International Journal of Scientific and Engineering Research (ISSN 2229-5518) - Call For Research Papers

The International Journal of Scientific & Engineering Research is a one-stop, open access source for a large number of high quality and peer reviewed journals in all the fields of science, engineering and technology. Scientists and engineers involved in research can make the most of this growing global forum to publish papers covering their original research or extended versions of already published conference/journal papers, scholarly journals, academic articles, etc.

The published papers are made highly visible to the scientific community through a wide indexing policy adopted by this online international journal. Hence, they can freely be accessed and utilized by everyone for the development of science and technology.

Being a part of an eco-friendly community, IJSER favors and promotes e-publication of papers to truly present itself as an online ‘GREEN journal’. Submit your papers today!
We invite you to submit high quality papers for review and possible publication in all areas of engineering, science and technology. All authors must agree on the content of the manuscript and its submission for publication in this journal before it is submitted to us. All the manuscripts submitted for publication are first peer reviewed to make sure they are original, relevant and readable. Manuscripts should be submitted via Online Submission only.

IJSER publishes articles that emphasize research, development and application within the fields of engineering, science and technology. All manuscripts are pre-reviewed by the editorial review committee. Contributions must be original, not previously or simultaneously published elsewhere, and are critically reviewed before they are published. Papers, which must be written in English, should have sound grammar and proper terminologies.

IJSER is an international online journal published monthly. This academic journal and scholarly peer reviewed journal is an online journal having full access to the research and review paper. IJSER hopes that Researchers, Research scholars, Academician, Industrialists, Consultancy etc. would make use of this journal publication for the development of science and technology.

Call for papers

Online Submission Tool
Open Access Journal Publication
List of International Journals
(New Portals Launched to share journal specific Information Only !)

<table>
<thead>
<tr>
<th>International Journal of Computer Science & Engineering</th>
<th>International Journal of Humanities, Literature & Arts</th>
<th>International Journal of Health and Medical Sciences</th>
</tr>
</thead>
</table>

Online International Journal, Peer Reviewed Scholarly Journals

http://www.ijser.org/
A Study on the Effect of an Attractive and a Repulsive Forces with Feedback Control on a Magnetic Levitation System

Bambang Pramujati, Hendro Nurhadi, Desmas A Patriawan

Abstract - This research was conducted to observe the effect of an attractive force and a repulsive force on a magnetic levitation (maglev) with the addition of a feedback control system. Initially, the study was conducted by observing the displacement gap from both type of maglev without an application of a control system. Closed loop control experiments were performed by implementing a Proportional-Integral-Derivative (PID) controller in order to maintain the displacement gap. Stable responses from both simulation control and experiments indicated that the PID controller can be employed to control the gap between the magnet and the levitated object. However, the results of the repulsive maglev control show faster response and smaller steady state error in comparison with the attractive maglev control.

Index Terms - magnetic levitation, displacement gap, repulsive-attractive force, electromagnetic, feedback control system, PID controller

1. INTRODUCTION

Nowadays, traffics in many cities around the globe becoming issues and problems that need to be resolved. As the number of population increases rapidly, private vehicles and air services are no longer able to serve as mass rapid transport anymore [1]. The number of vehicles on the road, not only contributes worsen the traffic jammed but also produces polluted environment. Therefore, the availability of transportation system to serve the public movement which is more efficient, safe, efficient and eco-friendly vehicles are imperative these days. Obviously, the new generation of this vehicle must suited to mass transportation and magnetic levitation (maglev) train is one of the best option for such transportation system [1][2].

With the development of industrial technology, many researchers have focused their work to further improve maglev technology. Maglev train uses magnetic force to levitate vehicle a short distance away from a guide as well as to propel the vehicle [3]. In comparison, conventional train uses friction between wheel and train to drive the train forward. Therefore, maglev trains tend to move more quietly as well as more smoothly that the wheeled ones. In addition, these trains can reach very high speed since there is no friction between train and the guide.

Magnetic forces can be generated by using several methods such as electromagnetics [4] and superconducting [5]. In her research, Lilienkamp et al [4], utilized a permanent magnet and an electromagnetic field to generate levitation forces. The result of this research was then used by others as a basis for developing a stable magnetic levitation forces [6]. Superconductor YBa2Cu3O7-x (YBCO) and permanent magnet can also be used to produce levitation forces. The YBCO presents superconducting state at temperatures below 92 K, which can be achieved within a liquid nitrogen bath [7]. However, levitation forces generated using superconducting are difficult to be controlled as compared to electromagnetic source. Maglev system with electromagnets can be used as handling objects without contact which yield significant advantages over conventional handling [8].

In general, based on the source of levitation forces, a maglev system can be classified into an attractive system and a propulsive system. The attractive system uses an attractive forces to maintain the gap between the moving components and the fixed components, while the repulsive systems uses repulsive forces to push the moving components above and the fixed components and then maintain the gap between them [9]. Both of the systems have a different characteristics from one to another which is shown in Table 1 [10].

<table>
<thead>
<tr>
<th>Types of magnets</th>
<th>Battery on carries</th>
<th>Controllability</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC electromagnet</td>
<td>Large size</td>
<td>Good</td>
</tr>
<tr>
<td>Hybrid magnet</td>
<td>Medium size</td>
<td>Fair</td>
</tr>
<tr>
<td>AC electromagnet</td>
<td>No</td>
<td>Good</td>
</tr>
<tr>
<td>DC electromagnet</td>
<td>Medium</td>
<td>Good</td>
</tr>
<tr>
<td>Permanent magnet</td>
<td>No</td>
<td>Poor</td>
</tr>
</tbody>
</table>

Bambang Pramujati is currently a lecturer with the Department of Mechanical Engineering, ITS, Surabaya, Indonesia - 60111, Email: pramujati@me.its.ac.id

Hendro Nurhadi is currently a lecturer with the Department of Mechanical Engineering, ITS, Surabaya, Indonesia - 60111, Email: hdnurhadi@me.its.ac.id

Desmas A Patriawan is currently a lecturer with the Department of Industrial Engineering, Pelita Harapan University, Surabaya, Indonesia – 60234, Email: patriawan87@gmail.com
This research is aimed to study the effect of those two forces on a levitation system with the application of feedback control, i.e. Proportional Integral and Derivative (PID).

2. DESIGN OF MAGLEV SYSTEM

As mention earlier in this paper, maglev system can be divided into two different systems, i.e. attractive and repulsive systems, as shown in Fig 1.. Both systems shown in Fig 1 were designed and constructed using the same specifications, with the only difference was the generating force. Two main parts for maglev system are the electromagnetic and the permanent magnet. A stable levitation can be obtained as long as the force between the permanent magnet and the electromagnet at the equilibrium state.

The force generated by permanent magnet is highly influenced by the material as well as the size of the permanent magnet. Table 1 shows the characteristics of several type of magnetic materials. It can be seen that the Nd2Fe14B or neodymium has the highest values as compared to the other types of permanent magnets, and therefore, neodymium material was used in the modeling of maglev system.

Table 1. Commercial characteristics of the magnetic [12].

<table>
<thead>
<tr>
<th>Magnetic materials</th>
<th>Force</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ferro Oxide (SrFe12O19)</td>
<td>0.034 N</td>
</tr>
<tr>
<td>Alnico</td>
<td>0.043 N</td>
</tr>
<tr>
<td>Rare Earth –Cobalt Alloys (SmCo5)</td>
<td>0.15 N</td>
</tr>
<tr>
<td>Rare Earth-Iron Alloys (Nd2Fe14B)</td>
<td>0.3 N</td>
</tr>
</tbody>
</table>

Stable levitation is also affected by the electromagnetic force, which can be generated either from a toroid or a solenoid. In this paper, the electromagnetic force was generated from the solenoid. The generated force depends upon the magnitude of magnetic field. Ampere's law approach can be employed to determine the magnetic field in the solenoid, ie:

\[B_{EM} = \mu_0 i_0 n \]

where \(n \) is the numbers of turns per unit length, \(\mu_0 \)is the permeability of air and \(i_0 \)is the current through the solenoid wire [13].

Using the Lorentz force law, the electromagnetic force can then be determined as,

\[F_{EM} = q \vec{v} \times \vec{B} \]

where \(q \) is positive electric charge and \(\vec{v} \) is vector velocity. The direction of the force given in Eq (3), can be obtained by the right hand rule. The force relationship above can also be presented in the form of a vector product of

\[F_{EM} = I \vec{L} \times \vec{B} \]

where \(I \) is the current through the length of the wire \(L \).

A block diagram of maglev system is necessary to develop the model and hence determine the forces acting on the maglev system. Magnetic force creates a springy action on the levitate object and hence can be considered as a spring. Fig 2 shows the block diagram of repulsive maglev system, while Fig 3 depicts the block diagram of an attractive maglev system.
Force equation is linearized around the operating point \((u_e, z_e, F_e)\), in which the levitation force of the operating point must of \(F_e = m.g\). The result of the linearized equation for repulsive maglev system becomes,

\[
m\ddot{z} = k_u u - k_z z
\]

where \(k_u\) is force-input factor and \(k_z\) is force-displacement factor. Whereas in the attractive maglev system has the following equation,

\[
m\ddot{z} = k_u u + k_z z
\]

Force-input factor in the maglev system is given by the force in the permanent magnet and electromagnet, while force-displacement factor is generated by the gravitational force on the object levitation. The transfer function of the maglev system \(H_{SYS}\) can be derived from equation (5) for repulsive maglev and equation (6) for attractive maglev in the Laplace conjugate domain. Assuming the initial conditions are zero, then the equation in the Laplace form for repulsive system is,

\[
H_{SYSR} = \frac{f(s)}{f(s)} = \frac{k_u}{ms^2 + k_z}
\]

while the transfer function for attractive model is given by,

\[
H_{SYSA} = \frac{f(s)}{f(s)} = \frac{k_u}{ms^2 - k_z}
\]

The objective of the maglev system is to provide a stable vertical gap between the magnet and the levitated object. Therefore, a good feedback control system need to be designed and implemented to achieve such objective. A proportional integral and derivative PID controller was employed as the feedback control system in this research. Its three-term functionality offers treatment for both transient and steady-state responses. The transfer function of a PID controller is often expressed in the ideal form of

\[
G_PID = \frac{u(s)}{e(s)} = K_P (1 + \frac{1}{T_I s} + T_D s)
\]

Therefore the control moves or manipulated variables can be determined using the following equation.

\[
u_{PID}(t) = K_p e(t) + K_i \int_0^t e(t) dt + K_d \frac{de(t)}{dt}
\]

Equation (10) can also be expressed in discretized form as,

\[
u_{PID}(t_k) = K_p e(t_k) + K_i \sum_{k=1}^n e(t_k) \Delta t_k + K_d \frac{e(t_k)}{\Delta t_k}
\]

PID parameters can be determined using several approaches and one of them is Ziegler Nichols tuning method.

<table>
<thead>
<tr>
<th>Controller type</th>
<th>(K_P)</th>
<th>(T_I)</th>
<th>(T_D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>0.5 (K_{cr})</td>
<td>(\infty)</td>
<td>0</td>
</tr>
<tr>
<td>PI</td>
<td>0.45 (K_{cr})</td>
<td>1/1.2 (P_{cr})</td>
<td>0</td>
</tr>
<tr>
<td>PID</td>
<td>0.6 (K_{cr})</td>
<td>0.5 (P_{cr})</td>
<td>0.125 (P_{cr})</td>
</tr>
</tbody>
</table>

where \(K_{cr}\) and \(P_{cr}\) represent the ultimate gain and frequency, respectively.

3. RESULTS AND DISCUSSION

In order to control the gap between the levitator and the levitated object as shown in Fig 4, the gap has to be measured and this can be done using hall-effect sensor. This sensor able to detect the magnetic field as well as the distance between object and the magnet. The change in the
gap width of the maglev system is used as an indicator whether or not the system is stable. Gap setpoint was set to be 10 mm and the controller should be able to maintain the desired distance. Based on the experiments data, the gap of 10 mm can be achieved by making an electromagnet to produce a force of 0.66 N.

The experiment uses magnetic ferrite oxide since this type of magnet can be easily found in the market, although it produces the least electromagnetic force. The required force can be produced by a magnetic system which has number of winding of 600 and 60 A current.

The open loop test responses for both repulsive and attractive maglev systems are depicted in Fig 5 and Fig 6, respectively. These results can be used to determine the appropriate controller parameters for the system as well as to evaluate the stability of the maglev system.

It can be seen in Fig 5 that the change in position of the gap for the repulsive maglev system resulted in not only produces oscillate response but also yields a fairly large error. However, Fig 6 shows different responses of attractive maglev when it is subjected to a step input test. The response indicates that the gap was maintained only in the beginning of the test and then eventually unable to keep the levitated object in place. Both responses suggest that the two systems were unable to keep the gap width in accordance with the setpoints, despite of the generated different responses. Therefore, closed loop feedback control is required to improve their both transient and steady state responses.

Using tuning of Ziegler Nichols method, the PID controller parameters were obtained. Although tuning method was used to determine the controller parameter, it is common that fine tuning during the application is necessary and its results were Kp of 10, Ki of 2.5 and Kd of 4. Prior to the application of PID controller, proportional and derivative (PD) controller was employed to maintain the gap between levitated object and the levitator. Manipulated variable of PD controller can be determined using the following discretized equation,

\[
u_d(t_k) = K \left(e(t_k) + T_d \frac{\Delta e(t_k)}{\Delta t_k} \right)
\]

Fig 7 shows the response of closed loop control of an attractive maglev system having different PD controller parameters. It can be seen that good control performances were achieved, however there exist steady state errors for all responses. It is understood since the only controller that will be able to force the steady state error to zero is proportional and integral (ideal PI controller).

PID controller was then implemented for both repulsive and attractive maglev system to improve their transient as well as the steady state responses. The obtained responses indicate that better closed loop performance was achieved for repulsive maglev system as compared to the attractive ones. For repulsive maglev system, gravitational force drives the levitated object approaches the levitator and hence it provides a faster response. On the other hand, gravitational force opposes the motion of levitated object approaching the levitator in attractive maglev system.
4. CONCLUSION

Open loop test responses for both repulsive and attractive maglev system result in two very different responses. The repulsive maglev generates an oscillate response which yields different width of the gap from time to time between the object levitation with levitator. Response of an attractive maglev system shows stable response for a short period of time and then the gap increases exponentially. Therefore, the application of feedback control system is required in order to generate a stable levitation.

The addition of feedback control system significantly improve the performance of the maglev system. Ziegler-Nichols tuning strategy was used to obtain the controller parameters and the obtained parameters were Kp: 10, Ki: 2.5 and Kd: 4. Two different responses were achieved due to the effect of the gravitational force. An attractive maglev system yields a faster response than the repulsive maglev system.

REFERENCES
