksaferrite. Sehingga pada temperature sintering 950 dan 1050°C fasa yang terbentuk adalah Barium Heksaferrite.

Berbeda dengan yang ditunjukkan pada grafik hasil pengujian XRD untuk pH 11 dengan temperature sintering yang sama yakni 850, 950, dan 1050°C pada **Gambar 4.7**.

Gambar 4.7 Hasil XRD untuk sampel 11/850, 11/950, dan 11/1050

Berdasarkan data hasil pengujian, didapatkan grafik dengan pick tertinggi pada sample Barium Heksaferrite doping Ni-Zn masing-masing di temperature sintering 850, 950, dan 1050°C yaitu 34.1896, 34.1726, serta 34.2270. Berdasarkan hasil pencocokan dengan PDF card 01-075-9113, pada temperature 850°C masih terbentuk fasa pengotor Fe_2O_3 . Sedangkan semakin meningkatnya temperatur fase yang terbentuk merupakan single fasa Barium Heksaferrite.

Berdasarkan data tersebut dapat disimpulkan bahwa asam citrate pada metode sol gel baru dapat bekerja dan membentuk

fasa Barium Heksaferrite tipe M pada temperature diatas 800°C. Sedangkan bila dijabarkan berdasarkan temperatur sintering dapat dilihat pada **Gambar 4.8.**

JURUSAN TEKNIK MATERIAL DAN METALURGI FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI SEPULUH NOPEMBER

Gambar 4.8 Hasil XRD berdasarkan variasi temperatur 850 (a), 950 (b), dan 1050°C (c)

Berdasarkan grafik hasil pengujian XRD dapat diketahui pula ukuran kristal dari Barium Heksaferrite (BaFe $_{10,8}$ Ni $_{0,6}$ Zn $_{0,6}$ O $_{19}$). Perhitungan tersebut dilakukan dengan menggunakan rumus Scherrer.

(Dar C10,81 (10,60 19)				
	FWHMm			
sampel	(2theta)	D (A)	D(nm)	
7/850	0,1004	1996,47	199,65	
7/950	0,1673	1020,53	102,05	
7/1050	0,1004	2716, 51	189,19	

Tabel 4.2 Ukuran kristal pada Barium Heksaferrite doping Ni-Zn (BaFerra Nia (Zna (Ora))

	Lapo Jurusa	ran Tugas Akhir an Teknik Materi	52 al dan Metalurgi
9/850	0,1004	1996,47	199,65
9/950	0,1004	1996,47	199,65
9/1050	0,2342	702,91	70,29
11/850	0,0669	5880,49	588,05
11/950	0,1004	1996,47	199,65
11/1050	0,2007	831,32	83,13

Berdasarkan perhitungan, diperoleh ukuran kristal terkecil dengan nilai 70,29 nm pada pH 9 dengan temperature sintering 1050 dan terbesar yaitu 588,049 nm pada pH 11 dengan temperature sintering 850. Sehingga dengan meningkatnya temperature akan memperkecil ukuran kristal dan semakin besar pH yang diberikan akan memperbesar ukuran kristal BaFe₁₂O₁₉ dengan doping Ni-Zn fraksi 0,6.

Gambar 4.9 Grafik Perhitungan Ukuran Kristal BaFe_{10.8}Ni_{0.6}Zn_{0.6}O₁₉

Hal tersebut senada dengan penelitian Talwinder (2013) pada penelitiannya tentang pengaruh pH pada sifat karakteristik Barium Heksaferrite yang di doping La-Ni. Pada penelitian tersebut disimpulkan berdasarkan analisa pegujian VSM, XRD, dan FTIR menunjukkan bahwa ukuran kristal dari BaLa_{0,5}Ni_{0,5}Fe₁₁O₁₉ akan menurun seiring dengan meningkatnya pH. Sedangkan koersivitas dan magnetik saturasinya akan turut meningkat. Hal tersebut dapat dilihat dalam **Tabel 4.3**.

Tabel 4.3 Rata-Rata Ukuran Partikel, Magnetik saturasi, Retentivitas, dan Koersivitas dari BaFe₁₁Ni_{0,5}La_{0,5}O₁₉ (Talwinder 2013)

Nama Sample	Variasi	Rata-Rata Pertumbuhan Butir (D) (nm)	Magnetik Saturasi (Ms) (emu/g)	Mr (emu/g)	Нс
А	0.29	38	-	-	-
В	2.00	34	44.41	26.17	4379.46
С	8.00	33	60.73	36.55	4996.21

4.1.3 Analisa Struktur Mikro dari SEM

Laporan Tugas Akhir 54 Jurusan Teknik Material dan Metalurgi

JURUSAN TEKNIK MATERIAL DAN METALURGI FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI SEPULUH NOPEMBER

Gambar 4.10 Struktur Mikro dari serbuk BaFe₁₂O₁₉ doping Ni-Zn pada perbesaran 5000x pada (a) 7/850, (b) 7/950, (c) 7/1050, (d) 9/850, (e) 9/950, (f) 9/1050, (g) 11/850, (h) 11/950, dan (i) 11/1050

Berdasarkan hasil data tersebut didapatkan bahwa bentuk partikel dari Barium Heksaferrite doping Ni-Zn 0,6 pada pH 7 temperatur sintering 850, 950, dan 1050°C terlihat bahwa semua hasil dari morfologinya berbentuk polygonal dan *sponge*. Bentuk *sponge* tersebut berpori terdistribusi merata pada serbuk tersebut. Gambar SEM menunjukan, semakin meningkatnya temperatur sintering akan meningkatkan pertumbuhan ukuran butir dari Barium Heksaferrite doping Ni-Zn. Sehingga pada gambar terlihat bahwa rongga yang ada pada BaFe_{10,8}Ni_{0,6}Zn_{0,6}O₁₉ saat temperatur sintering 850 lebih banyak dari pada saat temperature sintering mencapai 1050°C. Hal tersebut disebabkan karena pertumbuhan ukuran kristal dari BaFe_{10,8}Ni_{0,6}Zn_{0,6}O₁₉ akan semakin meningkat seiring dengan meningkatnya temperature sintering.

Hal tersebut turut dibuktikan oleh Guolong Tan (2012), dalam penelitiannya $BaFe_{12}O_{19}$ dipanaskan pada temperature

1200 dan 1300°C. Pada temperatur 1200°C kristal BaFe₁₂O₁₉ berbentuk plat heksagonal. Sedangkan saat temperatur 1300°C kristal BaFe₁₂O₁₉ berbetuk heksagolal pipih yang lebih panjang.

Bentuk partikel Barium heksaferrit yaitu poligonal. Hal ini juga sama disampaikan pada penelitian oleh L.Junliang dkk(2010) dengan sintesa barium heksaferrit tanpa doping. Gambar SEM serbuk Barium Heksaferrit yang memiliki bentuk spherical atau elipsoidal dan juga berbentuk heksagonal. Bentuk ini juga memiliki kesamaan bentuk serbuk dengan gambar SEM Barium heksaferrit dengan doping Ni dan Zn.

Dari bentuk *sponge* tersebut secara umum memiliki bentuk elips dengan ukuran partikel 40-60µm. Distribusi *sponge* tersebut merata di seluruh serbuk tersebut. Oleh karena itu dengan semakin banyak *sponge* yang terdapat di serbuk maka luas permukaan dari serbuk tersebut meningkat.

Gambar 4.11 Struktur Mikro $BaFe_{10,8}Ni_{0,6}Zn_{0,6}O_{19}$ pH 9 dengan perbesaran 50.000x pada temperature sintering (a) 850, (b) 950, dan (c) 1050°C

Berdasarkan **Gambar 4.11**, bentuk heksagonal dari kristal $BaFe_{10,8}Ni_{0,6}Zn_{0,6}O_{19}$ lebih terlihat jelas. Pada gambar

JURUSAN TEKNIK MATERIAL DAN METALURGI FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI SEPULUH NOPEMBER

tersebut menunjukkan adanya distorsi plat heksagonal yang semakin bertumbuh dari Barium Heksaferrite. Hal tersebut sama seperti peelitian oleh Guolong Tan (2012), bahwa pertumbuhan butir silnder dapat dianalisa dengan jelas menggunakan FSEM.. Pertumbuhan butir berbentuk hexahedron tumbuh secara konsisten dengan bentuk simetri heksagonal dari kristal Barium Heksaferrite.

Untuk mengetahui distribusi komposisi yang terjadi pada partikel dan meyakinkan bahwa penambahan unsur doping Ni-Zn berhasil disubtitusi pada barium heksaferrit sesuai dengan tujuan awal maka dilakukan EDX pada area tertentu pada pesebaran partikel sehingga didapatkan secara umum komposisi yang terbentuk. Gambar dari hasil SEM-EDX pada kondisi Temperatur Sinter 850°C terlihat pada **Gambar 4.12** di bawah ini.

Laporan Tugas Akhir 59 Jurusan Teknik Material dan Metalurgi

Gambar 4.12 Hasil SEM-EDX (a) 7/850, (b) 7/950, dan (c) 7/1050

Dari **Gambar 4.12** hasil SEM EDX diatas terlihat bahwa ada penambahan unsur doping Ni-Zn telah berhasil mensubtitusi Fe pada barium heksaferrit ini dibuktikan dengan munculnya komposisi unsur Ni dan Zn pada hasil SEM-EDX. Komposisi Ni dan Zn pada hasil SEM-EDX juga memiliki rata-rata, serta menurunnya komposisi Fe yang disebabkan bertmbahnya Ni dan Zn. Hal ini menguatkan bahwa telah terjadinya subtitusi pada Fe dengan Ni dan Zn.

Pengaruh dari penambahan unsur doping Ni-Zn dengan barium heksaferrit terlihat dengan adanya komposisi unsur Ni dan Zn sendiri di dalam barium heksaferrit, oleh karena itu perlu dilakukan pengujian untuk pengetahui distribusi komposisi yang terjadi pada partikel dan meyakinkan bahwa penambahan unsur doping Ni-Zn berhasil disubtitusi pada barium heksaferrit sesuai dengan tujuan awal (EDX) merupakan pengujian yang dapat melihat komposisi unsur yang terdapat pada barium heksaferrit.

JURUSAN TEKNIK MATERIAL DAN METALURGI FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI SEPULUH NOPEMBER

Gambar 4.13 Hasil SEM-EDX pada (a) 9/850, (b) 9/950, dan (c) 9/1050

Dari **Gambar 4.13** menunjukkan munculnya unsur Ni dan Zn pada tabel hasil EDX merupakan bukti bahwa penambahan Ni-Zn telah berhasil dilakukan. Sama halnya dengan hasil EDX pada pH 11 seperti pada **Gambar 4.14**.

Gambar 4.14 Hasil SEM-EDX pada (a) 11/850, (b) 11/950, dan (c) 11/1050

4.1.4 Data Pengujian FTIR

Berikut hasil FTIR dari setiap sampel Barium Heksaferrite doping Ni-Zn,

JURUSAN TEKNIK MATERIAL DAN METALURGI FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI SEPULUH NOPEMBER

JURUSAN TEKNIK MATERIAL DAN METALURGI FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI SEPULUH NOPEMBER

Gambar 4.15 Hasil FTIR dari serbuk BaFe₁₂O₁₉ doping Ni-Zn pada (a) pH 7, (b) pH 9, dan (c) pH 11

Pada hasil FTIR pada Gambar 4.15 dapat dianalisa ikatan yang terjadi pda sampel Barium Heksaferrite dengan vasiasi pH dan temperature sintering. Berdasarkan data yang didapat, terdapat peak pada rentang 400-600cm⁻¹ pada setiap sampel 7/850, 7/950, 7/1050, 9/850, 9/950, 9/1050, 11/850, 11/950, serta 11/1050 berturut-turut yakni peak 566.04, 539.04, 570.19, 567.61, 568.13, 545.50, 567.61, 569.81, dan 567.32 cm⁻¹. Peak tersebut menandakan adanya ikatan M-O (metal-oksigen). Hal tersebut menandakan adanya ikatan antara logam Fe, Ba, Ni, dan Zn dengan Oksigen. Selain itu juga muncul peak dengan range 675-870 pada sample yakni 773.61, 859.10, 852.77, 700.05, 857.04, serta 853.96 cm⁻¹. Peak tersebut menandakan adanya ikatan C-H yang menunjukkan adanya reaksi asam sitrat. Selain JURUSAN TEKNIK MATERIAL DAN METALURGI FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI SEPULUH NOPEMBER

itu terdapat pula *wavenumber* dengan rentang 1080-1300 cm⁻¹ yang menandakan adanya ikatan C-O. Hal tersebut terjadi pada sampel 11/1050 dengan nilai peak 1096.57 cm⁻¹. Hal tersebut dapat terjadi bila terdapat ikatan antara Oksigen untuk pembakaran dengan Carbon saat reaksi pembentukan fasa barium Heksaferrite terjadi. Selain itu juga terdapat ikatan H-O pada sampel 7/1050 yang menandakan adanya sisa reaksi dengan air yakni ditunjukkan pada peak dengan *wavenumber* 2161.45 dan 2360.68.

4.1.5 Data pengujian VSM

Dari hasil pengujian VSM didapatkan data sebagai berikut ini

Gambar 4.16 Hasil VSM Barium Heksaferrite (a) 7/850, 7/950, 7/1050 (b) 9/850, 9/950, 9/1050, dan (c) 11/850, 11/950, dan 11/1050

	Temp.	Si		
pН	Sinter	He (Tesla)	Ms	Mr
	$(^{\circ}C)$	fic (Tesia)	(emu/gr)	(emu/gr)
	850	0,15	94	51
7	950	0,12	85	40
	1050	0,11	74,5	38
	850	0,12	80,7	39,7
9	950	0,19	88,4	48,2
	1050	0,03	90,9	35,6
	850	0,18	80,3	43,4
11	950	0,15	90,7	48,6
	1050	0,13	95	49

Tabel	4.4	Nilai	Sifat	Magneti	k pada	Temp	eratur	Sinter	850	dan
<u>950°C</u>	den	gan Si	ubtitus	si Ni-Zn	pada B	arium	Heksa	ferrit p	Η7	

Berdasarkan data tersebut diketahui bahwa sampel yang memiliki nilai Magnetik Saturasi yang paling tinggi adalah sampel 11/1050 dengan nilai magnetic saturasi sebesar 95 emu/g. Sedangkan sampel yang memiliki koersifitas paling rendah adalah sampel 9/1050 dengan nilai koersifitas 0,03 T.

JURUSAN TEKNIK MATERIAL DAN METALURGI FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI SEPULUH NOPEMBER

Gambar 4.17 Grafik hubungan antara pH dengan Magnetik Saturasi dan Koersifitas dengan variasi temperature sintering (a) 850, (b) 950, dan (c) 1050°C

Pada grafik tersebut dapat dilihat hubungan antara pH dengan nilai magnetik saturasi dan koersifitas. Pada grafik a tren JURUSAN TEKNIK MATERIAL DAN METALURGI FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI SEPULUH NOPEMBER

terhadap nilai koersifitas semakin tinggi pH maka akan semakin naik. Sedangkan nilai Magetik Saturasi cenderung menurun. Saat temperature sintering 950°C, nilai magnetic saturasi cenderung meningkat dan nilai koersifitas menurun seiring dengan bertambahnya pH yang diberikan. Sedangkan pada temperature sintering 1050°C nilai Magnetik saturasi dan koersifitas meningkat.

Hal tersebut sesuai dengan penelitian oleh Liu Junliang,dkk (2009) dengan variasi pH 1, 3, 7, dan 9, dihasilkan pada pH 7 didapatkan sifat magnetik yang paling baik dengan besar M1.2T of 58.0 emu/g and Hc of 4142 Oe. Sehingga dapat disimpulkan semakin tinggi pH maka nilai magnetic saturasinya akan semakin besar.

Sedangkan berdasarkan beberapa penelitian seperti Z. Mosleh dkk, 2014 dengan pembentukan Barium Heksaferrit tanpa penambahan unsur doping dengan temperatur Sinter 750,850, dan 950°C semakin tingginya temperature sintering maka nilai sifat kemagnetan akan semakin meningkat.

4.2 Pembahasan

4.2.1 Pengaruh pH pada Barium Heksaferrit doping Ni-Zn Struktur Mikro dan Sifat Magnetik

Barium Heksaferrite merupakan material yang memiliki bentuk heksagonal. Adanya penambahan unsur lain sebagai doping akan membuat perubahan dalam hal struktur kristalnya. Proses pendopingan Ni-Zn tersebut dimulai saat terjadinya fasa sol pada proses pembuatan Barium Heksaferrite dengan metode Sol-Gel Autocombustion. Ni dan Zn dipilih karena memiliki jarijari atom yang tidak jauh berbeda dengan Fe yaitu masing-masing sebesar 58.6934 dan 65.38. Ni dan Zn dapat mensubstitusi atom Fe saat proses pembuatan Barium Heksaferrite berlangsung.

Sesuai dengan penelitian oleh Sulistyo (2012) penambahan variasi pH dalam proses sol yakni agar terjadinya pengendapan dari ion-ion logam. Sehigga ikatan logam antara Ba, Fe, Ni, dan

Zn dapat terbentuk. Selain itu pengaruh peambahan pH juga akan pertumbuhan berpegaruh terhadap kristal dari Barium Heksaferrite. Hal tersebut dapat dibuktikan dari data hasil pengujian XRD yang diperoleh. Pada hasil pengujian XRD dapat dihitung ukuran kristal dari Barium Heksaferrite. Sehingga didapatkan ukuran kristal terkecil dengan nilai 70,29 nm pada pH 9 dengan temperatur sintering 1050°C dan terbesar yaitu 588,049 nm pada pH 11 dengan temperature sintering 850. Sehingga dengan meningkatnya temperatur akan memperkecil ukuran kristal dan semakin besar pH yang diberikan akan memperbesar ukuran kristal BaFe₁₂O₁₉ dengan doping Ni-Zn fraksi 0,6. Berdasarkan penelitian yang dilakukan oleh Pooja Chauhan (2010), Barium Heksaferrite yang tidak didoping memiliki ukuran kristal sebesar 33.58 nm. Perbedaan tersebut menunjukkan adanya pertambahan kisi dari kristal Barium Heksaferrite akibat jari-jari Ni dan Zn yang sedikit lebih besar dari pada jari-jari dari Fe.

Senada dengan Talwinder (2013) pada penelitiannya tentang pengaruh pH pada sifat karakteristik Barium Heksaferrite yang di doping La-Ni. Pada penelitian tersebut disimpulkan berdasarkan analisa pegujian VSM, XRD, dan FTIR menunjukkan bahwa ukuran partikel dari BaLa_{0,5}Ni_{0,5}Fe₁₁O₁₉ akan menurun seiring dengan meningkatnya pH. Sedangkan koersivitas dan magnetik saturasinya akan turut meningkat.

Untuk mengetahui Ni-Zn yang telah terdoping dalam Barium Heksaferrite dapat dianalisa dari data pengujian FTIR. Pada pengujian FTIR, turut didapatkan beberapa peak yang menyatakan ikatan yang terjadi pada sampel. Berdasarkan data yang didapat, terdapat peak pada rentang 400-600cm⁻¹ pada setiap sampel. Peak tersebut menandakan adanya ikatan M-O (metaloksigen). Hal tersebut menandakan adanya ikatan antara logam Fe, Ba, Ni, dan Zn dengan Oksigen.

Selain itu juga dapat dilihat dari hasil pengujian SEM. partikel dari Barium Heksaferrite doping Ni-Zn 0,6 dengan variasi pH 7, 9, dan 11 temperatur sintering 850, 950, dan 1050°C terlihat bahwa semua hasil dari morfologinya berbentuk poligonal dan *sponge* dengan ukuran partikel serbuk rata-rata 40-60µm. Bentuk *sponge* tersebut berpori terdistribusi merata pada serbuk tersebut. Hal tersebut sesuai dengan penelitian yang dilakukan oleh L.Junliang dkk (2010) dengan sintesa barium heksaferrit tanpa doping. Gambar SEM serbuk Barium Heksaferrit yang memiliki bentuk spherical atau elipsoidal dan juga berbentuk heksagonal. Bentuk ini juga memiliki kesamaan bentuk serbuk dengan gambar SEM Barium heksaferrit dengan doping Ni dan Zn.

Sedangkan adanya substitusi unsur Ni dan Zn dapat dibuktikan dengan EDX. Penambahan komposisi dari Ni-Zn dalam sampel Barium Heksaferrite akan meningkat dan maksimum sampai pada komposisi doping 0,6. Jumlah doping meningkat tiap kenaikan temperatur menandakan Ni-Zn telah tersubstitusi dalam kristal Barium Heksaferrit.

Adanya penambahan pH berpengaruh terhadap distribusi ukuran partikel dari Barium Heksaferrite. Berdasarkan data yang diperoleh dapat dilihat semakin tinggi pH ukuran partikel akan semakin kecil. Hal tersebut sesuai dengan penelitian yang dilakukan oleh Talwinder (2012).

Bertambah dan berkurangnya ukuran kristal tersebut pun berpengaruh terhadap sifat magnetik dari material tersebut. Hal tersebut disebabkan karena adanya medan orbital dan medan spin yang berbeda pada setiap atom. Pada material Barium Heksaferrite ini terdiri dari unsur logam Fe, Zn, dan Ni yang masing-masing memiliki jumlah dan sifat atom yang berbeda.

Perbedaan tersebut yang dapat mempengaruhi sifat magnetik yakni Koersivitas dan Magnetic Saturasi dari Barium Heksaferrite yang didoping Ni-Zn. Koersivitas magnet dari material merupakan suatu besaran yang sangat penting, karena semakin tinggi nilai dari koersivitasnya maka sifat magnetik material tersebut akan semakin sulit berubah akibat medan magnet luar (H).

Koersivitas material magnet memperlihatkan intensitas medan magnetik yang dibutuhkan untuk meniadakan magnetisasi ketika telah mencapai kondisi saturasi dari material tersebut. Sedangkan remanensi magnet merupakan medan magnet yang tetap ada ketika magnetisasi telah dihentikan.

Untuk mengetahui sifat magnetik dari pengaruh subtitusi unsur Ni-Zn pada material Barium Heksaferrit diperlukan pengujian VSM (*Vibrating Sample Magnetometer*). Hasil dari pengujian VSM ini diperoleh sebuah kurva histerisis yang menunjukkan sifat magnetik sampel.

Berdasarkan data tersebut diketahui bahwa sampel yang memiliki nilai Magnetik Saturasi yang paling tinggi adalah sampel 11/1050 dengan nilai magnetic saturasi sebesar 95 emu/g. Sedangkan sampel yang memiliki koersifitas paling rendah adalah sampel 9/1050 dengan nilai koersifitas 0,03 T.

Berdasarkan penelitian oleh Liu Junliang,dkk (2009) dengan variasi pH 1, 3, 7, dan 9, dihasilkan pada pH 7 didapatkan sifat magnetik yang paling baik dengan besar M1.2T of 58.0 emu/g and Hc of 4142 Oe. Sehingga dapat disimpulkan semakin tinggi pH maka nilai magnetic saturasinya akan semakin besar.

4.2.3 Pengaruh Temperatur Sintering pada Barium Heksaferrit doping Ni-Zn Terhadap Struktur Mikro dan Sifat Magnetik

Pada Barium Heksaferrit yang didoping dengan Ni-Zn turut dilakukan variasi pada temperatur sinteringnya. Pada

penelitian ini sampel diberikan perlakuan temperatur sintering 850, 950, dan 1050°C. Adanya perubahan temperatur sintering akan mempengaruhi struktur mikro dan sifat magnetik dari barium Heksaferrite. Hal tersebut dapat dianalisa dari hasil XRD.seperti pada **Gambar 4.17**.

Berdasarkan data tersebut terlihat masih ada fasa Barium Moferrite (BaFe₂O₄) pada temperatur sintering 850° C. Begitu pula pada sampel 9/850, pada temperatur 850° C masih ada fasa Fe₂O₃.

Angle (20)

Gambar 4.17 Hasil Pengujian XRD sampel 7/850, 7/950, dan 7/1050

Seperti halnya pada sampel 11/850 juga masih belum sepenuhnya terbentuk fasa Barium Heksaferrite karena masih ada fasa Fe_2O_3 . Namun pada temperatur sintering 950 dan $1050^{\circ}C$

fasa pengotor tersebut bertransformasi menjadi fasa $BaFe_{12}O_{19}$. Sehingga terbentuknya single fasa $BaFe_{12}O_{19}$. Hal tersebut dapat dilihat pada **Gambar 4.18**.

Gambar 4.18 Hasil Pengujian XRD sampel 7/850, 9/950, dan 11/1050

Terbentuknya fasa Fe_2O_3 dan $BaFe_2O_4$ pada temperatur 850°C sesuai dengan diagram fasa Barium Heksaferrite. Fasa tersebut akan terbentuk dibawah temperature 800°C. Diatas temperatur tersebut, fasa Barium Heksaferrite mulai terbentuk. Sehigga semakin tingginya temperature sintering, sampel akan memiliki fasa Barium Heksaferrite yang semaikn banyak. Hal tersebut sesuai dengan penelitian H Sozeri et al (2012), yang menyatakan masih adanya fasa pengotor Fe_2O_3 saat temperature pemanasan baru mencapai sekitar 800°C. Berdasarkan data

tersebut dapat disimpulkan bahwa asam citrate pada metode sol gel baru dapat bekerja dan membentuk fasa Barium Heksaferrite tipe M pada temperature diatas 800°C.

Sedangkan berdasarkan hasil XRD, juga dapat diketahui ukuran kristal dari barium Heksaferrite. Berdasarkan perhitungan, diperoleh ukuran kristal terkecil dengan nilai 70,29 nm pada pH 9 dengan temperature sintering 1050 dan terbesar yaitu 588,049 nm pada pH 11 dengan temperature sintering 850. Sehingga dengan meningkatnya temperature akan memperkecil ukuran kristal.

Untuk mengetahui struktur mikro dari Barium Heksaferrit dapat dilihat dari data pengujian SEM. Berdasarkan hasil analisa data tersebut didapatkan bahwa bentuk partikel dari Barium Heksaferrite doping Ni-Zn 0,6 pada pH 7 temperatur sintering 850, 950, dan 1050°C terlihat bahwa semua hasil dari morfologinya berbentuk polygonal dan *sponge*. Bentuk *sponge* tersebut berpori terdistribusi merata pada serbuk tersebut. Gambar SEM menunjukan, semakin meningkatnya temperatur sintering akan meningkatkan pertumbuhan ukuran butir dari Barium Heksaferrite doping Ni-Zn. Sehingga pada gambar terlihat bahwa rongga yang ada pada BaFe_{10,8}Ni_{0,6}Zn_{0,6}O₁₉ saat temperatur sintering 850 lebih banyak dari pada saat temperature sintering mencapai 1050°C. Hal tersebut disebabkan karena pertumbuhan ukuran kristal dari BaFe_{10,8}Ni_{0,6}Zn_{0,6}O₁₉ akan semakin meningkat seiring dengan meningkatnya temperatur sintering.

Perubahan temperature sintering juga berpengaruh terhadap sifat magnetik dari Barium Heksaferrit. Berdasarkan data yang diperoleh diketahui bahwa sampel yang memiliki nilai Magnetik Saturasi yang paling tinggi adalah sampel 11/1050 dengan nilai magnetic saturasi sebesar 95 emu/g. Sedangkan sampel yang

memiliki koersifitas paling rendah adalah sampel 9/1050 dengan nilai koersifitas 0,03 T.

Pengaruh Temperatur Sintering yang terjadi secara umum sesuai dengan pengaruh Temperatur Sintering yang terjadi pada penelitian yang dilakukan oleh H. Sozeri dkk (2012). Perbedaan terjadi pada nilai koersivitas yang dapat oleh H. Sozeri dkk (2012) mengalami kenaikkan hingga 1100°C lalu turun pada temperatur 1200°C.. Sama halnya dengan penelitian oleh Z. Mosleh dkk, 2014 dengan pembentukan Barium Heksaferrit tanpa penambahan unsur doping dengan temperatur Sinter 750,850, dan 950°C semakin tingginya temperature sintering maka nilai sifat akan semakin meningkat. kemagnetan Sehingga dapat disimpulkan bahwa semakin meningkatnya Temperatur Sintering, maka akan menaikkan sifat kemagnetan dari Barium Heksaferrite.

Halaman Ini Sengaja Dikosongkan

BAB V KESIMPULAN DAN SARAN

5.1 Kesimpulan

Berdasarkan penelitian yang telah dilakukan maka dapat ditarik kesimpulan sebagai berikut :

- 1. Pengaruh penambahan unsur Ni-Zn pada Barium Heksaferrite yaitu semakin tinggi pH yang ditambahkan ukuran kristal akan semakin besar. Sehingga didapatkan ukuran kristal terkecil dengan nilai 70,29 nm pada pH 9 dengan temperatur sintering 1050°C dan terbesar yaitu 588,049 nm pada pH 11 dengan temperatur sintering 850.
- Semakin tinggi pH yang ditambahkan pada Barium Heksaferrite menyebabkan penaikan nilai koersivitas dan peningkatan saturasi magnetik dari barium heksaferrit. Nilai koersivitas paling rendah terjadi pada pH 9 Temperatur Sinter 1050°C dengan nilai koersivitas 0,03 Tesla
- 3. Pengaruh penambahan unsur Ni-Zn pada Barium Heksaferrite terhadap temperature sintering yaitu meningkatnya temperatur akan memperkecil ukuran kristal BaFe₁₂O₁₉.
- 4. Temperatur Sinter semakin tinggi maka akan menyebabkan semakin naiknya nilai koersivitas dan saturasi magnet dari barium heksaferrit yang telah didoping Ni dan Zn. Nilai magnetik saturasi tertinggi terdapat pada pH 11 dengan temperature sintering 1050°C yaitu 95 emu/g dan nilai koersifitas 0,13T.

5.2 Saran

Adapun saran untuk mengoptimalkan hasil dari penelitian kali ini adalah

- 1. Adanya studi lebih lanjut mengenai ion dopan Ni-Zn pada barium heksaferrit menggunakan variable lainnya.
- 2. Waktu stirring yang dibutuhkan untuk menghasilkan gel basah agar optimal dan terbentuknya sempurna perlu diperhatikan.
- 3. Dilakukannya titrasi pada penentuan pH agar data yang diambil untuk memastikan nilai pH lebih tepat

LAMPIRAN

Lampiran A-1

Hasil Uji X-Ray Diffraction (XRD) Serbuk Barium Heksaferrit dengan penambahan Ni-Zn pH 7 Temperatur 850°C

Dataset Name

X=0,6 850

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
18.9937	67.63	0.1171	4.67254	14.56
22.3659	27.52	0.2007	3.97508	5.92
24.0029	46.42	0.2676	3.70756	9.99
28.2792	263.60	0.1171	3.15589	56.75
28.4887	464.52	0.1004	3.13315	100.00
31.7576	172.76	0.2342	2.81771	37.19
32.7918	239.97	0.0669	2.73118	51.66
33.3038	102.09	0.1338	2.69035	21.98

37.3125	75.63	0.2676	2.41001	16.28
38.4948	47.52	0.2007	2.33867	10.23
39.2702	44.38	0.2676	2.29426	9.55
42.8379	81.59	0.1338	2.11109	17.57
43.3344	147.64	0.2342	2.08804	31.78
44.2300	122.21	0.1004	2.04782	26.31
45.4637	49.51	0.4015	1.99508	10.66
47.1615	22.38	0.4015	1.92715	4.82
51.2138	13.65	0.4684	1.78377	2.94
54.9700	69.21	0.2676	1.67044	14.90
56.5594	84.89	0.2676	1.62722	18.27
59.2371	32.51	0.3346	1.55990	7.00
62.9952	67.01	0.2676	1.47558	14.42
68.7440	15.81	0.4015	1.36555	3.40
75.6757	36.71	0.3346	1.25677	7.90
79.5117	18.37	0.8029	1.20550	3.95

Hasil Uji X-Ray Diffraction (XRD) Serbuk Barium Heksaferrit dengan penambahan Ni-Zn pH 7 Temperatur 950°C

Dataset Name PH 7 T 950

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
19.0998	63.62	0.1338	4.64681	11.40
23.0703	44.98	0.2007	3.85527	8.06
30.4271	293.34	0.0669	2.93783	52.56
30.9182	70.00	0.2007	2.89228	12.54
32.2615	436.27	0.1171	2.77485	78.17
34.2000	558.10	0.1171	2.62187	100.00
35.2792	91.99	0.1673	2.54411	16.48
37.1727	271.51	0.0669	2.41875	48.65
40.4081	121.59	0.1673	2.23224	21.79
41.5420	26.83	0.1004	2.17390	4.81

42.5062	104.51	0.1338	2.12679	18.73
50.4073	33.31	0.4015	1.81040	5.97
53.9941	43.40	0.2007	1.69831	7.78
55.1172	188.84	0.0816	1.66495	33.84
56.6092	212.82	0.1004	1.62590	38.13
63.1463	194.93	0.0836	1.47241	34.93
67.4125	37.32	0.4015	1.38924	6.69
72.6591	74.20	0.1338	1.30132	13.30
75.6227	20.49	0.5353	1.25752	3.67
88.8016	36.57	0.4684	1.10185	6.55

Hasil Uji X-Ray Diffraction (XRD) Serbuk Barium Heksaferrit dengan penambahan Ni-Zn pH 7 Temperatur 1050°C

Pos. [°	2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
3	0.4616	86.36	0.1338	2.93458	46.10
3	0.8239	25.95	0.2342	2.90090	13.85
3	2.2660	153.53	0.1673	2.77447	81.95
3	3.2981	54.29	0.2342	2.69080	28.98
3	4.1974	187.35	0.1004	2.62207	100.00
3	5.7524	56.17	0.2007	2.51151	29.98
3	7.1765	109.21	0.1004	2.41851	58.29
4	0.4555	49.68	0.1673	2.22973	26.52
4	2.5027	44.91	0.2676	2.12696	23.97

54.1497	47.50	0.2676	1.69379	25.36
55.1456	72.87	0.1673	1.66554	38.89
56.6590	110.03	0.1004	1.62459	58.73
63.1770	87.82	0.1004	1.47177	46.88
72.7105	28.77	0.3346	1.30052	15.36
88.8231	23.36	0.5353	1.10164	12.47

Hasil Uji X-Ray Diffraction (XRD) Serbuk Barium Heksaferrit dengan penambahan Ni-Zn pH 9 Temperatur 850°C

Dataset Name

x=0.6 pH 9 T 850

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Â]	Rel. Int. [%]
12.9785	22.49	0.1171	6.82143	4.90
28.2875	51.03	0.3346	3.15498	11.12
30.0962	160.76	0.1004	2.96937	35.02
30.4065	151.59	0.1673	2.93977	33.02
32.1748	167.46	0.2007	2.78213	36.48
34.1605	265.03	0.2007	2.62482	57.74
35.4463	459.05	0.1673	2.53250	100.00
37.1002	145.18	0.2007	2.42331	31.63
40.3975	60.49	0.2676	2.23280	13.18

43.0078	62.97	0.2007	2.10314	13.72
53.4857	31.72	0.5353	1.71324	6.91
55.0600	89.45	0.1673	1.66793	19.49
56.9001	128.00	0.3346	1.61828	27.88
62.5072	117.96	0.2676	1.48592	25.70
63.0600	98.32	0.1673	1.47422	21.42
68.8270	36.86	0.1171	1.36410	8.03
72.7129	19.03	0.4015	1.30049	4.15

Hasil Uji X-Ray Diffraction (XRD) Serbuk Barium Heksaferrit dengan penambahan Ni-Zn pH 9 Temperatur 950°C

Data base name : X=0,6 950

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
17.8680	36.34	0.2676	4.96428	5.58
19.0677	68.03	0.1338	4.65457	10.45
23.0788	50.74	0.2676	3.85389	7.79
30.4140	359.41	0.0502	2.93906	55.19
30.9067	90.22	0.1004	2.89332	13.85
31.4441	76.64	0.1673	2.84509	11.77
32.2606	548.36	0.0836	2.77493	84.21
33.5801	22.43	0.2342	2.66885	3.44
34.1976	651.19	0.1004	2.62205	100.00
35.542	6 349.17	0.1506	2.52585	53.62
--------	----------	--------	---------	-------
37.168	9 335.07	0.0836	2.41899	51.45
40.399	6 212.76	0.0836	2.23269	32.67
42.502	9 139.21	0.1338	2.12695	21.38
43.209	8 45.98	0.2007	2.09378	7.06
46.959	4 12.04	0.8029	1.93497	1.85
50.349	6 20.50	0.8029	1.81234	3.15
53.895	5 39.31	0.6691	1.70118	6.04
55.128	9 193.87	0.1004	1.66600	29.77
56.390	8 174.57	0.0612	1.63033	26.81
56.635	9 234.25	0.1338	1.62520	35.97
62.633	6 112.51	0.1004	1.48323	17.28
63.121	1 238.46	0.0816	1.47172	36.62
67.470	0 43.31	0.2676	1.38819	6.65
72.641	3 74.36	0.2676	1.30159	11.42
88.843	2 50.45	0.4015	1.10144	7.75

Hasil Uji X-Ray Diffraction (XRD) Serbuk Barium Heksaferrit dengan penambahan Ni-Zn pH 9 Temperatur $1050^{\circ}\mathrm{C}$

Data base name : x= 9 1050

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
30.3800	132.92	0.1673	2.94227	84.94
32.2407	148.43	0.2007	2.77659	94.85
33.2840	34.42	0.1673	2.69191	21.99
34.1786	156.49	0.2342	2.62347	100.00
35.6783	95.68	0.1673	2.51656	61.14
37.1187	94.17	0.1338	2.42214	60.17
40.3980	54.12	0.2676	2.23278	34.58
42.4738	31.12	0.4015	2.12834	19.89
48.7573	10.69	0.2342	1.86774	6.83

55.1107	68.74	0.2676	1.66651	43.93
56.6351	82.01	0.3346	1.62522	52.40
63.0583	92.97	0.1673	1.47426	59.41
72.4104	11.68	0.8029	1.30517	7.47

Hasil Uji X-Ray Diffraction (XRD) Serbuk Barium Heksaferrit dengan penambahan Ni-Zn pH 11 Temperatur $850^{\circ}\mathrm{C}$

Data base name : 11 850

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
19.0705	27.34	0.3346	4.65389	7.08
23.0972	26.15	0.4015	3.85086	6.77
28.1600	32.51	0.4684	3.16897	8.42
30.4442	210.64	0.1338	2.93621	54.57
31.4172	67.48	0.1004	2.84747	17.48
32.3328	294.40	0.0836	2.76889	76.27
34.1896	385.99	0.0669	2.62265	100.00
35.5276	260.82	0.2007	2.52689	67.57
37.1989	224.59	0.0836	2.41711	58.18

40.3930	111.05	0.1338	2.23304	28.77
42.5156	63.64	0.2007	2.12634	16.49
43.1489	44.48	0.2007	2.09659	11.52
50.3034	29.65	0.3346	1.81390	7.68
55.1360	115.61	0.1338	1.66581	29.95
56.6534	148.85	0.6022	1.62474	38.56
62.5621	102.43	0.2007	1.48475	26.54
63.1530	154.06	0.1171	1.47228	39.91
72.6533	37.21	0.3346	1.30141	9.64

Hasil Uji X-Ray Diffraction (XRD) Serbuk Barium Heksaferrit dengan penambahan Ni-Zn pH 11 Temperatur 950°C

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
19.0583	45.67	0.2007	4.65685	8.97
30.3935	349.77	0.1004	2.94099	68.71
31.3751	55.25	0.2007	2.85119	10.85
32.2492	405.29	0.1506	2.77588	79.62
34.1726	509.02	0.1004	2.62392	100.00
35.4750	198.80	0.2007	2.53051	39.05
37.1319	273.68	0.0669	2.42132	53.77
40.3610	146.64	0.1338	2.23474	28.81
42.5185	99.09	0.1338	2.12620	19.47

50.086	6 21.94	0.8029	1.82124	4.31
53.643	5 20.05	0.5353	1.70857	3.94
55.097	3 143.85	0.1338	1.66689	28.26
56.624	7 180.41	0.3346	1.62550	35.44
63.134	1 215.71	0.1171	1.47267	42.38
72.652	6 46.95	0.3346	1.30142	9.22
88.852	4 18.76	0.6691	1.10135	3.68

Hasil Uji X-Ray Diffraction (XRD) Serbuk Barium Heksaferrit dengan penambahan Ni-Zn pH 11 Temperatur 1050°C

Database name: 11 1050

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
30.4954	140.38	0.1673	2.93140	61.52
32.2824	184.40	0.1004	2.77310	80.81
34.2270	228.19	0.2007	2.61987	100.00
35.5775	195.64	0.2007	2.52346	85.73
37.1993	124.72	0.2007	2.41708	54.66
40.4274	78.40	0.1673	2.23122	34.36
42.5352	44.13	0.2007	2.12541	19.34
47.0795	14.30	0.8029	1.93031	6.27
55.1490	83.01	0.2007	1.66545	36.38

56.6520	108.79	0.2676	1.62478	47.67
62.6335	70.12	0.2007	1.48323	30.73
63.1614	114.13	0.1004	1.47210	50.02
67.4754	15.98	0.4015	1.38810	7.00
72.7107	31.11	0.4684	1.30052	13.63

Lampiran A-10 PDF CARD 01-075-9113 (Fixed Slit Intensity)

2	d(Å)	Intensity	h	k	l	M1	M2	M3	*
7.6090	11.609000	9	0	0	2				
15.2517	5.804500	1	0	0	4				
17.3708	5.100890	1	1	0	0				
17.7884	4.982070	81	1	0	1				\Box
18.9879	4.669970	122	1	0	2				
20.8394	4.259040	1	1	0	3				
22.9635	3.869670	106	0	0	6				
23.1947	3.831620	28	1	0	4				
25.9259	3.433830	7	1	0	5				
28.9377	3.082920	9	1	0	6				
30.3247	2.945000	458	1	1	0				
30.7824	2.902250	161	0	0	8				
31.3095	2.854580	96	1	1	2				
32.1638	2.780680	912	1	0	7				
34.1105	2.626310	999	1	1	4				
35.1578	2.550440	96	2	0	0				
35.3761	2.535200	57	2	0	1				
35.5597	2.522530	73	1	0	8				
36.0245	2.491040	13	2	0	2				
37.0835	2.422300	454	2	0	3				
38.3781	2.343510	24	1	1	6				
38.5239	2.334980	4	2	0	4				Π

38.7513	2.321800	4	0	0	10
39.0963	2.302100	19	1	0	9
40.3115	2.235460	286	2	0	5
42.4112	2.129520	178	2	0	6
42.7549	2.113190	14	1	0	10
43.7557	2.067150	8	1	1	8
44.7890	2.021830	4	2	0	7
46.5250	1.950350	54	1	0	11
46.9205	1.934830	2	0	0	12
47.2699	1.921340	12	2	1	1
47.4147	1.915810	5	2	0	8
47.7827	1.901910	6	2	1	2
48.6287	1.870780	5	2	1	3
49.7947	1.829670	9	2	1	4
49.9806	1.823300	26	1	1	10
50.2629	1.813720	65	2	0	9
51.2651	1.780590	4	2	1	5
53.0225	1.725640	5	2	1	6
53.3130	1.716920	28	2	0	10
53.8760	1.700300	69	3	0	0
54.3823	1.685660	7	1	0	13
54.4981	1.682350	19	3	0	2
55.0483	1.666830	323	2	1	7
55.3510	1.658430	57m	3	0	3
55.3510	1.658430	m	0	0	14
56.3366	1.631730	189	3	0	4
56.5496	1.626090	382	2	0	11
56.8940	1.617060	40	1	1	12
57.3255	1.605910	45	2	1	8
58.4705	1.577160	7	1	0	14
59.3169	1.556660	4	3	0	6
59.8381	1.544340	13	2	1	9
59.9614	1.541460	22	2	0	12
61.2057	1.513070	1	3	0	7
62.5732	1.483250	14	2	1	10
62.6710	1.481170	19	1	0	15
63.0822	1.472500	349	2	2	0
63.5415	1.462960	23	2	0	13
64.1214	1.451120	6	0	0	16

64.4232	1.445050	9	1	1	14
65.5189	1.423510	34	2	1	11
66.1152	1.412110	5	3	1	1
66.5283	1.404340	5	3	1	2
67.2869	1.390340	88m	3	1	3
67.2869	1.390340	m	2	0	14
68.0705	1.376230	19	2	2	6
68.3212	1.371790	9	3	0	10
68.6683	1.365700	4	2	1	12
69.3859	1.353320	2	3	1	5
70.8611	1.328720	1	3	1	6
71.1991	1.323240	1m	2	0	15
71.1991	1.323240	m	3	0	11
71.4449	1.319290	4	1	0	17
71.8307	1.313150	50	2	2	8
72.0171	1.310210	7	2	1	13
72.5883	1.301300	120m	1	1	16
72.5883	1.301300	m	3	1	7
74.1839	1.277210	14	3	0	12
74.3191	1.275220	8	4	0	0
74.4502	1.273300	6	4	0	1
74.5604	1.271690	9	3	1	8
74.8422	1.267600	1	4	0	2
75.2835	1.261260	4	2	0	16
75.4944	1.258260	36m	2	1	14
75.4944	1.258260	m	4	0	3
76.0438	1.250530	19	1	0	18
76.4047	1.245520	1	4	0	4
76.5505	1.243510	1	2	2	10
76.7737	1.240450	5	3	1	9
77.5695	1.229700	19	4	0	5
78.9870	1.211150	13	4	0	6
79.3121	1.207000	13m	3	1	10
79.3121	1.207000	m	2	1	15
79.5490	1.204000	13	2	0	17
80.9047	1.187210	4	3	0	14
81.3752	1.181530	40	1	1	18
81.9086	1.175180	15	3	1	11
82.1992	1.171760	1	2	2	12

82.4578	1.168740	3	3	2	1
82.8395	1.164320	4	3	2	2
83.1377	1.160900	11	0	0	20
84.0103	1.151050	1	2	0	18
84.3626	1.147140	1	3	2	4
84.7228	1.143180	8	4	0	9
85.5015	1.134750	1	3	2	5
85.7638	1.131950	1	1	0	20
87.1252	1.117730	4	4	0	10
87.5784	1.113110	23	4	1	0
88.0841	1.108020	7m	4	1	2
88.0841	1.108020	m	3	1	13
88.5328	1.103560	58m	3	0	16
88.5328	1.103560	m	3	2	7
88.7816	1.101110	52m	4	1	3
88.7816	1.101110	m	2	2	14
89.5972	1.093190	64	4	1	4
89.7756	1.091480	61	4	0	11
90.4253	1.085320	2	3	2	8
90.9382	1.080530	11m	1	0	21
90.9382	1.080530	m	1	1	20
91.3948	1.076320	3	3	1	14
91.8612	1.072070	17	2	1	18
92.1204	1.069730	1	4	1	6
92.5699	1.065710	3	3	2	9
92.6769	1.064760	4m	3	0	17
92.6769	1.064760	m	4	0	12
93.7517	1.055360	4m	0	0	22
93.7517	1.055360	m	4	1	7
95.0590	1.044270	8m	3	2	10
95.0590	1.044270	m	3	1	15
95.6606	1.039290	2	4	1	8
95.8387	1.037830	3	4	0	13
96.3631	1.033570	8m	2	2	16
96.3631	1.033570	m	1	0	22
97.1049	1.027640	22	3	0	18
97.6376	1.023450	7	3	2	11
98.1866	1.019190	1	5	0	1
98.5686	1.016260	1	5	0	2

98.8117	1.014410	1	2	0	21
99.2745	1.010920	20m	5	0	3
99.2745	1.010920	m	4	0	14
100.2465	1.003720	5	4	1	10
100.5758	1.001320	1	3	2	12
101.2574	0.996415	1	5	0	5
101.5234	0.994523	1	2	1	20
101.6685	0.993497	1	1	1	22
102.1277	0.990272	1	1	0	23
102.6757	0.986472	1	5	0	6
103.0034	0.984224	1m	4	1	11
103.0034	0.984224	m	4	0	15
103.3795	0.981667	7	3	3	0
103.8986	0.978176	3m	3	2	13
103.8986	0.978176	m	3	3	2
104.3621	0.975097	21m	2	0	22
104.3621	0.975097	m	5	0	7
105.4633	0.967922	20m	3	3	4
105.4633	0.967922	m	0	0	24
105.9466	0.964834	9	4	1	12
106.0818	0.963977	6	4	2	0
106.2129	0.963148	4	4	2	1
106.3239	0.962449	4	5	0	8
106.8592	0.959103	13m	2	1	21
106.8592	0.959103	m	3	0	20
107.2666	0.956586	24m	4	2	3
107.2666	0.956586	m	3	2	14
107.8252	0.953176	12	3	1	18

Lampiran A-11 Hasil Uji FTIR Serbuk Barium Heksaferrit dengan penambahan Ni-Zn pH 7 Temperatur 850°C

Lampiran A-12

Hasil Uji FTIR Serbuk Barium Heksaferrit dengan penambahan Ni-Zn pH 7 Temperatur 950°C

Hasil Uji FTIR Serbuk Barium Heksaferrit dengan penambahan Ni-Zn pH 7 Temperatur 1050°C

Lampiran A-14 Hasil Uji FTIR Serbuk Barium Heksaferrit dengan penambahan Ni-Zn pH 9 Temperatur 850°C

Lampiran A-15 Hasil Uji FTIR Serbuk Barium Heksaferrit dengan penambahan Ni-Zn pH 9 Temperatur 950°C

Lampiran A-16

Hasil Uji FTIR Serbuk Barium Heksaferrit dengan penambahan Ni-Zn pH 9 Temperatur 1050°C

Hasil Uji FTIR Serbuk Barium Heksaferrit dengan penambahan Ni-Zn pH 11 Temperatur 850°C

Lampiran A-18

Hasil Uji FTIR Serbuk Barium Heksaferrit dengan penambahan Ni-Zn pH 11 Temperatur 950°C

Hasil Uji FTIR Serbuk Barium Heksaferrit dengan penambahan Ni-Zn pH 11 Temperatur 1050°C

Lampiran A-20 Komposisi Sintesis Barium Heksaferrite

Bahan :

-	$Ba(NO_3)_2$	Mr=261,35
-	$Ni(NO_3)_2.6H_2O$	Mr= 290,8
-	$Fe(NO_3)_2.9H_2O$	Mr= 403,95= 404
-	$Zn(NO_3)_2.4H_2O$	Mr=297,46
-	Asam Citric	Mr = 210
-	NH ₄ OH	25%

Perbandingan

Fe : Ba = 11 : 1 X= 0,6

CA: M = 3:1

Perhitungan doping 0,6 dengan 5 gr Fe(NO₃)₂

nFe	$=\frac{5}{404}=$	= 0,0124
1.	nBa	$=\frac{1\times0,0124}{11}=0,001125$
	grBa	= 0,001125 x 261,35
		= 0,294 gr
2.	A Citr	ic 3: 1
	AC	$= 3(0,0124 + 0,001125 + 6,76. \ 10^{-4} +$
		$6.76.10^{-4}$)

$$= 0,04463 \text{ x } 210$$

$$= 9,373 \text{ gr}$$
3. $nNi(NO_3)_2.6H_2O$
 $nNi = 6,76.10^{-4} \times 290,8$
 $= 0,1966 \text{ gr}$
4. $nZn(NO_3)_2.4H_2O$
 $nZn = 6,76.10^{-4} \times 297,46$
 $= 0,0201 \text{ gr}$

Pelarutan dengan Aquades

1.	Fe 0,1 M	$=\frac{0,0124 x 1000}{0,1} = 124 \text{ ml}$
2.	Ba 0,1 M	$=\frac{1,125.10^{-3}}{0,1} \times 1000$
3.	A Citric	$= 11,25 \text{ ml} \\ = \frac{0,04463}{0,1} \text{ x } 1000$
4.	Ni	$= 44,63 \text{ ml}$ $= \frac{6,76 \times 10^{-4}}{0,1} \times 1000$
5.	Zn	= 6,76 ml = $\frac{6,76 \text{ x } 10^{-4}}{0,1} \text{ x } 1000$ = 6,76 ml
		,

DAFTAR PUSTAKA

- Agustianto, Rizky. 2013. "Effect of Doping Co-Zn with Fraction Mol and pH Variation of Magnetic Properties and Micro Structure of Barium Heksaferrit with Sol - Gel Auto Combustion Method". Skripsi S1 Jurusan Teknik Material dan Metalurgi FTI -ITS.
- Akhyar.2008."Radar",URL:http://lasonearth.wordpress.com/ makalah/radar/
- Bill Marker. 2009. "Use of Radar-Absorbing Material to Resolve U.S. Navy Electromagnetic Interference Problems". NAVSEA Warfare Centers – Leading Edge Volume 7, Issue No.1 : 56 – 61
- Chauhan, Pooja. 2010. **"Preparation and Characterization of Barium Hexaferrite by Barium Monoferrite".** Dissertation submitted Master of Technology in School of Physics & Material Science Thapar University Patiala.
- Dekatama, Rizky Putra. 2014. "Analisa sifat magnetik dan struktur mikro barium heksaferrit dengan dopan Ni dan Zn, fraksi mol dan variasi temperatur sintering dengan metode sol-gel auto combustion".
- Dharma, Putu Indra Wirya. 2012. "Pengaruh Unsur Paduan Zn dan Ni Serta Variasi Waktu Milling Pada Proses Mechanical Alloying Terhadap Struktur Mikro dan Sifat Magnetik Barium Hexaferrite Sebagai Radar Absorbent Material (RAM)". Skripsi S1 Jurusan Teknik Material dan Metalurgi FTI - ITS.
- Felly. 2010. "Pengaruh Mol Rasio Fe³⁺/Ba²⁺ dan Temperatur Sintering Terhadap Mikrostruktur dan Sifar Magnetik Nanopartikel Barium Heksaferrit dengan Metode Sol Gel Auto Combustion. Skripsi S1 Jurusan Teknik Material dan Metalurgi FTI - ITS.
- Hoseinkhani, E.; Mehdipour, M.; Shokrollahi, H. 2013. "Comparison of Direct and Indirect Measurements of

the Saturation Magnetization of Barium Hexaferrite Synthesized by Coprecipitation". Journal of Electronic Materials, Vol. 42, No. 4, 739-744, 2013

- H.Sozeri, Z Durmus, A Baykal, E Uysal. :Preparation of High Quality, Single Domain BaFe₁₂O₁₉ particles by citrate sol-gel combustion route with an initial Fe/Ba Molar Ratio of 4". Materials Science and Engineering B (2012) B 177: 949-955 (2012)
- Linda. 2011. **"Pengaruh Ion Doping Co/Zn Terhadap Sifat Kemagnetan Barium M-Heksaferrit BaFe**_{12.} _{2x}Co_xZn_xO₁₉". Institut Teknologi Sepuluh Nopember : Surabaya.
- Mali,A dkk. "Structural characterization of nano-crystalline BaFe₁₂O₁₉ powders synthesized by sol-gel combustion route". Scripta Materiala (2005)53:1065-1070 (2005)
- M. Jazirehpour, M.H. Shams, O. Khani. 2012. "Modified Sol-Gel synthesis of nanosized magnesium titanium substituted barium hexaferrite and investigation of the effect of high substitution levels on the magnetic properties". Journal of Alloys and Compounds 545 : 32– 40
- P Kharismawati, Endah. 2012."Pengaruh pH dan Waktu Stirring Terhadap Sifat Magnetik dan Strukturmikro Barium Heksaferit Pada Radar Absorber Material (RAM) Dengan Metode Sol Gel Auto Combustion". Skripsi S1 Jurusan Teknik Material dan Metalurgi FTI -ITS.
- R. da Costa Lima, Magali Silveira Pinho, T. Ogasawara. 2009. "Thermal characterization of the intermediary products of the synthesis of Zn-substituted barium hexaferrite". Springer (2009) 97:131–136

- S. Kanagesan, M. Hashim, S. Jesurani, T. Kalaivani, I. Ismail. 2013. **"Influence of Zn–Nb on the Magnetic Properties of Barium Hexaferrite"**. Springer
- Taliwinder. 2013. Effect of pH on Magnetic Properties of Doped Barium Hexaferrite. IJRMET. ISSN : 2249-5762 (Online) | ISSN : 2249-5770
- Tan, Guolong dkk. 2012. **Structure and multiferroic properties of barium hexaferrite ceramics**. Journal of Magnetism and Magnetic Materials 327 (2013) 87–90. Elsevier.
- Z. Mosleh, P. Kameli, M.Ranjbar, H. Salamati. "Effect of Annealing temperature on Structural and magnetic properties of BaFe₁₂O₁₉ hexaferrite
- Zainuri M., (2010), "Laporan Akhir Studi Absorbsi Elektromagnetik pada M-Hexaferrites untuk Aplikasi Anti Radar", Ristek, ITS Surabaya.

Halaman ini sengaja dikosongkan

BIODATA PENULIS

Penulis bernama lengkap A Marsha Alviani, dilahirkan di Jakarta, 23 1993. Merupakan Maret putri dari dua bersaudara pertama pasangan Bapak Muhammad Lutfi dan Ibu Zuhriani. Penulis menempuh pendidikan formal di Depok yakni TK Islam Al Muhajirin, SDN Sukatani 4 dan SMPN 11 Depok. Lalu melanjutkan pendidikan di SMAN 39 Jakarta. Lulus dari SMA tahun 2011, Penulis diterima menjadi mahasiswa di Jurusan Teknik Material dan Metalurgi FTI-ITS dan

terdaftar dengan NRP. 2711 100 094. Semasa perkuliahan, penulis aktif berorganisasi di ITS Online, LDJ Ash Habul Kahfi, JMMI, HMMT, dan BEM ITS serta pernah menjadi asisten Laboratorium Korosi. Selama kuliah, penulis mendapatkan beasiswa ETOS Dompet Dhuafa dan Karya Salemba Empat (KSE). Dalam bidang organisasi, tahun pertama menjadi kru reporter ITS Online. Menginjak tahun kedua, menjadi staf Kominfo BEM ITS, staff Departemen Isu dan Media JMMI, dan kepala Departemen Keputrian LDJ Ash Habul Kahfi. Tahun ketiga aktif di Departemen Medfo HMMT, Departemen Kemuslimahan LDJ Ash Habul Kahfi, dan redaktur di ITS Online. Sampai tahun keempat turut aktif di Kementerian Inovasi Karya BEM ITS 2014-2015. Penulis juga pernah melaksanakan kerja praktek di PT. PINDAD (Persero). Penulis menutup kuliah di kampus dengan Tugas Akhir berjudul "Analisa Pengaruh Dopan Ni-Zn dengan Variasi Temperatur Sintering dan Variasi pH terhadap Sifat Magnetik dan Struktur Mikro Barium Heksaferrit dengan Metode Sol-Gel Auto Combustion". Email : a.marshaalviani@gmail.com

Halaman ini sengaja dikosongkan