Optimisasi Parameter Photovoltaic Menggunakan Particle Swarm Modified Firefly Algorithm (PSMFA)

Apsari, Yesika Eka Swasti (2019) Optimisasi Parameter Photovoltaic Menggunakan Particle Swarm Modified Firefly Algorithm (PSMFA). Other thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of Laporan TA-Yesika Eka.pdf]
Preview
Text
Laporan TA-Yesika Eka.pdf

Download (3MB) | Preview
[thumbnail of 02311540000001-Undergraduate_Thesis.pdf] Text
02311540000001-Undergraduate_Thesis.pdf

Download (3MB)

Abstract

Pemodelan modul photovoltaic dapat dilakukan melalui pendekatan model tiga parameter, lima parameter, tujuh parameter, dan sembilan parameter. Variabel input yang digunakan antara lain kecepatan angin, kelembaban, temperatur, dan iradiansi. Untuk mengoptimalkan parameter digunakan tiga metode optimisasi yakni Firefly Algorithm (FA), Particle Swarm Optimization (PSO), dan Particle Swarm Modified Firefly Algorithm (PSMFA). Hasil simulasi menunjukkan ideality factor diode tiga parameter, lima parameter, dan tujuh parameter bernilai 1.5, 1 dan 2, sedangkan sembilan parameter menunjukkan nilai konstan 1, 2, dan 3. Nilai tertinggi parameter Iph berturut-turut bernilai 9.8902 A, 9.9122 A, dan 9.8906 A, sedangkan sembilan parameter bernilai 9.8826 A. Nilai tertinggi parameter arus saturasi dioda adalah 〖1x10〗^(-6) A, 〖1x10〗^(-6) A, 〖3x10〗^(-9) A, 〖6x10〗^(-5) A dan 〖1x10〗^(-3) pada tiga parameter, lima parameter, tujuh parameter, dan sembilan parameter. Sedangkan nilai hambatan seri bernilai konstan untuk semua parameter yakni sebesar 0.0903 Ohm dan paralel resistance pemodelan lima parameter, tujuh parameter, dan sembilan parameter bernilai 362.39 Ohm, 14431 Ohm, dan 11100 Ohm. Berdasarkan grafik konvergensi PSMFA memiliki kemampuan konvergensi yang lebih tinggi dari dua metode.
=============================================================================================================================
Modeling photovoltaic modules can be done using a three-parameter model, five parameters, seven parameters, and nine parameters. Variable inputs used include wind speed, humidity, temperature, and irradiance. To optimize parameters, three optimization methods are used, namely Firefly Algorithm (FA), Particle Swarm Optimization (PSO), and Particle Swarm Modified Firefly Algorithm (PSMFA). The simulation results show the ideality factor of the three-parameter diode, five parameters, and seven parameters worth 1.5, 1 and 2, while the nine parameters show constant values 1, 2, and 3. The highest parameter value of Iph is successful-yielding profit 9.8902 A, 9, 9122 A, and 9.8906 A, while the nine parameters are 9.8826 A. The highest value of the diode saturation current parameter is 〖1x10〗^(-6) A, 〖1x10〗^(-6) A, 〖3x10〗^(-9) A, 〖6x10〗^(-5) A and 〖1x10〗^(-3) on three parameters, five parameters, seven parameters, and nine parameters. While the value of series parameters is constant five and seven, which is equal to 0.0903 Ohm and parallel parameters of five parameters, seven parameters, and nine parameters worth 362.39 Ohm, 14431 Ohm, and 11100 Ohm. Based on the convergence graph, the PSMFA has a higher convergence capability than the othres.

Item Type: Thesis (Other)
Uncontrolled Keywords: Photovoltaic, Particle Swarm Optimization (PSO), Firefly Algorithm (FA), Particle Swarm Modified Firefly Algorithm (PSMFA)
Subjects: Q Science > QA Mathematics > QA9.58 Algorithms
Divisions: Faculty of Industrial Technology > Physics Engineering > 30201-(S1) Undergraduate Thesis
Depositing User: Apsari Yesika Eka Swasti
Date Deposited: 31 Oct 2024 08:36
Last Modified: 31 Oct 2024 08:36
URI: http://repository.its.ac.id/id/eprint/70164

Actions (login required)

View Item View Item