Oktavia, Diah (2019) Analisis Keterkaitan Karakteristik Pelanggan Late Payment Berdasarkan Tagihan Pembayaran. Masters thesis, Institut Teknologi Sepuluh Nopember.
Preview |
Text
09211750055002-Master_Thesis.pdf Download (3MB) | Preview |
Abstract
Peningkatan jumlah pemakaian internet memberikan pengaruh bagi operator layanan untuk dapat menyediakan layanan yang beragam (multi service) dan meningkatkan teknologi jaringan internet bagi pelanggannya. Salah satunya merupakan perusahaan Internet Service Provider (ISP). Kewajiban pelanggan adalah membayar tagihan tepat waktu sesuai dengan syarat dan ketentuan perusahaan yang telah disepakati pada awal pemasangan internet. Namun, pembayaran yang terlambat masih terjadi setidaknya setahun sekali. Hal ini mempengaruhi proses bisnis dan keuangan perusahaan. Sementara di sisi pelanggan, hal ini menyebabkan adanya isolir internet. Tujuan penelitian ini adalah untuk menganalisis variabel-variabel yang memiliki keterkaitan dengan late payment berdasarkan tagihan pelanggan. Metode analisis yang digunakan adalah uji statistik Chi-Square. Jumlah sampel yang digunakan sebanyak 400 pelanggan yang dipilih melalui teknik purposive sampling. Analisis juga dilakukan terhadap periode pembayaran untuk mengetahui pola pembayaran pelanggan setiap bulan berdasarkan waktu pembayaran. Hal ini digunakan untuk mengetahui distribusi kecenderungan pelanggan dalam melakukan pembayaran. Hasil penelitian menyatakan bahwa terdapat keterkaitan signifikan antara variabel alamat, tingkat pendapatan, dan status pekerjaan dengan status pembayaran. Sedangkan, tidak ada keterkaitan signifikan antara variabel tipe pelanggan, paket langganan, dan tingkat pendidikan dengan status pembayaran. Selain itu, diketahui bahwa pelanggan cenderung melakukan pembayaran di atas tenggang waktu yang telah disepakati. Frekuensi pembayaran tepat cenderung terjadi di bulan April. Sedangkan late payment terbanyak terjadi di bulan Januari, Juli, dan Agustus.
==================================================================================================================================
The increasing number of internet usage affects Internet Service Provider (ISP) companies. The customer's obligation is to pay bills on time in accordance with company terms and conditions that have been agreed upon at the beginning of the internet installation. However, late payments still occur at least once a year. This affects the company's business processes and finances. While on the customer side, this causes internet isolation. The purpose of this study is to analyze any variables that have a relationship with the late payment based on customer bills. The analytical method used is Chi-Square statistical test. The number of samples used by 400 customers was selected through a purposive sampling technique. Analysis is also conducted on the payment period to find out the pattern of customer payments every month based on the time of payment. This is used to find out the distribution of payments The results of the study state that there is a significant relationship between the variable address, income level, and employment status with payment status. Meanwhile, there is no significant association between customer type variables, subscription packages, and education level with payment status. In addition, it is recognized that the customer must make a payment within the agreed time period. The frequency of payment is correct in April.. While most late payments occur in January, July and August.
Item Type: | Thesis (Masters) |
---|---|
Additional Information: | RTMT 658.812 Okt a-1 |
Uncontrolled Keywords: | multi service, late payment, purposive sampling, Chi-Square |
Subjects: | T Technology > T Technology (General) > T58.6 Management information systems |
Divisions: | Faculty of Business and Management Technology > Management Technology > 61101-(S2) Master Thesis |
Depositing User: | Oktavia Diah |
Date Deposited: | 26 Mar 2025 04:11 |
Last Modified: | 26 Mar 2025 04:11 |
URI: | http://repository.its.ac.id/id/eprint/69391 |
Actions (login required)
![]() |
View Item |