Studi klasifikasi tututpan lahan menggunakan data scansar alos palsar dan citra landsat TM

Profilyanti, Belly (2015) Studi klasifikasi tututpan lahan menggunakan data scansar alos palsar dan citra landsat TM. Undergraduate thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 3511100030-Undergraduate_Thesis.pdf]
Preview
Text
3511100030-Undergraduate_Thesis.pdf

Download (4MB) | Preview

Abstract

Metode penginderaan jauh dibedakan menjadi 2, yaitu
sistem aktif dan sistem pasif. Sistem pasif menggunakan bantuan
energi matahari untuk memantulkan gelombang dari permukaan
bumi sehingga dapat diterima oleh sensor. Sistem ini memiliki
kekurangan yaitu adanya “blank area”, yang ditimbulkan
apabila permukaan bumi tertutup awan. Sedangkan sistem aktif
menggunakan gelombang yang dipancarkan oleh sensor, dan
pantulan baliknya diterima kembali oleh sensor yang sama. Salah
satunya adalah SAR (Synthetic Aperture Radar), sistem ini
menggunakan gelombang mikro yang memiliki kemampuan
menembus awan sehingga data yang didapat lebih maksimal.
Radar memiliki kemampuan untuk melakukan perekaman pada
segala cuaca, baik siang maupun malam hari.
Data citra ALOS Palsar berisikan kenampakan tingkatan
karakteristik backscatter dari obyek di permukaan bumi. Kualitas
citra radar bergantung pada volume backscatter yang diterima
kembali oleh antena. Nilai backscatter inilah yang akan
digunakan sebagai dasar penentuan klasifikasi. Data scanSAR
Alos Palsar dilakukan filtering menggunakan gamma method
untuk mengurangi speckle noise. Selanjutnya diklasifikasi menggunakan metode K-Means dan ISOData. Pembagian kelas
klasifikasi dari citra radar ini antara lain vegetasi, badan air,
dan lahan terbangun.
Hasil klasifikasi menunjukkan bahwa data scanSAR Alos
Palsar dengan klasifikasi K-Means menghasilkan 3 kelas tutupan
lahan yaitu badan air (127,7938 km2), vegetasi (707,4445 km2),
dan lahan terbangun (488,7484 km2). Sedangkan pada klasifikasi
ISOData menghasilkan 6 kelas tutupan lahan yaitu tubuh air
(danau, sungai, tambak) memiliki luas 25,6006 km2, sawah
basah/rawa (39,1675 km2), vegetasi (673,1982 km2), hutan
(77,2798 km2), lahan terbangun (262,63 km2), tanah terbuka
(246,1106 km2). Sebagai pembanding digunakan citra Landsat
dengan akurasi sebesar 78,8216% pada klasifikasi Maximum
Likelihood, dihasilkan 4 kelas tutupan yaitu badan air (28,7663
km2), vegetasi jenis 1 (488,7338 km2), vegetasi jenis 2 (373,3404
km2), dan lahan terbangun sebesar 433,1462 km2.

=================================================================================================

Remote sensing methods can be divided into two systems,
the active and passive system. Passive system uses solar energy to
reflects the waves from the earth's surface so it can be received by
the sensor. This system has the disadvantage that called "blank
area", which is caused by the clouds that covered the earth's
surface. While the active system uses waves emitted by the sensor,
and the reflection received back by the same sensor. One of it is
the SAR (Synthetic Aperture Radar), this system uses microwaves
that have the ability to penetrate the cloud so the data obtained
more significant. Radar has the ability to do recording in any
weather, day or night.
ALOS PALSAR imagery contains backscatter
characteristics of the object on the earth’s surface. Radar image
quality depends on the volume backscatter that received by the
antenna. Backscatter values will be used as basis for determining
the classification. ScanSAR ALOS PALSAR uses gamma filtering
method to reduce the speckle noise, for further classified using KMeans
and ISODATA methods. Classification class of radar
imagery devided into vegetation, water bodies, and constructed
land.
Classification results show that the scanSAR ALOS
PALSAR K-Means classification resulted in 3 classes of land cover, that are water body (127.7938 km2), vegetation (707.4445
km2), and constructed land (488.7484 km2). While the ISOData
classification devides into 6 classes, that are water body (such as
lakes, rivers, ponds) has 25.6006 km2, wet rice field / marsh
(39.1675 km2), vegetation (673.1982 km2), forest (77.2798 km2),
constructed land (262.63 km2), and land field (246.1106 km2). For
comparison is used Landsat with accuracy of 78.8216% on a
Maximum Likelihood classification that generated 4 cover
classes, water bodies (28.7663 km2), vegetation type 1 (488.7338
km2), vegetation type 2 (373.3404 km2) , and constructed land
amounted to 433.1462 km2.

Item Type: Thesis (Undergraduate)
Additional Information: RSG 621.367 Pro s
Uncontrolled Keywords: backscatter; klasifikasi; scanSAR ALOS PALSAR; tutupan lahan
Subjects: T Technology > TA Engineering (General). Civil engineering (General) > TA1637 Image processing--Digital techniques
Divisions: Faculty of Civil Engineering and Planning > Geomatics Engineering > 29202-(S1) Undergraduate Thesis
Depositing User: - Taufiq Rahmanu
Date Deposited: 17 Oct 2019 08:03
Last Modified: 17 Oct 2019 08:03
URI: http://repository.its.ac.id/id/eprint/71251

Actions (login required)

View Item View Item