

TUGAS AKHIR - TE 141599

DESAIN DAN IMPLEMENTASI KONVERTER DC-DC RASIO TINGGI BERBASIS INTEGRATED QUADRATIC BOOST ZETA UNTUK APLIKASI PHOTOVOLTAIC

A.Hafizh Rifa'i NRP 2212 100 131

Dosen Pembimbing:
Dedet Candra Riawan, ST., M.Eng., Ph.D.
Heri Suryoatmojo, S.T., M.T., Ph.D.

JURUSAN TEKNIK ELEKTRO Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember Surabaya 2016

FINAL PROJECT - TE 141599

DESIGN AND IMPLEMENTATION OF HIGH RATIO DC-DC CONVERTER WITH INTEGRATED QUADRATIC BOOST ZETA FOR PHOTOVOLTAIC APPLICATION

A.Hafizh Rifa'i NRP 2212 100 131

Advisor Dedet Candra Riawan, ST., M.Eng., Ph.D. Heri Suryoatmojo, S.T., M.T., Ph.D.

DEPARTMENT OF ELECTRICAL ENGINEERING Faculty of Industrial Technology Sepuluh Nopember Institute of Technology Surabaya 2016

TUGAS AKHIR

Diajukan Guna Memenuhi Sebagian Persyaratan Untuk Memperoleh Gelar Sarjana Teknik Pada

Bidang Studi Teknik Sistem Tenaga Jurusan Teknik Elektro Institut Teknologi Sepuluh Nopember

Menyetujui:

Dosen Pembimbing I

Dosen Pembimbing II

Dedet Candra Riawan, ST., M. Eng., Ph.D. Heri Suryoatmojo, ST., MT., Ph.D. NIP. 197311192000031001

NIR 198006032006041003

DESAIN DAN IMPLEMENTASI KONVERTER DC-DC RASIO TINGGI BERBASIS INTEGRATED QUADRATIC BOOST ZETA UNTUK APLIKASI PHOTOVOLTAIC

ABSTRAKSI

Photovoltaic pada umumnya digunakan untuk mengubah energi matahari menjadi energy listrik. Jika jumlah modul photovoltaic terbatas maka tegangan keluaran yang dihasilkan akan kecil. Untuk menghubungkan ke inverter pada sistem terhubung ke jala-jala, membutuhkan tegangan yang lebih tinggi dari pada keluaran photovoltaic. Untuk mengatasi hal ini, topologi konverter boost banyak dikembangkan untuk memperoleh untuk mencapai rasio pengubahan tegangan yang tinggi.

Pada tugas akhir ini dibahas mengenai desain dan implementasi konverter DC-DC rasio tinggi berbasis *Integrated Quadratic-Boost-Zeta* untuk aplikasi *photovoltaic*. Kelebihan dari konverter DC-DC *Integrated Quadratic-Boost-Zeta* ini adalah memiliki rasio konversi yang tinggi dengan *duty cycle* kecil dan membutuhkan sedikit komponen. Pada pengujian, konverter ini mampu mengkonversi tegangan masukan 18 VDC menjadi 330 VDC pada *duty cycle* 65,92%.

Kata kunci : Konverter, *Quadratic Boost Zeta*, induktor kopel, *duty cycle*, *jala-jala*

DESIGN AND IMPLEMENTAIN OF HIGH RATIO DC-DC KONVERTER WITH INTEGRATED QUADRATIC BOOST ZETA FOR PHOTOVOLTAIC APPLICATION

ABSTRACT

Photovoltaic technology is commonly used to convert solar energy into electrical energy. If the number of module in photovoltaic application is limited, the output voltage that can be generated is low. As for connect to the inverter of grid connected applications, require a higher voltage than the output of photovoltaic. To deal with this problem the boost converter topology has been developed to obtain the high cobversion ratio.

In this final project discussed the design and implementation of DC-DC converter with integrated quadratic boost zeta for photovoltaic application. This converter are the integration of a quadratic boost converter, zeta converter and a couple inductor using a single switch. The advantages of using DC-DC converter with integrated quadratic boost zeta are a high conversion ratio with low duty cycle level and little component need. In Experiment, this converter is able to convert 18 V DC to 330 VDC at 65,92 % of duty cycle.

Keywords: DC-DC converter, Quadratic Boost Zeta, couple inductor, duty cycle, grid

DAFTAR ISI

HAL	AMAN JUDUL			
LEM	BAR PERNYATAAN			
LEM	BAR PENGESAHAN			
ABST	ΓRAK	i		
ABSTRACT ii				
KATA PENGANTAR				
DAFTAR ISI				
DAF	DAFTAR GAMBARi			
DAF	ΓAR TABEL	хi		
BAB	I PENDAHULUAN			
1.1	Latar Belakang	1		
1.2	Permasalahan	2		
1.3	Tujuan	2		
1.4	Batasan Masalah	2		
1.5	Metodologi	2		
1.6	Relevansi	3		
1.7	Sistematika	4		
BAB	11 11011 1111111111111111111111111111			
	APLIKASI <i>PHOTOVOLTAIC</i>			
2.1	Photovoltaic sebagai input konverter			
2.2	Konverter Quadratic Boost	7		
	2.2.1 Analisis Saklar Tertutup	7		
	2.2.2 Analisis Saklar terbuka	8		
2.3	Konverter Zeta	10		
	2.3.1 Analisa Saklar Tertutup	10		
	2.3.2 Analisa Saklar Terbuka	11		
2.4	Induktor Kopel	13		
2.5	Konverter DC-DC Rasio Tinggi Berbasis Integrated			
	Quadratic Boost Zeta	15		
	2.5.1 Analisis Kondisi Tunak	16		
	2.5.2 Penurunan Rasio Konversi	19		
	2 5 3 Penurunan Persamaan Parameter Komponen	23		

BAB	III DESAIN DAN IMPLEMENTASI	
3.1	Desain Konverter	29
	3.1.1 Penentuan Rasio Konverter	30
	3.1.2 Penentuan Besar Beban	30
	3.1.3 Penentuan Nilai Induktor	31
	3.1.4 Penentuan Nilai Kapasitor	32
3.2	Simulasi	32
3.3	Implementasi	37
BAB	IV PENGUJIAN DAN ANALISIS DATA	
4.1	Pengujian Sinyal PWM dan Pensaklaran	42
4.2	Pengujian Bentuk Gelombang Konverter	44
	4.2.1 Pengujian Arus Induktor	45
	4.2.2 Pengujian Tegangan Kapasitor	46
4.3	Pengujian Rasio Konversi	48
4.4	Pengujian Efisiensi	49
4.5	Pengujian Menggunakan Photovoltaic	50
BAB	V PENUTUP	
5.1	Kesimpulan	53
5.2	Saran	53
DAF'	ΓAR PUSTAKA	55
RIWAYAT HIDUP PENULIS		
LAMPIRAN		

DAFTAR TABEL

Daftar Tabel	H	alaman
Tabel 2.1	Spesifikasi Photovoltaic eLSOL	6
Tabel 3.1	Spesifikasi Awal Desain Konverter	29
Tabel 3.2	Perbandingan nilai parameter perhitungan dan	
	simulasi	37
Tabel 3.3	Spesifikasi Komponen Rangkaian Konverter	38
Tabel 3.5	Hasil pengukuran parameter transformator	
Tabel 3.6	Spesifikasi komponen	

DAFTAR GAMBAR

Daftar Gambar Halaman				
Gambar 2.1	Bagan Pembangkit Listrik Tenaga Surya	5		
Gambar 2.2	Kurva Tegangan Vs Daya pada dengan perubahan			
	Iradian Rangkaian	6		
Gambar 2.3	Topologi Konverter Quadratic Boost	7		
Gambar 2.4	Konverter Quadratic Boost saat saklar tertutup	7		
Gambar 2.5	Konverter Quadratic Boost saat saklar terbuka	8		
Gambar 2.5	Topologi SIB converter	9		
Gambar 2.6	Konverter Zeta	10		
Gambar 2.7	Konverter Zeta ketika saklar Tertutup	10		
Gambar 2.8	Konverter Zeta ketika saklar Terbuka	12		
Gambar 2.9	Arah Fluks Induktor Kopel	13		
Gambar 2.10	Rangkaian Ekuivalen Indukor Kopel (Cantilever			
	Model)	14		
Gambar 2.11	Rangkaian Konverter Integrated Quadratic Boost			
	Zeta	16		
Gambar 2.12	Konverter Integrated Quadratic Boost pada mode t1	17		
Gambar 2.13	Konverter Integrated Quadratic Boost pada mode t2	17		
Gambar 2.14	Konverter Integrated Quadratic Boost pada mode t3	18		
Gambar 2.15	Bentuk Gelombang Arus Utamaa menurut Teori	19		
Gambar 3.1	Rangkaian Simulasi Konverter	32		
Gambar 3.2	Bentuk gelombang V_{DS} , V_{GS} , V_{D1} , V_{D2} , V_{Db} dan V_{Dz} .	33		
Gambar 3.3	Bentuk gelombang V _{GS} , I _{L1} , I _{Lm} , I _{Lo} , dan I _{D1}	34		
Gambar 3.4	Bentuk gelombang V_{GS} , V_{C1} , V_{Cz} , V_{oz} , V_{ob} dan V_o	35		
Gambar 3.5	Implementasi Konverter	39		
Gambar 4.1	Blok Diagram Pengujian Konverter	40		
Gambar 4.2	Bentuk Gelombang VGS, VDS, dan Vo	41		
Gambar 4.3	Bentuk gelombang VGS, VD1, dan VDz	42		
Gambar 4.4	Bentuk gelombang VGS, VD2, dan VDb	43		
Gambar 4.5	Bentuk gelombang VGS, Vo, dan IL1	44		
Gambar 4.6	Bentuk gelombang VGS, Vo, dan ILk	45		
Gambar 4.7	Tegangan kapasitor	46		
Gambar 4.8	Ripple Tegangan Output	47		
Gambar 4.9	Grafik Rasio Konversi DC(0%-65%)	47		
Gambar 4.10	Ripple Tegangan Output	48		
Gambar 4.11	Pengujian dengan Photovoltaic	49		
Gambar 4.12	Grafik Tegangan input dan output uji PV	50		

BAB 1 PENDAHULUAN

1.1 Latar Belakang

Dalam membuat sebuah sistem pembangkit listrik tenaga surya banyak sekali komponen yang dibutuhkan terutama ketika ingin dihubungkan dengan jala-jala (grid connected)[1] . Tegangan DC keluaran dari konverter harus dinaikkan terlebih dahulu untuk meningkatkan efisiensi dan meningkatkan rasio konversi. Cara meningkatkan tegangan DC yang paling umum adalah dengan menggunakan konverter Boost . Konverter Boost adalah alat yang digunakan untuk meningkatkan tegangan DC keluaran dari photovoltaic dengan cara mengatur duty cycle. Semakin tinggi tegangan yang dinaikkan maka semakin besar nilai duty cycle. Namun dalam prakteknya peningkatan duty cycle tidak sesuai dengan kondisi dari peralatan yang ada seperti sistem pensaklaran, penyearah dioda, resistor, induktor dan kapasitor, serta semakin besar nilai duty cycle maka mengakibatkan adanya pengaruh elektromagnet.

Berbagai konverter telah diusulkan untuk mendapatkan efisiensi konversi dan rasio penguatan tegangan yang tinggi serta memperkeceil jumlah komponen. Salah satunya yaitu penguatan tegangan menggunakan topologi *quadratic boost* dan topologi *SEPIC* [2]. Namun kelemahan dari teknik tersebut adalah arus yang mengalir pada saklar sangat tinggi sehingga mengakibatkan rugi-rugi konduksi serta masih banyaknya jumlah komponen yang memperberat rangkaian alat.

Di sisi DC/DC, peningkatan tegangan rasio tinggi bisa dicapai dengan menggunakan konverter topologi boost atau buck boost DC/DC. Bagaimanapun, telah terbukti bahwa konverter tersebut tidak begitu cocok karena tingginya resistansi seri ekuivalennya (ESR), yang mempengaruhi duty cycle dan menurunkan efisiensi konverter dan rasio penaikan tegangan[3Selain itu selain efisiensi pada hasil jumlah komponen dan berat alat juga turut menjadi perhatian dimana topologi tersebut membutuhkan banyak lebih banyak komponen jika ingin menaikkan atau menurunkan tegangan dengan rasio yang tinggi.

Untuk menjawab tantangan tersebut dalam tugas akhir ini mengajukan sebuah topologi baru DC/DC konverter untuk sistem *photovoltaic* dengan beberapa keuntungan berikut yaitu : Integrasi konverter yang mudah dimana dapat megurangi jumlah saklar dan kompenen yang tidak terlalu diperlukan, rasio peningkatan tegangan

tinggi yang bisa dicapai oleh konverter, ripel arus keluaran yang rendah , dan terjaganya karakteristik konverter DC/DC.

1.2 Perumusan Masalah

Permasalahan yang akan dibahas dalam Tugas Akhir ini adalah mendesain dan mengimplementasikan suatu konverter DC-DC dengan metode integrated quadratic boost-zeta yang memilii rasio konversi yang tinggi dan memiliki efisiensi daya yang baik pada semua tingkat pembebanan terutama ketika diaplikasikan pada sistem *Photovoltaic*.

1.3 Tujuan dan Manfaat

Tujuan penulisan tugas akhir ini adalah:

- 1. Mengetahui hal-hal yang berkaitan dengan konverter DC-DC *Integrated Quadratic-Boost-Zeta*.
- 2. Mendesain dan mengimplementasikan konverter DC-DC *Integrated Quadratic-Boost-Zeta* sehingga mendapatkan tegangan keluaran yang diinginkan.
- 3. Membandingkan dan menganalisa hasil implementasi konverter DC-DC *Integrated Quadratic-Boost-Zeta* dengan hasil dari desain dan simulasi pada perangkat lunak.

1.4 Batasan Masalah

- Implementasi menyesuaikan dengan komponen-komponen yang dijual di pasaran
- b. Pengujian menggunakan sumber tegangan DC di laboratorium dan beban resistif
- c. Analisis perhitungan dilakukan pada kondisi ideal
- d. Perancangan tidak menggunakan kontrol MPPT

1.5 Metodologi

Metode penelitian yang digunakan pada tugas akhir ini sebagai berikut:

- Mempelajari prinsip kerja dari topologi konverter DC-DC penguat tegangan tinggi berbasis integrated quadratic boost zeta.
- 2. Simulasi

Dalam tahap ini dilakukan serangkaian simulasi berdasarkan pada teori yang telah dibaca oleh penulis. Banyak pertimbangan dan perubahan dari nilai-nilai komponen serta *duty cycle*

sehingga sesuai keluaran konverter sesuai dengan apa yang diinginkan penulis. Dalam tahap ini komponen yang digunakan merupakan komponen ideal tanpa memperhitungkan rugi-rugi lain.

3. Pengimplementasian Alat

Dalam tahap ini dilakukan pembuatan konverter berdasarkan pada simulasi yang telah dibuat. Pemilihan dan pembelian komponen juga dilakukan pada tahap ini. Setelah itu dilakukan perangkaian komponen-komponen tersebut. Komponen yang diunakan yaitu Sumber DC, Saklar MOSFET, Induktor, Kapasitor, Dioda dan Induktor-Kopel.

4. Pengujian Alat

Dalam tahap ini dilakukan pengujian dan pengukuran seperti tegangan dan arus pada alat yang telah dirangkai yaitu konverter DC-DC penguat tegangan tinggi berbasis *Integrated Quadratic Boost Zeta*. Konverter akan diuji langsung dengan terhubung pada fotovoltaik dan dihubungkan pada beban resistif. Pengaruh pembebanan dan arus bocor dari kopel induktor juga diuji dalam tahap ini.

5. Analisis Data

Setelah alat selesai dibuat dan telah mendapatkan data-data yang dibutuhkan maka data-data tersebut akan dibandingkan dengan simulasi yang telah dibuat. Setelah itu, data-data tersebut dianalisa.

Berikut adalah beberapa parameter yang dianalisa

- a. Duty Cycle
- b. Analisis tegangan disetiap Induktor
- c. Analisis tegangan pada kapasitor
- d. Penguatan Tegangan
- e. Arus output

6. Kesimpulan

Memberikan kesimpulan yang dapat diambil berdasarkan dari hasil analisa dari data yang telah didapatkan. Semua hasil yang telah dikerjakan diatas ditulis menjadi sebuah buku Tugas Akhir

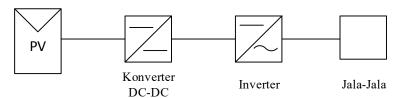
1.6 Relevansi

Hasil yang diperoleh dari Tugas Akhir ini diharapkan dapat memberikan manfaat sebagai berikut:

- Menjadi referensi untuk penelitian selanjutnya mengenai konverter DC-DC rasio tinggi berbasis integrated quadratic boost zeta
- 2. Menjadi referensi untuk pengembangan pembangkit listik yang memanfaatkan energi terbarukan seperti *Photovoltaic*.
- Menjadi referensi bagi mahasiwa lain yang hendak mengambil masalah yang serupa untuk dikembangkan sebagai Tugas Akhir.

1.7 Sistematika Penulisan

Sistematika penulisan yang digunakan pada Tugas Akhir ini adalah sebagai berikut:


- 1. Bab 1 adalah pendahuluan yang berisi tentang latar belakang, rumusan masalah, tujuan penelitian, metodologi, sistematika penulisan, dan relevansi Tugas Akhir.
- 2. Bab 2 berisi tentang teori dasar yang mendukungpenelitian. Pada bab ini akan dibahas mengenai photovoltaic, konverter *quadratic boost*, konverter *zeta*, induktor kopel, konverter DC-DC rasio tinggi berbasis *integrated quadratic boost zeta* dan penurunan parameter dari rangkaian.
- 3. Bab 3 berisi mengenai uraian perancangan secara matematis, simulasi menggunakan software PSIM dan implementasikonverter untuk daya 50 Watt yang akan diuji di laboratorium.
- 4. Bab 4 berisi tentang pengujian dan analisis data hasil pengujian implementasi konverter DC-DC rasio tinggi berbasis *integrated quadratic boost zeta* untuk aplikasi *photovoltaic*.
- 5. Bab 5 memuat kesimpulan dari penelitian yang telah dilakukan dan saran untuk penelitian selanjutnya.

BAB 2

KONVERTER DC-DC RASIO TINGGI UNTUK APLIKASI PHOTOVOLTAIC

2.1 *Photovoltaic* sebagai input konverter

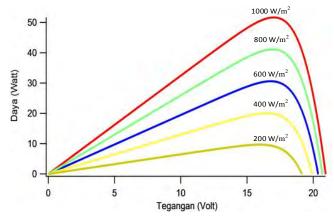
Dalam membangun sistem pembangkit tenaga surya yang sudah tersambung dengan jala-jala dibutuhkan tiga komponen utama yaitu *Photovoltaic* sendiri sebagai sumber, Konverter DC-DC untuk mengkonversi tergangan DC dan inverter untuk merubah tegang DC menjadi AC sehingga bisa tersambung menuju jala-jala sesuai dengan gambar 2.1.

Gambar 2.1 Bagan Pembangkit listrik tenaga Surya

Photovoltaic yang ada di pasaran rata-rata memiliki tegangan yang rendah padahal pada output inverter yaitu tegangan jala-jala menggunakan tegangan yang cukup tinggi yaitu 220 V AC. Untuk menghasilkan tegangan AC sebesar itu maka tegangan DC disisi input inverter minimal harus bernilai 311 volt. Nilai tegangan tersebut didapatkan dari tegangan rms pada jala-jala dikalikan dengan akar 2 sesuai dengan persamaan (2.1).

$$V_{max} = V\sqrt{2} \tag{2.1}$$

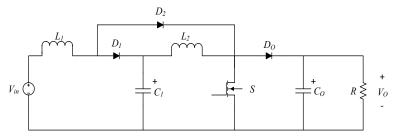
Untuk menghasilkan tegangan output bernilai tersebut maka dibutuhkanlah sebuah konverter DC-DC yang mampu menkonversi tegangan dari output *Photovoltaic* menjadi berkali lipat.


Dalam praktiknya *Photovoltaic* merupakan suatu modul yang terdiri atas susunan seri dan paralel dari beberapa sel surya. Hal ini dikarenakan satu sel surya hanya mampu menghasilkan tegangan ±0.6 V.

Terdapat dua faktor penting yang mempengaruhi arus, tegangan and daya output sebuah *Photovoltaic* yaitu temperature sel dan besar iradiasi yang diserap [4]. *Photovoltaic* yang ditinjau dan dijadikan sumber pada tugas akhir ini yaitu *photovoltaic* dengan merek eLSOL dengan spesifikasi PV sesuai tabel 2.1 berikut:

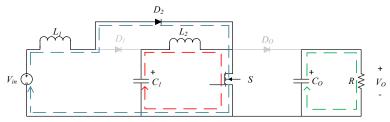
Tabel 2.1 Spesifikasi Photovoltaic elSOL

No	Spesifikasi	Nilai
1	Model	eS50236-PCM
2	Maximum power	20 Wp
3	Short Circuit Current	3.25 A
4	Maximum Power Current	2.91 A
5	Open Circuit Voltage	21.75 V
7	Nominal Voltage	17.24 V
9	Length	690 mm
10	Width	660 mm
11	Temperature	-40 °C - 50 °C


Gambar 2.13 menunjukkan kurva karakteristik P-V *Photovoltaic* eLSOL 50 Watt pada suhu konstan 25°C dengan perubahan iradiasi.Dari gambar tersebut diketahui bahwa semakin besar intensitas cahaya yang diserap oleh *Photovoltaic*, semakin besar pula daya output *Photovoltaic*.

Gambar 2.2 Kurva Tegangan Vs Daya pada dengan perubahan Iradian

2.2 Konverter quadratic boost


Topologi konverter *Quadratic Boost* merupakan penggabungan dari dua konverter *boost* seperti ditunjukkan pada gambar 2.3. Telah kita ketahui bahwa konverter *boost* merupakan topologi konverter yang dapat menaikkan tegangan keluaran. Untuk mendapatkan tegangan keluaran dengan rasio yang lebih besar mka dirancanglah topologi konverter *quadratic boost*. Konverter *quadratic boost* memiliki prinsip kerja yang hampir sama dengan konverter *boost*. Konverter *quadratic boost* memiliki 2 mode pensaklaran yaitu t₁ atau ketika saklar S konduksi dan t₂ atau ketika saklar S terbuka [5].

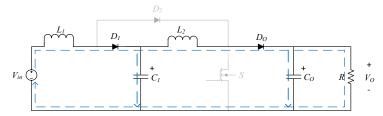
Gambar 2.3 Topologi Konverter Quadratic Boost

2.2.1 Analisis Saklar Tertutup

Pada saat t1 atau ketika saklar S konduksi maka rangkaian dari konverter topologi *quadratic boost* akan menjadi seperti berikut :

Gambar 2.4 Konverter Quadratic Boost saat saklar S tertutup

Dari analisa arus yang lewat seperti pada gambar 2.4 didapat persamaan sebagai berikut:


$$V_{L1}(on) = V_{in} (2.2)$$

$$V_{L2}(on) = V_{C1} (2.3)$$

Pada saat saklar tertutup maka Arus dari sumber akan membuat diode D_2 konduksi sehingga membuat tegangan sumber mengalirkan energinya menuju induktor L_1 dan membuat tegangan pada induktor L_1 sama dengan tegangan sumber sesuai persamaan 2.2. Pada persamaan 2.3 menunjukkan bahwa Dioda D_1 dan D_0 reverse bias karena tegangan V_{C1} dan V_{C0} . Sementara itu kapasitor C_1 melepas energinya menuju induktor L_2 sehingga membuat tegangan kapasitor C_1 sama dengan tegangan induktor L_2

2.2.2 Analisis Saklar Terbuka

Pada saat mode t_2 atau ketika saklar S terbuka maka rangkaian dari konverter akan menjadi seperti berikut :

Gambar 2.5 Konverter Quadratic boost ketika saklar S terbuka

Dari gambar 2.5 diatas dapat diketahui bahwa ketika saklar terbuka dioda D_1 dan D_0 konduksi. Dioda D_2 menjadi *reverse* bias karena V_0 kapasitor C_1 diisi energi oleh V_{in} dan L_1 sementara kapasitor C_0 diisi oleh L_1 dan L_2 yang dirangkai seri. Ketika sumber energy pada induktor dilepaskan maka arus pada induktor akan bergerak turun. Dengan menganalisa arah aliran arus pada saat saklar tertutup kita bisa mendapatkan persamaan berikut:

$$V_{L1}(off) = V_{in} - V_{C1} (2.4)$$

$$V_{L2}(off) = V_{C1} - V_0 (2.5)$$

Dari persamaan 2.4 diketahui bahwa besarnya tegangan yang ada pada induktor L_1 sama dengan besarnya tegangan input dikurangi tegangan pada kapasitor C_1 Pada persamaan (2.5) menunjukkan bahwa

tegangan yang ada pada induktor L_2 sama dengan besarnya tegangan pada kapasitor C_1 dikurangi tegangan output

Dengan mengaplikasikan prinsip inductor volt second balanced [6] pada induktor L_1 saat saklar on dan off didapatkan persamaan sebagai berikut:

$$\int_{0}^{DT} V_{L1}(on)dt + \int_{DT}^{T} V_{L1}(off)dt = 0$$
 (2.6)

Subtitusi persamaan (2.2) dan (2.4) ke persamaan (2.6) maka diperoleh:

$$\int_{0}^{DT} V_{in} dt + \int_{DT}^{T} (V_{in} - V_{C1}) dt = 0$$

$$DT V_{in} + (1 - D) T (V_{in} - V_{C1}) = 0$$

$$DV_{in} + V_{in} - DV_{in} - V_{C1} + DV_{C1} = 0$$

$$V_{in} = V_{C1} - DV_{C1}$$

$$V_{C1} = \frac{1}{1 - D} V_{in}$$
(2.8)

Persamaan 2.8 adalah persamaan penguatan dari satu konverter *boost*, semakin tinggi *duty cycle* maka akan semakin tinggi juga nilai tegangan output. Dengan cara yang sama kita dapat menurunkan persamaan pada induktor L_2 sehingga didapatkan persamaan sebagai berikut:

$$\int_{0}^{DT} V_{L2}(on)dt + \int_{DT}^{T} V_{L2}(off)dt = 0$$
 (2.9)

Subtitusi persamaan (2.3) dan (2.5) ke persamaan (2.9) maka diperoleh:

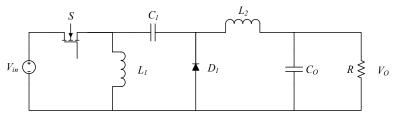
$$\int_{0}^{DT} V_{C1} dt + \int_{DT}^{T} (V_{C1} - V_{o}) dt = 0$$

$$DT V_{C1} + (1 - D) T (V_{C1} - V_{o}) = 0$$

$$DV_{C1} + V_{C1} - DV_{C1} - V_{o} + DV_{o} = 0$$

$$V_{C1} = V_{o} - DV_{o}$$

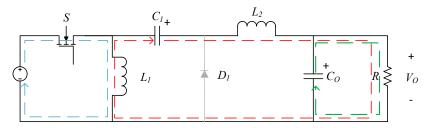
$$V_{o} = \frac{1}{1 - D} V_{C1}$$
(2.11)


Dengan mensubtitusi persamaan (2.8) ke persamaan (2.11) maka diperoleh :

$$V_o = \frac{1}{(1-D)^2} V_{in} \tag{2.12}$$

Persamaan (2.12) merupakan persamaan akhir dari konverter *quadratic boost* dimana menunjukkan bahwa nilai penguatannya merupakan fungsi kuadrat dari nilai penguatan pada konverter *boost*.

2.3 Konverter Zeta


Konverter *Zeta* ditunjukkan degan gambar 2.6 merupakan salah satu pengembagan dari konverter *Buck Boost* dimana konverter *Zeta* merupakan konverter yang bisa menaikkan dan menurunkan tegangan. Penaikan atau penurunan tegangan pada konverter *zeta* memiliki prinsip yang sama dengan konverter *buck boost* yaitu bergantung pada *duty cycle* namun output dari konverter *zeta* bernilai positif tidak seperti pada konverter *buck boost*. Jika *duty cycle* pada konverter dioperasikan dibawah 50% maka konverter akan bekerja sebagai penurun tegangan namun jika konverter dioperasikan diatas 50% maka konverter akan berkerja sebagai penaik tegangan[6]. Konverter *zeta* memiliki 2 mode pensaklaran yaitu t₁ atau ketika saklar S konduksi dan t₂ atau ketika saklar S terbuka.

Gambar 2.6 Konverter Zeta

2.3.1 Analisis Saklar Tertutup

Pada saat saklar S tertutup diode D_1 reverse bias karena tegangan kapasitor V_{C1} . Induktor L_1 dan L_2 mengalami pengisian energi yang berasal dari tegangangan input Vin dan energy pelepasan kapasitor C_1 . Sementara C_0 hanya berfungsi sebagai kapasitor ripel, pada saat saklar tertutup kapasitor C_0 menyuplai energy menuju Vo.

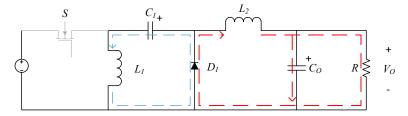
Gambar 2.7 Konverter Zeta ketika saklar tertutup

Dengan menggunakan analisa loop dari rangkaian pada gambar 2.7 diatas dapat diketahui bahwa :

$$V_{L1}(on) = V_{in}$$
 (2.13)

$$V_{L1}(on) = -V_{C1} + V_{L2}(on) + V_{O}$$
 (2.14)

Persamaan 2.13 menunjukkan bahwa nilai tegangan pada induktor L_1 memiliki nilai yang sama dengan tegangan input sementara persamaan 2.14 mununjukkan bahwa nilai tegangan induktor L_1 ditambah tegangan kapasitor C_1 memiliki nilai yang sama dengan tegangan induktor L_2 ditambah tegangan output. Dengan mensubtitusi persamaan (2.13) ke persamaan (2.14) sehingga didapatkan persamaan :


$$V_{in} = -V_{C1} + V_{L2}(\text{on}) + V_{O}$$

$$V_{L2}(on) = V_{C1} + V_{in} - V_{O}$$
(2.15)

Dari persamaan 2.15 diketahui bahwa tegangan induktor L_2 ditambah tegangan output memiliki nilai yang sama dengan tegangan induktor L_1 ditambah tegangan input.

2.3.2 Analisis Saklar Terbuka

Pada saat saklar S terbuka diode D_1 konduksi karena tegangan output V_o . Sementara itu induktor L_1 dan induktr L_2 mengalami pelepasan energi untuk mengisi energy pada kapasitor C_1 dan kapasitor C_o . Arus yang mengalir pada tiap-tiap komponen ketika saklar *off* digambarkan seperti pada gambar 2.8.

Gambar 2.8 Konverter Zeta ketika saklar terbuka

Dengan menggunakan analisa loop dari rangkaian pada gambar 2.8 diatas dapat diketahui bahwa :

$$V_{L1}(off) = -V_{C1} (2.16)$$

$$V_{L2}(off) = -V_o (2.17)$$

Nilai tegangan pada induktor L_1 memiliki nilai yang berkebalikan dengan tegangan kapasitor C_1 , sementara itu nilai tegangan induktor L_2 pada saat saklr *off* memiliki nilai yang berkebalikan dengan nilai tegangan output V_O seperti telah dtunjukkan pada persamaan (2.16) dan (2.17).

Dengan mengaplikasikan prinsip inductor volt second balance pada induktor L_1 saat saklar on dan off didapatkan persamaan sebagai berikut:

$$\int_{0}^{DT} V_{L1}(on)dt + \int_{DT}^{T} V_{L1}(off)dt = 0$$
 (2.18)

Subtitusi persamaan 2.13 dan 2.16 ke persamaan 2.18 sehingga didapatkan:

$$\int_{0}^{DT} V_{in} dt + \int_{DT}^{T} -V_{C1} dt = 0$$

$$DT V_{in} + (1 - D) T -V_{C1} = 0$$

$$DV_{in} + -V_{C1} + DV_{C1} = 0$$

$$DV_{in} = V_{C1} - DV_{C1}$$

$$V_{C1} = \frac{D}{1 - D} V_{in}$$
(2.19)

Dengan cara yang sama kita dapat menurunkan persamaan pada induktor L_2 sehingga didapatkan persamaan sebagai berikut :

$$\int_{0}^{DT} V_{L2}(on)dt + \int_{DT}^{T} V_{L2}(off)dt = 0$$
 (2.21)

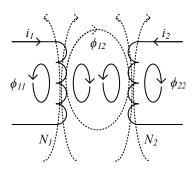
Subtitusi persamaan (2.15) dan (2.17) ke persamaan (2.21) sehingga didapatkan:

$$\int_{0}^{DT} (V_{C1} + V_{in} - V_{O}) dt + \int_{DT}^{T} -V_{O} dt = 0$$

$$DT (V_{C1} + V_{in} - V_{O}) + (1 - D)T - V_{O} = 0$$

$$DV_{C1} + DV_{in} - DV_{O} - V_{O} + DV_{O} = 0$$

$$\frac{V_{O}}{D} = V_{C1} + V_{in}$$
(2.22)


Subtitusi persamaan (2.20) ke persamaan (2.23) sehingga didapatkan:

$$\frac{V_o}{D} = \frac{D}{1-D} V_{in} + V_{in}
V_O = \frac{D}{1-D} V_{in}$$
(2.24)

Persamaan (2.24) merupakan persamaan akhir dari penguatan tegangan pada konverter *zeta*.

2.4 Induktor Kopel

Induktor kopel pada dasarnya merupakan pengggabungan antara dua lilitan induktor yang dirangkai dalam satu inti. Kedua induktor ini tidak bekerja secara sedniri-sendiri namun saling mempengaruhi secara teori kondisi ini disebut *mutual inductance*. Hal ini karena kedua induktor yang dialiri oleh arus bekerja berdekatan.

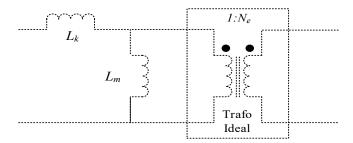
Gambar 2.9 Arah fluks Induktor Kopel

Seperti yang terlihat pada gambar 2.9 diatas, fluks ϕ_{11} merupakan fluks yang melingkupi induktor L_1 sedangkan fluks ϕ_{12} ini disebut mutual

fluks dimana merupakan bagian dari fluks ϕ_{11} yang terhubung ke induktor L₂. Berdasarkan persamaan umum terbangkitnya tegangan pada sebuah induktor, hubungan antara fluks ϕ_{11} , ϕ_{22} , dan ϕ_{12} dengan tegangan pada masing-masing induktor adalah sebagai berikut:

$$V_{L1} = N_1 \frac{d\phi_{11}}{dt} + N_1 \frac{d\phi_{12}}{dt}$$
 (2.25)

$$V_{L2} = N_2 \frac{d\phi_{21}}{dt} + N_1 \frac{d\phi_{22}}{dt}$$
 (2.26)


atau dapat juga ditulis:

$$V_{L1} = L_{11} \frac{di_1}{dt} + L_{12} \frac{di_2}{dt}$$

$$V_{L2} = L_{21} \frac{di_1}{dt} + L_{22} \frac{di_2}{dt}$$
(2.27)

$$V_{L2} = L_{21} \frac{di_1}{dt} + L_{22} \frac{di_2}{dt}$$
 (2.28)

dimana V, N, dan i masing-masing merupakan tegangan jumlah lilitan dan arus pada induktor. Φ_{11} dan Φ_{22} merupakan fluks terbangkit pada induktor 1 dan induktor 2 sedangkan Φ₁₂ fluks pada iduktor 1 akibat induktor 2. L₁₁ dan L₂₂ masing-masing merupakan nilai dari induktansi primer dan induktansi sekunder sedangkan L₁₂ dan L₂₁ merupakan induktansi bersama induktor kopel atau dapat juga ditulis sebagai L_m[7].

Gambar 2. 10 Rangkaian Ekuivalen Induktor kopel (Cantilever Model Derivation)

Sesuai dengan gambar 2.10 pada setiap implementasi Induktor kopel memiliki induktansi bocor dimana hal ini terjadi karena tidak semua fluks yang timbul di sisi primer dapat mengalir ke sisi sekunder. Pemodelan induktor kopel dengan Induktansi bocor dapat ditunjukkan pada gambar 2 dimana L_k merupakan induktor bocor atau biasa juga disebut L_{1eak12} L_m merupakan induktor magnetisasi dan N_e merupakan perbandingan nilai dari induktor .

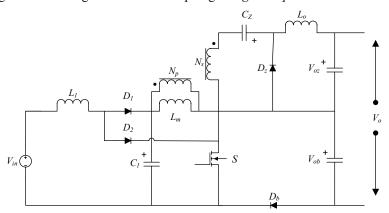
Pada mode $\it Cantiliver$ hubungan antara Induktor bocor $\it L_k$ Induktor magnetisasi $\it L_m$ dan $\it N_e$ dapat ditunjukkan dengan persamaan berikut :

$$L_m = L_{11} - L_k (2.29)$$

$$N_e = \sqrt{\frac{L_{22}}{L_m}} (2.30)$$

$$N_e = \frac{V_{L_2}}{V_{L_1}} \tag{2.31}$$

Sesuai persamaan (2.29), nilai induktor magnetisasi L_m merupakan hasil pengurangan dari induktansi terukur disisi primer L_{11} dikurangi dengan nilai induktor bocor. Sementara itu perbandingan tegaangan sisi sekunder dan primer N_e merupakan akar dari nilai induktansi yang ditunjukkan pada sisi sekunder L_{22} dibagi dengan nilai induktor magnetisasi L_m seperti yang ditunjukkan oleh persamaan (2.30) dan (2.31). Ketika menggunakan pemodelan *Cantaliver* N bukan merupakan perbandingan belitan antara sisi sekunder dan sisi primer, N berlaku sebagai perbandingan antara belitan primer dan sekunder jika induktor kopel adalah induktor ideal yang berarti tidak ada induktor bocor L_k .


 L_{1eak12} atau L_k merupakan induktor bocor disisi primer, nilai L_k didapat dengan cara menghubungkan sisi positif dan negatif dari induktor disisi sekunder L_{22} . Semakin sedikit nilai L_k maka akan membuat induktor kopel semakin bekerja mendekati ideal. Jika L_k bernilai 0 maka koefisien kopling k akan bernilai 1 sehingga membuat induktor kopel menjadi induktor kopel ideal. Persamaan (2.32) adalah persamaan yang menerangkan hubungan antara inuktor bocor dan koefisien kopling:

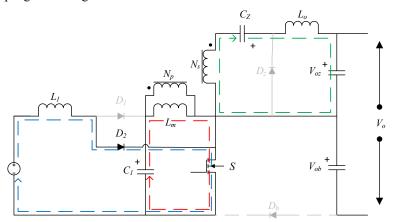
$$k = \sqrt{1 - \frac{L_k}{L_{11}}} \tag{2.32}$$

2.5 Konverter DC-DC Rasio Tinggi Integrated quadratic boost zeta

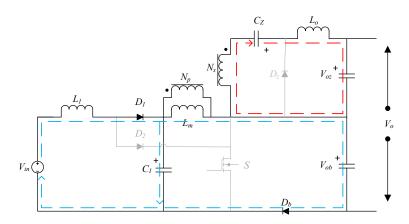
Topologi Konverter DC-DC Rasio Tinggi berbasis *Integrated* quadratic boost zeta seperti ditunjukkan pada gabar 2.11 merupakan topologi gabungan dari konverter quadratic boost dan konverter zeta dengan ditambah dengan induktor kopel sebagai penaik tegangan.

Topologi ini memeliki beberapa keuntungan diantaranya, komponen yang sedikit dan rasio peningkatan tegangan yang tinggi. Berikut adalah gambar dari rangkaian konverter topologi *Integrated quadratic boost zeta*

Gambar 2.11 Rangkaian Konverter Integrated Quadratic Boost Zeta

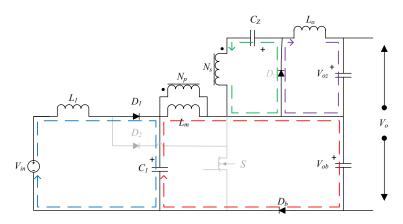

Tegangan output dari konverter merupakan penjumlahan dari 2 konverter yang telah disebutkan dimana V_{oz} merupakan output dari konverter *zeta* sementara V_{ob} merupakan output dari konverter *quadratic boost*. Untuk menjelaskan bagaimana prinsip kerja dari konverter diatas kita dapat menganalisa dari aliran arus pada setiap waktu.

2.5.1 Analisis Kondisi Tunak


Konvereter topologi ini memiliki 3 mode operasi yaitu t_0 - t_1 , t_1 - t_2 dan t_2 - t_3 [3]. Untuk mempermudah penurunan rumusnya maka kita harus menganalaisis aliran arus pada tiap mode operasi. Dengan mennganalisis aliran arus pada setiap mode operasi bisa diturunkan persamaan rasio konversi dari konverter.

Pada saat mode satu $(t_0$ - $t_1)$ atau ketika saklar tertutup ditunjukkan dengan gambar 2.12, dioda D_1 akan mengalami *reverse* bias akibat V_{C1} . Dioda D_b dan dioda D_Z juga mengalami *reverse* bias masing-masing akibat dari V_{oz} dan V_{ob} . Dioda D_2 mengalami konduksi. Induktor L_1 , induktor L_2 dan induktor L_0 mengalami proses pengisian energy masing-

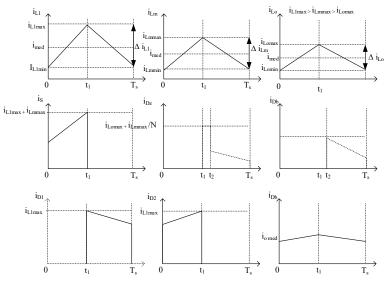
masing oleh tegangan input V_{in} , tegangan kapasitor 1 V_{C1} dan teganga induktor kopel sekunder, oleh karena itu arus induktor I_{L1} , I_{Lm} dan I_{Lo} akan mengalami kenaikan. Kapasitor satu C_1 dan kapasitor zeta C_z mengalami pelepasan energi dan kapasitor output C_{oz} dan C_{ob} mengalami fase pengisian energi.



Gambar 2.12 Konverter Integrated Quadratic Boost Zeta pada mode tl

 $\textbf{Gambar 2.13} \ \text{Konverter} \ \textit{Integrated Quadratic Boost Zeta} \ \text{pada mode 2}$

Pada mode operasi dua (t1-t2) seperti ditunjukkan pada gambar 2.13 ketika saklar S baru saja terbuka. Dioda D_2 dan Dz akan mengalami reverse bias akibat V_{ob} dan V_{Cz} , sementara itu dioda D_1 dan dioda D_b akan mengalami mode konduksi. Induktor L_1 , induktor L_2 dan induktor L_0 mengalami proses pelepasan energy akibatnya arus pada induktor tersebut akan turun. Kapasitor C_1 dan kapasitor C_z mengalami pengisian energi pada mode ini..



Gambar 2.14 Konverter Integrated Quadratic Boost Zeta pada mode t3

Pada mode operasi tiga $(t_2$ - $t_3)$ seperti ditunjukkan pada gambar 2.14 ketika saklar S telah terbuka, hanya Dioda D_2 yang akan mengalami reverse bias akibat tegangan V_{ob} sedangkan dioda D_z akan kembali mengalami mode konduksi karena tegangan V_{ob} dan tegangan V_{Lm} . Dioda D_1 dan dioda D_b juga akan mengalami mode konduksi masing-masing karena tegangan kapasitor V_{C1} dan tegangan V_{ob} . Induktor L_1 , induktor L_2 dan induktor L_0 mengalami proses pelepasan energy akibatnya arus pada induktor tersebut akan mengalami penurunan. Sementara kapasitor C_1 dan kapasitor C_2 mengalami pengisian energi pada mode ini .

Pada setiap konverter bentuk gelombang arus merupakan poin yang paling penting. Pada gambar 2.15 digambarkan bentuk gelombang arus dari setiap komponen pada kondisi *duty cycle* 50%. Seperti yang

sudah dijelaskan pada analisa kondisi tunak konverter ini bekerja pada 3 mode operasi. Hal tersebut terlihat dari bentuk gelombang dari arus diode di sisi *zeta*

Gambar 2.15 Bentuk Gelombang Arus Utama menurut Teori

2.5.2 Penurunan Persamaan rasio konversi

Persamaan rasio konversi bisa didapatkan dengan menurunkan persamaan dari analisa aliran arus pada kondisi tunak yang telah dilakukan. Dalam menentukan persamaan rasio konversi tegangan konverter, hanya mode operasi 1 dan 3 yang digunakan. Hal ini karena mode operasi 2 berlangsung sangat singkat. Pada mode operasi 1, saklar S konduksi, sumber DC Vin melepas energinya ke induktor L_1 dan kapasitor C_1 melepas energinya ke induktor magnetisasi L_m . Sehingga, sesuai dengan gambar dapat ditulis persamaan sebagai berikut:

$$V_{L1}(on) = V_{in}$$
 (2.33)

$$V_{C1} = V_{Lm}(on) = V_{Lp}(on)$$
 (2.34)

$$V_{LS}(on) = NV_{Lm}(on) (2.35)$$

Subtitusi persamaan (2.34) ke persamaan (2.35) maka didapatkan:

$$V_{LS}(on) = NV_{C1} \tag{2.36}$$

 V_{Lp} merupakan tegangan primer pada trafo sedangkan V_{Ls} merupakan tegangan sekunder pada induktor kopel. Karena induktor kopel dianggap ideal sehingga tidak ada induktor bocor L_k maka nilai k dianggap 1 dan nilai N merupakan perbandingan antara belitan sekunder dan belitan primer sekaligus perbandingan antara tegangan sekunder dan tegangan primer sesuai yang telah dijelaskan pada bab 2.4. Namun ketika ada induktor bocor L_k maka N yang dimaksud adalah perbandingan nilai tegangan antara sisi sekunder dibagi sisi primer induktor kopel bukan perbandingan belitan.

Dari gambar 2.12 juga dapat diketahui bahwa nilai tegangan kapasitor $V_{\rm C2}$ tambah $NV_{\rm Lm}$ sama dengan nilai dari $V_{\rm Lo} + V_{\rm OZ}$. Penurunan rumus ini sesuai dengan kondisi yang terjadi pada rangkaian *zeta* konverter ketika dalam kondisi on hanya saja sisi input pada konverter *zeta* merupakan sisi sekunder dari kopel induktor pada topologi ini.

$$V_{LS}(\text{on}) = -V_{C2}V_{LO}(\text{on}) + V_{OZ}$$
 (2.37)

Subtitusi persamaan 2.36 Ke persamaan 2.37 sehingga diperoleh:

$$N V_{C1} = - V_{C2} + V_{LO}(on) + V_{OZ}$$

$$V_{LO}(on) = NV_{C1} + V_{C2} - V_{OZ}$$
(2.38)

Pada mode operasi 3 atau ketika saklar dalam keadaan *off* pada sisi konverter *quadratic boost* didapatkan persamaan berikut :

$$V_{in} = V_{L1}(off) + V_{C1}$$

$$V_{L1}(off) = V_{in} - V_{C1}$$

$$V_{C1} = V_{Lm}(off) + V_{ob}$$

$$V_{Lm}(off) = VC_1 - V_{ob}$$
(2.39)

Sementara itu, pada sisi zeta didapatkan bahwa nilai dari tegangan sekunder induktor berkebalikan dengan nilai dari tegangan kapasitor $V_{\rm C2.}$

$$V_{Ls}(off) = -V_{C2} (2.41)$$

Subtitusi persamaan (2.34) ke persamaan (2.40)

$$NV_{Lm}(off) = -V_{C2}$$

 $V_{Lm}(off) = -\frac{V_{C2}}{N}$ (2.42)

Dari analisis aliran arus pada mode saklar S *off* juga didapat bahwa nilai tegangan induktor L_2 berkebalikan dengan nilai tegangan output kapassitor pada sisi *zeta*, sesuai persamaan (2.43).

$$VL_0(off) = -V_{oz} (2.43)$$

Dengan menggunakan prinsip *Induktor Voltage Second Balance* pada saat kondisi saklar *on* dan *off* pada setiap infuktor didapatkan persamaan berikut:

$$\int_{0}^{DT} V_{L1} \text{ (on)} dt + \int_{DT}^{T} V_{L1} \text{ (off)} dt = 0$$
 (2.44)

Subtitusi persamaan (2.33) dan (2.39) ke persamaan (2.44) sehingga diperoleh:

$$\int_{0}^{DT} V_{in} dt + \int_{DT}^{T} (V_{in} - V_{C1}) dt = 0$$

$$DT V_{in} + (1 - D) T (V_{in} - V_{C1}) = 0$$

$$DV_{in} + V_{in} - DV_{in} - V_{C1} + DV_{C1} = 0$$

$$V_{in} = V_{C1} - DV_{C1}$$

$$\frac{V_{C1}}{V_{in}} = \frac{1}{1 - D}$$
(2.46)

Nilai penguatan tegangan pada kapasitor C_1 sama dengan nilai pengauatan tegangan pada konverter *boost* biasa. Dengan cara yang sama kita bisa menganilasis pada induktor L_m .

$$\int_{0}^{DT} V_{Lm} \text{ (on)} dt + \int_{DT}^{T} V_{Lm} \text{ (off)} dt = 0$$
 (2.47)

Subtitusi persamaan (2. 34) dan (2.40) ke persamaan (2.47) sehingga diperoleh :

$$\int_{0}^{DT} V_{C1} dt + \int_{DT}^{T} V_{C1} - V_{ob} dt = 0$$

$$DT (V_{C1}) + (1 - D) T (V_{C1} - V_{ob}) = 0$$

$$V_{C1} - (1 - D) V_{ob} = 0$$

$$V_{C1} = (1 - D) V_{ob}$$

$$\frac{V_{ob}}{V_{C1}} = \frac{1}{1 - D}$$
(2.48)

Dengan mensubtitusi persamaan (2.46) ke persamaan (2.48) maka bisa ditunjukkan bahwa nilai tegangan pada kapasitor C_{ob} pada sisi *Quadratic boost* adalah sebagai berikut. Persamaan ini sesuai dengan persamaan yang telah diturunkan pada konverter *quadratic boost* yang berdiri sendiri.

$$\frac{V_{ob}}{V_{in}} = \frac{1}{(1-D)^2} \tag{2.49}$$

Dengan menerapkan prinsip induktor *Volt Second Balance* pada induktor magnetisasi L_m kita bisa mendapatkan persamaan dari tegangan kapasitor $V_{\rm C2}$ seperti yang ditunjukkan oleh persamaan berikut :

$$\int_{0}^{DT} V_{Lm} \text{ (on)} dt + \int_{DT}^{T} V_{Lm} \text{ (off)} dt = 0$$
 (2.50)

Subtitusi persamaan 2.34 dan 2.42 ke persamaan 2.50 sehingga diperoleh:

$$\int_{0}^{DT} V_{C1} dt + \int_{DT}^{T} -\frac{V_{C2}}{N} dt = 0$$

$$DT V_{C1} - (1 - D) T \frac{V_{C2}}{N} = 0$$

$$VC_{2} = \frac{ND}{(1 - D)} V_{C1}$$
(2.52)

Untuk mendapatkan persamaan rasio konversi dari integrasi seluruh rangkain maka kita harus menurunkan persamaan dengan cara yang sama pada induktor yang tersisa yaitu induktor L_0

$$\int_{0}^{DT} V_{LO} \text{ (on)} dt + \int_{DT}^{T} V_{LO} \text{ (off)} dt = 0$$
 (2.53)

Subtitusi persamaan (2.38) dan (2.43) ke persamaan (2.53) sehingga dapat diperoleh:

$$\int_{0}^{DT} (NV_{C1} + V_{C2} - V_{OZ}) dt + \int_{DT}^{T} -V_{OZ} dt = 0$$

$$DT(NV_{C1} + V_{C2} - V_{OZ}) - (1 - D) T V_{OZ} = 0$$

$$NDV_{C1} + DV_{C2} - DV_{OZ} + DV_{OZ} - V_{OZ} = 0$$

$$D(NV_{C1} + V_{C2}) = V_{OZ}$$

$$\frac{V_{OZ}}{D} = NV_{C1} + \frac{ND}{(1-D)} V_{C1}$$

$$\frac{V_{OZ}}{V_{C1}D} = \frac{(1-D)N + ND}{1-D}$$
(2.54)

Dengan mensubtitusi persamaan (2.52) ke persamaan (2.55) maka akan didapatkan persamaan dari tegangan output sisi *zeta* dengan input tegangan merupakan tegangan dari sisi sekunder kopel induktor.

$$\frac{V_{OZ}}{V_{C1}} = \frac{ND}{1-D} \tag{2.56}$$

Dengan mesubtitusi persamaan (2.46) ke persamaan (2.56) maka akan diperoleh penguatan akhir dari sisi konverter *zeta*.

$$\frac{V_{OZ}}{V_{in}} = \frac{ND}{(1-D)^2} \tag{2.57}$$

Dari persamaan (2.49) dan (2.57) telah mengetahui penurunan persamaan dari masing-masing konverter maka untuk mendapatkan tegangan keluaran dari integrasi konverter kita hanya perlu menjumlahkan pkedua persamaan tersebut.

$$V_0 = V_{0h} + V_{0z} (2.58)$$

Subtitusi persamaan (2.49) dan (2.57) ke persamaan (2.58) sehingga diperoleh:

$$\frac{\frac{V_o}{V_{in}} = \frac{1}{(1-D)^2} + \frac{ND}{(1-D)^2}}{\frac{V_o}{V_{in}} = \frac{1+ND}{(1-D)^2}}$$
(2.59)

2.5.3 Penurunan Persamaan Parameter nilai komponen

Setelah menurunkan persamaan rasio konversi langkah selanjutanya adalah menentukan persamaan parameter konverter yaitu parameter beban R, Induktor L, dan kapasitor C. Semua perhitungan dilakukan dalam kondisi ideal sehingga dianggap tidak ada pengurangan tegangan pada komponen dan membuat daya input sama dengan nilai daya output konverter.

Nilai R beban dari konverter bergantung pada daya input tegangan input dan tegangan keluaran dari konverter. Telah diketahui bahwa daya input sama dengan daya output sehiingga dapat kita turunkan rumus berikut:

$$P_{in} = P_o \tag{2.60}$$

$$V_{in} I_{in} = \frac{(V_o)^2}{R} \tag{2.61}$$

$$R = \frac{(V_o)^2}{P_{in}} \tag{2.62}$$

Dari gambar 2.12, diketahui bahwa $I_{in} = I_{L1}$ maka persamaan (2.61) dapat diturunkan menjadi

$$I_{L1} = \frac{(V_0)^2}{V_{in}R} \tag{2.63}$$

Subtiusi persamaan (2.59) ke persamaan (2.63) sehingga diperoleh:

$$I_{L1} = \frac{(1+ND)^2}{R(1-D)^4} V_{in} \tag{2.64}$$

$$I_{L1} \max = I_{L1} + \frac{\Delta I_{L1}}{2}$$
 (2.65)

$$I_{L1} \min = I_{L1} - \frac{\Delta I_{L1}}{2}$$
 (2.66)

Karena tegangan induktor $V_{L1} = V_{in}$, maka

$$L_1 \frac{\Delta I_{L1}}{\Delta ton} = V_{in}$$

$$L_1 = \frac{V_{in} D}{f \Delta I_{L1}}$$
(2.67)

$$\Delta I_{L1} = \frac{V_{in} D}{f L_1} \tag{2.68}$$

Karena konverter bekerja pada mode continuous conduction mode CCM maka syarat konverter akan bekerja sesuai desan I_{L1} min >0

$$I_{L1} - \frac{\Delta I_{L1}}{2} > 0$$
 $I_{L1} > \frac{\Delta I_{L1}}{2}$ (2.69)

Subtitusi persamaan (2.64) ke persamaan (2.69) sehingga diperoleh:

$$\frac{{{{(1 - ND)^2}}}}{{R(1 - D)^4}}V_{in} > \frac{{{V_{in}}\,D}}{{2f\,L_1 min}}$$

$$L_1 min > \frac{{RD(1 - D)^4}}{{2\,(1 + ND)^2 f}}$$
(2.70)

Dengan menggunakan prinsip yang sama, nilai iduktor Lm dapat ditentukan sebagai berikut:

$$P_{CI} = P_o \tag{2.71}$$

$$V_{C1} I_{C1} = \frac{V_0^2}{R} \tag{2.72}$$

Karena $I_{C1} = I_{Lm}$, maka

$$I_{Lm} = \frac{V_0^2}{R V_{C1}} \tag{2.73}$$

Subtitusi persamaan (2.43) dan (2.59) ke persamaan (2.73) sehingga diperoleh:

$$I_{Lm} = \frac{(1+ND)^2}{R(1-D)^3} V_{C1} \tag{2.74}$$

$$I_{Lm} \max = I_{Lm} + \frac{\Delta I_{Lm}}{2} \tag{2.75}$$

$$I_{Lm} \min = I_{Lm} - \frac{\Delta I_{Lm}}{2} \tag{2.76}$$

Karena $V_{C1} = V_{Lm}(on)$, maka

$$L_m \frac{\Delta I_{Lm}}{\Delta ton} = V_{C1} \tag{2.77}$$

Subtitusi persamaan (2.43) ke persamaan (2.77) sehingga diperoleh:

$$L_{m} = \frac{V_{in} D}{(1-D) f \Delta I_{Lm}}$$

$$\Delta I_{Lm} = \frac{V_{in} D}{(1-D) f L_{m}}$$
(2.78)

$$\Delta I_{Lm} = \frac{V_{in} D}{(1-D) f L_m}$$
 (2.79)

Konverter bekerja pada mode CCM, sehingga I_{Lm} min>0

$$I_{Lm} - \frac{\Delta I_{Lm}}{2} > 0$$

$$I_{Lm} > \frac{\Delta I_{Lm}}{2} \tag{2.80}$$

Subtitusi persamaan (2.74) ke persamaan (2.80) sehingga diperoleh

$$\frac{{}^{(1+ND)^2}_{R(1-D)^3}V_{in} > \frac{{}^{D}_{2(1-D)\,f\,L_m}V_{in}}{{}^{2}_{2(1+ND)^2(1-D)f}}$$
 (2.81)

Untuk mengetahui penurunan rumus dari L_o , dapat diturunkan dari rumus daya output. I_O dan I_{Lo} mempunyai nilai rata-rata yang sama maka bisa dianggap $I_O=I_{Lo}$,

$$I_o = \frac{V_o}{R} \tag{2.82}$$

Subtitusi persamaan 2.59 ke persamaan 2.82 sehingga diperoleh:

$$I_o = \frac{(1+ND)}{(1-D)^2R} V_{in} \tag{2.83}$$

Karena V_{C2}=V_{oz,} maka

$$V_{LO}(on) = NV_{C1} \tag{2.84}$$

$$L_o \frac{\Delta I_o}{\Delta ton} = NV_{C1}$$

$$L_o = \frac{NV_{C1}D}{f\Delta I_O} \tag{2.85}$$

$$\Delta I_O = \frac{NV_{C1}D}{fL_O} \tag{2.86}$$

Subtitusi persamaan 2.43 ke persamaan 2.86 sehingga didapat :

$$\Delta I_O = \frac{ND}{2(1-D)Lof} V_{in} \tag{2.87}$$

Subtitusi persamaan 2.43 ke persamaan 2.85 sehingga diperoleh:

$$L_o = \frac{ND}{f(1-D)\Delta I_O} V_{in} \tag{2.88}$$

Karema konverter bekerja pada mode CCM, sehingga I_{Lo} min>0

$$I_o - \frac{\Delta I_o}{2} > 0$$

$$I_o > \frac{\Delta I_o}{2} \tag{2.89}$$

Subtitusi persamaan (2.83) dan (2.87) ke persamaan (2.89) sehingga diperoleh:

$$\frac{\frac{(1+ND)}{(1-D)^2R}}{U_{in}} V_{in} > \frac{ND}{2(1-D)Lof} V_{in}$$

$$L_0 min > \frac{RND(1-D)^2}{2(1+ND)(1-D)f} \tag{2.90}$$

Untuk menghitung nilai kapasitor C₁ digunakan prinsip persamaan dasar jumlah muatan tersimpan dalam suatu kapasitor[7].Persamaan bisa

diturunkan pada setiap mode. Pada persamaan berikut mode yang digunakan adalah mode t1 yaitu ketika saklar S konduksi :

$$\Delta Q = C\Delta V \tag{2.91}$$

$$I_{Lm}(on) \Delta ton = C1 \Delta V_{C1}$$

$$C_1 = \frac{I_{Lm}(on)D}{f\Delta V_{C1}}$$
(2.92)
$$(2.93)$$

$$C_1 = \frac{I_{Lm}(on)D}{f\Delta VC1} \tag{2.93}$$

Subtitusi persamaan (2.74) ke persamaan (2.83) sehingga diperoleh:

$$C_1 = \frac{(1+ND)^2}{R(1-D)^2} \frac{D V_{C1}}{f \Delta V_{C1}}$$
 (2.94)

Cara yang sama bisa dilakukan untuk mencari Cz, berikut adalah persamaan untuk mendapatkan nilai dari Cz diturunkan ketika saklar S konduksi.

$$\Delta Q = C\Delta V$$

$$I_o \Delta_{ton} = C_2 \Delta V_{C2}$$

$$C_2 = \frac{I_o D}{f \Delta V_{C2}}$$
(2.95)

Karena $VC_2 = V_{oz}$

$$C_2 = \frac{V_0 D}{R f \Delta V_{oz}} \tag{2.96}$$

Untuk mendapatkan nilai dari Coz tidak dapat diturunkan dengan meninjau kondisi saklar koetika konduksi sehingga harus diturunkan pada saat kondisi saklar off[8]. Persamaannya adalah sebagai berikut:

$$IC_{oz} = I_{Lo}(off) - I_o (2.97)$$

$$\Delta Q = \frac{1}{2} x \frac{T}{2} x \frac{\Delta I_{Lo}(off)}{2}$$
 (2.98)

$$\Delta Q = \frac{T\Delta I_{Lo}(off)}{8}$$

$$Lo\frac{\Delta I_{Lo}(off)}{\Delta toff} = V_{oz}$$

$$\Delta I_{Lo}(off) = \frac{V_{OZ}}{L_o} (1 - D)T$$

$$\Delta Q = \frac{T^2 V_{OZ} (1 - D)}{8L_o}$$
(2.99)

$$\Delta Q = C \Delta V$$

$$C_{oz} = \frac{(1-D)V_{oz}}{8f^2L_o\Delta V_{oz}} \tag{2.100}$$

Untuk mendapatkan nilai dari Cob tidak dapat diturunkan dengan meninjau kondisi saklar koetika konduksi sehingga harus diturunkan pada saat kondisi saklar off. Persamaannya adalah sebagai berikut :

$$IC_{ob} = I_{Db}(off) - I_o (2.101)$$

$$IC_{ob} = I_{Db}(off) - I_o$$

$$\Delta Q = \frac{V_o}{R} DT$$

$$\Delta Q = C_{ob} \Delta V_{ob}$$
(2.101)
$$(2.102)$$

$$(2.103)$$

$$\Delta Q = C_{ob} \Delta V_{ob} \tag{2.103}$$

$$\frac{v_o}{R}DT = C_{ob}\Delta V_{ob} \tag{2.104}$$

$$\frac{V_o}{R}DT = C_{ob}\Delta V_{ob} \qquad (2.104)$$

$$C_{ob} = \frac{V_o D}{f R V_{ob}} \qquad (2.105)$$

(Halaman ini sengaja dikosongkan)

BAB 3 DESAIN DAN IMPLEMENTASI

Pada bab ini akan dibahas mengenai proses desain, simulasi dan implementasi konverter DC-DC rasio tinggi dengan induktor-kopel dan dioda-kapasitor untuk aplikasi fotovoltaik. Proses desain dilakukan dengan menghitung dan menentukan komponen-komponen yang akan digunakan pada implementasi alat. Simulasi dilakukan untuk memastikan bahwa konverter dapat bekerja sesuai yang diharapkan. Hasil dari desain dan simulasi ini kemudian digunakan sebagai dasar implementasi prototype konverter.

3.1 Desain Konverter

Sebelum merancang nilai kapasitas komponen seperti induktor dan kapasitor, maka terlebih dahulu ditentukan parameter-parameter elektris lain yang digunakan pada konverter ini terlebih dahulu. Tabel 3.1 menunjukkan parameter-parameter yang digunakan sebagai acuan dalam merancang konverter DC-DC Integrated *Quadratic Boost-Zeta*. Penentuan parameter berdasarkan pada spesifikasi dan peralatan yang ada pada labotaorium.

Tabel 3.1 Spesifikasi Desain Konverter

Parameter	Nilai		
Po	50 Watt		
Vo	330 Volt		
Vin (min)	14 Volt		
Vin (max)	18 Volt		
N	2		
Frekuensi Pensaklaran	50 kHz		
Ripel Tegangan (ΔV)	1%		
Ripel Arus (ΔI)	30%		

Tegangan input minimal konverter ditentukan sebesar 14 Volt dengan pertimbangan agar konverter tidak bekerja pada *duty cycle* yang

terlalu tinggi untuk mencapai tegangan output yang diinginkan. Tegangan output maksimal konverter sebesar 18 Volt berdasarkan tegangan nominal dari PV modul 50 Watt yang besarnya 17,24. Sesuai dengan persamaan 2.1 tegangan input minimal yang masuk pada inverter atau output DC-DC koverter yang akan dihubungkan ke jala-jala adalah sebesar 311 Volt. Tegangan output konverter didesain pada 330 Volt untuk menjaga jika terjadi drop tegangan pada output konverter nilai tegangan output tidak berada dibawah 311 Volt. Parameter N menunjukkan nilai perbandingan belitan sekunder dan primer dari induktor kopel. Nilai N ditentukan 2 artinya jumlah belitan dari induktor kopel sekunder sama dengan 2 kali dari jumlah belitan induktor kopel primer.

3.1.1 Penentuan Rasio Konverter

Penentuan rasio konverter dilakukan berdasarkan analisis yang dilakuan pada bab 2. Dengan memasukkan tegangan input dan tegangan output pada konverter dan memasukkan ke persamaan (2.59) maka nilai penguatan tegangan pada saat tegangan input $V_{\rm in}$ 14 volt dan 18 Volt dapat diketahui:

$$M_1 = \frac{330}{14} = 23.6$$
$$M_2 = \frac{330}{18} = 18.3$$

Dengan memasukkan nilai penguatan tegangan M pada persamaan (2.59), kita bisa mengetahui nila nilai *duty cycle* pada saat tegangan input 14 dan 18 volt.

$$D_1 = 68.32 \%$$

 $D_2 = 64,64 \%$

3.1.2 Penentuan Besar Beban

Dalam menentukan besar beban hal yang harus diperhatikan adalah berapa daya input yang kita masukkan. Sesuai dengan output PV maksimum daya input konverter adalah 50 W. Berdasarkan persamaan (2.62) maka beban R dapat dihitung , nilai beban R adalah :

$$R = \frac{(330)^2}{50} = 2178 \,\Omega$$

3.1.3 Penentuan Nilai Induktor

Konverter didesain untuk beroperasi pada mode CCM (Continuous Conduction Mode) sehingga membuat arus induktor tidak boleh menyentuh titik 0. Pada bab 2 telah dianallisis berapa nilai dari L minimum sehingga nilai Induktor tidak boleh dibawah Induktor minimum. Pada penghitungan nilai arus duty cycle yang digunakan adalah duty cycle ketika Vinput maksimum untuk menjaga agar nilai induktor tidak mendekati nilai minimum ketika dioperasikan dalam tegangan maksimum. Besar induktor minimum dari konverter dapat ditentukan dari persamaan (2.70), (2.81) dan (2.90) sebagai berikut.

$$L_{1}min > \frac{2178x0.6464x(1-0.6464)^{4}}{2x(1+2x0.6464)^{2}x50000} = 41,87 \text{ } \mu\text{H}$$

$$L_{m} min > \frac{2178x0.6464x(1-0.6464)^{3}}{2x(1+2x0.6464)^{2}x(1-0.6464)x50000} = 0,335 \text{ } \text{mH}$$

$$L_{0}min > \frac{2178x0.6464x(1-0.6464)^{2}}{2x(1+2x0.6464)x(1-0.6464)^{2}} = 2,17 \text{ } \text{mH}$$

Untuk, menghitung nilai induktor sebelunya harus dihitung terlebih dahulu nilai arus yang mnegalir pada induktor. Arus yang mengalir pada induktor dapat dihitung dengan persamaan (2.64), (2.74) dan (2.82). Setelah dilakukan penghitungan masing induktor dialiri oleh arus sebesar $I_{L1}=2,778~A,~I_{Lm}=0.983~A$ dan $I_{Lo}=0.1515~A$. Dengan mengetahui nilai arus rata-rata yang mengalir pada induktor maka nilai induktor untuk implementasi dapat dihitung menggunakan persamaan (2.67), (2.78) dan (2.88) sebagai berikut :

(2.67), (2.78) dan (2.88) sebagai berikut :
$$L_1 = \frac{18 \times 0.6464}{5000 \times 0.3 \times 2.778} = 279,072 \text{ }\mu\text{H}$$

$$L_m = \frac{18 \times 0.6464}{(1-6464) \times 50000 \times 0.3 \times 0.983} = 2,237 \text{ mH}$$

$$L_o = \frac{2 \times 0.6464}{50000 \times (1-0.6464) \times 0.3 \times 0.1515} = 28,946 \text{ mH}$$

nilai *ripple* arus induktor didesain 30% dari nilai I rata-rata yang mengalir pada induktor. Nilai diatas menunjukkan bahwa nilai induktor L melebihi dari nilai induktor minimum sehingga sesuai teori bisa dipastikan konverter akan bekerja pada mode CCM jika menggunakan induktor

dengan nilai tersebut. Induktor magnetisasi L_m adalah nilai induktor pada kopel induktor.

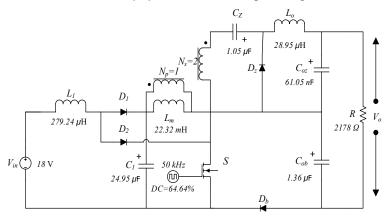
3.1.4 Penentuan Nilai Kapasitor

Sebelum menghitung nilai kapasitor terlebih dahulu haru diketahui nilai tegangan dari setiap kapasitor yang ada. Nilai tegangan pada setiap kapasitor berturut-turut dapat dicari dengan menggunakan persamaan (2.46), (2.49), (2.52), dan (2.57). Hasil perhitungan dari tegangan dari masing-masing kapasitor adalah $V_{\text{Cl}} = 50,847$ Volt , $V_{\text{Cl}} = 185,579$ Volt, $V_{\text{Cob}} = 143,637$ Volt dan $V_{\text{Coz}} = 185,579$ Volt. Dengan diketahuinya nilai tegangan dari masing-masing kapasitor maka penentuan nilai kapasitor selanjutnya bisa dilakukan dengan berdasarkan pada persamaan (2.94), (2.96), (2.100) dan (2.105).

$$C_{1} = \frac{(1+2 \times 0.6464)^{2} \times 0.6464}{2178 \times (1-0.6464)^{2} \times 5000 \times 0.01} = 24,96 \mu F$$

$$C_{2} = \frac{330 \times 0.6464}{2178 \times 50000 \times 0.01 \times 186.114} = 1,055 \mu F$$

$$C_{oz} = \frac{(1-0.6464)}{8x(50000)^{2} \times 0.002895 \times 0.01} = 61,23 \text{ nF}$$

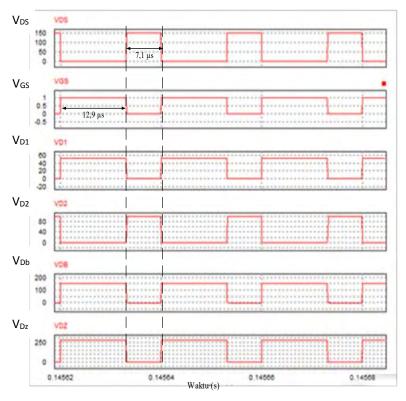

$$C_{ob} = \frac{330 \times 0.6464}{50000 \times 2.002895 \times 0.01} = 1,36 \mu F$$

nilai *ripple* tegangan ΔV didesain 1% dari tegangan rata-rata yang mengalir pada kapasitor. Semakin tinggi nilai kapasitor maka semakin kecil nilai *ripple* tagangan. Penentuan nilai kapasitor dilakukan ketika tegangan 18 Volt untuk menjaga agar nilai kapasitor selalu diatas nilai perhitungan dan nilai dari *ripple* tegangan tidak berada dibawah deain yang ditentukan.

3.2 Simulasi

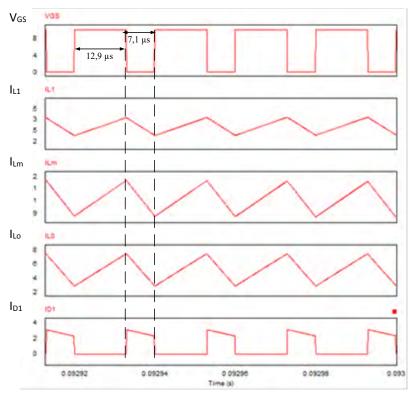
Simulasi dilakukan dengan menggunakan software dengan memasukkan nilai dari parameter-parameter yang telah dihitung sebelumnya. Semua parameter yang ada pada rangkaian merupakan komponen ideal. Pada gambar 3,1 ditunjukkan gambaran dari simulasi dengan tegangan input yang digunakan yaitu sumber DC konstan sebesar 18 V dengan beban resistor 2178Ω. Sinyal input pada gate MOSFET

dimodelkan dengan gelombang PWM (Pulse Width Modulation) dengan frekuensi 50 kHz dan *duty cycle* 64,64% sesuai perhitungan.

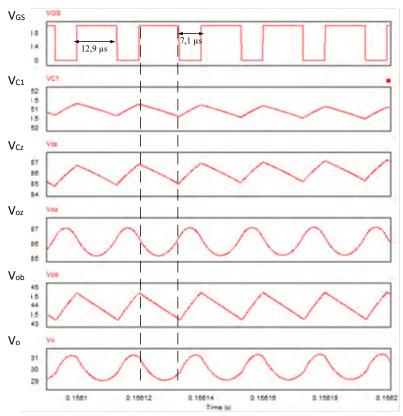


Gambar 3.1 Rangkaian Simulasi Konverter

Induktor kopel dimodelkan dengan rangkaian *cantilever model* sesuai dengan gambar 2.10 namun nilai dari induktor bocor L_k dianggap tidak ada atau sama dengan 0 sehingga sisi anoda dioda D_1 langsung terhubung dengan induktor magnetisasi $L_{m.}$ Hal tersebut bisa terjadi karena pada simulasi, induktor kopel merupakan induktor kopel ideal.


Untuk menguji apakah konverter yang kita simulasikn sudah bekerja sesuai teori maka hal yang pertama kali dilihat adalah bentuk gelombang pensaklaran dari tiap-tiap dioda. Gambar 3.2 dibawah menunjukkan proses pensaklaran yang terjadi pada dioda dan MOSFET. Dimana V_{GS} adalah tegangan *gate-source* pada MOSFET atau sinyal output dari PWM dan V_{DS} adalah tegangan *drain-source* pada MOSFET. Pada saat V_{GS} on maka saklar S akan berada dalam keadaan konduksi sehingga membuat sisi drain dan source dari MOSFET akan tersambung. Hal tersebut membuat tegangan drain-source V_{DS} pada MOSFET bernilai 0. Ketika V_{GS} dalam keadaan on maka semua dioda kecuali dioda D_2 dalam keadaan *reverse* bias sehingga terukur tegangan lebih dari 0 pada dioda. Hal ini sudah sesuai dengan analisa kondisi tunak pada tiap

rangkaian yang telah dijelaskan pada bab 2. Dan sebaliknya jika V_{GS} dalam kondisi $\it off$ maka V_{DS} akan mempunyai nilai diatas 0 dan semua dioda kecuali dioda D_2 akan mengalami fase konduksi sehingga tegangan akan terukur 0.


 $\textbf{Gambar 3.2} \; \text{Bentuk gelombang} \; V_{DS}, \, V_{GS}, \, V_{D1}, \, V_{D2}, \, V_{Db} \; \text{dan} \; V_{Dz}$

Selain bentuk gelombang pensaklaran pada dioda hal penting lain yang harus diketahui adalah bentuk gelombang arus setiap induktor dan tegangan setiap kapasitor untuk mengetahui kapan kesesuaian fase *charging* dan *discharging* pada setiap induktor maupun kapasitor dengan teori dan anilisis kondisi tunak yang telah dilakukan pada bab 2.

 $\textbf{Gambar 3.3} \; \text{Bentuk gelombang} \; V_{GS,} \, I_{L1,} \; I_{Lm,} \; I_{Lo,} \; \text{dan} \; I_{D1}$

Gelombang arus pada setiap induktor merupakan gelombang kunci dari konverter. Jika bentuk gelombang arus tidak sesuai degan teori maka bisa dipastikan konverter juga tidak akan bisa bekerja sesuai desain yang diinginkan. Pada gambar 3.3 juga ditampilkan bentuk gelombang dari dioda D_1 karena ketika terdapat induktor bocor pada rangkaian bentuk gelombang dari induktor bocor akan sama dengan arus pada dioda. Dari gambar tersebut menunjukkan bahwa induktor input L_1 , induktor magnetisasi L_m , dan induktor output L_0 akan mengalami fase $\emph{charging}$ ketika V_{GS} dalam kondisi $\emph{on}.$ Hal ini sudah sesuai dengan analisis kondisi tunak yang telah dijelaskan pada bab 2.

Gambar 3.4 Bentuk gelombang V_{GS} , V_{C1} , V_{Cz} , V_{oz} , V_{ob} dan V_o

Pada gambar 3.4 menuunjukkan bahwa pada saat V_{GS} off kapasitor C_1, C_z, C_{ob} berada dalam fase *charging* hal ini sudah sesuai dengan analisis yang telah dijelaskan pada bab 2. Nilai arus pada setiap induktor dan tegangan pada setiap kapasitor hasil dari simulasi dan perbandingannya dengan hasil perhitungan ditunjukkan pada tabel 3.2. Tabel tersebut menunjukkan bahwa nilai arus induktor dan tegangan kapasitor pada perhitungan dan simulasi memiliki nilai yang identik hanya terjadi sedikit perbedaan pada beberapa angka dibelakang koma hal ini terjadi karena

adanya pembulatan pada saat memasukkan nilai induktor maupun kapasitor pada simulasi.

Tabel 3.2 Perbandingan nilai parameter perhitungan dan simulasi

No	Parameter	Perhitungan	Simulasi
1	I_{L1}/I_{in}	2.778 A	2.778 A
2	$\Delta~{ m I}_{ m L1}$	30%	0,297
3	I _{Lo} / I _o	0.151 A	0.151 A
4	$\Delta~{ m I}_{ m Lo}$	30%	0,292
5	I_{Lm}	0.983 A	0.983 A
6	$\Delta~I_{Lm}$	030%	0,292
7	V_{C1}	50.905 V	50.887 V
8	ΔV_{C1}	1%	0,99%
9	V_{C2}	185.884V	186.077 V
10	ΔV_{C2}	1%	0,95%
11	V_{Cob}	143.962V	143.967 V
12	ΔV_{Cob}	1%	0,96%
13	V_{Coz}	186.114V	186.077 V
14	ΔV_{Coz}	1%	0,96%
15	V _o	330.077 V	330.044 V

3.3 Implementasi

Setelah hasil simulasi sudah sesuai dengan teori maka langkah selanjutnya adalah implementasi rangkaian. Implementasi dilakukan untuk mengetahui kinerja konverter DC-DC rasio tinggi berbasi integrated quadratic boost zet ketika alat difungsikan dengan menggunakan komponen yang tersedia di pasaran.

Tahap pertama yaitu pembuatan sinyal input MOSFET berupa PWM beserta *drivernya*. Untuk menghasilkan sinyal PWM digunakan PWM *microcontroller Arduino Uno* dengan *supply* tegangan 12 V yang bisa menghasilkan sinyal PWM dengan output 5 V *peak to peak* dan frekuensi 50kHz. Sinyal PWM dimasukkan ke LCD 16X2 untuk menampilkan *duty cycle* dari PWM, dimana *duty cycle* dari sinyal PWM

bisa diatur dengan resistor variable multi turn untuk memperoleh hasil yang lebih teliti. Rangkaian optocopler driver MOSFET diperlukan untuk memperbesar tegangan agar bisa mengatur kerja MOSFET. Tabel 3.4 menunjukkan kapasitas komponen yang digunakan. Besar nilai kapasitas komponen hasil perhitungan disesuaikan dengan komponen yang tersedia di Laboratorum dan dipasaran dengan mengambil nilai lebih besar dari perhitungan untuk menjaga agar nilai *ripple* tegangan dan *ripple* arus tidak melebihi desain.

Tabel 3. 3 Spesifikasi Komponen Rangkaian Konverter

Vamnanan	Desain Awal	Nilai	
Komponen	/Simulasi	implementasi	
Induktor L1	279,07 μΗ	294,5 μΗ	
Induktor Kopel			
L_{11}	2,24 mH	2,844 mH	
L_{m}	2,24 mH	2,836 mH	
L_{22}	Tidak bisa dihitung	9,298 mH	
L_k/L_{12}	-	8,18 μΗ	
Lo	28,9 mH	32 mH	
N (Penguatan	2	1.92	
tegangan)	Z	1,82	
Kapasitor C ₁	24,96 μF / 51 V	33 μF / 160 V	
Kapasitor C ₂	1.055 μF / 186 V	2,2 μF / 250 V	
Kapasitor Cob	1.36 μF / 143,6 V	2,2 μF / 250 V	
Kapasitor Coz	61,2 nF / 186 V	1 μF / 250 V	
Dioda	Ideal	MUR 1560	
MOSFET	Ideal	IRFP460	
Driver MOSFET	-	TLP250	
	$\begin{array}{c} \text{Induktor Kopel} \\ L_{11} \\ L_m \\ L_{22} \\ L_k/L_{12} \\ L_o \\ \text{N (Penguatan tegangan)} \\ \text{Kapasitor C}_1 \\ \text{Kapasitor C}_2 \\ \text{Kapasitor C}_{ob} \\ \text{Kapasitor C}_{oz} \\ \text{Dioda} \\ \text{MOSFET} \end{array}$	Komponen/SimulasiInduktor L1 $279,07 \mu H$ Induktor Kopel $279,07 \mu H$ L11 $2,24 mH$ L22Tidak bisa dihitungLk/L12-L0 $28,9 mH$ N (Penguatan tegangan) 2 Kapasitor C1 $24,96 \mu F / 51 V$ Kapasitor C2 $1.055 \mu F / 186 V$ Kapasitor C0b $1.36 \mu F / 143,6 V$ Kapasitor C1 $24,96 \mu F / 143,6 V$ Kapasitor C2 $24,96 \mu F / 143,6 V$ Kapasitor C3 $24,96 \mu F / 143,6 V$ Kapasitor C4 $24,96 \mu F / 143,6 V$ Kapasitor C5 $24,96 \mu F / 143,6 V$ Kapasitor C6 $24,96 \mu F / 143,6 V$ Kapasitor C9 $24,96 \mu F / 143,6 V$ </td	

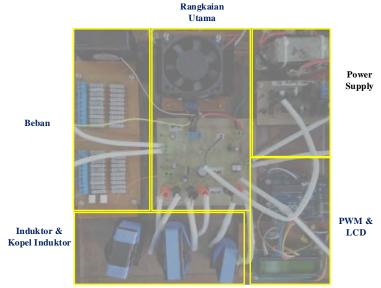
Besar nilai kapasitor implementasi tidak bisa sama dengan perhitungan karena disesuaikan dengan komponen yang tersedia di Laboratorum maupun di pasaran dengan mengambil nilai lebih besar dari perhitungan untuk menjaga agar nilai *ripple* tegangan tidak melebihi

desain. Nilai induktor dibuat sendiri dengan menggunakan inti FERIT ETD dan inti toroida. Berikut adalah rincian pembuatan masing-masing induktor:

1. L_1 (Induktor input):

- Inti yang digunakan berupa FERIT ETD dengan ukuran kawat tembaga AWG 0,5 mm yang dirangkai 10 split mampu menahan arus sebesar 5,7 A [5].
- Perancangan kapasitas arus pada kawat berdasar pada nilai arus induktor maksimal dikalikan 1,5 kali. Nilai kapsitas asrus dibuat lebih untuk menjaga jika terjadi *spike* gelombang.

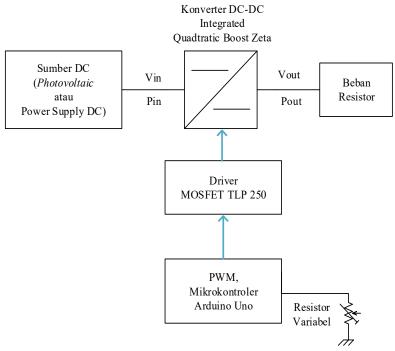
2. Induktor Kopel:


- Induktor kopel dirancang memiliki nilai penguatan sebesar 2 dengan belitan primer sebesar 24, belitan sekunder sebanyak 48 namun karena terdapat induktor bocor pada induktor kopel $L_k = 8,18\mu H$, sehingga nilai penguatan tegangan tidak sama dengan nilai perbandingan belitan. Dari hasil perhitungan dengan persamaan (2.30) nilai penguatan tegangan sebesar 1,81 hal ini sesuai dengan pengukuran penguatan tegangan dengan input function generator dan dilihat dengan oscilloscope dimana perbandingan tegangan rms sekunder dan primer bernilai 1,82.(Primer=51,4 V, Sekunder=94 V).
- Induktor kopel dirangkai dengan meggunakan inti FERIT ETD 49. Belitan primer menggunakan kawat AWG 0,45mm dirangkai 5 split sehingga kapasitas arus sebesar 2,5 A, sementara belitan sekunder dirangkai degan kawat AWG 0,45mm dirangkai 3 split sehingga mampu menahan arus hingga 1,5 A.

3. Induktor Output:

 Induktor output dirangkai dengan menggunakan inti FERIT ETD 49 dengan 1 kawat AWG 0,5 mm sehingga mampu menahan arus sampai 0,57 A

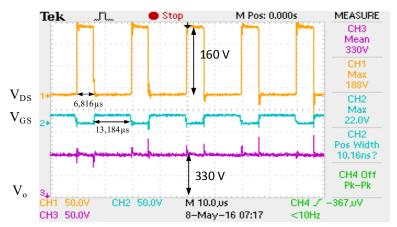
Dioda yang digunakan adalah dioda MUR1560 yang memiliki kemampuan *blocking voltage* hingga 600 V. MOSFET yang digunakan adalah IRFP460 dengan kemampuan menghantarkan arus mencapai 20 A dan tegangan *drain-source* maksimum sebesar 500 V. Driver MOSFET


menggunakan TLP 250 yang membutuhkan input ±30 Volt sehingga untuk menyuplai tegangan pada driver dibtutuhkan power supply. Input driver MOSFET dipilih sebesar 18 Volt. Gambar 3.5 menunjukkan rangkaian implementasi konverter DC-DC rasio tinggi berbasis integrated quadratic boost zeta. Dari gambar tersebut terdapat 5 bagian utama yaitu power supply untuk menyuplai driver MOSFET dan KIPAS, PWM dan LCD, rangkaian utama, Beban, dan induktor.

Gambar 3.5 Implementasi konverter DC-DC rasio tinggi berbasis integrated quadratic boost zeta

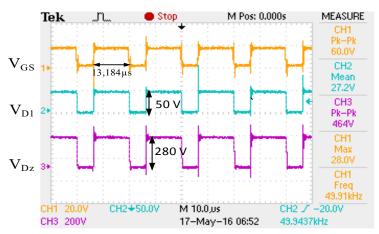
BAB 4 PENGUJIAN DAN ANALISIS DATA

Pada bab ini akan dibahas mengenai pengujian dan analisis data hasil desain dan implementasi konverter DC-DC rasio tinggi dengan berbasis *integrated quadratic boost zeta*. Pengujian yang dilakukan diantaranya adalah pengujian sinyal PWM dan pensakelaran, pengujian arus induktor dan tegangan kapasitor, pengujian rasio konversi, efisiensi, tegangan output konstan dan pengujian menggunakan modul photovoltaic sebagai sumber tegangan input konverter.



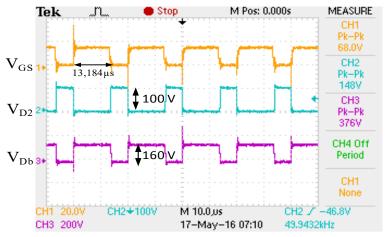
Gambar 4.1 Blok diagram Pengujian Konverter

Gambar 4.1 diatas menunjukkan blok diagram pengujian dari keseluruhan sistem yang meliputi, sumber tegangan DC, PWM, *driver* MOSFET dan beban.PWM Arduino memiliki resistor variabel untuk mengatur nilai dari *duty cycle* keluaran dari PWM. Pada pengujian bentuk gelombang akan dibandingkan bentuk gelombang dari kaki MOSFET dengan bentuk gelombang dioda , induktor dan kapasitor dengan mengatur nilai *duty cycle* sebagai pembanding. Pada pengujian rasio konversi dibandingkan antara tegangan output dan tegangan input konverter dengan mengatur *duty cycle* sementara itu pada pengujian efsiensi dibandingkan daya output dengan daya input dengan mengatur beban sebagai pembanding.


4.1 Pengujian Sinyal PWM dan Pensaklaran

Untuk menguji apakah alat yan kita buat sudah bekerja maka perlu dilakukan beberapa pengujian. Pengujian yang pertama adalah pengujian PWM dan pensaklaran.Pengujian dilakukan untuk mengetahu apakah bentuk gelombang dari setiap kaki MOSFET dan diode sudah sesuai dengan perancangan dan simulasi yang dilakukan pada bab 3.

 $\textbf{Gambar 4.2} \; \text{Bentuk gelombang} \; V_{GS}, \, V_{DS}, \, \text{dan} \; V_o$


Gambar 4.2 menunjukkan bahwa konverter mampu bekerja pada mencapai tegang output 330 Volt pada saat Duty Cycle=65,92% dan Vinput = 18 Volt. Dari gambar tersebut juga diketahui bahwa V_{GS} , V_{DS} sudah bekerja sebagaimana mestinya dimana bentuk gelombang dari V_{GS} dan V_{DS} berkebalikan, hal itu sesuai dengan teori bahwa V_{GS} merupakan sinyal pemicu dari MOSFET jika V_{GS} mempunyai nilai lebih dari 0 maka MOSFET akan berada kondisi On. Sementara itu pada kondisi Saklar On maka V_{DS} akan bernilai nol karena *Drain* dan *Source* pada MOSFET dihubungkan dan sebaliknya jika saklar kondisi Off berarti V_{GS} bernilai 0 dan VDS akan mempunyai nilai karena *Drain* dan *Source* tidak terhubung. Periode sinyal V_{GS} on=12,84 μ s dan ketika V_{DS} on = 7,16 μ s Dari gambar kita juga bisa melihat

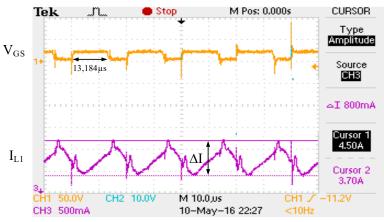
Gambar 4.3 Bentuk gelombang V_{GS}, V_{D1}, dan V_{Dz}

Untuk menguji bahwa pensaklaran yag kita implementasikan bekerja sesuai dengan desin maka kita harus melihat bentuk gelombang dari masing-masing dioda. Gambar 4.3 dan 4.4 menunjukkan bentuk gelombang dari setiap dioda yang ada pada konverter dibandingkan dengan bentuk gelombang dari $V_{\rm GS}$. Dari gambar 4.3 dan 4.4 diketahui bahwa bentuk gelombang dari $V_{\rm DI}$, dan $V_{\rm DZ}$ sama dengan bentuk

gelombang dari V_{GS} hal ini sudah sesuai dengan hasil simulasi. Seperti dijelaskan dalam bab 2 pada saat saklar on maka dioda D_1,D_z dan D_b dalam keadaan reverse bias, sehingga anoda dan katoda dari diode tidak tersambung dan memiliki nilai tegangan lebih dari 0 dan sebaliknya ketika saklar dalam kondisi off Dioda D_1,D_z dan D_b dalam keadaan konduksi sehingga sisi anoda dan katoda tersambung dan membuat tegangan yang ditunjukkan bernilai 0. Saat saklar kondisi off hanya dioda D_2 yang berada dalam kondisi reverse bias dan mempunyai nilai tegangan lebih dari 0.

 $\textbf{Gambar 4.4} \; \text{Bentuk gelombang} \; V_{GS}, \, V_{D2}, \, \text{dan} \; V_{Db}$

Jika bentuk gelombang dari setiap kaki MOSFET dan sudah sesuai dengan teori dan desain ketika diberi tegangan input dan duty cycle kecil maka bisa diartikan bahwa pensaklaran pada konverter sudah bekerja dengan benar dan kit abisa melanjutkan untuk menguji konverter dengan tegangan input dan duty cycle yang lebih tinggi sesuai desain yang kita rencanakan.


4.2 Pengujian Bentuk Gelombang Konverter

Setelah mengetahui bahwa pensaklaran pada konverter sudah bekerja sesuai perencanaan maka pengujian selanjutnya adalah pengujian

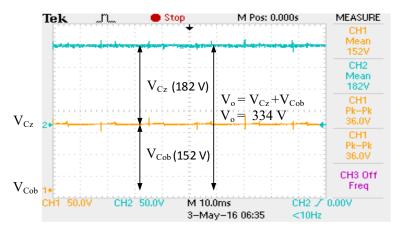
bentuk gelombang, konverter. Pada pengujian ini bentuk gelombang yang diamati adalah arus Induktor dan tegangan kapasitor.

4.2.1 Pengujian Arus Induktor

Bentuk gelombang hasil pengujian arus induktor L_I dan L_k (leakage) pada gambar 4.5 dan 4.6. Dari gambar tersebut dapat dianalisis bahwa pada saat saklar utama konduksi,induktor mengalami charging energy sehingga arus induktor I_{LI} mengalami peningkatan. Sedangakan saat saklar utama terbuka, induktor mengalami discharging energy sehingga arus induktor I_{LI} mengalami penurunan. Selain itu, nilai arus induktor I_{LI} selalu berada diatas nol. Hal ini menunjukkan bahwa konverter beroperasi secara CCM($Continuous\ Conduction\ Mode$) sesuai dengan desain dan simulasi yang dibahas pada bab 3. Dari gambar 4.5 diketahui bahwa besar ripple arus pada induktor L_I adalah 0.8 A. Jika di bandingkan dengan nilai arus rata-rata maka nilai ripple adalah 24 persen dari nilai arus sementara pada desain yang direncanakan, nilai perbandingan nilai ripple arus dengan arus rata-rata bernili 30%. Hal ini bisa terjadi karena pada saat implementasi nilai induktor sedikit lebih besar dari nilai induktor pada desain awal.

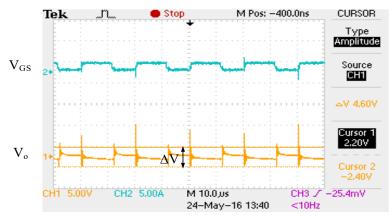
Gambar 4.5 Bentuk gelombang V_{GS}, V_o, dan I_{L1}

Gambar 4.6 menunjukan bentuk gelombang dari arus induktor L_k (leakage) yang tidak lain merupakan bentuk arus gelombang dari diode 1. Seharusnya arus L_k (leakage) / arus dioda 1 berkebalikan dengan bentuk gelombang dari tegangan dioda 1. Merujuk pada gambar 4.3 diketahui bahwa bentuk tegangan dioda 1 memiliki karakteristik yang sama dengan tegangan gate-sourse V_{GS} . Pada gambar 4.6 juga menunjukkan bahwa bentuk gelombang dari I_{Lk} memeiliki karakteristik yang sama dengan bentuk pada simulasi meskipun tidak sama persis. Pada saat V_{GS} bernilai 0 maka I_{Lk} / I_{DI} naik menuju nilai diatas 0 sedangkan ketika V_{GS} bernilai diatas 0 I_{Lk} / I_{DI} turun menuju titik 0. Bentuk gelombang I_{Lk} / I_{DI} tidak sama persis seperti pada simulasi karena pada implementasi komponen kopel induktor memiliki kemungkinan memiliki keterbatasan bila difungsikan pada frekuensi tinggi.



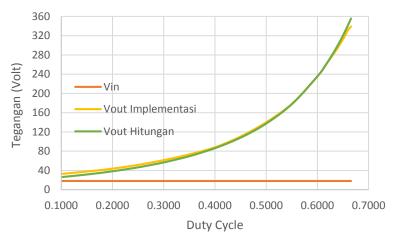
Gambar 4.6 Bentuk gelombang V_{GS}, V_o, dan I_{Lk}

4.2.2 Pengujian Tegangan kapasitor


Pada bab 2 telah dijelaskan bahwa output dari konverter *quadratic boost Zeta* merupakan penjumlahan dari konverter quadratic *boost* dan konverter *Zeta*. Pada gambar 4.8 menunjukkan bahwa tegangan output konverter yang bernilai 334 volt merpakan penjumlahan dari tegangan kapasitor output pada sisi *quadratic boost* V_{Cob} dan tegangan

kapasitor output pada sisi *zeta* V_{Cz}. Pada *duty cycle* yang sama DC=65,92% pada simulasi V_{Cob} danV_{Cz} masing-masing bernilai 151 V dan 179 V. Nilai tersebut hampir sama dengan tegangan hasil implementasi yang ditunjukkan pada gambar 4.8.

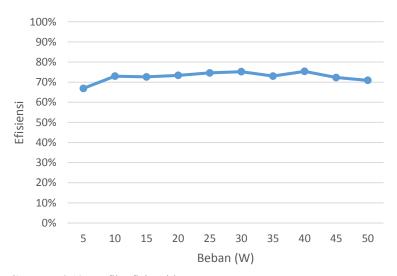
Gambar 4.7 Tegangan kapasitor


Pada gambar 4.7 menunjukkan bahwa nilai *ripple* tegangan keluaran dari konverter bernlai 4,6 V, bila nilai tersebut dibandingkan dengan nilai tegangan output yang terhitung 333 V maka akan didapatkan nilai *ripple* tegangan keluaran adalah 1.3% dari tegangan keluaran konverter. Hasil ini sedikit lebih besar dari *ripple* tegangan yang direncanakan yaitu 1%. Selisih nilai bisa terjadi karena ketidak idealan kompenen yang tersedia dipasaran. Pada kapasitor implementasi terdapat efek parasit komponen dapat dijelaskan menggunakan konsep *equivalent series resistance* (ESR) yaitu kapasitor memiliki resistansi dalam yang dimodelkan tersusun seri dengan nilai kapasitansinya. Resitansi dalam inilah yang menyebabkan *ripple* tegangan keluaran pada implementasi nilainya lebih besar dibandingkan hasil simulasi.

Gambar 4.8 Ripple tegangan output

4.3 Pengujian Rasio Konversi

Pada pengujian rasio konversi konverter DC-DC rasio tinggi ini diberi tegangan input tetap 18 Volt sementara *Duty Cycle*-nya dinaikkan dengan interval tetap sehingga tegangan output juga akan naik.Hasil pengujian ditunjukkan pada gambar 4.10.



Gambar 4.9 Grafik Rasio Konversi DC(10%-66.7%)

Dari gambar 4.9 diatas menunjukkan bahwa perbandingan kenaikan tegangan ouput antara hitungan dan implementasi relatif sama namun ketika *duty cycle* melebihi 60% mulai terjadi *drop* pada tegangan output implementasi. Hal tersebut bisa terjadi karena adanya parasit komponen pada alat dan keterbatasan dari inti induktor untuk menahan tegangan.

4.4 Pengujian Efisiensi

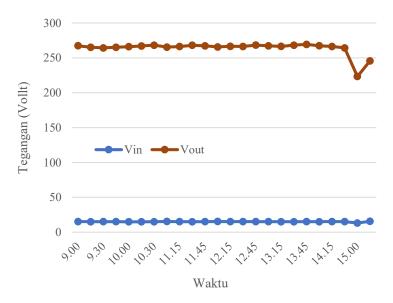
Pada bagian ini akan dibahas mengenai efisiensi konverter DC-DC *integrated quadratic boost zeta* . Sesuai dengan blok diagram 4.1 efisiensi merupakan perbandingan nilai antara daya output dibandingkan dengan daya input dengan beban dirubah sebagai pembanding. Beban 100% merupakan beban perancangan yaitu 50 Watt dan beban 10% berarti 10% dari 50 Watt sama dengan 5 Watt

Gambar 4.10 Grafik efisiensi konverter

Dari hasil uji efisisensi pada tegangan input 18 V dan tegangan output 330 Volt dengan beban dinaikkan dari 10% ke 100% menunjukkan

bahwa efisiensi konverter relatif stabil diantara 70%-75% seperti ditunjukkan pada gambar 4.10 hal tersebut terjadi karena drop tegangan yang terjadi akibat dari ESR(Equivalent Series resistor) yang ada pada tiap komponen dan adanya induktor bocor. Pada saat beban 10% efisiensi konverter menurun drastic hal itu karena arus yang mengalir pada konverter terlalu kecil sehingga nilai drop tegangan akan menjadi besar bila dibandingkan nilai tersebut.

4.5 Pengujian Menggunakan Photovoltaic


Pengujian menggunakan *photovoltaic* dilakukan untuk mengetahui bahwa tegangan output konverter dapat dijaga konstan ketika sumber teganganinput yang dimasukkan berupa *photovoltaic*.

Gambar 4.11 Pengujian dengan Photovoltaic

Sebagaimana yang telah dibahas pada bab 3, modul *photovoltaic* yang digunakan adalah elSOLSolar Power 50 Watt. Pengujian dilakukan pada pagi sampai sore hari dengan frekuensi pengambilan data tiap 15 menit. Beban yang digunakan adalah beban 50% dari perancangan hal tersebut karena pada saat pengujian jika beban dibebani 100% tegangan output maksimum terukur sangat kecil. Ketika konverter dibebani 50% tegangan output konverter mampu mencapai 280 V namun untuk menjaga

agar tegangan output bisa mudah tercapai pengujian dilakukan dengan tegangan output konstan sebesar 250 V. Gambar 4.12 menunjukkan nilai tegang input dan tegangan output dari konverter dimana tegangan output mampu dijaga tetap hanya dari pukul 09.00-14.00 setalah melebihi waktu tersebut terjadi drop pada tegangan output karena berkurangnya iradian.

Gambar 4.12 Grafik tegangan input dan output uji PV

Halaman ini sengaja dikosongkan

LAMPIRAN

1. American Wire Gauge (AWG) / Conductor Sizes and Properties

	an m	Coung	C (21)			1 512C5 G	патторен
AWG	Diameter [inches]	Diameter [mm]	Area [mm²]	Resistance [Ohms / 1000 ft]	Resistance [Ohms / km]	Max Current [A]	Max Frequency for 100% skin depth
1	0.2893	7.34822	42.4	0.1239	0.406392	119	325 Hz
2	0.2576	6.54304	33.6	0.1563	0.512664	94	410 Hz
3	0.2294	5.82676	26.7	0.197	0.64616	75	500 Hz
4	0.2043	5.18922	21.2	0.2485	0.81508	60	650 Hz
5	0.1819	4.62026	16.8	0.3133	1.027624	47	810 Hz
6	0.162	4.1148	13.3	0.3951	1.295928	37	1100 Hz
7	0.1443	3.66522	10.5	0.4982	1.634096	30	1300 Hz
8	0.1285	3.2639	8.37	0.6282	2.060496	24	1650 Hz
9	0.1144	2.90576	6.63	0.7921	2.598088	19	2050 Hz
10	0.1019	2.58826	5.26	0.9989	3.276392	15	2600 Hz
11	0.0907	2.30378	4.17	1.26	4.1328	12	3200 Hz
12	0.0808	2.05232	3.31	1.588	5.20864	9.3	4150 Hz
13	0.072	1.8288	2.62	2.003	6.56984	7.4	5300 Hz
14	0.0641	1.62814	2.08	2.525	8.282	5.9	6700 Hz
15	0.0571	1.45034	1.65	3.184	10.44352	4.7	8250 Hz
16	0.0508	1.29032	1.31	4.016	13.17248	3.7	11 k Hz
17	0.0453	1.15062	1.04	5.064	16.60992	2.9	13 k Hz
18	0.0403	1.02362	0.823	6.385	20.9428	2.3	17 kHz
19	0.0359	0.91186	0.653	8.051	26.40728	1.8	21 kHz
20	0.032	0.8128	0.518	10.15	33.292	1.5	27 kHz
21	0.0285	0.7239	0.41	12.8	41.984	1.2	33 kHz
22	0.0254	0.64516	0.326	16.14	52.9392	0.92	42 kHz
23	0.0226	0.57404	0.258	20.36	66.7808	0.729	53 kHz
24	0.0201	0.51054	0.205	25.67	84.1976	0.577	68 kHz
25	0.0179	0.45466	0.162	32.37	106.1736	0.457	85 kHz
26	0.0159	0.40386	0.129	40.81	133.8568	0.361	107 kHz
27	0.0142	0.36068	0.102	51.47	168.8216	0.288	130 kHz
28	0.0126	0.32004	0.081	64.9	212.872	0.226	170 kHz
29	0.0113	0.28702	0.0642	81.83	268.4024	0.182	210 kHz
30	0.01	0.254	0.0509	103.2	338.496	0.142	270 kHz
31	0.0089	0.22606	0.0404	130.1	426.728	0.113	340 kHz
32	0.008	0.2032	0.032	164.1	538.248	0.091	430 kHz
33	0.0071	0.18034	0.0254	206.9	678.632	0.072	540 kHz
34	0.0063	0.16002	0.0201	260.9	855.752	0.056	690 kHz
35	0.0056	0.14224	0.016	329	1079.12	0.044	870 kHz
36	0.005	0.127	0.0127	414.8	1360	0.035	1100 kHz
37	0.0045	0.1143	0.01	523.1	1715	0.0289	1350 kHz
38	0.004	0.1016	0.00797	659.6	2163	0.0228	1750 kHz
39	0.0035	0.0889	0.00632	831.8	2728	0.0175	2250 kHz
40	0.0031	0.07874	0.00501	1049	3440	0.0137	2900 kHz

2. Tabel Pengujian Rasio Konversi

Vin	DC	Vout Implementasi	Vout Hitungan	Drop
18	0.1026	33	26.525	-6.475
18	0.1526	38	32.028	-5.972
18	0.2026	44	38.747	-5.253
18	0.2527	52	47.055	-4.945
18	0.3027	62	57.414	-4.586
18	0.3528	74	70.566	-3.434
18	0.4028	89	87.469	-1.531
18	0.4528	112	109.655	-2.345
18	0.5029	142	139.514	-2.486
18	0.5529	181	180.657	-0.343
18	0.6029	239	239.403	0.403
18	0.6154	258	257.986	-0.014
18	0.6342	286	289.788	3.788
18	0.6467	307	313.937	6.937
18	0.6530	318	327.154	9.154
18	0.6592	331	340.915	9.915
18	0.6655	339	355.722	16.722

3. Listing Program PWM #include <LiquidCrystal.h> #include <PWM.h> LiquidCrystal lcd(2, 3, 4, 5, 6, 7); float pwm = 0.00; int pwmPin = 9; float potensioPin = A0; int32_t frequency = 50000;

```
void setup(){
Serial.begin(9600);
pinMode(9,OUTPUT);
pinMode(A0,INPUT);
lcd.begin(16, 2);
lcd.setCursor(3,0);
lcd.print("BISMILLAH");
lcd.setCursor(1,1);
lcd.print("TA A.HAFIZH R");
delay(2000);
lcd.clear();
InitTimersSafe();
bool success = SetPinFrequencySafe(pwmPin, frequency);}
void loop(){
float pwm = analogRead(A0)/1.59; // membaca input potensio pada pin5
Serial.println(pwm);
pwmPin = map(pwm, 0, 1023, 0, 254);
analogWrite(9, pwmPin); // output pwm
float pwmpersen1 =(pwmPin)*0.39215686; // kalibrasi
float pwmpersen2 = pwmpersen1*100.00/62.7; // konversi persen
lcd.setCursor(0,0);
lcd.print("DutyCycle=");
lcd.setCursor(10,0);
lcd.print(pwmpersen2);
lcd.setCursor(15,0);
lcd.print("%");
lcd.setCursor(2,1);
lcd.print("frek=");
lcd.setCursor(7,1);
lcd.print (frequency);
lcd.setCursor(12,1);
lcd.print("Hz");}
```

Halaman ini sengaja dikosongkan

BAB 5 PENUTUP

Pada bab ini akan dijelaskan beberapa kesimpulan dan saran untuk kelanjutan penelitian dari tugas akhir ini.

5.1 Kesimpulan

Berdasarkan analisis data , hasil simulasi dan implementasi pada konverter DC-DC rasio tinggi berbasis integrated quadratic boost zeta untuk aplikasi photovoltaic dapat disimpulkan beberapa hal sebagai berikut :

- 1. konverter DC-DC rasio tinggi berbasis integrated quadratic boost zeta dapat mencapai rasio tinggi sesuai desain yaitu 18,33 kali
- 2. Terjadi drop tegangan yang tinggi ketika konverter dioperasikan pada duty cycle 65% yaitu sebesar 9 volt
- 3. Konverter memiliki efisiensi antara 70%-75%, hal ini karena adanya keterbatasan inti yang dipakai untuk merangkai induktor dengan nilai yang besar.

5.2 Saran

Saran yang diberikan penulis untuk penelitian selanjutnya tentang topik ini ialah:

- 1. Desain pada kopel induktor perlu diperbaiki lagi terutama pada pemilihan inti dan proses pembelitan
- 2. Menambah control MPPT sehingga diperoleh daya yang optimal dari *photovoltaic*

DAFTAR PUSTAKA

- [1] Y. Zhao W. Li Y. Deng X. He., High step-up boost converter with passive lossless clamp circuit for non-isolated high step-up applications, ET Power Electron., Vol. 4, Iss. 8, pp. 851–859, 2011
- [2] Hart, Daniel W. "Power Electronics", MCCGraw-Hill, New York, 2011
- [3] Andrade, A. M. S. S.; Dreher, J. R.; Martins, M. L. S.; High Stepup Integrated DC-DC Converters: Methodology of Synthesis and Analysis, Power Electronics Conference (COBEP), 2013
- [4] Masters, G.M., "Renewable and efficient Electric Power System", A John Wiley & Sons, Inc, Publication, New Jersey, 2004
- [5] Kadri, R., J.P., Champenois, G., dan Mostefai "Performance Analysis of Transformerless Single Switch Quadratic Boost Converter for Grid Connected Photovoltaic Systems". Proc, XIX Int. Conf. Electrical Machines., Rome, 2010
- [6] P.Ramesh dan Babus.Ram Prasath "Simulation and Performance Analysis of CCM Zeta Converter with PID Controller" 2015 International Conference on Circuit, Power and Computing Technologies [ICCPCT]
- [7] Hesterman Bryce, "Analysis and Modeling of Magnetic Coupling"
 Denver Chapter, IEEE Power Electronics Society, 2007
- [8] António M. S. S. Andrade, Rafael C. Beltrame, Luciano Schuch, Mário L dan S. Martins, "AIntegrated Quadratic-Boost-Zeta Converter for High Voltage Gain Applications" Federal University of Santa Maria, UFSM.Av. Roraima, 1000, Santa Maria, RS, Brazil, IEEE, 2014

RIWAYAT HIDUP PENULIS

A.Hafizh Rifa'i adalah nama lengkap penulis. Penulis dilahirkan di Kabupaten Tuban Propinsi Jawa Timur pada tanggal 23 November 1993. Penulis merupakan anak ketiga dari 3 bersaudara. Riwayat pendidikan dimulai di SDN Sokosari 1 Kabupaten Tuban.. Setamatnya dari jenajang pendidikan dasar, penulis melanjutkan ke SMPN 1 Bojonegoro dan SMAN 1 Bojonegoro. Selama SMA,. Setamatnya dari SMA, penulis melanjutkan pendidikan sarjananya di Jurusan

Teknik Elektro FTI-ITS. Selama masa pendidikan, penulis aktif di berbagai organisasi seperti SKI, Pramuka, Pemandu LKMM, JMMI, Electrical Engineering Event, dan Asisten Laboratorium Konversi Energi Listrik.