Klasifikasi Anak Putus Sekolah Di Provinsi Jawa Timur Tahun 2012 Menggunakan Regresi Logistik Biner Dan Kohonen Learning Vector Quantization (LVQ)

Widhesaputri, Avinia Aisha (2015) Klasifikasi Anak Putus Sekolah Di Provinsi Jawa Timur Tahun 2012 Menggunakan Regresi Logistik Biner Dan Kohonen Learning Vector Quantization (LVQ). Undergraduate thesis, Institut Teknologi Sepuluh Nopember.

[img] Text
1311100073-Undergraduate_Theses.pdf

Download (2MB)
[img] Text
1311100073-Paper.pdf

Download (397kB)
[img] Text
1311100073-Presentation.pdf

Download (2MB)

Abstract

Wajib belajar 9 tahun merupakan salah satu program pemerintah sebagai solusi untuk meningkatkan angka partisipasi sekolah di Indonesia. Program ini menargetkan angka partisipasi sekolah minimal 95% pada akhir tahun 2008. Salah satu masalah yang menghambat pencapaian wajib belajar 9 tahun adalah siswa yang putus sekolah. Berdasarkan data oleh Kementerian Pendidikan Nasional pada 2008, setiap tahunnya terdapat 1,5 juta remaja di Indonesia yang tidak dapat melanjutkan sekolah. Usaha untuk menyelesaikan masalah tersebut adalah dengan mengidentifikasi siswa putus sekolah, kemudian membantu mereka agar dapat bersekolah kembali serta memberi dukungan hingga mereka berhasil menyelesaikan wajib belajar 9 tahun. Penelitian ini melakukan pengelompokan (klasifikasi) anak putus sekolah untuk mengetahui sebaran dan karakteristiknya. Klasifikasi dilakukan menggunakan model regresi logistik biner dan Learning Vector Quantization (LVQ) dengan variabel prediktor antara lain jenis kelamin, status perkawinan dan status bekerja siswa, tingkat pendidikan dan jenis kelamin kepala rumah tangga, serta pengeluaran, jumlah anggota dan daerah tempat tinggal keluarga. Data merupakan hasil SUSENAS tahun 2012 di Provinsi Jawa Timur. Hasil identifikasi anak putus sekolah dengan model regresi logistik biner mendapatkan ketepatan klasifikasi sebesar 89,6% dengan variabel signifikan antara lain status bekerja dan perkawinan anak, tingkat pendidikan kepala keluarga, serta pengeluaran, jumlah anggota, dan lokasi tempat tinggal keluarga. Sedangkan identifikasi anak putus sekolah dengan jaringan LVQ menggunakan 4 node menghasilkan ketepatan klasifikasi sebesar 88,9%. ========== 9 years compulsory education is one of government program as a solution to increase enrollment ratio in Indonesia. This program targets minimum enrollment ratio of 95% by the end of 2008. One of the main problem that preventing 9 year compulsory education achievement are drop out students. Based on Ministry of National Education data in 2008, there was 1,5 million teens that did not continue their education each year. Attempt to solve this problem is by identifying drop out student, then assist them so that they could go back to school and assist them until they manage to finish their compulsory education. The purpose of this study is to classify drop out student to get the characteristic and distribution of drop out student. Classification is done by using binary logistic regression model and Learning Vector Quantization (LVQ) with predictor variable that is the gender, marital status and work status of student, education level and gender of head of household, also family’s expenditure, the number of member and area of residence. Data is taken from the result of SUSENAS 2012 in East Java Province. Drop out student identification with binary logistic regression model resulting in accuracy of 89,6%, using marital and work status of student, education level of head of household, also family’s expenditure, the number of member, and area of residence. While identification using Learning Vector Quantization using 4 node network produce accuracy rate of 88,9%.

Item Type: Thesis (Undergraduate)
Additional Information: RSSt 519.536 Wid k 3100015061539
Uncontrolled Keywords: Anak Putus Sekolah, Klasifikasi, Learning Vector Quantization, Regresi Logistik Biner, Binary Logistic Regression, Classification, Drop Out Student, Learning Vector Quantization
Subjects: Q Science > QA Mathematics > QA278.2 Regression Analysis
Divisions: Faculty of Mathematics and Science > Mathematics > (S1) Undergraduate Theses
Depositing User: - Davi Wah
Date Deposited: 04 Dec 2019 08:18
Last Modified: 04 Dec 2019 08:18
URI: http://repository.its.ac.id/id/eprint/72177

Actions (login required)

View Item View Item