Permodelan Kekuatan Beton Menggunakan Data Beton 5 Jam Dengan Metode Adaptive Neuro-Fuzzy Inference System (ANFIS) Matlab

Hadi, Irwin Oktoviantini (2015) Permodelan Kekuatan Beton Menggunakan Data Beton 5 Jam Dengan Metode Adaptive Neuro-Fuzzy Inference System (ANFIS) Matlab. Undergraduate thesis, Institut Technology Sepuluh Nopember.

[img] Text
3111100097-Undergraduate Thesis.pdf - Published Version

Download (4MB)

Abstract

Nasser dan Beaton (1980) telah melakukan percobaan memprediksi kuat tekan beton umur 28 hari, menggunakan hasil tes kuat tekan beton 5 jam dengan menggunakan metode persamaan linear. Tetapi mempunyai nilai error rata-rata (MSE) sebesar ±11%. Alternatif lain adalah permodelan dengan Adaptive Neuro-Fuzzy Inference System (ANFIS). Penerapan ANFIS untuk berbagai aspek permodelan telah banyak dilakukan dalam sejumlah kajian pada beberapa tahun terakhir dan ANFIS sangat sesuai untuk permodelan nonlinier. Zhu (2000) telah menunjukan bahwa ANFIS merupakan metode permodelan tebaik untuk menganalisi data numerik, karena dalam proses training didasarkan minimalisasi nilai kesalahan atau root mean square error (RMSE) dari output-nya. Sehingga ANFIS dapat dijadikan alternatif untuk memodelkan prediksi kuat tekan beton. Tugas akhir ini merupakan studi kasus terhadap beberapa data hasil pengujian oleh Nasser dan Beaton (1980). Studi kasus ini mencari hubungan variabel dari data mix design dan hasil tes kekuatan beton 5 jam Nasser dan Beaton (1980) menggunakan ANFIS sehingga didapat prediksi kekuatan beton umur 28 hari. Penelitian ini mendapatkan nilai error rata-rata ANFIS sebesar ±7%. Sehingga permodelan menggunakan ANFIS lebih akurat. =============================================================================================================== Nasser dan Beaton (1980) were experimenting on prediction of 28 days-old concrete compressive strength using 5 hours concrete compressive strength using regresion method. The method had ±11% mean square error. Another alternative of prediction is Adaptive Neuro-Fuzzy Inference System (ANFIS). ANFIS was used for many studies for years and compatible for non-linear modelling. Zhu (2000) showed that ANFIS modelling were the most suitable method for numerical data analysis, because from data training process based on minimize RMSE, so ANFIS is suitable for prediction of concrete compressive strength. This final project was a case study of some experimented data by Nasser dan Beaton (1980). This case study was looking for data mix design and concrete compressive strength 5-hours Nasser dan Beaton (1980) correlation using ANFIS, so generate a 28 days-old concrete compressive strength. This research gets a ±7% mean square error (MSE), which means ANFIS modelling is more accurate than the previous one.

Item Type: Thesis (Undergraduate)
Additional Information: RSS 620.136 Had p
Uncontrolled Keywords: Adaptive Neuro-Fuzzy Inference System (ANFIS); Beton; Prediksi kuat tekan.
Subjects: T Technology > TA Engineering (General). Civil engineering (General) > TA681 Concrete construction
Divisions: Faculty of Civil Engineering and Planning > Civil Engineering > (S1) Undergraduate Theses
Depositing User: Mr. Tondo Indra Nyata
Date Deposited: 14 Jun 2019 07:20
Last Modified: 14 Jun 2019 07:20
URI: http://repository.its.ac.id/id/eprint/63126

Actions (login required)

View Item View Item