Khusnuliawati, Hardika (2016) Multi-feature Fusion Menggunakan Fitur Scale Invariant Feature Transform dan Local Extensive Binary Pattern untuk Pengenalan Pembuluh Darah pada Jari. Masters thesis, Institut Teknologi Sepuluh Nopember.
Preview |
Text
5114201047-master theses.pdf - Accepted Version Download (2MB) | Preview |
Preview |
Text
5114201047-paperpdf.pdf - Accepted Version Download (181kB) | Preview |
Preview |
Text
5114201047-presentationpdf.pdf - Presentation Download (1MB) | Preview |
Abstract
Pengenalan pembuluh darah jari merupakan salah satu area dalam bidang
biometrika. Sehingga tahap-tahap dalam proses pengenalan pembuluh darah jari
memiliki kesamaan dengan proses pengenalan menggunakan biometrika lain yaitu
meliputi pengumpulan citra, praproses, ekstraksi fitur, dan pencocokan. Tingkat
keberhasilan dari tahap pencocokan ditentukan oleh pemilihan fitur pembuluh
darah jari yang digunakan. Kondisi citra pembuluh darah yang rentan terhadap
perubahan skala, rotasi maupun translasi menyebabkan kebutuhan akan fitur yang
tahan terhadap kondisi tersebut menjadi hal yang penting.
Fitur Scale Invariant Feature Transform (SIFT) adalah fitur yang telah
cukup banyak digunakan untuk kasus pencocokan citra serta mampu tahan
terhadap degradasi kondisi citra akibat perubahan skala, rotasi maupun translasi.
Akan tetapi, fitur SIFT kurang memberikan hasil optimal jika diekstraksi dari citra
dengan variasi tingkat keabuan seperti yang disebabkan oleh perbedaan intensitas
pencahayaan. Fitur Local Extensive Binary Pattern (LEBP) merupakan fitur yang
tahan terhadap variasi tingkat keabuan dengan informasi karakteristik lokal yang
lebih kaya dan diskriminatif. Oleh karena itu digunakan teknik fusi untuk
memperoleh informasi dari fitur SIFT dan fitur LEBP sehingga diperoleh fitur
yang memiliki ketahanan terhadap degradasi kondisi citra akibat perubahan skala,
rotasi, translasi, variasi tingkat keabuan seperti yang disebabkan oleh perbedaan
intensitas pencahayaan.
Penelitian ini mengusulkan multi-feature fusion menggunakan fitur SIFT
dan LEBP untuk pengenalan pembuluh darah pada jari. Fitur hasil fusion diproses dengan metode Learning Vector Quantization (LVQ) untuk menentukan apakah
citra pembuluh darah jari yang diuji dapat dikenali atau tidak. Dengan
menggunakan multi-feature fusion diharapkan mampu representasi fitur yang
dapat meningkatkan akurasi dari proses pengenalan pembuluh darah jari
meskipun fitur diambil dari citra yang mengalami degradasi.
Berdasarkan hasil uji coba diperoleh bahwa penggunaan multi-feature
fusion dengan fitur SIFT dan LEBP memberikan hasil yang relatif lebih baik jika
dibandingkan dengan hanya menggunakan fitur tunggal. Hal tersebut dapat dilihat
dari peningkatan hasil kinerja sistem pada kondisi optimum dengan nilai akurasi
sebesar 97,50%, TPR sebesar 0,9400 dan FPR sebesar 0,0128. ========== Finger vein recognition is one of the areas in the field of biometrics. The
steps of finger vein recognition has in common with other biometric recognition
process which include image acquisition, preprocessing, feature extraction and
matching. The success rate of matching stage is determined by the selection of
features. The conditions of finger vein images are susceptible to changes in scale,
rotation and translation. The need for features that are resistant to these
conditions becomes important.
Scale invariant Feature Transform (SIFT) feature is a feature that has been
quite widely used for image matching case and be able to withstand degradation
due to changes in the condition of the image scale, rotation and translation.
However, SIFT feature provide less optimal results when extracted from the
image with gray level variations such as those caused by differences in lighting
intensity. Local Extensive Binary Pattern (LEBP) feature is a feature that has
resistance to gray level variations with richer and discriminatory local
characteristics information. Therefore the fusion technique is used to obtain
information from SIFT feature and LEBP feature. So that, the feature that has
been produced can resist degradation problems such as changes in the condition of
the image scale, rotation, translation, and gray level variations which caused by
differences in lighting intensity.
This study proposes a multi-feature fusion using SIFT and LEBP features
for finger vein recognition. This fusion feature will be processed by Learning
Vector Quantization (LVQ) method to determine whether the testing image can be
x
recognized or not. By using a multi-feature fusion, it is expected to get
representations of features that can improve the accuracy of the finger vein
recognition although the feature is taken from the degraded image.
Based on experiment results, finger vein recognition that use multi-feature
fusion using integration feature of scale invariant feature transform and local
extensive binary pattern provide a better result than only use a single feature. It
can be seen from the increase of performance system in optimum condition. The
accuracy value can achieve 97.50%, TPR at 0.9400 and FPR at 0.0128.
Item Type: | Thesis (Masters) |
---|---|
Additional Information: | RTIf 006.248 Khu m 3100016068192 |
Uncontrolled Keywords: | pembuluh darah jari, Scale Invariant Feature Transform, Local Extensive Binary Pattern,multi-feature fusion, Learning Vector Quantization, finger vein, Scale Invariant Feature Transform, Local Extensive Binary Pattern, multi-feature fusion, Learning Vector Quantization |
Subjects: | T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK7882.B56 Biometric identification |
Divisions: | Faculty of Information Technology > Informatics Engineering > 55101-(S2) Master Thesis |
Depositing User: | - Davi Wah |
Date Deposited: | 12 Nov 2019 03:45 |
Last Modified: | 12 Nov 2019 03:45 |
URI: | http://repository.its.ac.id/id/eprint/71687 |
Actions (login required)
View Item |