Lestari, Lilik Budi (2002) Penerapan Dan Perbandingan Antara Artificial Neural Network (ANN)Dengan Regresi Logistik Pada Kasus Pengklasifikasian. Undergraduate thesis, Institut Teknologi Sepuluh Nopember.
Preview |
Text
1397100032-Undergraduate Thesis.pdf - Published Version Download (15MB) | Preview |
Abstract
Tujuan dari penehtian ini adalah menerapkan Artificial Neural Network untuk
menyelesaikan kasus pengklasifikasian dan membandingkan hasilnya dengan metode Regresi
Logistik. Teori dan penerapan Regresi Logistik dapat dilihat pada Hosmer & Lemeshow
(1989), sedangkan penerapan Artificial Neural Network untuk pengklasifikasian dapat dilihat
pada Schumacher, dkk ( 1996 ), West (2000), McMmen (2000), dan Zhou, dkk ( 1 997).
Penelitian ini menggunakan dua data sebagai studi kasus, yaitu data tentang hipotensi
selama proses hemodialisis (Kusdamayanti, 2001) dan data tentang berat badan bayi ketika
lahir (Hosmer & Lemeshow, 1989). Proses analisis dan pembahasan dilakukan dengan
membagi data ke dalam dua kelompok, yaitu data training yang digunakan mtuk
pembentuk:kan model dan data testing untuk memvalidasi model. Perbandingan basil
ketepatan klasi:fik:asi antara kedua metode ini dilakukan berdasarkan basil model terbaik dari
masing-masing metode dan hasil dari model dengan melibatkan semua variabel prediktor.
Hasil analisis dan pembahasan dari dua data sebagai studi kasus menmjukkan bahwa
metode Artificial Neural Network cenderung memberikan ketepatan klasifikasi lebih tinggi
dibanding metode Regresi Logistik pada data training. Sedangkan pada data testing, metode
Regresi Logistik yang cenderung memberikan hasil ketepatan klasi:fik:asi lebih baik.
Kecenderungan hasil ini sama dengan yang diperoleh oleh Zhou, dkk (1997), West (2000)
dan McMillen (2000) pada kasus pengklasifikasian, ataupun oleh Hadiyat (2001) pada kasus
forecasting dimana Artificial Neural Network cenderung lebih baik hanya pada data training
dan cenderung tidak lebih baik dibanding metode statistik yang standar pada hasil validasi
atau data testingnya.
Item Type: | Thesis (Undergraduate) |
---|---|
Additional Information: | RSSt 519.536 Les p |
Subjects: | Q Science > QA Mathematics > QA278.2 Regression Analysis. Logistic regression |
Divisions: | Faculty of Mathematics and Science > Statistics |
Depositing User: | ansi aflacha |
Date Deposited: | 06 Nov 2019 07:41 |
Last Modified: | 06 Nov 2019 07:41 |
URI: | http://repository.its.ac.id/id/eprint/71616 |
Actions (login required)
View Item |