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Abstract 

The Indonesia tsunami early warning system (InaTEWS) utilizes a number of surface buoys which are 

installed and operated at a number of locations in Indonesia seas, namely, off the West coast of the Sumatra island 

and off the South coast of the Java island. A critical structural component of the surface buoy is its keel structure, 

which was manufactured from a previously used ship propeller shaft. Due to the cyclic nature of the loading and the 

utilization of used material, a fatigue-life assessment of the keel structure is required. For that purpose, fatigue tests 

were performed to determine the S-N curve of the material. The experimentally obtained S-N curve has a slopesof 

approximately -1/14 or a value of m = -1/sof approximately 14, indicating that the fatigue strength of the material is 

very much lower than a typical new carbon steel,which has a value of m of 3 or 4. Furthermore, model tests were 

conducted to measure the wave load on the mooring line. Results of spectral fatigue calculations including the 

Rayleigh approximation of narrow-banded spectrum and those taking into account band-width effects, show that the 

fatigue life of the keel structure is approximately 15 years. 

 

Keywords: fatigue life, tsunami buoy, InaTEWS, spectral method. 

 

1. Introduction 
 

The Indonesia tsunami early warning system, calledInaTEWS [1], utilizes a number of surface 

buoys which are installed and operated at a number of locations in Indonesia seas, namely, off the West 

coast of the Sumatra island and off the South coast of the Java island. The mapping of the sites of the 

buoy operation is drawn in Figure 1.The buoy is held at its location by using a mooring line. A prototype 

of InaTEWS buoy is shown in Figure 2. 

 
Figure 1: The mapping of the sites of operation of InaTEWS tsunami buoys [1]. 

mailto:k_suastika@na.its.ac.id
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Figure 2: A prototype of InaTEWS tsunami buoy [2]. 

 

 

 
 

Figure 3: Keel structure of the tsunami buoy [2]. 

 

The principle of the warning system is as follows. An ocean bottom unit (OBU) records the 

changes of the water pressure due to the seismic movement prior to the tsunami event and sends the 

reading to the tsunami buoy via an acoustic signal. Then, the recorded signal is transmitted to a ground 

station by a satellite for further analyses. 
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A critical structural component of the surface buoy is its keel structure (see Figure 3), which was 

manufactured from a previously used ship propeller shaft. Due to the cyclic nature of the loading and the 

utilization of used material, it is necessary to assess the fatigue life of the keel structure. It is assumed that 

all other structural components of the buoy have a larger fatigue life than the keel structure. 

For the purpose of the fatigue life assessment of the keel structure, fatigue tests were performed to 

determine the S-N curve of the (used) material and model tests in a wave basin to measure the wave load 

on the mooring line. 

In order to estimate the fatigue life of the keel structure, spectral fatigue calculations were carried 

out, including the Rayleigh approximation for narrow-banded spectrum (see e.g. [3]) and approximations 

taking into account corrections due to band-width effects proposed by Ortiz and Chen [4] and Lutes and 

Larsen [5]. 

 

2. Fatigue Tests 
 

Fatigue tests with constant amplitude stress were conducted to obtain the relation between the 

stress range (S) and the number of cycle until failure (N) of the material, that is, to obtain the S-N curve. 

Ten specimens were tested with sinussoidaly varying axial stress in a room condition. To obtain the S-N 

curve, the values of the stress ranges were chosen from 50 to 80 percent of the ultimate axial stress of the 

material but the frequencies were kept the same (20 Hz). It is found that the endurance limit of the 

material (threshold stress) is approximately 250 MPa. To analyse the experimental data, the S-N curve is 

modeled as 

 

𝑁 = 𝐾𝑆−𝑚      (1) 

 

where K and m are constants. Fitting the modeled S-N curve with the experimental data results in m 14 

and K 8.6 × 10
39

. The goodness of fit between model and experimental data is given by R
2
 = 0.911. 

Figure 4 shows the experimentally determined S-N curve together with curves of 95% confidence bounds. 

The value of m 14 indicates that the fatigue strength of the material is very much lower than a typical 

new carbon steel which has a slope of approximately -1/3 to -1/4 or m  3 to 4 [3]. 

 

 
Figure 4: S-N curve obtained from the fatigue tests. 
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3. Model Tests 
 

Model tests were conducted at the Indonesia Hydrodynamic Laboratory (IHL), Surabaya, 

Indonesia, to measure the buoy motions and the wave load on the mooring line [6]. A model of the buoy 

with a scale of 1:16 (the scale factor  = 16) was designed and tested in a wave basin. The wave condition 

at the site of buoy operation is characterized with JONSWAP spectrum with significant wave height Hs = 

2.0 m and peak period Tp = 6.0 s. The wave spectrum is shown in Figure5. One goal of the experiments is 

to obtain the stress spectrum of the keel structure, which is required for the purpose of the estimation of 

the fatigue life using spectral fatigue methods. 

 

 
Figure 5: JONSWAP wave spectrum with Hs = 2.0 m and Tp = 6.0 s. 

 

 

To obtain the keel stress spectrum, first, the response amplitude operator (RAO) of the mooring 

force was determined by conducting tests in irregular waves characterized with JONSWAP spectrum as 

stated above. To validate the irregular-wave test results, tests in regular waves with three different 

amplitudes and frequencies have been selected. The mooring-force RAO obtained from the experiments 

is shown in Figure 6.  

Second, having determined the mooring-force RAO, the mooring-force spectrum can be calculated 

from Eq. (2): 

 

𝑆𝐹𝐹 𝜔 =  𝐻𝐹𝜍 𝜔  
2
𝑆𝜍𝜍  𝜔     (2) 

 

where SFF() is the mooring-force spectrum, HF() is the mooring-force RAO and S() is the wave 

spectrum. The mooring-force spectrum,calculated from Eq. (2),is shown in Figure 7. 

Finally, the keel-stress spectrum can be determined from the mooring-force spectrum, using Eq. 

(3) as follows: 

 

𝑆𝜎𝜎  𝜔 =  𝐻𝜎𝐹  
2𝑆𝐹𝐹 𝜔      (3) 

 

In Eq. (3), S() is the keel-stress spectrum and HF is a transfer function defined as 

𝐻𝜎𝐹 =  
𝑆𝐶𝐹

𝐴
     (4) 
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where SCF is the stress concentration factor and A is the cross sectional area of the keel structure (A = 

7250 mm
2
). The transfer function HF is assumed to be frequency independent. As a consequence, the 

stress spectrum has the same form as the force spectrum. Furthermore, the stress concentration factor 

(SCF) wascalculated from a finite element method [7] and the result is SCF = 2.28.The keel-stress 

spectrum,calculated from Eq. (3),is shown in Figure 8.The keel-stress spectrum as shown in Figure 8 is 

used in the calculations of the fatigue life of the keel structure. 

 

 
Figure 6: Mooring-force RAO. 

 

 
Figure 7: Mooring-force spectrum. 
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Figure 8: Keel-stress spectrum. 

 

4. Fatigue Life Calculations 
 

To estimate the fatigue life of the keel structure, spectral fatigue calculations have been carried 

out, including the Rayleigh approximation of narrow-banded spectrum and those taking into account the 

band-width effects. Larsen and Lutes [8] give an overview of formulas of fatigue damage rates according 

to the Rayleigh approximation and its modifications due to band-width effects proposed, among others, 

by Ortiz and Chen [4] and Lutes and Larsen [5]. 

The rate of accumulated fatigue damage according to the Rayleigh approximation (𝐷 𝑅𝐴𝑌 ) is 

represented in Eq. (5) as follows: 

 

𝐷 𝑅𝐴𝑌 =
23𝑚 /2

2𝜋𝐾
Γ 1 + 𝑚/2 𝜆0

𝑚−1

2 𝜆2
1/2

     (5) 

 

where 

 

𝜆0 =  𝑆𝜎𝜎  𝜔 
∞

0
d𝜔     (6) 

 

 

𝜆2 =  𝜔2𝑆𝜎𝜎  𝜔 
∞

0
d𝜔     (7) 

 

 

The rate of fatigue damage (𝐷 𝑂𝐶 ) according to Ortiz and Chen [4] is represented as 

 

𝐷 𝑂𝐶 =
23𝑚 /2

2𝜋𝐾
Γ 1 + 𝑚/2 𝜆0

𝑚−1

2 𝜆4
1/2

 
𝜆2 𝑚 

𝜆2+2 𝑚 
 
𝑚 2 

   (8) 

 

whereas the rate of fatigue damage (𝐷 𝑆𝑀) according to the single moment spectral method of Lutes and 

Larsen [5] is represented as 
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𝐷 𝑆𝑀 =
23𝑚 /2

2𝜋𝐾
Γ 1 + 𝑚/2  𝜆2 𝑚  

𝑚 2 
   (9) 

 

The results of the fatigue-life calculations are summarized in Table 1.It can be seen from Table 1 that the 

fatigue life of the keel structure is approximately 15 years. 

 

Table 1: Fatigue life estimations according to different methods. 

 

Method Fatigue life [years] 

Rayleigh approximation 14.77 

Ortiz and Chen[4] 14.63 

Lutes and Larsen [5] 15.40 

 

5. Discussion and Conclusions 
 

A critical structural component of the InaTEWS buoys is the keel structure, which was 

manufactured from a previously used ship propeller shaft (used material). It is assumed that all other 

structural components of the buoy have a larger fatigue life than the keel structure. To estimate the fatigue 

life of the keel structure fatigue- and model tests have been conducted in the laboratories. 

The experimentally obtainedS-N curve has a slope s of approximately -1/14 or a value of m = -1/s 

of approximately 14. The relatively high value of m compared to a typical carbon steel used in marine 

engineering (with a value of m of 3 or 4) indicates that, compared to new carbon steel, the keel material 

has a very much lower fatigue life. 

To estimate the fatigue life of the keel structure, spectral fatigue calculations have been carried 

out. The spectral fatigue calculations are straight forward and generally much faster than a typical time-

domain fatigue-life calculation based on a stress time series. In the first approximation the stress process 

can be assumed as narrow banded. In that case the Rayleigh approximation is applied, which results in a 

fatigue life of 14.77 years. Including the band-width correction according to Ortiz and Chen [4] results in 

a fatigue life of 14.63 years, which is a relatively small correction. A more significant correction to the 

Rayleigh approximation results from Lutes and Larsen [5], that is, their approximation results in a fatigue 

life of 15.40 years. From the results obtained from the three approximations presented above, it can be 

concluded that the fatigue life of the keel structure is approximately 15 years. 

A fatigue-life estimation according to the Dirlik’s method [9] has also been carried out. However, 

the result depends strongly on the number of stress levels used in the calculation. For that reason, the 

result from the Dirlik’s method is not presented here. Yustiawan et al. [10] have also calculated the 

fatigue life of the same structure using the Rayleigh approximation and found a fatigue life of 7.52 years. 

However, there are some errors in their calculations of the spectral moments 0 and 2 of the stress 

spectrum and some discrepancies in the fitting parametersK and m of the S-N curve. 

The accuracy of the result of the fatigue-life estimation depends strongly on the accuracies of the 

S-N curve and of the keel stress spectrum obtained from the fatigue- and model tests, respectively. Any 

inaccuracy in the execution of the fatigue- and model tests will propagate to the end result, that is, to 

result in an inaccuracy of the fatigue-life estimation. 

In the present study the fatigue tests were conducted in a room condition while the tsunami buoy 

operates in a corrosive environment. Taking into account corrosion effects will result in a smaller fatigue 

life of the keel structure. Such corrosion effects will be included in a further study. 
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