Pengklasifikasian Aroma Kopi Arabika Luwak Dan Non Luwak Dengan Elektronik Nose

Magfira, Dike Bayu (2019) Pengklasifikasian Aroma Kopi Arabika Luwak Dan Non Luwak Dengan Elektronik Nose. Masters thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 09211750053009-Master_Thesis.pdf]
Preview
Text
09211750053009-Master_Thesis.pdf

Download (5MB) | Preview

Abstract

Beberapa penelitian Electronic Nose (E-nose) tentang klasifikasi kopi telah dilakukan. E-nose menggunakan sensor gas untuk mendeteksi aroma kopi dan menghasilkan sinyal. Kemudian, sinyal diklasifikasikan menggunakan algoritma pembelajaran mesin. Dalam penelitian ini, E-nose menggunakan 5 sensor gas untuk mengklasifikasikan kopi luwak dan non-luwak, dan algoritma pembelajaran mesin yang digunakan adalah SVM, KNN dan Decision Tree. Varian kopi yang digunakan kopi Arabika dengan jenis Kopi luwak dan non-luwak berasal dari Aceh, Arjuno Malang, Bengkulu. Dalam penelitian ini juga dilakukan pencampuran kopi luwak: non-luwak dengan persentase 100: 0, 90:10, 10:90, 80:20, 20:80, 75:25, 25:75, 50:50. Akurasi klasifikasi dari kopi luwak Aceh (LA) dengan kopi non-luwak Aceh (NLA): 90% (SVM), 100% (KNN), 100% (Decision Tree). Akurasi klasifikasi dari kopi luwak Arjuno (LAR) dengan non-luwak Arjuno (NLAR): 100% (SVM, KNN, Decision Tree). Akurasi klasifikasi kopi luwak Bengkulu (LB) dengan non-luwak Bengkulu (NLB): 45% (SVM), 100% (KNN, Decision Tree). Akurasi klasifikasi kopi mixture (luwak aceh dengan non luwak aceh): 90% (SVM), 93,75% (KNN), 95% (Decision Tree). Tingkat akurasi yang dihasilkan dipengaruhi suhu ruangan, proses saat pengambilan data, keadaan dan usia kopi, dan jumlah atribut kelas yang digunakan.
==================================================================================================================================
Several Electronic Nose (E-nose) studies of coffee classification have been conducted. E-nose uses a gas sensor to detect the aroma of coffee and produce a signal. Then, the signal is classified using a machine learning algorithm. In this study, E-nose used 5 gas sensors to classify civet and non-civet coffee, and the machine learning algorithm used was SVM, KNN and Decision Tree. The coffee variant used is Arabica coffee with the type of civet coffee and non-civet originating from Aceh, Arjuno Malang, Bengkulu. In this study also mixed civet: non-civet coffee with a percentage of 100: 0, 90:10, 10:90, 80:20, 20:80, 75:25, 25:75, 50:50. Classification accuracy of civet Aceh (LA) coffee with Aceh non-civet coffee (NLA): 90% (SVM), 100% (KNN), 100% (Decision Tree). Classification accuracy of civet Arjuno (LAR) coffee with non-civet Arjuno (NLAR): 100% (SVM, KNN, Decision Tree). Accuracy of Bengkulu civet (LB) coffee classification with Bengkulu non-civet (NLB): 45% (SVM), 100% (KNN, Decision Tree). Coffee mixture classification accuracy (civet Aceh with non civet Aceh): 90% (SVM), 93.75% (KNN), 95% (Decision Tree). The level of accuracy produced is influenced by room temperature, process when retrieving data, state and age of coffee, and the number of class attributes used.

Item Type: Thesis (Masters)
Additional Information: RTMT 005.1 Mag p-1
Uncontrolled Keywords: E-nose, SVM, KNN, Decision Tree, Luwak Kopi, Non Luwak Kopi
Subjects: Q Science > QA Mathematics > QA76.9.D343 Data mining. Querying (Computer science)
Divisions: Faculty of Business and Management Technology > Management Technology > 61101-(S2) Master Thesis
Depositing User: Dike Bayu Magfira
Date Deposited: 26 Mar 2025 02:51
Last Modified: 26 Mar 2025 02:51
URI: http://repository.its.ac.id/id/eprint/67062

Actions (login required)

View Item View Item