Chandra, Johan (2016) Rancang Bangun Sistem EEG Untuk Mengidentifikasi Gerakan Pada Upper Limb Segment Berdasarkan Motor Imagery Sebagai Perintah Kendali FES. Undergraduate thesis, Institut Teknologi Sepuluh Nopember.
Preview |
Text
2212100038-paperpdf.pdf - Accepted Version Download (216kB) | Preview |
Preview |
Text
2212100038-presentationpdf.pdf - Presentation Download (2MB) | Preview |
Preview |
Text
2212100038-undergraduate theses.pdf - Accepted Version Download (9MB) | Preview |
Abstract
Otak merupakan organ vital pada tubuh manusia yang berperan
sebagai pusat kendali sistem saraf man usia. Sinyal yang dikeluarkan otak
(EEG) m.engandung berbagai informasi yang dapat dimanfaatkan pada
teknologi BCI. Salah satu informasi yang dapat digunakan adalah
informasi motorik baik mengenai motor execution maupun motor
imagery. Pada penderita stroke yang mengalami kelumpuhan pada
anggota gerak tubuhnya, informasi m.engenai motor imagery dapat
dimanfaatkan untuk aplikasi Brain Computer Interface terutama dalam
rehabilitasi kelumpuhan anggota gerak pasien tersebut. Hal ini
dikarenakan aktivitas otak secara motorik masih berfungsi terutama saat
membayangkan gerakan atau saat akan menggerakkan anggota gerak
tubuhnya. Tugas akhir ini bertujuan untuk merancang sistem instrumenasi
EEG yang dapat menangkap sinyal EEG dengan baik yang dapat
digunakan untuk mengidentiflkasi informasi m.engenai motor imagery.
Sinyal EEG direkam dengan menggunakan rangkaian instrumenasi yang
dirancang dengan total penguatan sebesar 23842 kali yang terbagi atas
tiga tahapan penguatan, low pass filter dengan frekuensi cutoff sebesar 68
Hz, high pass filter dengan frekuensi cutoff sebesar 0.56 Hz, notch filter
dengan frekuensi resonansi 50 Hz, serta rangkaian penjumlah tak
membalik dengan tegangan offset 2 Volt. Hasil analisa dalam domain
waktu-frekuensi pada 20 titik pada sistem EEG internasional 10-20
menunjukkan titik yang merepresentasikan aktivitas motorik pada
rentang frekuensi alfa (7 -13 Hz) adalah titik C3, C4, CZ, F4, dan F7. Dari
perbandingan hasil motor imagery dan motor execution, didapatkan
informasi saat teijadinya aktivitas motorik maka akan teijadi peningkatan
atau penurunan power spectrum pada rentang frekuensi alfa (7-13 Hz)
yang disebut Event Related Desynchronizationl Event Related
Synchronization. Proses thresholding pada analisa non-stasioner
menggunakan CWT digunakan untuk menghitung kemunculan contour
pada saat terjadi aktivitas motorik. Hasil ekstraksi parameter perhitungan
mean dan power spectrum pada band frekuensi alfa di titik C3 dan C4
digunakan untuk mengidentiflkasi gerakan yang dibayangkan. Hasil uji
selektivitas menunjukkan tingkat sensitivity rata-rata sebesar 61.77%,
specificity 60.11%, dan accuracy sebesar 61.25%. ========== Brain is one of the most substantial organ of the human body, serves
as the center of the nervous system. The EEG (Electroencephalogram)
signal represents the electrical activity of the brain and consists of varied
information which could be used in BCI system. Motoric information is
one of which that shows promising performance towards BCI system,
both information about motor execution and motor imagery. Generally,
the motoric information such as motor imagery among stroke patients
who suffers paralysis, an inability of a muscle to move, could be used for
BCI system application, in limbs rehabilitation and therapy particularly.
This is because the brain activity is working well especially when the
subject imagine the limb movement. This final project aims to design a
multichannel EEG circuit for EEG signal acquisition to identify the motor
imagery information. The EEG signal is recorded using the circuit which
is designed with the overall gain about 23842 divided into three stages,
low pass filter which cutoff frequency set at 68 Hz, high pass filter is set
at 0.56 Hz, 50 Hz notch filter, and a non-inverting adder amplifier which
offset voltage set at 1 Volt. As a result, the signal plotting in timefrequency
domain according to the 10-20 International System of EEG
Placement shows that the locations which represent the motoric activity
between the alpha waves (7-13 Hz) are C3, C4, CZ, F4, and F7
respectively. Furthermore, the results comparison between motor
imagery and motor execution showing an increase and decrease of EEG
signal power in alpha wave (7-13 Hz) which known as Event Related
Desynchronization/ Event Related Synchronization. Thresholding
technique used in non-stationary analysis using CWT method to count the
contour while motoric activity occurred. The mean and alpha band
spectral power calculation in C3 and C4 were obtained from the
extraction parameter. These results were used to identify the imagery
movement. The selectivity results shows that the mean sensitivity and
specificity has been found as 61.77% and 60.71% respectively. The
accuracy is calculated as 61.25%
Item Type: | Thesis (Undergraduate) |
---|---|
Additional Information: | RSE 621.398 1 Cha r 3100016065543 |
Uncontrolled Keywords: | Otak, brain computer interface, stroke, EEG |
Subjects: | R Medicine > RC Internal medicine > RC386.5 Electroencephalography. |
Divisions: | Faculty of Industrial Technology > Electrical Engineering > 20201-(S1) Undergraduate Thesis |
Depositing User: | - Davi Wah |
Date Deposited: | 13 Nov 2019 08:23 |
Last Modified: | 13 Nov 2019 08:23 |
URI: | http://repository.its.ac.id/id/eprint/71713 |
Actions (login required)
View Item |