

TESIS - RE142541

APLIKASI SISTEM DINAMIK PADA PENGELOLAAN LIMBAH PADAT MEDIS FASILITAS KESEHATAN DI SURABAYA TIMUR

SULISTIYA NENGSE NRP 3313 201 025

DOSEN PEMBIMBING IDAA Warmadewanthi, ST., MT., Ph.D.

PROGRAM MAGISTER
JURUSAN TEKNIK LINGKUNGAN
FAKULTAS TEKNIK SIPIL DAN PERENCANAAN
INSTITUT TEKNOLOGI SEPULUH NOPEMBER
SURABAYA
2015

THESIS - RE142541

THE APPLICATION OF DYNAMIC SYSTEM ON MEDICAL SOLID WASTE MANAGEMENT IN HEALTH CARE FACILITIES AT EAST SURABAYA

SULISTIYA NENGSE NRP 3313 201 025

SUPERVISOR IDAA Warmadewanthi, ST., MT., Ph.D.

MAGISTER PROGRAM
DEPARTMENT OF ENVIRONMENTAL ENGINEERING
FACULTY OF CIVIL ENGINEERING AND PLANNING
INSTITUT TEKNOLOGI SEPULUH NOPEMBER
SURABAYA
2015

Tesis disusun untuk memenuhi salah satu syarat memperoleh gelar Magister Teknik (MT)

di

Institut Teknologi Sepuluh Nopember Surabaya

oleh:

SULISTIYA NENGSE NRP. 3313 201 025

Tanggal Ujian : 25 Juni 2015 Periode Wisuda : September 2015

Disetujui oleh:

1. IDAA Warmadewanthi, ST, MT, Ph.D

(Pembimbing)

NIP. 197502121999032001

2. Prof. Dr. Yulinah Trihadiningrum, M AppSc.

(Penguji)

NIP. 195307061984032004

3. Dr. Ir. Ellina Sitepu Pandebesie, MT

Ilms.

NIP. 195602041992032001

(Penguji)

4. Arseto Yekti Bagastyo, ST, MT, M.Phil, Ph.D

NIP. 198208042005011001

(Penguji)

Direktur Program Pascasarjana,

Prof. Dr. Ar. Adi Soeprijanto, MT

NIP. 196404051990021001

APLIKASI SISTEM DINAMIK PADA PENGELOLAAN LIMBAH PADAT MEDIS FASILITAS KESEHATAN DI SURABAYA TIMUR

ABSTRAK

Nama Mahasiswa : Sulistiya Nengse NRP : 3313201025

Dosen Pembimbing: IDAA Warmadewanthi, ST, MT, Ph.D

Fasilitas kesehatan di Surabaya Timur yaitu 78 fasilitas, namun hanya 6 yang memiliki insinerator. Insinerator yang dimilikipun belum sesuai dengan peraturan. Oleh karena itu perlu alternatif untuk pengelolaan limbah padat medis, terutama dari segi pengolahan. Aplikasi sistem dinamik diterapkan untuk memberi alternatif pengelolaan limbah padat medis dari fasilitas kesehatan di Surabaya Timur dengan pendekatan *causal loop*.

Penelitian dilaksanakan dengan pengukuran timbulan limbah padat medis selama 8 hari dan pengumpulan data sekunder. Penelitian mencakup perhitungan berat limbah padat medis, emisi gas rumah kaca, dan biaya. Skenario digunakan yaitu skenario terpusat (pengolahan dilakukan terpusat satu kota) dan skenario wilayah (mengembangkan fasilitas kesehatan di Surabaya Timur menjadi pengolahan terpusat). Kedua skenario tersebut dipilih yang paling efisien. Penelitian menghasilkan struktur model dinamik pengelolaan limbah padat medis yang disimulasikan hingga tahun 2024.

Hasil penelitian menunjukkan berat limbah padat medis meningkat dari tahun ke tahun dengan kebutuhan trip perhari skenario terpusat dan skenario wilayah adalah 12 trip. Total emisi GRK skenario terpusat adalah 12.649.841 ton/tahun, sedangkan skenario wilayah adalah 10.757.561 ton/tahun. Total biaya operasional yang dibutuhkan pada skenario terpusat adalah 11.083.757 rupiah/tahun, sedangkan pada skenario wilayah adalah 10.281.240 rupiah/tahun. Alternatif solusi terbaik untuk pengelolaan limbah padat medis fasilitas kesehatan di Surabaya Timur adalah skenario pengolahan wilayah karena menghasilkan emisi dan membutuhkan biaya yang lebih kecil daripada skenario terpusat.

Kata kunci: fasilitas kesehatan, insinerator, limbah padat medis, sistem dinamik

"Halaman ini sengaja dikosongkan"

THE APPLICATION OF DYNAMIC SYSTEM ON MEDICAL SOLID WASTE MANAGEMENT IN HEALTH CARE FACILITIES AT EAST SURABAYA

ABSTRACT

Student's Name : Sulistiya Nengse Student's ID Number : 3313201025

Supervisor : IDAA Warmadewanthi, ST, MT, Ph.D

The number of health facilities in East Surabaya is 78, but only 6 facilities have incinerator treatment unit. The current incinerators are not compatible with the standard. Therefore, a new best alternative is needed for medical solid waste treatment, especially in its treatment. The application of dynamic system can be used to give best alternative for medical solid waste treatment from health facilities in East Surabaya with clausal loop.

Research done by measuring the rate of medical solid waste for 8 days and collect the supporting data. Research was covering total measurement of medical solid waste, greenhouse effect emission, and cost to implement two scenarios. The two scenarios are central scenario (treatment that centralized in city) and area scenario (developing health facilities in East Surabaya to central treatment). Both scenarios was chosen because more effective than others. Research will produce structure dynamic model of medical solid waste in East Surabaya which will be simulated until year 2024.

The result of research showed that weight of medical solid waste in health facilities at East Surabaya increased every year. Centralized and area scenario needed 12 trips each day. The total of greenhouse effect emission for central scenario is 12,649,841 tons CO₂e/year, meanwhile the total of greenhouse effect emission for area scenario is 10,757,561 tons CO₂e/year. Total cost that needed in central scenario is 11,083,757 rupiahs/year and for area scenario is 10,281,240 rupiahs/year. The best alternative for medical solid waste in health care facilities at East Surabaya is area scenario because has lower emissions and cost than central scenario.

Keywords: health facilities, incinerator, medical health facilities, dynamic system

"Halaman ini sengaja dikosongkan"

KATA PENGANTAR

Puji syukur penulis panjatkan kehadirat Allah SWT atas limpahan rahmat, hidayah, serta inayah-Nya sehingga penulis dapat menyelesaikan tesis dengan judul "Aplikasi Sistem Dinamik pada Pengelolaan Limbah Padat Medis Fasilitas Kesehatan di Surabaya Timur". Tesis ini disusun dalam rangka memenuhi prasyarat kelulusan Program Magister Teknik Lingkungan ITS.

Dalam penyusunan tugas akhir ini, penulis menyampaikan ucapan terima kasih yang sebesar-besarnya kepada:

- 1. Ibu IDAA Warmadewanthi, ST, MT, Ph.D selaku dosen pembimbing yang telah dengan sabar memberikan ilmu, nasehat, dan arahan dalam membimbing penulis.
- Ibu Prof. Yulinah Trihardiningrum, MappSc, Ibu Dr. Ir. Ellina S. Pandebesie, MT, dan Bapak Arseto Yekti Bagastyo, ST, MT, M.Phil, Ph.D selaku dosen penguji yang telah memberikan banyak masukan kepada penulis.
- 3. Ibu Prof. Dr. Ir. Nieke Karnaningroem, MSc selaku dosen wali yang telah banyak memberikan arahan dan membantu penulis selama menempuh pendidikan di Pascasarjana Jurusan Teknik Lingkungan ITS.
- 4. Bapak Dr. Ali Masduqi, ST, MT selaku Kaprodi Program Pascasarjana Jurusan Teknik Lingkungan FTSP ITS.
- 5. Ibu Ipung Fitri Purwanti, ST, MT, Ph.D selaku koordinator Tesis Program Pascasarjana Jurusan Teknik Lingkungan FTSP ITS.
- 6. Ibu Susi Agustina Wilujeng, ST, MT yang telah memberikan arahan, masukan, perhatian, dan semangat kepada penulis.
- 7. Sanitarian Rumah Sakit, Puskesmas, dan Balai Pengobatan di Surabaya Timur: Mas Arya, Bu Indah, Bu Sulis, Bu Piping, Bu Aini, Mbah Heni, Mbak Era, Mbak Fatwa, Mbak Rika, Mbak Ika, Mbak Sulis, dr. Herna, dr. Retno, Suster Titik, Bu Gebi, Mbak Yuni, dll.

8. Petugas Limbah Medis Puskesmas, Puskesmas Pembantu, dan Balai Pengobatan di Surabaya Timur: Mbak Ninik, Mbak Asia, Mas Andri, Mas Joko, Mas Wawan, Mas Ari, Mas Yanto, Bu Nur, dll.

9. Khoiruz Zadit Taqwa yang selalu menemani dan membantu dalam pengambilan data dan penyusunan tesis.

10. Dinda, Jule, Mbak Nila, Resa, Mike, Hilya, Layli, Bu Rasuna, Santya, Triyono, Mbak Ita, dan Mbak Peni yang memberikan banyak bantuan dan dukungan.

11. Teman-teman mahasiswa Teknik Lingkungan ITS yang telah memberikan bantuan dan dukungan.

Ucapan khusus penulis sampaikan untuk keluarga di rumah: ibu, bapak, kakak, kakak ipar dan keponakan tercinta yang telah memberikan dukungan serta doa kepada penulis.

Penulis menyadari masih banyak kekurangan dalam penyusunan tesis ini, oleh karena itu penulis mengharapkan saran dan masukan sehingga nantinya dapat lebih baik dalam penulisan laporan. Akhir kata semoga tesis ini dapat memberikan manfaat bagi pihak-pihak yang memerlukan.

Surabaya, Juli 2015

Penulis

DAFTAR ISI

LEMBA	R PE	NGESA	AHAN	i	
ABSTR	AK			iii	
ABSTR	ACT			v	
KATA I	PENG	SANTA	R	vii	
DAFTA	R ISI			ix	
DAFTA	R GA	MBAR		xiii	
DAFTA	R TA	BEL		XV	
BAB 1 PENDAHULUAN					
	1.1	Latar 1	Belakang	1	
	1.2	Rumu	san masalah	3	
	1.3	Tujua	n	4	
	1.4	Manfa	aat	4	
	1.5	Ruang	g Lingkup	4	
BAB 2	TIN.	JAUAN	N PUSTAKA	7	
	2.1	Limba	h Padat Medis Fasilitas Kesehatan	7	
		2.1.1	Definisi Fasilitas Kesehatan	7	
		2.1.2	Limbah Padat Medis dari Fasilitas Kesehatan	8	
		2.1.3	Pengelolaan Limbah Padat Medis Fasilitas Kesehatan	10	
	2.2	Insine	rator	13	
	2.3	Emisi	Gas Rumah Kaca (GRK)	14	
		2.3.1	Emisi GRK Pengolahan Limbah Padat Medis	15	
		2.3.2	Emisi GRK Pengangkutan Limbah Padat Medis	17	
	2.4	Sistem	n Dinamik	20	
		2.4.1	Proses Pemodelan Sistem Dinamik	21	
		2.4.2	Diagram Causal Loop	23	
		2.4.3	Diagram Stock Flow	24	
	2.5	Peneli	tian Terdahulu	25	

BAB 3	GAMBARAN UMUM WILAYAH STUDI 2					
	3.1	Daera	h Studi	29		
	3.2	Fasilit	as Kesehatan di Surabaya Timur	30		
	3.3	Kondisi Eksisting Pengelolaan Limbah Padat Medis				
	3.4	Kondi	si Eksisting Insinerator di Surabaya Timur	36		
		3.4.1	Insinerator RSUD Dr. Soetomo	37		
		2.4.2	Insinerator RSU Haji	37		
		2.4.3	Insinerator RS Bersalin Pura Raharja	37		
		2.4.4	Insinerator RS Bersalin Putri	38		
		2.4.5	Insinerator RSJ Menur	38		
		2.4.6	Insinerator Puskesmas Medokan Ayu	39		
BAB 4	ME	TODE I	PENELITIAN	31		
	4.1	Umun	n	41		
	4.2	Keran	gka Alur Penelitian	42		
	4.3	Pelaks	sanaan Penelitian	44		
		4.3.1	Penentuan Wilayah Penelitian	44		
		4.3.2	Pengumpulan Data	44		
			4.3.2.1 Data Sekunder	44		
			4.3.2.2 Data Primer	45		
		4.3.3	Hasil dan Pembahasan	48		
			4.3.3.1 Elemen Inti Struktur Model Sistem Dinamik	48		
			4.3.3.2 Ruang lingkup dan Batasan Model Sistem	49		
			Dinamik			
			4.3.3.3 Konseptualisasi Model	51		
			4.3.3.4 Luaran Simulasi Model Sistem Dinamik	61		
		4.3.4	Kesimpulan dan Saran	61		
BAB 5	HAS	SIL DA	N PEMBAHASAN	63		
	5.1	Penge	lolaan Limbah Padat Medis di Surabaya Timur	63		
		5.1.1	Laju Pertumbuhan Penduduk dan Penambahan Fasilita	s 64		
			Kesehatan di Surabaya Timur			
		5.1.2	Timbulan Limbah Padat Medis Fasilitas Kesehatan di	65		
			Surabaya Timur			

			Umum dan Khusus	03
			5.1.2.2 Timbulan Limbah Padat Medis Puskesmas	66
			5.1.2.3 Timbulan Limbah Padat Medis Puskesmas	66
			Pembantu	00
			5.1.2.4 Timbulan Limbah Padat Medis Balai	67
			Pengobatan	07
			5.1.2.5 Timbulan Limbah Padat Medis Laboratorium	68
			Medis	00
	5.2	Rekap	itulasi Data untuk Pemodelan	68
		5.2.1	Input Aspek Teknis	69
			5.2.1.1 Berat Total Limbah Padat Medis	69
			5.2.1.2 Pengangkutan Limbah Padat Medis	77
		5.2.2	Input Aspek Lingkungan	78
		5.2.3	Input Aspek Biaya	80
	5.3	Verifil	kasi dan Validasi Model	82
		5.3.1	Verifikasi Model	82
		5.3.2	Validasi Model	87
	5.4	Analis	is Kondisi Eksisting	91
	5.5	Hasil l	Pemodelan Skenario Pengelolaan Limbah Padat Medis	94
		5.5.1	Aspek Teknis	94
		5.5.2	Aspek Lingkungan	106
		5.5.3	Aspek Biaya	109
	5.6	Pemili	han Alternatif Pengelolaan Limbah Padat Medis	112
BAB 6	KES	IMPUL	AN DAN SARAN	115
	6.1	Kesim	pulan	115
	6.2	Saran		115
DAFTA	R PU	STAKA	A	117
LAMPII	RAN			123

"Halaman ini sengaja dikosongkan"

DAFTAR TABEL

Tabel 2.1	Jenis Wadah dan Label Limbah Medis Padat Sesuai	12
	Kategorinya	
Tabel 2.2	Data Default Emisi CO ₂ untuk Insinerasi dan Open Burning	16
	Limbah	
Tabel 2.3	Faktor Emisi CH ₄ Insinerasi MSW	17
Tabel 2.4	Faktor Emisi N ₂ O Insinerasi	17
Tabel 2.5	Nilai Deafault Net Calorific Value (NCV)	18
Tabel 2.6	Faktor Emisi CO ₂ tiap Jenis Bahan Bakar	19
Tabel 2.7	Faktor Emisi N ₂ O dan CH ₄ Light Duty Gasoline Vehicle (Car)	20
Tabel 2.8	Penelitian Terdahulu	26
Tabel 3.1	Luas Wilayah, Banyaknya Penduduk Menurut Jenis Kelamin,	29
	dan Kepadatan Perkecamatan di Surabaya Timur Tahun 2013	
Tabel 3.2	Jumlah Penduduk Tiap Tahun di Surabaya Timur	30
Tabel 3.3	Nama Puskesmas dan Puskesmas Pembantu di Surabaya Timur	31
Tabel 3.4	Jumlah Puskesmas Tiap Tahun di Surabaya Timur	32
Tabel 3.5	Daftar Balai Pengobatan di Surabaya Timur Tahun 2013	32
Tabel 3.6	Daftar Laboratorium Medis di Surabaya Timur	33
Tabel 3.7	Tujuan Pengangkutan Limbah Padat Medis	34
Tabel 4.1	Lokasi Pengambilan Sampel Limbah Padat Medis	47
Tabel 4.2	Identifikasi Variabel Terkait Model Sistem Dinamik	53
Tabel 5.1	Laju Pertumbuhan Penduduk dan Fasilitas Kesehatan di	64
	Surabaya Timur	
Tabel 5.2	Banyaknya Kunjungan Pasien ke Fasilitas Kesehatan	65
Tabel 5.3	Timbulan dan Densitas Limbah Padat Medis Puskesmas	66
Tabel 5.4	Timbulan dan Densitas Limbah Padat Medis Puskesmas	67
	Pembantu	
Tabel 5.5	Timbulan dan Densitas Limbah Padat Medis Balai Pengobatan	67
Tabel 5.6	Perhitungan Error antara Data Aktual dan Simulasi	90

Tabel 5.7	Hasil Simulasi Aspek Teknis dan Lingkungan Kondisi Eksistin	g93
Tabel 5.8	Hasil Simulasi Aspek Biaya Kondisi Eksisting	93
Tabel 5.9	Hasil Simulasi Berat Limbah Padat Medis Masing-masing	95
	Fasilitas Kesehatan	
Tabel 5.10	Hasil Simulasi Berat Limbah Padat Medis di Surabaya Timur	96
Tabel 5.11	Hasil Simulasi Kebutuhan Trip	98
Tabel 5.12	Kebutuhan Alat Angkut Masing-masing Skenario	99
Tabel 5.13	Kebutuhan Insinerator Masing-masing Skenario	105
Tabel 5.14	Hasil Simulasi Emisi GRK Pengangkutan dan Pengolahan	109
	Limbah Padat Medis	
Tabel 5.15	Hasil Simulasi Biaya Masing-masing Skenario	111
Tabel 5.16	Perbandingan Hasil Simulasi pada Tahun 2024 Masing-masing	112
	Skenario	
Tabel 5.17	Perbandingan Lokasi Rencana Pengelolaan Limbah Padat	114
	Medis	

DAFTAR GAMBAR

Gambar 2.1	Susunan skema pembentukan model	22
Gambar 2.2	Notasi diagram causal loop	24
Gambar 2.3	Elemen dasar dalam sistem dinamik	25
Gambar 4.1	Kerangka alur penelitian	43
Gambar 4.2	Rincian jenis dan metode pengambilan data	45
Gambar 4.3	Lokasi Kelurahan Tambak Osowilangun	50
Gambar 4.4	Lokasi Puskesmas Gunung Anyar: (a) tampak depan,	50
	(b) batas depan: lahan perumahan, (c) batas utara: bangunan pasar,	
	(d) batas Selatan: Kantor Kelurahan	
Gambar 4.5	Lokasi Puskesmas Gunung Anyar: (a) tampak depan,	51
	(b) batas depan: lahan perumahan, (c) batas utara: kolam ikan,	
	(d) batas selatan: kantor kelurahan	
Gambar 4.6	Skenario yang digunakan	52
Gambar 4.7	Diagram causal loop aplikasi sistem dinamik pengelolaan	60
	limbah padat medis fasilitas kesehatan di Surabaya Timur	
Gambar 4.8	Diagram stock flow model pengelolaan limbah padat medis	62
	fasilitas kesehatan di Surabaya Timur	
Gambar 5.1	Model utama pengelolaan limbah padat medis di Surabaya	68
	Timur	
Gambar 5.2	Timbulan limbah padat medis rumah sakit umum	70
Gambar 5.3	Timbulan limbah padat medis rumah sakit khusus	72
Gambar 5.4	Timbulan limbah padat medis puskesmas	73
Gambar 5.5	Timbulan limbah padat medis balai pengobatan	75
Gambar 5.6	Timbulan limbah padat medis laboratorium medis	76
Gambar 5.7	Total timbulan limbah padat medis fasilitas kesehatan di	76
	Surabaya Timur	
Gambar 5.8	Pengangkutan limbah padat medis	77
Gambar 5.9	Kebutuhan insinerator	78
Gambar 5.10	Submodel lingkungan	79

Gambar 5.11	Submodel biaya	81
Gambar 5.12	Cek unit	83
Gambar 5.13	Hasil pengecekan unit pada submodel teknis	83
Gambar 5.14	Hasil pengecekan unit pada submodel lingkungan	84
Gambar 5.15	Hasil pengecekan unit pada submodel biaya	84
Gambar 5.16	Verifikasi struktur model	85
Gambar 5.17	Hasil pengecekan model pada model utama	86
Gambar 5.18	Hasil pengecekan model pada submodel teknis	86
Gambar 5.19	Hasil pengecekan model pada submodel lingkungan	87
Gambar 5.20	Hasil pengecekan model pada submodel biaya	87
Gambar 5.21	Uji parameter model	88
Gambar 5.22	Uji kondisi ekstrim	89
Gambar 5.23	Pengelolaan limbah padat medis yang tidak sesuai dengan	91
	peraturan: (a) pewadahan limbah spuit menggunakan kardus	
	terbuka, (b) limbah padat medis bercampur dengan limbah	
	kertas dan plastik, (c) tempat penyimpanan sementara limbah	
	padat medis yang terbuka, (d) limbah padat medis yang	
	menumpuk di lokasi insinerator	
Gambar 5.24	Simulasi berat limbah padat medis masing-masing fasilitas	95
	kesehatan	
Gambar 5.25	Simulasi berat limbah padat di Surabaya Timur	96
Gambar 5.26	Alat angkut limbah padat medis (a) tampak samping,	97
	(b) tampak belakang	
Gambar 5.27	Grafik hasil simulasi kebutuhan trip	98
Gambar 5.28	Jalur pengangkutan limbah padat medis skenario terpusat	101
Gambar 5.29	Jalur pengangkutan limbah padat medis skenario wilayah	103
Gambar 5.30	Alur proses pembakaran	105
Gambar 5.31	Grafik simulasi emisi GRK dari pengangkutan	107
Gambar 5.32	Grafik simulasi emisi GRK dari pengolahan	108
Gambar 5.33	Grafik simulasi kebutuhan biaya skenario terpusat	110
Gambar 5 34	Grafik simulasi kebutuhan biaya skenario wilayah	110

BAB 1

PENDAHULUAN

1.1 Latar Belakang

Pembangunan kesehatan merupakan bagian internal dan terpenting dari pembangunan nasional, untuk mencapai tujuan pembangunan kesehatan tersebut diselenggarakan berbagai upaya kesehatan secara menyeluruh, berjenjang, dan terpadu (Menteri Kesehatan Republik Indonesia, 2004). Salah satunya adalah menyediakan fasilitas kesehatan yang memadai untuk melayani masyarakat. Fasilitas kesehatan yang dimiliki oleh Surabaya Timur yaitu 78 fasilitas, yang terdiri dari rumah sakit umum, rumah sakit khusus, puskesmas induk, puskesmas pembantu, balai pengobatan, dan laboratorium medis. Laju timbulan rata-rata limbah padat medis yang dihasilkan dari fasilitas rumah sakit umum di Surabaya Timur adalah 787,5 kg/hari (Girsang, 2013); rumah sakit khusus 3,16 kg/hari (Pramesti, 2012); puskesmas induk 0,75 kg/hari; puskesmas pembantu 0,05 kg/hari; balai pengobatan 0,19 kg/hari; dan laboratorium medis 0,92 kg/hari (Perdani, 2011; Amriana, 2012).

Metode yang dikembangkan dalam pengelolaan limbah medis meliputi minimasi limbah, pemilahan, pewadahan, pemanfaatan kembali dan daur ulang, pengumpulan, pengangkutan, penyimpanan, pengolahan dan pemusnahan (Menteri Kesehatan Republik Indonesia, 2004). Minimasi dilakukan untuk mengurangi jumlah limbah padat medis yang dihasilkan. Beberapa rumah sakit di Surabaya ada yang menerapkan minimasi limbah padat medis dengan cara memesan bahan sesuai kebutuhan, menggunakan sedikit mungkin bahan-bahan kimia, dan menggunakan metode pembersihan fisik daripada kimiawi (Windasari, 2011). Pewadahan dibedakan dengan warna wadah/kantong plastik berdasarkan kategori limbah padat medis yang dilengkapi dengan label. Pewadahan limbah padat medis di sebagian besar rumah sakit khusus di Surabaya Timur

menggunakan kontainer HDPE yang dilapisi plastik di bagian dalam (Pramesti, 2012). Pemanfaatan kembali dan daur ulang limbah medis tidak dianjurkan, kecuali apabila fasilitas kesehatan tidak mempunyai jarum yang sekali pakai (disposable), limbah jarum hipodermik dapat dimanfaatkan kembali setelah melalui proses sterilisasi. Pengumpulan limbah medis padat dari setiap ruangan penghasil limbah menggunakan troli khusus yang tertutup. Beberapa fasilitas kesehatan yang tidak memiliki tempat penyimpanan, limbah padat medis dibiarkan di dalam ruangan kerja dan dikumpulkan hingga batas waktu dibuang ke pengolah limbah (Perdani, 2011). Pengangkutan limbah padat medis ke luar rumah sakit menggunakan kendaraan khusus. Sebagian besar pengangkutan limbah padat medis yang digunakan puskesmas di Kota Surabaya adalah pengangkutan mandiri menggunakan mobil ambulans (Badan Lingkungan Hidup Kota Surabaya, 2014). Penyimpanan limbah padat medis harus sesuai iklim tropis yaitu paling lama 48 jam pada musim hujan dan paling lama 24 jam pada musim kemarau. Pengolahan dan pemusnahan limbah padat medis disesuaikan dengan kemampuan rumah sakit dan jenis limbah padat medis yang ada, misalkan dengan pemanasan menggunakan otoklaf atau dengan pembakaran menggunakan insinerator. Masalah umum pengelolaan limbah padat medis di Indonesia adalah pihak manajemen fasilitas kesehatan yang tidak menganggap penting pengelolaan limbah medis, misalnya limbah infeksius dicampur dengan limbah domestik dan dibuang di TPA tanpa pengolahan terlebih dahulu (Chaerul et al., 2008).

Salah satu metode pemusnahan dalam mengolah limbah padat medis fasilitas kesehatan adalah metoda pembakaran menggunakan insinerator. Insinerasi merupakan metode pengolahan limbah padat yang memiliki keunggulan karena dapat mengurangi volume limbah (Long *et al.*, 2014). Dari 78 fasilitas kesehatan di Surabaya Timur, hanya 6 fasilitas yang memiliki insinerator. Insinerator yang dimilikipun belum sesuai dengan peraturan yang berlaku (Suryawan, 2014). Melihat kondisi jumlah insinerator yang belum maksimal, perlu alternatif terbaik untuk pengelolaan limbah padat medis fasilitas kesehatan di Surabaya Timur, terutama dari segi pengolahan. Faktor lain yang juga mempengaruhi pengolahan limbah padat medis fasilitas kesehatan berkembang secara dinamis, antara lain

kesehatan masyarakat, status ekonomi, aspek sosial, peraturan, dan manajemen rumah sakit (Chaerul *et al.*, 2008).

Model sistem dinamik telah disimulasikan untuk pengembangan manajemen limbah fasilitas kesehatan di Kota metropolitan Istanbul, Turki menggunakan paket software Vensim Ple Plus. Elemen kunci model terdiri dari populasi, persediaan bed, kategori fasilitas kesehatan, tingkat kecelakaan, dan penerapan pemilahan timbulan limbah medis. Hasil simulasi model dinamik digunakan sebagai dasar perencanaan dan antisipasi kebutuhan investasi manajemen limbah fasilitas kesehatan (Ciplak dan Barton, 2012). Pengembangan model dinamik digunakan untuk memproyeksikan timbulan dan karakteristik limbah medis di negara berkembang dengan lokasi studi Distrik Jenin, Palestina. Simulasi menggunakan software i-think untuk mendukung analisis kebijakan manajemen rumah sakit (Eleyan et al., 2013). Model sistem dinamik juga diterapkan untuk pengelolaan limbah padat medis Kota Jakarta menggunakan software Stella 8.0. Struktur model pengelolaan limbah padat medis mencakup populasi penduduk, anggaran dana kesehatan, resiko kesehatan, timbulan limbah padat medis, Municipal Solid Waste (MSW), dan pengolahan limbah infeksius (Chaerul et al., 2008). Kelebihan sistem dinamik adalah dapat dihubungkan dengan aspek kualitatif dalam konteks waktu skala panjang sehingga dapat mewakili fenomena yang terjadi dibandingkan dengan model time series lainnya (Neto et al., 2006). Oleh karena itu digunakan aplikasi sistem dinamik untuk menentukan langkah pengembangan pengelolaan limbah padat medis sesuai dengan faktor-faktor yang mempengaruhi pada kondisi eksisting. Aplikasi sistem dinamik dapat digunakan untuk membantu pemerintah Kota Surabaya dalam menentukan kebijakan pengelolaan limbah padat medis.

1.2 Rumusan masalah

Limbah padat medis dari fasilitas kesehatan di Surabaya Timur belum dikelola dengan benar, baik dari segi pewadahan, pengangkutan, dan pengolahan. Perumusan masalah dalam penelitian ini adalah bagaimana aplikasi sistem

dinamik dalam pengelolaan limbah padat medis dari fasilitas kesehatan di Surabaya Timur dengan mempertimbangkan aspek teknis, keuangan, dan lingkungan. Skenario pengelolaan limbah padat medis digunakan untuk mengetahui pengelolaan yang tepat digunakan. Simulasi model dinamik akan digunakan untuk menentukan alternatif pengembangan pengelolaan limbah padat medis di Surabaya Timur.

1.3 Tujuan

Tujuan penelitian ini yaitu mengetahui alternatif solusi terbaik untuk pengelolaan limbah padat medis fasilitas kesehatan di Surabaya Timur dengan mempertimbangkan aspek teknis, lingkungan, dan biaya. Bentuk pengelolaan yang sesuai untuk diterapkan dapat dihitung dengan skenario pengolahan terpusat yang sinergi dengan rencana pengelolaan yang akan dilakukan oleh Badan Lingkungan Hidup Kota Surabaya (Skenario Terpusat) dan skenario wilayah dengan melihat potensi fasilitas kesehatan di Surabaya Timur yang dapat dikembangkan menjadi pusat pengolahan limbah padat medis (Skenario Wilayah).

1.4 Manfaat

Penelitian ini menghasilkan suatu aplikasi sistem dinamik yang dapat digunakan untuk memprediksi jumlah timbulan limbah padat medis dan pengelolaannya dalam jangka waktu tertentu. Skenario pengelolaan limbah padat medis telah disesuaikan dengan kemampuan pengelola fasilitas kesehatan dan pemerintah kota, serta sarana dan prasarana yang ada. Selain itu, juga memberi alternatif solusi terbaik bagi pemerintah Kota Surabaya untuk pengelolaan limbah padat medis dari fasilitas kesehatan di Surabaya Timur.

1.5 Ruang Lingkup

Ruang lingkup penelitian ini sebagai berikut:

- Lokasi penelitian berada di Surabaya Timur dengan mengambil sampel limbah padat medis di puskesmas induk, puskesmas pembantu, dan balai pengobatan.
- 2. Waktu penelitian antara bulan Oktober hingga Nopember 2014.
- 3. Pengolahan limbah padat medis menggunakan insinerator.
- 4. Aplikasi sistem dinamik menggunakan pendekatan *causal loop* dengan *sofware* Stella 9.1.3.
- 5. Struktur sistem dinamik mencakup aspek teknis, aspek lingkungan, dan aspek biaya.

"Halaman ini sengaja dikosongkan"

BAB 2

TINJAUAN PUSTAKA

2.1 Limbah Padat Medis Fasilitas Kesehatan

2.1.1 Definisi Fasilitas Kesehatan

Menurut Kepmenkes No. 812 Tahun 2007, fasilitas atau sarana kesehatan adalah tempat yang menyediakan layanan kesehatan secara medis bagi masyarakat (Menteri Kesehatan Republik Indonesia, 2007). Menurut jenisnya, fasilitas kesehatan terdiri dari: rumah sakit umum, rumah sakit bersalin, rumah sakit mata, rumah sakit jiwa, rumah sakit penyakit dalam, puskesmas, rumah bersalin, klinik keluarga berencana (KB), Apotek, dan toko obat (Badan Pusat Statistik Kota Surabaya, 2014).

Definisi rumah sakit menurut Permenkes No. 340 tahun 2010 a dalah institusi pelayanan kesehatan yang menyelenggarakan pelayanan kesehatan perorangan secara paripurna yang menyediakan pelayanan rawat inap, rawat jalan, dan gawat darurat (Menteri Kesehatan Republik Indonesia, 2010). Rumah sakit terbagi menjadi dua, yaitu rumah sakit umum yang memberikan pelayanan kesehatan pada semua bidang dan jenis penyakit dan rumah sakit khusus yang memberikan pelayanan utama pada satu bidang atau satu jenis penyakit tertentu, berdasarkan disiplin ilmu, golongan umur, organ atau jenis penyakit. Rumah sakit harus mempunyai kemampuan pelayanan sekurang-kurangnya pelayanan medik umum, gawat darurat, pelayanan keperawatan, rawat jalan, rawat inap, operasi/bedah, pelayanan medik spesialis dasar, penunjang medik, farmasi, gizi, sterilisasi, rekam administrasi dan manajemen, penyuluhan kesehatan medik, pelayanan masyarakat, pemulasaran jenazah, laundry, dan ambulance, pemeliharaan sarana rumah sakit, serta pengolahan limbah.

Dalam Kepmenkes RI No. 128 tahun 2004 disebutkan bahwa puskesmas adalah penanggungjawab penyelenggara upaya kesehatan untuk jenjang tingkat pertama (Menteri Kesehatan Republik Indonesia, 2004). Pengertian puskesmas sendiri adalah unit pelaksana teknis dinas kesehatan kabupaten/kota yang bertanggungjawab menyelenggarakan pembangunan kesehatan di suatu wilayah kerja. Pada saat ini puskesmas telah didirikan di hampir seluruh pelosok tanah air. Untuk menjangkau seluruh wilayah kerjanya, puskesmas diperkuat dengan puskesmas pembantu dan puskesmas keliling. Kecuali itu untuk daerah yang jauh dari sarana pelayanan rujukan, puskesmas dilengkapi dengan fasilitas rawat inap.

2.1.2 Limbah Padat Medis dari Fasilitas Kesehatan

Limbah padat medis menurut Permenkes No. 1204 Tahun 2004 adalah semua limbah yang dihasilkan dari kegiatan rumah sakit yang berbentuk padat sebagai akibat kegiatan rumah sakit (Menteri Kesehatan Republik Indonesia, 2004). Sedangkan menurut WHO (dalam Komilis, 2012), limbah medis merupakan limbah yang dihasilkan oleh kegiatan layanan kesehatan yang mencakup berbagai macam bahan, seperti jarum suntik bekas, pakaian kotor, bagian tubuh, sampel diagnostik, darah, bahan kimia, obat-obatan, dan perangkat medis.

Pembagian limbah padat medis berdasarkan Permenkes RI No. 1204 tahun 2004 terdiri dari limbah sebagai berikut:

a. Limbah infeksius

Limbah infeksius adalah limbah yang terkontaminasi organisme patogen yang tidak secara rutin ada di lingkungan dan organism tersebut dalam jumlah dan virulensi yang cukup untuk menularkan penyakit pada manusia rentan. Selain limbah infeksius, ada juga limbah sangat infeksius yang berasal dari pembiakan dan stock bahan sangat infeksius, otopsi, organ binatang percobaan dan bahan lain yang telah diinokulasi, terinfeksi atau kontak dengan bahan yang sangat infeksius.

b. Limbah patologi

Limbah patologi seperti air bekas urin, bekas muntah, bekas darah, air ketuban dan ari-ari atau limbah lain yang tercemar (Suryawan, 2014).

c. Limbah benda tajam

Limbah benda tajam termasuk semua jarum suntik, jarum hipodermik, jarum infus dan tubings, spuit, pisau bedah, gelas pecah, perlengkapan intravena, mesh dan botol tanpa isi (Suryawan, 2014).

d. Limbah farmasi

Limbah farmasi adalah limbah yang berasal dari obat-obatan yang kadaluarsa, obat-obatan bekas, obat-obat yang terbuang karena tidak memenuhi spesifikasi atau kemasan yang terkontaminasi (Suryawan, 2014).

e. Limbah sitotoksis

Limbah sitotoksis adalah limbah dari bahan yang terkontaminasi dari persiapan dan pemberian obat sitotoksis untuk kemoterapi kanker yang mempunyai kemampuan untuk membunuh atau menghambat pertumbuhan sel hidup.

f. Limbah kimiawi

Kategori limbah kimiawi ini termasuk limbah dengan bahan kimia beracun (termometer rusak, baterai, dan amalgam dari departemen gigi), obat-obatan kedaluwarsa dan bahan kimia dari lingkungan atau farmasi (Manga *et al.*, 2011)

- g. Limbah radioaktif
- h. Limbah kontainer bertekanan, dan
- i. Limbah dengan kandungan logam berat yang tinggi

Menurut PP No. 101 Tahun 2014, limbah B3 bersifat infeksius yaitu limbah medis padat yang terkontaminasi organisme patogen yang tidak secara rutin ada di lingkungan, dan organisme tersebut dalam jumlah dan virulensi yang cukup untuk menularkan penyakit pada manusia rentan (Presiden Republik Indonesia, 2014). Yang termasuk ke dalam limbah infeksius antara lain:

a. Limbah yang berasal dari perawatan pasien yang memerlukan isolasi penyakit menular atau perawatan intensif dan limbah laboratorium

- b. Limbah yang berupa benda tajam seperti jarum suntik, perlengkapan intravena, pipet pasteur, dan pecahan gelas
- c. Limbah patologi yang merupakan limbah jaringan tubuh yang terbuang dari proses bedah atau otopsi
- d. Limbah yang berasal dari pembiakan dan stok bahan infeksius, organ binatang percobaan, bahan lain yang telah diinokulasi, dan terinfeksi atau kontak dengan bahan yang sangat infeksius
- e. Limbah sitotoksik yaitu limbah dari bahan yang terkontaminasi dari persiapan dan pemberian obat sitotoksik untuk kemoterapi kanker yang mempunyai kemampuan membunuh atau menghambat pertumbuhan sel hidup.

Sumber utama limbah medis berasal dari rumah sakit, klinik medis, apotek, balai kesehatan, laboratorium medis dan biomedis, pusat penelitian medis, pusat otopsi dan kamar mayat, rumah sakit hewan, pusat penelitian hewan, bank darah, dan fasilitas kesehatan lainnya (Ananth *et al.*, 2010).

2.1.3 Pengelolaan Limbah Padat Medis Fasilitas Kesehatan

Di beberapa negara, limbah padat medis sering dicampur dengan limbah lainnya, misalkan dengan sampah domestik rumah sakit atau bahkan dengan sampah domestik kota. Limbah padat campuran tersebut sering dibuang di tempat pembuangan akhir (TPA) dimana banyak pemulung yang melakukan pekerjaannya di sana. Praktek tidak benar ini disebabkan oleh tidak adanya peraturan dan kesadaran masyarakat terhadap pengelolaan limbah padat medis dan resiko potensial yang bisa disebabkannya. Pengembangan pengelolaan limbah medis yang efektif sangat penting untuk pencegahan potensi tereksposnya pekerja layanan kesehatan, pasien, dan masyarakat dari limbah infeksi, bahan kimia beracun, bahaya kecelakaan, serta perlindungan lingkungan (Jang, 2011).

Menurut Permenkes RI No. 1204 tahun 2004, upaya pengelolaan limbah padat medis yang dapat dilakukan rumah sakit adalah sebagai berikut:

a. Minimasi limbah

- 1. Setiap rumah sakit harus melakukan reduksi limbah dimulai dari sumber.
- 2. Setiap rumah sakit harus mengelola dan mengawasi penggunaan bahan kimia yang berbahaya dan beracun.
- 3. Setiap rumah sakit harus melakukan pengelolaan stok bahan kimia dan farmasi.
- 4. Setiap peralatan yang digunakan dalam pengelolaan limbah medis mulai dari pengumpulan, pengangkutan, dan pemusnahan harus melalui sertifikasi dari pihak yang berwenang.

b. Pemilahan, pewadahan, pemanfaatan kembali dan daur ulang

- 1. Pemilahan limbah harus dilakukan mulai dari sumber yang menghasilkan limbah
- 2. Limbah yang akan dimanfaatkan kembali harus dipisahkan dari limbah yang tidak dimanfaatkan kembali.
- 3. Limbah benda tajam harus dikumpulkan dalam satu wadah tanpa memperhatikan terkontaminasi atau tidaknya. Wadah tersebut harus anti bocor, anti tusuk dan tidak mudah untuk dibuka sehingga orang yang tidak berkepentingan tidak dapat membukanya.
- 4. Jarum dan syringes harus dipisahkan sehingga tidak dapat digunakan kembali
- 5. Limbah medis padat yang akan dimanfaatkan kembali harus melalui proses sterilisasi.
- 6. Limbah jarum hipodermik tidak dianjurkan untuk dimanfaatkan kembali. Apabila rumah sakit tidak mempunyai jarum yang sekali pakai (disposable), limbah jarum hipodermik dapat dimanfaatkan kembali setelah melalui proses sterilisasi.
- 7. Pewadahan limbah medis padat harus memenuhi persyaratan dengan penggunaan wadah dan label seperti Tabel 2.1.

Tabel 2.1 Jenis Wadah dan Label Limbah Medis Padat Sesuai Kategorinya

No.	Kategori	Warna Kontainer/ Kantong Plastik	Lambang	Keterangan
1	Radioaktif	Merah	424	Kantong boks timbale dengan simbol radioaktif
2	Sangat infeksius	Kuning	8	Kantong plastik kuat, anti bocor, atau kontainer yang dapat disterilisasi dengan otoklaf
3	Limbah infeksius, patologi dan antomi	Kuning	8	Kantong plastik kuat dan anti bocor, atau kontainer
4	Sitotoksis	Ungu		Kontainer plastic kuat dan anti bocor
5	Limbah kimia dan farmasi	Coklat	-	Kantong plastic atau container

Sumber: Menteri Kesehatan Republik Indonesia, 2004

- 8. Daur ulang tidak bisa dilakukan oleh rumah sakit kecuali untuk pemulihan perak yang dihasilkan dari proses film sinar X.
- 9. Limbah sitotoksis dikumpulkan dalam wadah yang kuat, anti bocor, dan diberi label bertuliskan "Limbah Sitotoksis".
- c. Pengumpulan, pengangkutan, dan penyimpanan limbah padat medis di lingkungan rumah sakit
 - 1. Pengumpulan limbah medis padat dari setiap ruangan penghasil limbah menggunakan troli khusus yang tertutup.
 - 2. Penyimpanan limbah medis padat harus sesuai iklim tropis yaitu pada musim hujan paling lama 48 jam dan musim kemarau paling lama 24 jam.
- d. Pengumpulan, pengemasan dan pengangkutan ke luar rumah sakit

- 1. Pengelola harus mengumpulkan dan mengemas pada tempat yang kuat.
- 2. Pengangkutan limbah ke luar rumah sakit menggunakan kendaraan khusus.

e. Pengolahan dan pemusnahan

- 1. Limbah medis padat tidak diperbolehkan membuang langsung ke tempat pembuangan akhir limbah domestik sebelum aman bagi kesehatan.
- Cara dan teknologi pengolahan atau pemusnahan limbah medis padat disesuaikan dengan kemampuan rumah sakit dan jenis limbah medis padat yang ada, dengan pemanasan menggunakan otoklaf atau dengan pembakaran menggunakan insinerator.

2.2 Insinerator

Insinerator adalah salah satu alat yang dapat digunakan untuk mengolah dan memusnahkan limbah medis padat. Keuntungan utama dari insinerasi adalah dapat memusnahkan patogen serta mengurangi volume dan berat limbah. Bagaimanapun juga, insinerasi menghasilkan residu yang mengandung zat kimia toksik, misalkan logam berat (Tzanakos *et al.*, 2014). Insinerator juga tidak disarankan digunakan pada limbah yang mengandung merkuri atau kadmium karena menghasilkan uap beracun yang dapat mencemari udara.

Menurut Permenkes RI No. 1204 tahun 2004, insinerator dapat digunakan untuk mengolah dan memusnahkan:

a. Limbah Infeksius dan Benda Tajam

Benda tajam harus diolah dengan insinerator bila memungkinkan, dan dapat diolah bersama dengan limbah infeksius lainnya. Setelah insinerasi, residunya dapat dibuang ke tempat pembuangan B3 atau dibuang ke *landfill* jika residunya sudah aman.

b. Limbah farmasi

Limbah farmasi dalam jumlah kecil dapat diolah dengan insinerator pirolitik (*pyrolytic incinerator*).

c. Limbah sitotoksis

Insinerasi pada suhu tinggi sekitar 1.200°C dibutuhkan untuk menghancurkan semua bahan sitotoksik. Insinerasi pada suhu rendah dapat menghasilkan uap sitotoksik yang berbahaya ke udara. Insinerator yang digunakan bisa menggunakan:

- Insinerator dengan 2 (dua) tungku pembakaran pada suhu 1.200° C dengan minimum waktu tinggal 2 detik atau suhu 1.000°C dengan waktu tinggal 5 detik di tungku kedua sangat cocok untuk bahan ini dan dilengkapi dengan penyaring debu. Insinerator juga harus dilengkapi dengan peralatan pembersih gas.
- Insinerasi dengan *rotary kiln* yang didesain untuk dekomposisi panas limbah kimiawi yang beroperasi dengan baik pada suhu diatas 850° C.
- Insinerator dengan 1 (s atu) tungku atau pembakaran terbuka tidak tepat untuk pembuangan limbah sitotoksis.

2.3 Emisi Gas Rumah Kaca (GRK)

Estimasi emisi Gas Rumah Kaca (GRK) pengolahan dan pengangkutan limbah padat medis mengacuh pada IPCC 2006 volume 2 Energy dan volume 5 Waste. Emisi GRK utama yang dihasilkan adalah CH₄, CO₂ dan N₂O. Emisi ini dihasilkan dari konsumsi bahan bakar pengangkutan limbah medis dan proses pembakaran limbah padat medis (Karagiannidis, 2010). Emisi CH₄ pengolahan berasal dari pembakaran tidak sempurna, sedangkan emisi CH₄ dari penimbunan hasil insinerasi limbah medis tidak diestimasikan karena tidak signifikan, hal ini disebabkan limbah medis mengandung konten *Degradable Organic Carbon* (*DOC*) yang rendah (Institute for Global Environmental Strategies, 2006). Nilai *Global Warming Potential* pada batasan waktu 100 tahun untuk gas CO₂ adalah 1, CH₄ adalah 25 dan N₂O adalah 298. Berarti ketika 1 kg N₂O dilepaskan ke udara maka setara dengan melepaskan 298 kg CO₂.

2.3.1 Emisi GRK Pengolahan Limbah Padat Medis

Perhitungan emisi GRK pengolahan mencakup emisi CH₄, CO₂ dan N₂O. Acuan yang digunakan adalah IPCC 2006 volume 5 Waste untuk menghitung emisi CH₄, CO₂ dan N₂O. Faktor penting yang mempengaruhi emisi pengolahan adalah suhu, waktu tinggal, dan rasio udara (volume udara dengan jumlah sampah). Emisi CH₄ biasanya sangat kecil jika insinerator berfungsi dengan benar (Institute for Global Environmental Strategies, 2006). Faktor emisi menggunakan data default dari IPCC. Perhitungan emisi GRK menggunakan rumus berikut.

A. Emisi CO₂

Emisi CO₂ berdasarkan jumlah total limbah yang dibakar:

Emisi
$$CO_2 = \Sigma_i (SW_i \cdot dm_i \cdot CF_i \cdot FCF_i \cdot OF_i) \cdot 44/12$$
(2.1)

Dengan:

Emisi CO_2 = emisi CO_2 pada tahun T, Gg/tahun

SW_i = jumlah limbah padat dari jenis i (berat basah) yang diinsinerasi atau dibakar, Gg/tahun

= konten material kering dalam limbah (berat basah) yang diinsinerasi

atau

 dm_i

dibakar, (fraksi)

CF_i = Fraksi karbon dalam material kering (totan karbon konten), (fraksi)

FCF_i = Fraksi karbon fosil dalam total karbon, (fraksi)

OF_i = faktor oksidasi, (fraksi)

44/12 = faktor konversi dari C menjadi CO_2

i = tipe limbah yang diinsinerasi atau dibakar

MSW: limbah padat perkotaan

ISW: limbah padat industri

SS : limbah lumpur

HW: Limbah B3

CW: limbah medis

Tabel 2.2 Data Default Emisi CO₂ untuk Insinerasi dan Open Burning Limbah

Parameter	Praktek Pengelolaan	MSW	Limbah Padat Industri (%)	Limbah Medis (%)	Limbah Lumpur (%)	Limbah Cair Fosil (%)
Konten material kering dalam % dari berat basah (dmi)		Lihat catatan 1	NA	NA	NA	NA
Total karbon konten dalam % dari berat kering (CFi)		Lihat catatan 1	50	60	40-50	80
Fraksi karbon fosil dalam % dari total karbon konten (FCFi)		Lihat catatan 2	90	40	0	100
Faktor oksidasi dalam % dari input karbon (OFi)	Insinerasi Open burning (Catatan 3)	100 58	100 NO	100 NO	100 NO	100 NO

NA: Not available (tidak tersedia)

NO: Not occuring (tidak terjadi)

Sumber: Institute for Global Environmental Strategies, 2006

B. Emisi CH₄

Emisi CH₄ berdasarkan total limbah yang dibakar:

Emisi
$$CH_4 = \Sigma_i (IW_i \cdot EF_i) \cdot 10^{-6}$$
 (2.2)

Dengan:

Emisi CH₄ = emisi CH₄ pada tahun T, Gg/tahun

IW_i = jumlah limbah padat dari jenis i (berat basah) yang diinsinerasi atau dibakar, Gg/tahun

EF_i = faktor emisi CH₄, kg CH₄/Gg limbah

10⁻⁶ = faktor konversi dari kg menjadi Gg

i = tipe limbah yang diinsinerasi atau dibakar

Tabel 2.3 Faktor Emisi CH₄ Insinerasi MSW

Teknologi Insi	nerasi	Faktor Emisi CH ₄ (Kg/Gg Limbah Diinsinerasi Berdasarkan Berat Basah)
Continuous	Stoker	0,2
incineration	Fluidised bed	0
Semi- Continuous	Stoker	6
incineration	Fluidised bed	188
Patah tuna in ain anation	Stoker	60
Batch type incineration	Fluidised bed	237

Sumber: Institute for Global Environmental Strategies, 2006

C. Emisi N₂O

Estimasi emisi N₂O berdasarkan limbah yang dimasukkan dalam insinerator

Emisi
$$N_2O = \Sigma$$
 (IWi • EFi) • 10^{-6} (2.3)

Dengan:

Emisi N_2O = emisi N_2O pada tahun T, Gg/tahun

IWi = jumlah limbah dari jenis i yang diinsinerasi atau dibakar, Gg/tahun

EFi = faktor emisi N_2O (kg N_2O/Gg limbah) untuk limbah jenis i

10⁻⁶ = konversi dari kilogram ke gigagram

i = tipe limbah yang diinsinerasi atau dibakar

Tabel 2.4 Faktor Emisi N₂O Insinerasi

Jenis Limbah	Teknologi Pengelolaan	Faktor Emisi (g N2O/t Limbah)	Berdasarkan Berat
MSW	Continuous dan semi continuous incinerator	50	Berat basah
MSW	Batch type incinerator	60	Berat basah
MSW	Open burning	150	Berat kering
Limbah industri	Semua tipe insinerator	100	Berat basah
Lumpur (kecuali sewage sludge)	Semua tipe insinerator	450	Berat basah
sewage sludge	insinerasi	990	Berat kering
sewage stuage	111511161 a51	900	Berat basah

Sumber: Institute for Global Environmental Strategies, 2006

2.3.2 Emisi GRK Pengangkutan Limbah Padat Medis

Perhitungan emisi GRK pengangkutan mencakup emisi CH₄, CO₂ serta emisi N₂O. Acuan yang digunakan adalah IPCC 2006 volume 2 E nergy untuk

menghitung emisi CH₄, CO₂ dan N₂O. Emisi CO₂ yang diestimasi adalah CO₂ non biogenic yang berasal dari proses pembakaran bahan bakar armada pengangkutan. Data perhitungan lain menggunakan default data IPCC. Emisi CH₄ dan N₂O pada penelitian ini menggunakan Tier 3 karena terdapat data jarak pengangkutan. Pada Tier 3, terdapat kondisi *cold start* yang terjadi pada saat pertama mesin dinyalakan dimana menghasilkan emisi lebih tinggi dari keadaan normal karena mesin belum mencapai temperatur normal (300°C) unt uk beroperasi. Ada pula kondisi running *running* (*hot*) yang merupakan keadaan normal dan stabil pada saat mengemudi dimana mesin telah mencapai suhu optimum untuk beroperasi (Institute for Global Environmental Strategies, 2006). Tabel 2.5 menunjukkan nilai *Deafault Net Calorific Value* (NCV) dan Tabel 2.6 menunjukkan faktor emisi CO₂ tiap jenis bahan bakar,

A. Emisi CO₂

Emisi
$$CO_2 = \Sigma_a [Fuel_a \cdot EF_a]$$
 (2.4)

Dengan:

Emisi CO_2 = emisi CO_2 (kg)

 $Fuel_a$ = konsumsi bahan bakar (TJ)

EF_a = faktor emisi (kg/TJ), sama dengan *carbon content* bahan bakar dikali 44/12

a = tipe bahan bakar

Tabel 2.5 Nilai Deafault Net Calorific Value (NCV)

Bahan Bakar	NCV (TJ/Gg)	Lower	Upper
Motor gasoline	44,3	42,5	44,8
Gas/diesel oil	43,0	41,4	43,3
LPG	47,3	44,8	52,2
Kerosene	43,8	42,4	45,2
Lubricant	40,2	33,5	42,3
Natural Gas	48,0	46,5	50,4

Sumber: Institute for Global Environmental Strategies, 2006

Tabel 2.6 Faktor Emisi CO₂ tiap jenis bahan bakar

Tipe Bahan Bakar	Default (kg/TJ)
Motor gasoline	69300
Gas/diesel oil	74100
Liquefied Petroleum Gases (LPG)	63100
Kerosene	71900
Lubricant	73300
Compressed natural gas (CNG)	56100
Liquefied Natural Gas (LNG)	56100

Sumber: Institute for Global Environmental Strategies, 2006

B. Emisi CH₄

Emisi
$$CH_4 = \Sigma_{a,b,c,d} \left[Jarak_{a,b,c,d} \cdot EF_{a,b,c,d} \right] + \Sigma_{a,b,c,d} C_{a,b,c,d}$$
 (2.5)

Dengan:

Emisi CH_4 = emisi CH_4 (kg)

 $Jarak_{a,b,c,d}$ = jarak perjalanan pada kondisi termal stabil (km)

 $EF_{a,b,c,d}$ = faktor emisi (kg/km)

 $C_{a,b,c,d}$ = Emisi pada saat warming up (kg)

a = tipe bahan bakar (*gasoline*)

b = tipe kendaraan (light duty gasoline vehicle (car))

c = teknologi pengendalian emisi kendaraan (tidak terkontrol)

d = kondisi operasi (jalan, iklim, lingkungan)

C. Emisi N₄O

Emisi N₄O =
$$\Sigma_{a,b,c,d}$$
 [Jarak_{a,b,c,d} • EF_{a,b,c,d}] + $\Sigma_{a,b,c,d}$ C_{a,b,c,d} (2.6)

Dengan:

Emisi N_4O = emisi N_4O (kg)

 $Jarak_{a,b,c,d}$ = jarak perjalanan pada kondisi termal stabil (km)

 $EF_{a,b,c,d}$ = faktor emisi (kg/km)

 $C_{a,b,c,d}$ = Emisi pada saat warming up (kg)

a = tipe bahan bakar (gasoline)

b = tipe kendaraan (light duty gasoline vehicle (car))

c = teknologi pengendalian emisi kendaraan (tidak terkontrol)

d = kondisi operasi (jalan, iklim, lingkungan)

Faktor emisi CH₄ dan N₂O dapat dilihat pada Tabel 2.7.

Tabel 2.7 Faktor Emisi N₂O dan CH₄ Light Duty Gasoline Vehicle (Car)

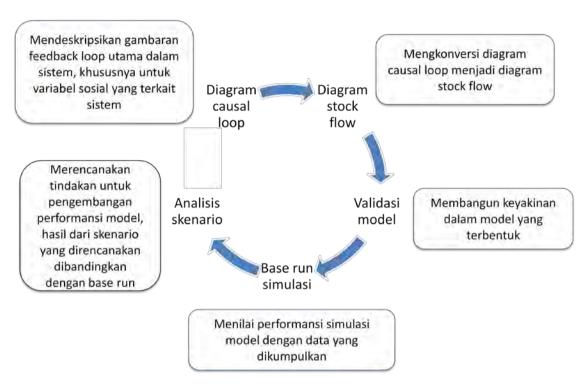
	N ₂ O		CH ₄	
Teknologi Kontrol Emisi	Running	Cold	Running	Cold
	(hot)	Start	(hot)	Start
Low Emission Vehicle (LEV)	0	90	6	32
Advanced Three-Way Catalyst	9	113	7	55
Early Three-Way Catalyst	26	92	39	34
Oxidation catalist	20	72	82	9
Non-oxidation catalist	8	28	96	59
Uncontrolled	8	28	101	62

Sumber: Institute for Global Environmental Strategies, 2006

2.4 Sistem Dinamik

Sistem adalah keseluruhan interaksi antara unsur dari sebuah proyek dalam batas lingkungan tertentu yang bekerja untuk mencapai tujuan (Muhammadi, 2001). Kata kunci dari struktur adalah interaksi atau mekanisme. Kerumitan setiap hal baik fisik maupun non fisik dapat disederhanakan menjadi struktur dasar yang terdiri dari mekanisme masukan, proses, keluaran, dan umpan balik (*feedback*). Mekanisme kerja ini berkelanjutan yang menunjukkan adanya perubahan waktu atau bersifat dinamis

Sistem dinamik adalah sebuah metodologi penghampiran terhadap realitas permasalahan dunia nyata yang berbasis pada simulasi komputer (Wirjodirdjo, 2012). Dinamakan sistem dinamik karena dikembangkan sebagai aplikasi untuk membuat keputusan dalam permasalahan yang rumit atau kompleks dari waktu ke waktu. Teori utama dalam model sistem dinamik adalah prinsip optimalisasi (Taha, 1982). S truktur sistem dinamik adalah sebuah sistem tertutup. Untuk memudahkan pekerjaan berpikir sistemik ini, struktur sistem dinamik disederhanakan ke dalam bentuk diagram *causal loop*. Hasil simulasi model dinamik digunakan untuk memahami perilaku gejala atau proses dan kecenderungannya di masa mendatang. Struktur internal masalah dapat dipahami secara lebih rinci dengan memahami perilaku dan kecenderungannya. Pemahaman


ini berguna untuk memperoleh solusi terbaik mengenai masalah yang dihadapi dalam manajemen.

Sistem dinamik merupakan simulasi yang sangat lengkap sehingga membutuhkan data yang lengkap pula. Kelemahan dari sistem dinamik adalah membutuhkan waktu yang lama untuk melengkapi data, karena hasil simulasi tidak dapat optimal jika data terbatas dan banyak menggunakan asumsi.

2.4.1 Proses Pemodelan Sistem Dinamik

Simulasi adalah peniruan perilaku gejala atau proses yang bertujuan untuk memahami gejala atau proses tersebut, membuat analisis, dan peramalan perilaku gejala atau proses tersebut di masa depan (Muhammadi, 2001). Menurut Yuan (2012), langkah dalam pembentukan model sistem dinamik terdiri dari lima tahapan, yaitu penyusunan diagram *causal loop*, diagram *stock-flow*, validasi model, *base run* simulasi, dan yang terakhir adalah analisis skenario. Penjelasan lebih detail dapat dilihat pada Gambar 2.1.

Untuk melakukan simulasi sebuah model, diperlukan perangkat lunak (software) yang secara tepat dapat melihat perilaku model yang telah dibuat (Muhammadi, 2001). Perangkat lunak terkenal yang digunakan dalam simulasi sistem dinamik adalah Ithink, STELLA (System Thinking Educational Learning Laboratory with Animation), Vensim (Ventana Simulation), dan Powersim (Eleyan et al., 2013). Pada umumnya, aplikasi simulasi komputer yang paling sering digunakan adalah Vensim dan Stella, keduanya memungkinkan penanganan mekanisme sistem dinamik dengan kompleksitas kecil. Powersim merupakan sistem modeling lain yang digunakan untuk mengembangkan kompleksitas lebih besar, seperti untuk bisnis. Stella adalah modeling sitem dinamik pertama yang dikenal secara luas karena memiliki ikonografi yang mudah digunakan untuk memfasilitasi pembentukan simulasi sitem dinamik dan mempunyai komponen intuitif merakit untuk simulasi proses dinamik (Kollikkathara et al., 2010).

Gambar 2.1 Susunan skema pembentukan model (Sumber: Yuan, 2012)

Validasi merupakan pertimbangan utama dalam mengevaluasi apakah model yang dibuat representatif dengan keadaan nyata. Validasi dan pengujian model dapat dilakukan dengan cara berikut (Wirjodirdjo, 2012):

a. Uji struktur Model (white box method)

Mempunyai tujuan untuk melihat apakah struktur model yang dibangun sudah sesuai dengan struktur sistem nyata. Setiap faktor yang mempengaruhi faktor lainnya harus tercermin dalam model. Pengujian ini dilakukan oleh orang yang telah mengenal konsep dan sistem yang dimodelkan. Dalam sistem dinamik, hal utama yang harus dipertimbangkan adalah eksploitasi sistem nyata, pengalaman, dan intuisi (hipotesis), sedangkan data memainkan peranan sekunder.

b. Uji parameter model

Bisa dilakukan dengan validasi variabel input dan validasi logika dalam hubungan antar variabel. Validasi variabel input dilakukan dengan membandingkan data historis nyata dengan data yang diinputkan dalam model. Validasi logika antar variabel dilakukan dengan mengecek logika yang ada dalam sistem, baik input maupun output. Hal ini dapat diilustrasikan sebagaimana variabel A naik, maka variabel B juga harus naik (jika memiliki hubungan sebab akibat positif atau sebaliknya bila mempunyai hubungan keterkaitan sebab akibat negatif). Logika ini juga harus terbukti dalam model simulasi yang di *running*.

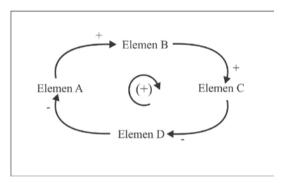
c. Uji kecukupan batasan (boundary adequancy test)

Setiap variabel yang berkaitan dengan model harus dimasukkan karena merupakan representasi dari sistem nyata. Dalam sistem dinamik tidak ada batasan model yang digunakan, namun hanya dibatasi oleh uji kecukupan batasan. Uji ini dilakukan dengan menguji variabel apakah memiliki pengaruh yang signifikan terhadap tujuan model. Apabila tidak signifikan, maka variabel tidak perlu dimasukkan dalam model.

d. Uji kondisi ekstrim (extreme conditions test)

Digunakan untuk menguji kemampuan model apakah berfungsi baik jika kondisi ekstrim sehingga memberi kontribusi sebagai instrumen evaluasi kebijakan. Pengujian ini menunjukkan kesalahan struktural maupun nilai parameter. Pengujian dilakukan dengan memasukkan nilai ekstrim terbesar maupun terkecil pada variabel terukur dan terkendali. Logikanya sama dengan uji kecukupan batas, apabila tidak sesuai, maka model dikatakan tidak valid dalam kondisi ekstrim.

e. Uji perilaku model/replikasi

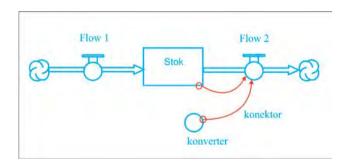

Dilakukan untuk mengetahui apakah model sudah berperilaku sama dengan kondisi nyata atau representatif. Pengujian dilakukan dengan membandingkan data simulasi dengan data sebenarnya hasil simulasi model.

2.4.2 Diagram Causal Loop

Diagram *causal loop* adalah pengungkapan tentang kejadian hubungan sebabakibat (*causal relationship*) ke dalam bahasa gambar tertentu untuk mempermudah upaya penstrukturan sistem. Bahasa gambar tersebut berupa anak

panah yang saling mengait sehingga membentuk sebuah diagram simpal (causal loop), dimana hulu panah merupakan sebab dan ujung panah mengungkapkan akibat. Baik unsur sebab maupun akibat, atau salah satunya harus merujuk pada keadaan yang terukur baik kualitatif untuk keadaan dirasakan (perceive) maupun kuantitatif untuk keadaan nyata (actual). Proses (rate) sebagai sebab yang menghasilkan keadaan (level) sebagai akibat, ataupun sebaliknya, informasi mengenai keadaan memberikan pengaruh pada proses akibat (Muhammadi, 2001).

Setelah diketahui mana unsur yang menjadi sebab dan menjadi akibat yang dihubungkan dengan panah, selanjutnya dapat diketahui jenis akibat yang ditimbulkan oleh sebab tersebut, apakah searah atau berlawanan arah. Jika hubungan sebab dan akibat searah maka tanda panah adalah positif (+), sebaliknya jika hubungannya berlawanan arah maka tanda panahnya adalah negatif (-). Gambar 2.2 merupakan contoh diagram *causal loop* sederhana.


Gambar 2.2 Notasi diagram *causal loop* (Sumber: Chaerul *et al.*, 2008)

Gabungan simpal *feedback* di atas menjelaskan kompleksitas. Semakin banyak simpal menggambarkan semakin banyak variabel (unsur) dan parameter (waktu) yang berarti semakin rinci dan dinamis.

2.4.3 Diagram Stock Flow

Setelah penyusunan diagram *causal loop* untuk keseluruhan sistem dan variabel yang dibutuhkan, langkah selanjutnya dalam aplikasi sistem dinamik adalah

merubah *causal loop* yang telah dibuat ke sebuah model proses yang disebut diagram *stock flow* (Eleyan *et al.*, 2013). Diagram *stock flow* merupakan diagram sirkulasi yang membantu menggambarkan interaksi kompleks dari banyak faktor (Li *et al.*, 2014). Sebuah model sistem dinamik dibangun oleh variabel yang dikategorikan sebagai variabel stok, variabel flow, konektor, dan konverter seperti pada Gambar 2.3. Variabel stok disimbolkan dengan persegi panjang adalah variabel yang mewakili akumulasi utama dalam sistem. Variabel flow disimbolkan dengan katup merupakan tingkat perubahan variabel stok dan mewakili kegiatan yang mengisi atau mengurangi stok. Konverter diwakili oleh lingkaran adalah variabel antara yang digunakan untuk perhitungan hal lain yang mempengaruhi variabel flow. Konektor yang diwakili oleh panah sederhana adalah link informasi yang mewakili penyebab dalam struktur model (Chaerul *et al.*, 2008). Selain itu, ada juga simbol awan yang digunakan sebagai sumber atau saluran dari sebuah variabel flow yang berada di luar batas model (Zhao *et al.*, 2011).

Gambar 2.3 Elemen dasar dalam sistem dinamik (Sumber: Chaerul *et al.*, 2008)

2.5 Penelitian Terdahulu

Penelitian mengenai aplikasi sistem dinamik pernah dilakukan dalam pengembangan manajemen limbah fasilitas kesehatan di Kota metropolitan Istanbul, Turki menggunakan paket *software* Vensim Ple Plus dengan elemen kunci model meliputi populasi, persediaan bed, kategori fasilitas kesehatan, tingkat kecelakaan, dan penerapan pemilahan timbulan limbah medis. Hasil simulasi model dinamik yang dihasilkan digunakan sebagai dasar perencanaan

dan antisipasi kebutuhan investasi manajemen limbah fasilitas kesehatan (Ciplak dan Barton, 2012). Penelitian lain dalam aplikasi sistem dinamik juga digunakan untuk memproyeksikan timbulan dan karakteristik limbah medis di negara berkembang dengan lokasi studi Distrik Jenin, Palestina menggunakan *software* ithink yang digunakan untuk mendukung analisis kebijakan manajemen rumah sakit (Eleyan *et al.*, 2013). Sistem dinamik juga diterapkan untuk pengelolaan limbah padat medis Kota Jakarta menggunakan *software* STELLA 8.0 de ngan membuat struktur model pengelolaan limbah padat medis yang mencakup populasi penduduk, anggaran dana kesehatan, resiko kesehatan, timbulan limbah padat medis, *Municipal Solid Waste* (MSW), dan pengolahan limbah infeksius (Chaerul *et al.*, 2008).

Pembuatan struktur aplikasi sistem dinamik harus diperkuat dengan ketersediaan data base yang baik dan lengkap. Data base yang akan diinputkan pada struktur model didapatkan dari inventarisasi data dari penelitian-penelitian terdahulu yang tertera pada Tabel 2.8.

Tabel 2.8 Penelitian Terdahulu

No.	Penulis	Tahun	Judul Penelitian	Daerah Studi
1	Ayu Kumala Novitasari	2011	Kajian pengelolaan limbah padat B3 di Rumah Sakit Umum Haji Surabaya	Rumah Sakit Umum Haji
2	Intan Puteri Perdani	2011	Identifikasi pola penyebaran limbah padat B3 dari fasilitas kesehatan di Surabaya Timur	Kecamatan Tambaksari, Gubeng, Rungkut, Tenggilis, Gunung Anyar, Sukolilo, dan Mulyorejo
3	Palupi Mutiara Perdana	2011	Kajian pengelolaan limbah padat B3 di Rumah Sakit Umum Daerah Dr. Soetomo	Rumah Sakit Umum Daerah Dr. Soetomo
4	Idkha Anggraini Pramesti	2012	Pengelolaan limbah B3 medis rumah sakit khusus di Surabaya Timur	Kecamatan Tambaksari, Gubeng, Rungkut, Tenggilis, Gunung Anyar, Sukolilo, dan Mulyorejo
5	Amriana	2012	Pengelolaan limbah padat B3 laboratorium medis di Surabaya Timur	Kecamatan Tambaksari, Gubeng, Rungkut, Tenggilis, Gunung Anyar, Sukolilo, dan Mulyorejo

No.	Penulis	Tahun	Judul Penelitian	Daerah Studi
6	Vijay Eglesias Girsang	2013	Evaluasi pengelolaan limbah padat B3 hasil insenerasi di Rumah Sakit Umum Daerah Dr. Soetomo Surabaya	Rumah Sakit Umum Daerah Dr. Soetomo
7	I Wayan Koko Suryawan	2014	Evaluasi pengolahan limbah padat B3 di fasilitas insinerator untuk puskesmas Kota Surabaya	Kota Surabaya

Sumber: Novitasari, 2011; Perdana, 2011; Perdani, 2011; Amriana, 2012; Pramesti 2012; Girsang, 2013, dan Suryawan, 2014

"Halaman ini sengaja dikosongkan"

BAB 3 GAMBARAN UMUM WILAYAH STUDI

3.1 Daerah Studi

Daerah studi penelitian ini yaitu Kota Surabaya bagian Timur karena pada wilayah timur terdapat banyak fasilitas kesehatan dan jumlah penduduk terbesar di Kota Surabaya. Jumlah kecamatan di wilayah Surabaya Timur ada 7, yaitu: Tambaksari, Gubeng, Rungkut, Tenggilis Mejoyo, Gunung Anyar, Sukolilo, dan Mulyorejo. Hasil registrasi tahun 2013 yang dilakukan oleh Dinas Pendaftaran Penduduk dan Pencatatan Sipil Kota Surabaya menyebutkan bahwa jumlah penduduk Surabaya Timur adalah 836.679 jiwa dengan perincihan 417.143 jiwa laki-laki dan 419.536 jiwa perempuan dan kepadatan penduduk 9.176 Jiwa/Km² (Badan Pusat Statistik Kota Surabaya, 2014). Luas wilayah Surabaya Timur adalah ± 91,18 km² dengan laju pertumbuhan penduduk 1,89% tiap tahun. Detail luas wilayah, jumlah penduduk dan kepadatan penduduk untuk setiap kecamatan pada tahun 2013 di Surabaya Timur dapat dilihat pada Tabel 3.1. Detail jumlah penduduk total Surabaya Timur dapat dilihat pada Tabel 3.2.

Tabel 3.1 Luas Wilayah, Banyaknya Penduduk Menurut Jenis Kelamin, dan Kepadatan Per Kecamatan di Surabaya Timur Tahun 2013

No	Kecamatan	Luas Wilayah (Km²)	Laki- laki	Perempuan	Jumlah	Kepadatan (Jiwa/Km²)
1	Tambaksari	8,99	124.060	124.229	248.289	27.618
2	Gubeng	7,99	77.203	79.023	156.226	19.553
3	Rungkut	21,08	56.127	56.073	112.200	5.323
4	Tenggilis Mejoyo	5,52	29.459	29.506	58.965	10.682
5	Gunung Anyar	9,71	27.941	27.840	55.781	5.745
6	Sukolilo	23,68	57.343	57.296	114.639	4.841
7	Mulyorejo	14,21	45.010	45.569	90.579	6.374
	Jumlah	91,18	417.143	419.536	836.679	9.176

Sumber: Badan Pusat Statistik Kota Surabaya, 2014

Jumlah penduduk terbesar dengan kepadatan penduduk yang tinggi terletak di Kecamatan Tambaksari. Semakin banyak jumlah penduduk maka potensi jumlah fasilitas kesehatan kesehatan akan semakin meningkat.

Tabel 3.2 Jumlah Penduduk Tiap Tahun di Surabaya Timur

Tahun	Jumlah Penduduk
2002	651.742
2003	692.721
2004	695.597
2005	709.901
2006	722.056
2007	733.782
2008	752.753
2009	766.839
2010	762.031
2011	787.207
2012	815.252
2013	836.679

Sumber: Badan Pusat Statistik Kota Surabaya, 2003-2014

3.2 Fasilitas Kesehatan di Surabaya Timur

Setiap kecamatan di Surabaya Timur memiliki fasilitas kesehatan. Total fasilitas kesehatan di Surabaya Timur adalah 78 fasilitas yang terdiri dari rumah sakit umum, rumah sakit bersalin, rumah sakit bedah, rumah sakit gigi dan mulut, rumah sakit jiwa, rumah sakit khusus onkologi, puskesmas induk, puskesmas pembantu, balai pengobatan, dan laboratorium medis. Surabaya Timur memiliki fasilitas rumah sakit yang terdiri dari (Dinas Kesehatan Kota Surabaya, 2013):

- 1. Rumah sakit umum, yaitu:
 - a. Rumah Sakit Umum Daerah Dr. Soetomo
 - b. Rumah Sakit Umum Haji
 - c. Rumah Sakit Umum Unair
 - d. Rumah Sakit Royal
- 2. Rumah sakit khusus, yaitu:
 - a. Rumah sakit khusus bersalin:

- Rumah Sakit Bersalin Pura Raharja
- Rumah Sakit Bersalin Putri
- b. Rumah Sakit Bedah Surabaya
- c. Rumah sakit gigi dan mulut:
 - Rumah Sakit Gigi dan Mulut Universitas Airlangga
 - Rumah Sakit Gigi dan Mulut Universitas Hang Tuah
- d. Rumah Sakit Jiwa Menur
- e. Rumah Sakit Onkologi

Setiap kecamatan memiliki minimal satu puskesmas sebagai pusat fasilitas kesehatan masyarakat dan didukung oleh puskesmas pembantu yang dibawahi oleh puskesmas induk. Terdapat 11 puskesmas yang membawahi satu puskesmas pembantu, 2 puskesmas tidak membawahi puskesmas pembantu, dan satu puskesmas induk yang membawahi 2 puskesmas pembantu. Puskesmas Medokan Ayu membawahi 2 puskesmas pembantu, yaitu Puskesmas Pembantu Medokan Ayu dan Puskesmas Pembantu Penjaringan Sari. Nama Puskesmas dan Puskesmas Pembantu di Surabaya Timur tersaji pada Tabel 3.3. Jumlah puskesmas induk tiap tahun disajikan dalam Tabel 3.4.

Tabel 3.3 Nama Puskesmas dan Puskesmas Pembantu di Surabaya Timur

No.	Puskesmas	Puskesmas Pembantu
1	Kalirungkut	Rungkut Kidul
2	Tenggilis	Kutisari
3	Menur	Semolowaru
4	Klampis Ngasem	Gebang Putih
5	Medokan Ayu	Medokan Ayu dan Penjaringan Sari
6	Pucang Sewu	Barata Jaya
7	Mojo	Gubeng Klingsingan
8	Gading	-
9	Gunung Anyar	Rungkut Menanggal
10	Rangkah	Karang Empat
11	Pacar Keling	-
12	Keputih	Medokan Semampir
13	Mulyorejo	Sarana Wisma Permai
14	Kalijudan	Sutorejo
	1 111 0 1	2012

Sumber: Walikota Surabaya, 2012

Tabel 3.4 Jumlah Puskesmas Tiap Tahun di Surabaya Timur

Tahun	Jumlah Puskesmas
2005	12
2006	12
2007	12
2008	12
2009	12
2010	12
2011	13
2012	14
2013	14

Sumber: Badan Pusat Statistik Kota Surabaya, 2006-2014

Kategori balai pengobatan menurut Dinas Kesehatan Kota Surabaya (2014) yaitu: poliklinik, klinik, dan balai pengobatan. Balai pengobatan merupakan kategori fasilitas kesehatan yang memiliki pelayanan lebih lengkap daripada poliklinik dan klinik. Poliklinik dan klinik dibangun sebagai unit kesehatan dari suatu kegiatan atau usaha. Pada umumnya sasaran poliklinik dan klinik adalah kalangan sendiri, sedangkan balai pengobatan terbuka untuk umum. Balai pengobatan di Surabaya Timur ditampilkan pada Tabel 3.5.

Tabel 3.5 Daftar Balai Pengobatan di Surabaya Timur Tahun 2013

No.	Klinik Pratama/Utama
1	BP International Chemical Industry
2	Klinik Medis Ubaya
3	BP W-Care
4	BP Santa Anna
5	BP Surya Giri Jaya 14
6	Klinik Rawat Inap Medik Dasar
7	Poliklinik STIESIA
8	BP Keluarga Mulyosari
9	BP At – Taufiq
10	Medical Center ITS
11	Klinik PLK Universitas Airlangga Kampus C
12	BP dr. Eko

Sumber: Dinas Kesehatan Kota Surabaya, 2014

Laboratorium medis termasuk salah satu fasilitas kesehatan yang memiliki variasi pelayanan kesehatan. Dari data yang diperoleh di lapangan terdapat 29 laboratorium medis di Surabaya Timur yang masih beroperasi (Amriana, 2012). Laboratorium tersebut terdiri dari laboratorium kelas utama, pratama, dan khusus. Daftar laboratorium medis di Surabaya Timur tersaji pada Tabel 3.6.

Tabel 3.6 Daftar Laboratorium Medis di Surabaya Timur

No.	Kecamatan	Laboratorium Medis
1	Rungkut	Pratama Akurat
		Pratama D'Dothe
		Pratama Larissa
		Pratama Akurat
		Pratama Pusura
		Pratama Parahita
2	Gubeng	Pratama Kimia Farma
		Pratama Sumbawa
		Khusus Fertilab
		Pratama Barata Medika
		Utama Pramita
		Utama Kedungdoro
		Pratama Promita
		Pratama Resident
		Pratama Prolab
		Utama Klinika
3	Tenggilis	Pratama Sentra Medika Surabaya
		Pratama Kencana Medika
4	Gunung Anyar	Pratama Optima
5	Mulyorejo	Pratama Prodia
		Pratama Granostic Diagnostic Center
		Pratama Sehat
		Pratama Excel
		Pratama Parahita Diagnostic Center
		Pratama Pramita
6	Sukolilo	Pratama Sigma Medika
		Utama Mitra Husada
		Pratama Pantai Bethany Care
7	Tambaksari	-

Sumber: Amriana, 2012

3.3 Kondisi Eksisting Pengelolaan Limbah Padat Medis

Pengelolaan limbah padat medis di Surabaya Timur meliputi pemilahan berdasarkan jenis limbah medis, pewadahan, pengumpulan sementara, pengangkutan menuju fasilitas pemusnahan, pembakaran menggunakan insinerator, dan pembuangan akhir. Kegiatan pemilahan dan pewadahan dilakukan dari sumber. Pengumpulan sementara dilakukan setiap hari oleh petugas khusus yang bertangungjawab terhadap limbah padat medis. Setiap fasilitas kesehatan memiliki tempat pengumpulan khusus untuk limbah medis yang dikumpulkan setiap hari dari masing-masing unit.

Pengangkutan limbah padat medis dilakukan beberapa hari sekali menuju lokasi insinerasi. Tujuan pengangkutan limbah medis di Surabaya Timur tersaji pada Tabel 3.7.

Tabel 3.7 Tujuan Pengangkutan Limbah Padat Medis

No.	Nama fasilitas kesehatan	Tujuan Pengangkutan	Status
	RSUD Dr. Seotomo		
	Rumah Sakit Bersalin Pura Raharja		
	RSGM UNAIR		
	BP International Chemical Industry		
	Lab Medis Pratama Kimia Farma		
	Lab Medis Pratama Sumbawa		
	Lab Medis Pratama Promitra		
1	Lab Medis Pratama Resident	RSUD Dr.	D 11
1	Lab Medis Pratama Sentra Medika Surabaya	Seotomo	Pengolah
	Lab Medis Pratama Prolab		
	Lab Medis Pratama Granostic Diagnostic Center		
	Lab Medis Pratama Pramita		
	Lab Medis Pratama Klinika		
	Lab Medis Utama Pramita Utama		
	Lab Medis Utama Kedungdoro		
	Lab Medis Utama Klinika		
2	RSU Haji	RSU Haji	Pengolah
3	Rumah Sakit Bersalin Putri	Putri	Pengolah
4	Rumah Sakit Bedah Surabaya	-	-

No.	Nama fasilitas kesehatan	Tujuan Pengangkutan	Status
5	Klinik Medis Ubaya	Lembaga Penyakit Tropis Unair	Pengolah
6	RSGM Hang Tuah	-	-
7	RSJ Menur	Menur	Pengolah
8	Rumah sakit onkologi	-	-
	Puskesmas Kalirungkut		
	Puskesmas Menur		
	Puskesmas Klampis Ngasem		
	Puskesmas Medokan Ayu		
	Puskesmas Keputih	D 1	
9	Puskesmas Tenggilis	Puskesmas Medokan Ayu	Pengolah
	Puskesmas Gunung Anyar	Wedokan Ayu	
	Puskesmas Pembantu Penjaringan Sari		
	Puskesmas Pembantu Medokan Ayu		
	BP At-Taufiq		
	Lab Medis Pratama Larisa		
10	Puskesmas Pembantu Semolowaru	Puskesmas Menur	Pengumpul
11	Puskesmas Pembantu Rungkut Kidul	Puskesmas Kalirungkut	Pengumpul
12	Puskesmas Pembantu Medokan Semampir	Puskesmas Keputih	Pengumpul
	Puskesmas Pembantu Gebang Putih	Puskesmas	
13	Lab Medis Pratama Sehat	Klampis Ngasem	Pengumpul
14	Puskesmas Pembantu Kutisari	Puskesmas Tenggilis	Pengumpul
15	Puskesmas Pembantu Rungkut Menanggal	Puskesmas Gunung Anyar	Pengumpul
	Puskesmas Pucang Sewu		
	Puskesmas Pacar Keling	D 1	
16	Lab Medis Pratama Pantai Bethany Care	Puskesmas Jagir	Pengolah
	Lab Medis Pratama Akurat	Jagn	
	Lab Medis Utama Mitra Husada		
	Puskesmas Gading		
	Puskesmas Rangkah		
17	Puskesmas Mulyorejo	D1	
	Puskesmas Kalijudan	Puskesmas Tanah Kali	Pengolah
	Puskesmas Mojo	Kedinding	
	BP W-Care	Homome	
	BP Surya Giri Jaya 14		
	Lab Medis Pratama Kencana Medika		
18	Puskesmas Pembantu Sutorejo	Puskesmas	Pengumpul

No.	Nama fasilitas kesehatan	Tujuan Pengangkutan	Status
		Kalijudan	_
19	Puskesmas Pembantu Sarana Wisma Permai	Puskesmas Mulyorejo	Pengumpul
20	Puskesmas Pembantu Barata Jaya	Puskesmas Pucang Sewu	Pengumpul
21	Puskesmas Pembantu Karang Empat	Puskesmas Rangkah	Pengumpul
22	Puskesmas Pembantu Gubeng Klingsingan	Puskesmas Mojo	Pengumpul
	Poliklinik STIESIA		
	BP dr. Eko		
23	Medical center ITS	CV Rojokoyo	Pengolah
	Lab Medis Pratama Prodia		
	Lab Medis Utama Parahita		
24	BP Santa Anna	BPOM Karang Menjangan	Pengolah
25	BP Keluarga Mulyosari	UTDC PMI Sidoarjo	Pengolah
26	Klinik PLK Unair C	PLK Unair B	Pengumpul
27	Klinik Rawat Inap Medik Dasar	RS Sido Waras Mojokerto	Pengolah
28	Lab Medis Pratama Parahita Diagnostic Center	Utama Parahita Dharmawangsa	Pengumpul
29	Lab Medis Pratama D'Dothe	Lab D'Dhote Sidoarjo	Pengumpul
30	Lab Medis Pratama Fertilab	RS Siloam	Pengolah
31	Lab Medis Pratama Optima	RSAL Dr. Ramelan	Pengolah

Sumber: Perdani, 2011; Amriana, 2012; Pramesti, 2012

3.4 Kondisi Eksisting Insinerator di Surabaya Timur

Tidak semua fasilitas kesehatan di Surabaya Timur memiliki fasilitas pengolahan insinerator. Fasilitas kesehatan yang memiliki insinerator adalah RSUD Dr. Soetomo, RSU Haji, Rumah Sakit Bersalin Pura Raharja, Rumah Sakit Bersalin Putri, Rumah Sakit Jiwa Menur, dan Puskesmas Induk Medokan Ayu.

3.4.1 Insinerator RSUD Dr. Soetomo

RSUD Dr. Soetomo memiliki tiga unit insinerator jenis *Rotary Klin*, *Hoval Multizon* CV, dan CMC *type* IR-2. Insinerator jenis *Rotary Klin* jarang digunakan karena kapasitasnya kecil. Kapasitas sekali pembakaran Insinerator *Hoval Multizon* CV yaitu 100 kg/pembakaran, sedangkan Insinerator CMC *type* IR-2 yaitu 200 kg/pembakaran. Frekuensi pembakaran dalam sehari adalah 8 kali, masing-masing insinerator *Hoval Multizon* CV dan CMC *type* IR-2 frekuensinya 4 kali. Waktu pengoperasian selama 30 menit. Suhu yang dicapai dalam pembakaran yaitu 1000 °C dengan bahan bakar solar (Girsang, 2013).

3.4.2 Insinerator RSU Haji

RSU Haji memiliki satu unit insinerator jenis *Power Incinerator* dengan kapasitas sekali pembakaran yaitu 100 kg/jam. Frekuensi pembakaran dalam sehari adalah 4 kali, sehingga dalam sehari limbah padat medis yang dapat diinsinerasi sebanyak 400 kg/hari. Insinerator RSU Haji dioperasikan mulai pukul 7.00–15.00 dengan lama waktu pengoperasian selama 1 jam kemudian pendinginan selama 1 jam. Suhu yang dicapai dalam pembakaran yaitu 900–1000 °C. Dalam sekali pembakaran solar yang dihabiskan sebanyak 20–25 liter. DRE yang mampu dicapai adalah 90%. Jarak insinerator dengan fasilitas umum yaitu 70 m.

3.4.3 Insinerator RS Bersalin Pura Raharja

Rumah Sakit Bersalin Pura Raharja mengolah limbah medis yang berupa limbah non tajam dengan melakukan insinerasi sendiri. Waktu insinerasi yaitu kondisional bergantung dengan jumlah limbah yang dihasilkan. Apabila insinerator penuh makan dilakukan pembakaran. Biasanya dilakukan dua hari sekali. Jenis insinerator yang dimiliki adalah tungku pembakaran dengan dimensi panjang 151 cm, lebar 126,5 cm, tinggi 145 cm, dan tinggi cerobong 5 m. Bahan bakar yang digunakan adalah minyak tanah dengan jumlah yang kondisional, lama proses pembakaran selama 2 jam, namun suhu tidak terukur.

Abu yang dihasilkan dari proses pembakaran yaitu \pm 100 kg/4 karung berukuran 25 kg. Pengeluaran abu dari insinerator dilakukan ketika insinerator sudah penuh dan tidak dimungkinkan untuk melakukan pembakaran. Abu tersebut dikumpulkan dan akan diambil oleh Dinas Kebersihan Kota Surabaya ketika petugas tersebut berpatroli (Pramesti, 2012).

3.4.4 Insinerator RS Bersalin Putri

RSB Putri mengolah seluruh limbah medis dengan insinerator kecuali botol infus kaca tidak dilakukan pengolahan tetapi hanya dikumpulkan di TPS. Kapasitas pembakaran insinerator RSB Putri adalah 75 cm × 70 cm × 60 cm dengan bahan bakar solar sebanyak 10 liter/pembakaran. Tinggi cerobongnya adalah 8 meter. Pembakaran dilakukan selama 1 jam dengan suhu 700 °C. Abu insinerasi ditimbun di dekat insinerator dan dimanfaatkan untuk pupuk tanaman (Pramesti, 2012).

3.4.5 Insinerator RSJ Menur

RSJ Menur melakukan pengolahan setempat limbah B3 medis dengan menggunakan insinerator. Insinerator dioperasikan oleh petugas khusus yang mengerti tentang SOP dari insinerator. Pengolahan dilakukan sekali dalam seminggu yaitu hari Kamis. Pengeluaran abu dilakukan hari Jumat karena menunggu pendinginan abu. Abu yang dihasilkan tidak terukur dan ditimbun di sebelah insinerator.

Spesifikasi insinerator RSJ Menur Tipe PX5, kapasitas pembakaran 1000 liter, tinggi cerobong 7 m, bahan bakar solar dengan kebutuhan 5-10 liter dalam sekali pembakaran. Lama proses adalah 1 jam dengan suhu hingga 1200 °C (Pramesti, 2012).

3.4.6 Insinerator Puskesmas Medokan Ayu

Puskesmas Medokan Ayu merupakan satu-satunya puskesmas di Surabaya Timur yang memiliki unit insinerator. Jenis insinerator yang dimiliki yaitu *Closed Incinerator* dengan kapasitas sekali pembakaran yaitu 50 kg/pembakaran. Dalam sehari limbah medis yang dapat dimusnahkan sebesar 30–40 kg/hari. Limbah padat medis yang dibakar meliputi limbah medis benda tajam dan infeksius. Frekuensi pembakaran dilakukan 3 kali dalam seminggu., dalam sehari hanya melakukan 1 kali pembakaran. Pembakaran dilakukan pada pukul 05.00-07.00 WIB selama 75 menit/pembakaran. Suhu yang dapat dicapai adalah 630 °C dengan menghabiskan bahan bakar solar sebanyak 10 liter/pembakaran. DRE yang dicapai hanya 74,44%. Luas bangunan insinerator adalah 6 m², jarak dari permukiman ke puskesmas hanya 5 m. Sudah ada SOP insinerator di Puskesmas Medokan Ayu. Ada sistem blower dan sudah pernah diuji emisinya. Puskesmas Medokan Ayu melakukan pengolahan terhadap residu dari pembakaran (BLH Kota Surabaya, 2014; Suryawan, 2014).

"Halaman ini sengaja dikosongkan"

BAB 4

METODE PENELITIAN

4.1 Umum

Metode penelitian merupakan pokok yang menjadi dasar dalam melakukan penelitian. Metode penelitian bertujuan untuk menjadi acuan langkah dan tahapan selama pelaksanaan penelitian. Metode penelitian yang sistematis dan terstruktur akan memperkecil kesalahan yang terjadi dan hasil penelitian akan menjawab tujuan.

Penelitian ini bertujuan untuk aplikasi sistem dinamik pengelolaan limbah padat medis dengan mempertimbangkan aspek teknis, lingkungan, dan biaya. Kondisi eksisting dimana pengolahan limbah padat medis dilakukan masing-masing fasilitas kesehatan yang memiliki insinerator digunakan sebagai *baseline* dalam penelitian ini. Analisis pengelolaan limbah padat medis dibagi menjadi 2 skenario. Skenario pertama adalah skenario pengolahan terpusat yang sinergi dengan rencana pengelolaan yang akan dilakukan oleh Badan Lingkungan Hidup Kota Surabaya (Skenario Terpusat) dan skenario kedua adalah skenario wilayah yang disesuaikan dengan potensi fasilitas kesehatan di Surabaya Timur yang dapat dikembangkan menjadi pusat pengolahan limbah padat medis di Surabaya Timur (Skenario Wilayah).

Penelitian ini didasarkan pada adanya GAP antara kondisi pengelolaan yang ideal dengan dengan kondisi eksisting sehingga dibentuklah rumusan masalah dan tujuan dari penelitian, kemudian dilakukan pengumpulan data sekunder dan primer, analisis data, sehingga bisa ditarik kesimpulan dan saran dari penelitian ini.

4.2 Kerangka Alur Penelitian

Kerangka alur penelitian merupakan alur kegiatan yang dijadikan acuan untuk memudahkan pelaksanaan penelitian agar dapat mencapai tujuan yang diharapkan. Kerangka acuan penelitian ini dapat dilihat pada Gambar 4.1.

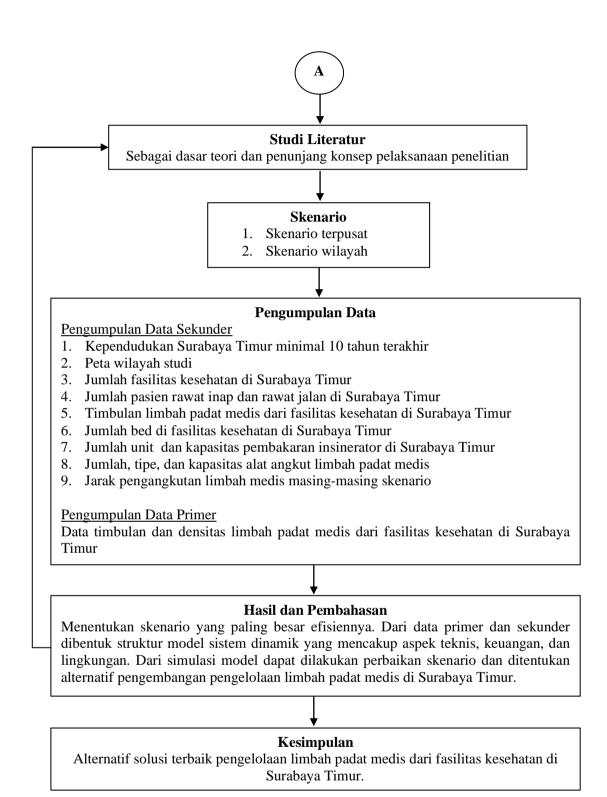
GAP

Kondisi Eksisting

- Fasilitas kesehatan di Surabaya Timur menghasilkan limbah padat medis.
- 2. Tidak semua fasilitas kesehatan di Surabaya Timur memiliki insinerator.
- 3. Kinerja insinerator yang dimiliki oleh fasilitas kesehatan Surabaya Timur belum memenuhi aturan yang berlaku (suhu dan DRE belum sesuai aturan).
- 4. Perlu penyelesaian permasalahan pengelolaan limbah padat medis di Surabaya Timur menggunakan aplikasi sistem dinamik dengan pendekatan *causal loop* karena kondisi eksisting yang dinamis dan kompleks.

Kondisi Ideal

- 1. Menurut Peraturan Pemerintah No. 101 Tahun 2014, harus dilakukan pengelolaan khusus limbah B3 agar tidak mencemari dan merusak lingkungan hidup.
- 2. Keputusan Kepala Bapedal No. 3 Tahun 1995 tentang Pengolahan Limbah B3 khususnya tentang pengolahan dengan insinerator.
- 3. Menurut Permenkes No. 1204 Tahun 2004, pembakaran pada insinerator harus pada suhu 1.200°C
- 4. Sistem dinamik sangat cocok untuk simulasi sistem yang kompleks seperti sistem pengelolaan limbah (Chaerul, *et al.*, 2008)


Rumusan Masalah

Perumusan masalah dalam penelitian ini adalah bagaimana aplikasi sistem dinamik dalam pengelolaan limbah padat medis dari fasilitas kesehatan di Surabaya Timur dengan mempertimbangkan aspek teknis, keuangan, dan lingkungan. Skenario pengelolaan limbah padat medis digunakan untuk mengetahui pengolahan yang tepat digunakan. Simulasi model dinamik akan digunakan untuk menentukan alternatif pengembangan pengelolaan limbah padat medis di Surabaya Timur.

Tujuan

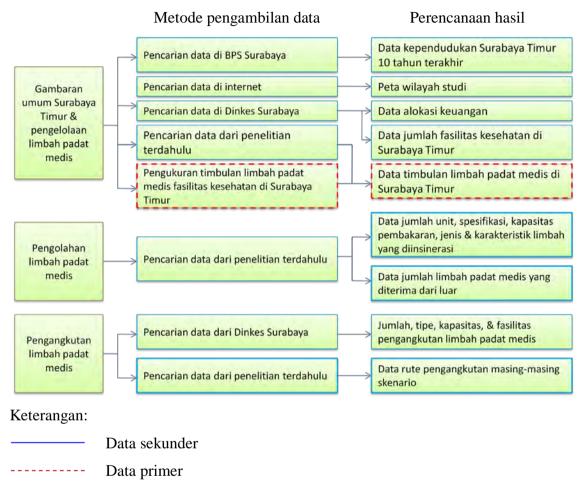
Tujuan penelitian ini yaitu mengetahui alternatif solusi terbaik untuk pengelolaan limbah padat medis fasilitas kesehatan di Surabaya Timur dengan mempertimbangkan aspek teknis, lingkungan, dan biaya.

Gambar 4.1 Kerangka alur penelitian

4.3 Pelaksanaan Penelitian

4.3.1 Penentuan Wilayah Penelitian

Penentuan wilayah penelitian disesuaikan dengan persyaratan lingkup tesis di Jurusan Teknik Lingkungan ITS. Penelitian terdahulu mengenai pengelolaan limbah padat medis di fasilitas kesehatan dapat dijadikan acuan untuk menentukan lokasi studi. Wilayah studi penelitian ini adalah Surabaya Timur yang memiliki jumlah penduduk terbesar di Kota Surabaya yaitu 836.679 jiwa (Badan Pusat Statistik Kota Surabaya, 2014). Penentuan wilayah ini didasarkan pada beberapa penelitian sebelumnya yang pernah dilakukan di fasilitas kesehatan di Surabaya Timur sehingga tersedia data sekunder yang akan memperkuat pembentukan model. Selain itu, Surabaya Timur mempunyai banyak fasilitas kesehatan yaitu 78 fasilitas dan memiliki 8 fasilitas pengolahan limbah padat medis berupa insinerator yang dimiliki oleh beberapa rumah sakit dan puskesmas.


4.3.2 Pengumpulan Data

Data yang dibutuhkan dalam penelitian ini terdiri data sekunder dan data primer. Pengumpulan data sekunder berlangsung sebelum dan pada saat penelitian dilakukan. Sedangkan data primer dikumpulan ketika pelaksanaan penelitian.

4.3.2.1 Data Sekunder

Data sekunder yang dibutuhkan dalam penelitian ini antara lain data kependudukan Surabaya Timur minimal 10 tahun terakhir; peta wilayah studi; jumlah fasilitas kesehatan di Surabaya Timur; jumlah pasien rawat inap dan rawat jalan di Surabaya Timur; timbulan limbah padat medis dari fasilitas kesehatan di Surabaya Timur; jumlah bed di fasilitas kesehatan di Surabaya Timur; jumlah unit dan kapasitas pembakaran insinerator di Surabaya Timur; Jumlah, tipe, dan kapasitas alat angkut limbah padat medis; jarak pengangkutan limbah medis masing-masing skenario. Data sekunder ini didapat dari penelitian terdahulu

mengenai limbah padat medis fasilitas kesehatan di Surabaya Timur, Badan Pusat Statistik Kota Surabaya, internet, dan Dinas Kesehatan Kota Surabaya. Rencana pengumpulan data secara detail dapat dilihat pada Gambar 4.2.

Gambar 4.2 Rincian Jenis dan Metode Pengambilan Data

4.3.2.2 Data Primer

Data primer yang dibutuhkan berupa informasi mengenai jumlah timbulan padat medis yang dihasilkan, pengelolaan yang dilakukan, serta penyebaran limbah padat medis dari fasilitas kesehatan di Surabaya Timur. Pengambilan data primer meliputi:

a. Survei pengelolaan dan pengolahan

Survei pengelolaan dan pengolahan dilakukan dengan metode wawancara dan observasi. Wawancara dan observasi dengan penyebaran kuesioner A kepada fasilitas kesehatan yang disurvey di Surabaya Timur untuk menghasilkan informasi mengenai:

- Identitas fasilitas kesehatan meliputi nama lembaga, lama jam operasonal, rata-rata jumlah pasien per-hari, jumlah bed, dan pelayanan yang ada. Tujuan dari pertanyaan tersebut yaitu untuk mengetahui kondisi dari fasilitas kesehatan.
- Identifikasi limbah padat medis, meliputi jenis limbah padat medis yang dihasilkan, sumber aktivitas yang menghasilkan limbah, pengumpulan limbah, dan frekuensi pengumpulan limbah.
- Pengelolaan limbah padat medis meliputi pewadahan, pengumpulan, penyimpanan, penyimpanan, pengangkutan, pengolahan dan pembuangan yang dilakukan.

Selain itu juga dilakukan wawancara dan observasi dengan penyebaran kuesioner B pada fasilitas kesehatan yang memiliki fasilitas pengolahan insinerator. Kuesioner B dibagikan kepada pengolah limbah padat medis untuk mendapatkan informasi mengenai:

- Identitas pihak pengolah meliputi nama lembaga/institusi, alamat dan sumber limbah yang diolah.
- Identifikasi limbah B3 yang dihasilkan dan pengelolaan yang dilakukan meliputi penyimpanan, pengolahan, pemanfaatan, dan pembuangan limbah padat medis.

b. Pengukuran timbulan di lokasi sampling

Pengukuran langsung di lapangan dilakukan pada beberapa fasilitas kesehatan di Surabaya Timur. Fasilitas kesehatan yang disampling terdiri dari 14 puskesmas induk, 13 puskesmas pembantu, dan 8 balai pengobatan yang ada di wilayah Surabaya Timur. Data timbulan limbah padat medis dari rumah sakit umum, rumah sakit khusus, dan laboratorium medis telah tersedia dari penelitian terdahulu sehingga tidak dilakukan pengambilan data primer.

Jumlah balai pengobatan di Surabaya Timur adalah 12 unit, namun hanya dilakukan sampling pada 8 lokasi karena terkendala masalah perizinan. Tabel 4.1 adalah lokasi pengambilan sampel limbah padat medis.

Tabel 4.1 Lokasi Pengambilan Sampel Limbah Padat Medis

No.	Jenis Fasilitas Kesehatan	Lokasi
1		Kalirungkut
2		Tenggilis
3		Menur
4		Klampis Ngasem
5		Medokan Ayu
6		Pucang Sewu
7	D 1	Mojo
8	Puskesmas Induk	Gading
9		Gunung Anyar
10		Rangkah
11		Pacar Keling
12		Keputih
13		Mulyorejo
14		Kalijudan
15		Barata Jaya
16		Semolowaru
17		Rungkut Menanggal
18		Sutorejo
19		Wisma Permai
20	Puskesmas pembantu	Kutisari
21	·	Gubeng Klingsingan
22		Rungkut Kidul
23		Penjaringan Sari
24		Medokan Semampir
25		Gebang Putih
26		Poliklinik STIESIA
27		BP At-Taufiq
28	Balai pengobatan	BP W-Care
29		Klinik Medis Ubaya
30		BP dr. Eko
31		BP Santa Anna
32		BP International Chemical Industry
33		Medical center ITS

Pengukuran sampel timbulan di lokasi sampling dilakukan selama 8 hari dengan cara menimbang limbah padat medis yang telah terkumpul menggunakan timbangan dan diukur volumenya menggunakan kotak densitas. Peralatan yang digunakan adalah timbangan digital merk OHAUS *Digital Portable Balance* model *Scout Pro* kapasitas 0,0001–4.000 gram, selain itu juga digunakan timbangan digital gantung *portable* merk WeiHeng kapasitas 10–40.000 gram, kotak densitas 40 liter, meteran dan perlengkapan berupa sarung tangan sekali pakai dan masker. Timbangan OHAUS digunakan untuk menimbang limbah padat medis yang kurang dari 4 kg. Jika limbah padat medis yang ditimbang lebih dari 4 kg, maka digunakan timbangan gantung WeiHeng. Pengukuran limbah padat medis menggunakan kotak densitas dan meteran. Densitas limbah padat medis didapatkan dari hasil pembagian berat limbah padat medis terhadap volume limbah padat medis.

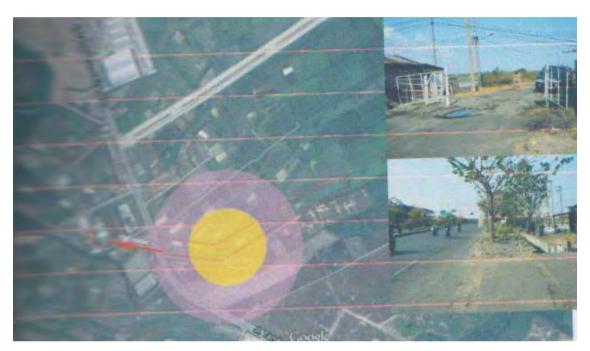
4.3.3 Hasil dan Pembahasan

Penelitian ini akan menganalisis alternatif pengolahan limbah padat medis yang akan disajikan dalam bentuk struktur aplikasi sistem dinamik dengan menggunakan *software* Stella 9.1.3. Dari simulasi model dapat ditentukan langkah pengembangan pengelolaan limbah padat medis yang sesuai untuk diterapkan di Surabaya Timur. Skenario pengolahan limbah padat medis yang digunakan dibagi menjadi 2 skenario kemudian dipilih skenario yang paling baik untuk diterapkan.

4.3.3.1 Elemen Inti Struktur Model Sistem Dinamik

Analisis pengelolaan limbah padat medis di Surabaya Timur menggunakan pendekatan *causal loop*. Aplikasi sistem dinamik digunakan untuk menganalisis interaksi antar berbagai elemen dalam pengelolaan limbah padat medis. Elemen inti dalam struktur sistem dinamik disusun atas kategori variabel berupa *stock* (simbol persegi panjang), *flow* (simbol *valve*), *connector* (simbol lingkaran), dan *converter* (simbol arah panah). Variabel *stock* disimbolkan dalam bentuk persegi panjang yang merupakan elemen inti dan merepresentasikan akumulasi utama dari

sistem. Elemen inti ini dipengaruhi oleh variabel *flow*, *connector*, dan *converter*. Data yang didapat akan dimasukkan ke dalam *software* sebagai *stock*, *flow*, dan *converter*. Dari hasil simulasi model akan dapat diketahui kondisi eksisting pengelolaan limbah padat medis dan prediksi jangka panjang.


4.3.3.2 Ruang lingkup dan Batasan Model Sistem Dinamik

Variabel struktur model sistem dinamik yang digunakan dalam penelitian ini ada 3 aspek, yaitu: aspek teknis, aspek lingkungan, dan aspek biaya. Aspek teknis meliputi timbulan limbah padat medis dan pengangkutan limbah padat medis. Aspek lingkungan meliputi emisi yang dikeluarkan oleh pengangkutan dan pengolahan menggunakan insinerator. Aspek biaya meliputi biaya investasi (pengadaan insinerator dan alat angkut) serta biaya operasional (pengolahan dan pengangkutan).

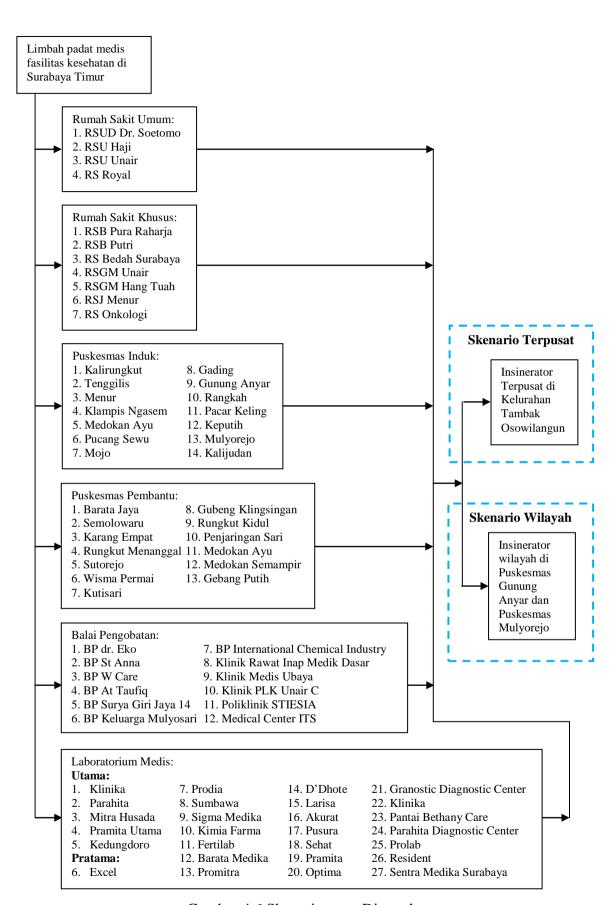

Kondisi eksisting pengolahan limbah padat medis dilakukan di masing-masing fasilitas kesehatan di Surabaya Timur yang memiliki insinerator, yaitu RSUD Dr. Soetomo, RSU Haji, RS Bersalin Pura Raharja, RS Bersalin Putri, RS Jiwa Menur, dan Puskesmas Medokan Ayu. Kondisi eksisting digunakan sebagai *baseline* dalam simulasi model dinamik pengelolaan limbah padat medis di Surabaya Timur.

Struktur model sistem dinamik akan disimulasikan dengan 2 skenario. Skenario pertama (Skenario Terpusat) adalah pengolahan terpusat yang sinergi dengan rencana pengelolaan yang akan dilakukan oleh Badan Lingkungan Hidup Kota Surabaya, rencana lokasi pengolahan limbah medis terpusat berada di Kelurahan Tambak Osowilangun, Kecamatan Asemrowo (Gambar 4.3). Skenario kedua (Skenario Wilayah) didasarkan pada potensi fasilitas kesehatan di Surabaya Timur yang dapat dikembangkan menjadi pusat pengolahan limbah padat medis di Surabaya Timur. Lokasi pengolahan wilayah direncanakan berada di Puskesmas Gunung Anyar dan Puskesmas Mulyorejo dengan pertimbangan kedua lokasi ini memiliki lahan yang cukup luas untuk dikembangkan dan cukup jauh dari fasilitas

umum daripada fasilitas kesehatan lainnya di Surabaya Timur (Gambar 4.4 dan 4.5). Penjelasan lebih rinci mengenai pembagian skenario dapat dilihat pada Gambar 4.6.

Gambar 4.3 Lokasi Kelurahan Tambak Osowilangun

Gambar 4.4 Lokasi Puskesmas Gunung Anyar: (a) Tampak Depan, (b) Batas Depan: Lahan Perumahan, (c) Batas Utara: Bangunan Pasar, (d) Batas Selatan: Kantor Kelurahan


Gambar 4.5 Lokasi Puskesmas Gunung Anyar: (a) Tampak Depan, (b) Batas Depan: Lahan Perumahan, (c) Batas Utara: Kolam Ikan, (d) Batas Selatan: Kantor Kelurahan

4.3.3.3 Konseptualisasi Model

Model konseptual memberikan gambaran secara umum mengenai simulasi sistem dinamik yang akan dilakukan. Konseptualisasi model diawali dengan mengidentifikasi terlebih dahulu variabel-variabel yang berinteraksi dan saling mempengaruhi di dalam pengelolaan limbah padat medis. Untuk mempermudah identifikasi dan pemodelan, disusun tabel identifikasi variabel beserta dengan deskripsinya untuk memudahkan pemahaman pemodelan. Setelah itu dibentuk diagram sebab-akibat atau *causal loop diagram*, serta *stock and flow diagram* dari model sistem amatan.

A. Identifikasi Variabel

Tahap awal konseptualisasi adalah mengidentifikasi variabel yang mempengaruhi sistem. Tujuan dilakukannya identifikasi variabel untuk memperdalam pengetahuan terhadap sistem yang diteliti sekaligus memudahkan dalam pembentukan model selanjutnya. Variabel yang akan diidentifikasi harus terkait dengan parameter yang berpengaruh terhadap kebijakan pengelolaan limbah padat

Gambar 4.6 Skenario yang Digunakan

medis di Surabaya Timur. Berikut merupakan identifikasi variabel yang ditunjukan pada Tabel 4.2.

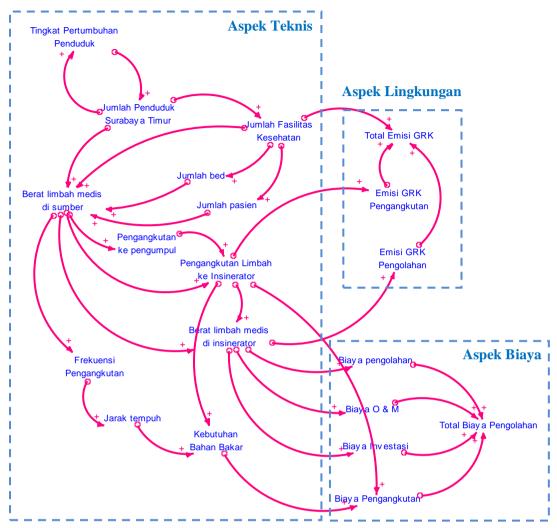
Tabel 4.2 Identifikasi Variabel Terkait Model Sistem Dinamik

No.	Variabel	Definisi	Satuan			
	Aspek Teknis					
1	Jumlah penduduk	Jumlah penduduk Surabaya Timur	orang			
2	Tingkat pertumbuhan penduduk	Tingkat pertumbuhan penduduk Surabaya Timur	per tahun			
3	Pertumbuhan penduduk	Penambahan penduduk setiap tahun	orang/tahun			
4	Jumlah Rumah Sakit Umum (RSU)	Jumlah rumah sakit umum (RSU)	unit			
5	Tingkat pertumbuhan RSU	Tingkat pertumbuhan rumah sakit umum	per unit			
6	Pertumbuhan RSU	Pertumbuhan rumah sakit umum	unit/tahun			
7	Timbulan limbah medis RSU	Timbulan limbah padat medis yang dihasilkan rumah sakit umum	ton/unit/ tahun			
8	Jumlah pasien rawat inap RSU	Jumlah pasien rawat inap rumah sakit umum	orang			
9	Tingkat pertumbuhan pasien rawat inap RSU	Tingkat pertumbuhan pasien rawat inap rumah sakit umum	per tahun			
10	Pertumbuhan pasien rawat inap RSU	Pertumbuhan pasien rawat inap rumah sakit umum	orang/tahun			
11	Timbulan limbah medis pasien rawat inap RSU	Timbulan limbah medis dari pasien rawat inap rumah sakit umum	ton/orang/ tahun			
12	Berat limbah medis pasien rawat inap RSU	Berat limbah medis pasien rawat inap di rumah sakit umum	ton/tahun			
13	Jumlah pasien Rawat Jalan RSU	Jumlah pasien rawat jalan di rumah sakit umum	orang			
14	Tingkat pertumbuhan pasien rawat jalan RSU	Tingkat pertumbuhan pasien rawat jalan rumah sakit umum	per tahun			
15	Pertumbuhan pasien rawat jalan RSU	Pertumbuhan pasien rawat jalan rumah sakit umum	orang/tahun			
16	Timbulan limbah medis pasien rawat jalan RSU	Timbulan limbah medis pasien rawat jalan rumah sakit umum	ton/orang/ tahun			
17	Berat limbah medis pasien rawat jalan RSU	Berat limbah medis yang dihasilkan pasien rawat jalan di rumah sakit umum	ton/tahun			
18	Jumlah bed RSU	Jumlah bed yang ada di rumah sakit umum	bed			
19	Timbulan limbah medis per bed RSU	Timbulan limbah medis yang dihasilkan per bed di rumah sakit umum	ton/bed/ tahun			

No. Variabel Definisi Satuan				
RSU Jumlah Rumah Sakit Khusus (RSK) Tingkat pertumbuhan RSK Pertumbuhan RSK Pertumbuhan rumah sakit khusus di Surabaya Timur Tingkat pertumbuhan rumah sakit khusus di Surabaya Timur Pertumbuhan rumah sakit khusus di Surabaya Timur Tingkat pertumbuhan rumah sakit khusus di Surabaya Timur Tingkat pertumbuhan rumah sakit khusus di Surabaya Timur Tingkat pertumbuhan pasien rawat inap RSK Jumlah pasien rawat inap RSK Tingkat pertumbuhan pasien rawat inap RSK Timbulan limbah madis pasien rawat inap RSK Timbulan limbah medis pasien rawat inap RSK Pertumbuhan pasien rawat inap RSK Timbulan limbah medis pasien rawat inap RSK Berat limbah medis pasien rawat jalan RSK Jumlah pasien rawat jalan RSK Timbulan limbah medis pasien rawat jalan rumah sakit khusus Timbulan limbah medis yang dihasilkan dari pasien rawat jalan di rumah sakit khusus Timbulan limbah medis yang dihasilkan dari pasien rawat jalan rumah sakit khusus Timbulan limbah medis yang dihasilkan dari pasien rawat jalan rumah sakit khusus Timbulan limbah medis yang dihasilkan dari pasien rawat jalan rumah sakit khusus Timbulan limbah medis yang dihasilkan dari pasien rawat jalan rumah sakit khusus Timbulan limbah medis yang dihasilkan dari pasien rawat jalan rumah sakit khusus Timbulan limbah medis yang dihasilkan dari pasien rawat jalan rumah sakit khusus Timbulan limbah medis yang dihasilkan dari pasien rawat jalan rumah sakit khusus Timbulan limbah medis yang dihasilkan dari pasien rawat jalan rumah sakit khusus Timbulan limbah me	No.			Satuan
Jumlah Rumah Sakit Khusus (RSK) di Surabaya Timur	20			ton/tahun
Khusus (RSK) Surabaya Timur Tingkat pertumbuhan RSK Pertumbuhan RSK Pertumbuhan rumah sakit khusus di Surabaya Timur Timgkat pertumbuhan rumah sakit khusus di Surabaya Timur Timbulan limbah medis RSK Sumabaya Timur Timbulan limbah padat medis rumah sakit khusus Timgkat pertumbuhan pasien rawat inap RSK Pertumbuhan pasien rawat jalan RSK Jumlah pasien rawat jalan RSK Pertumbuhan pasien rawat jalan rumah sakit khusus Timbulan limbah medis pasien rawat jalan rumah sakit khusus Timbulan limbah medis yang dihasilkan dari pasien rawat jalan rumah sakit khusus Total berat limbah padat medis yang dihasilkan ton/bed/ tahun ton/tahun Timbulan pasien rawat padat medis yang dihasilkan ton/tahun Timbulan pasien rawat padat medis yang dihasilkan ton/tahun Timbulan limbah medis yang dihasilkan ton/tahun Timbulan pasien rawat padat medis yang dihasilkan ton/tahun Timbulan pasien rawat padat medis yang dihasilkan				
Tingkat pertumbuhan RSK Pertumbuhan RSK Si Surabaya Timur Pertumbuhan rumah sakit khusus di Surabaya Timur Timbulan limbah medis RSK Jumlah pasien rawat inap RSK Tingkat pertumbuhan pasien rawat inap RSK Tingkat pertumbuhan pasien rawat inap RSK Tingkat pertumbuhan pasien rawat inap RSK Pertumbuhan pasien rawat inap RSK Timbulan limbah medis pasien rawat inap RSK Pertumbuhan pasien rawat inap RSK Timbulan limbah medis pasien rawat inap RSK Pertumbuhan pasien rawat inap RSK Derat limbah medis pasien rawat jalan RSK Tingkat pertumbuhan pasien rawat jalan RSK Dertumbuhan pasien rawat jalan RSK Pertumbuhan pasien rawat jalan RSK Timbulan limbah medis pasien rawat jalan RSK Dertumbuhan pasien rawat jalan rumah sakit khusus Timbulan limbah medis pasien rawat jalan rumah sakit khusus Timbulan limbah medis yang dihasilkan dari pasien rawat jalan rumah sakit khusus Timbulan limbah medis yang dihasilkan dari pasien rawat jalan rumah sakit khusus Timbulan limbah medis yang dihasilkan dari pasien rawat jalan rumah sakit khusus Timbulan limbah medis yang dihasilkan dari pasien rawat jalan rumah sakit khusus Timbulan limbah medis yang dihasilkan dari pasien rawat jalan rumah sakit khusus Timbulan limbah medis yang dihasilkan dari pasien rawat jalan rumah sakit khusus Timbulan limbah medis yang dihasilkan dari pasien rawat jalan rumah sakit khusus Timbulan limbah medis yang dihasilkan dari pasien rawat jalan	21			unit
RSK Pertumbuhan RSK Pertumbuhan rumah sakit khusus di Surabaya Timur 24 Timbulan limbah medis RSK sakit khusus 25 Jumlah pasien rawat inap RSK 26 Tingkat pertumbuhan pasien rawat inap RSK 27 Pertumbuhan pasien rawat inap RSK 28 Timbulan limbah medis pasien rawat inap RSK 28 Timbulan limbah medis pasien rawat inap RSK 29 Berat limbah medis pasien rawat inap RSK 20 Jumlah pasien rawat jalan RSK 30 Jumlah pasien rawat jalan RSK 31 Tingkat pertumbuhan pasien rawat jalan RSK 32 Pertumbuhan pasien rawat jalan RSK 33 Timbulan limbah medis pasien rawat jalan RSK 34 Berat limbah medis pasien rawat jalan RSK 35 Jumlah bed RSK 36 Timbulan limbah medis pasien rawat jalan RSK 37 Berat limbah medis pasien rawat jalan RSK 38 Jumlah bed RSK 39 Jumlah bed RSK 30 Jumlah bed RSK 31 Timbulan limbah medis pasien rawat jalan RSK 32 Pertumbuhan pasien rawat jalan RSK 33 Timbulan limbah medis pasien rawat jalan RSK 34 Berat limbah medis pasien rawat jalan di rumah sakit khusus 35 Jumlah bed RSK 36 Timbulan limbah medis pasien rawat jalan rumah sakit khusus 37 Berat limbah medis RSK 38 Jumlah puskesmas induk (PKM) 39 Jumlah puskesmas induk (PKM) di unit	22		· · · · · · · · · · · · · · · · · · ·	• .
Pertumbuhan RSK Pertumbuhan rumah sakit khusus di Surabaya Timur Timbulan limbah medis RSK Surabaya Timur Timbulan limbah padat medis rumah sakit khusus Jumlah pasien rawat inap di rumah sakit khusus Tingkat pertumbuhan pasien rawat inap RSK Pertumbuhan pasien rawat inap di rumah sakit khusus Tingkat pertumbuhan pasien rawat inap RSK Pertumbuhan pasien rawat inap RSK Pertumbuhan pasien rawat inap RSK Timbulan limbah medis pasien rawat inap RSK Pertumbuhan pasien rawat inap RSK Pertumbuhan pasien rawat inap di rumah sakit khusus Timbulan limbah medis pasien rawat inap rumah sakit khusus Berat limbah medis pasien rawat jalan RSK Jumlah pasien rawat jalan RSK Timbulan limbah medis yang dihasilkan dari pasien rawat jalan RSK Timbulan limbah medis yang dihasilkan dari pasien rawat jalan rumah sakit khusus Timbulan limbah medis yang dihasilkan dari pasien rawat jalan rumah sakit khusus Timbulan limbah medis yang dihasilkan dari pasien rawat jalan rumah sakit khusus Timbulan limbah medis yang dihasilkan dari pasien rawat jalan rumah sakit khusus Timbulan limbah medis yang dihasilkan dari pasien rawat jalan rumah sakit khusus Timbulan limbah medis yang dihasilkan dari pasien rawat jalan rumah sakit khusus Timbulan limbah medis yang dihasilkan dari pasien rawat jalan rumah sakit khusus Timbulan limbah medis yang dihasilkan ton/tahun dihasilkan rumah sakit khusus Timbulan limbah padat medis yang dihasilkan rumah sakit khusus Timbulan limbah padat medis yang dihasilkan rumah sakit khusus Timbulan limbah padat medis yang dihasilkan rumah sakit khusus	22			per unit
Surabaya Timur Timbulan limbah medis RSK 25 Jumlah pasien rawat inap RSK 26 Tingkat pertumbuhan pasien rawat inap RSK 27 Pertumbuhan pasien rawat inap RSK 28 Timbulan limbah medis pasien rawat inap RSK 29 Berat limbah medis pasien rawat inap RSK 30 Jumlah pasien rawat jalan RSK 31 Tingkat pertumbuhan pasien rawat jalan RSK 32 Pertumbuhan pasien rawat jalan RSK 33 Timbulan limbah medis pasien rawat jalan RSK 34 Berat limbah medis pasien rawat jalan RSK 35 Jumlah bed RSK 36 Jumlah bed RSK 37 Berat limbah medis RSK 38 Jumlah bed RSK 39 Jumlah pasien rawat jalan RSK 30 Jumlah pasien rawat jalan RSK 31 Tingkat pertumbuhan pasien rawat jalan RSK 32 Pertumbuhan pasien rawat jalan RSK 33 Timbulan limbah medis pasien rawat jalan RSK 34 Berat limbah medis pasien rawat jalan RSK 35 Jumlah bed RSK 36 Jumlah bed RSK 37 Berat limbah medis RS Khusus 38 Jumlah puskesmas induk (PKM) 38 Jumlah puskesmas induk (PKM) 39 Jumlah puskesmas induk (PKM) 30 Jumlah pasien rawat jalan ton/unit/ tahun tahun orang/tahun tahun orang/tahun tahun orang/tahun tahun ta	22	· -	· · · · · · · · · · · · · · · · · · ·	/. 1
Timbulan limbah medis RSK Jumlah pasien rawat inap RSK Tingkat pertumbuhan pasien rawat inap RSK Pertumbuhan pasien rawat inap RSK Timbulan limbah medis pasien rawat inap RSK Pertumbuhan pasien rawat inap RSK Timbulan limbah medis pasien rawat inap RSK Pertumbuhan pasien rawat inap RSK Timbulan limbah medis pasien rawat inap RSK Pertumbuhan pasien rawat inap RSK Berat limbah medis pasien rawat jalan RSK Jumlah pasien rawat jalan RSK Pertumbuhan pasien rawat jalan RSK Tingkat pertumbuhan pasien rawat jalan RSK Berat limbah medis pasien rawat jalan rumah sakit khusus Timbulan limbah medis pasien rawat jalan rumah sakit khusus Timbulan limbah medis pasien rawat jalan rumah sakit khusus Timbulan limbah medis pasien rawat jalan rumah sakit khusus Timbulan limbah medis pasien rawat jalan rumah sakit khusus Timbulan limbah medis pasien rawat jalan rumah sakit khusus Timbulan limbah medis pasien rawat jalan rumah sakit khusus Timbulan limbah medis pasien rawat jalan rumah sakit khusus Timbulan limbah medis yang dihasilkan dari pasien rawat jalan rumah sakit khusus Timbulan limbah medis yang dihasilkan dari pasien rawat jalan rumah sakit khusus Timbulan limbah medis yang dihasilkan don/bed/ tahun Timbulan limbah medis yang dihasilkan ton/bed/ tahun Timbulan limbah padat medis yang dihasilkan ton/tahun Timbulan limbah padat medis yang dihasilkan ton/bed/ tahun Timbulan limbah padat medis yang dihasilkan ton/tahun Timbulan limbah padat medis yang dihasilkan ton/bed/ tahun Timbulan limbah padat medis yang dihasilkan ton/tahun Timbulan limbah padat medis yang dihasilkan ton/tahun Timbulan limbah padat medis yang dihasilkan ton/tahun	23	Pertumbunan RSK		unit/tanun
medis RSK Jumlah pasien rawat inap RSK 26 Tingkat pertumbuhan pasien rawat inap RSK 27 Pertumbuhan pasien rawat inap RSK 28 Timbulan limbah medis pasien rawat inap RSK 28 Timbulan limbah medis pasien rawat inap RSK 29 Berat limbah medis pasien rawat inap RSK 30 Jumlah pasien rawat jalan RSK 31 Tingkat pertumbuhan pasien rawat jalan RSK 32 Pertumbuhan pasien rawat jalan RSK 33 Timbulan limbah medis pasien rawat jalan RSK 34 Berat limbah medis pasien rawat jalan RSK 35 Jumlah bed RSK 36 Timbulan limbah medis pasien rawat jalan RSK 37 Berat limbah medis pasien rawat jalan RSK 38 Jumlah pasien rawat jalan RSK 39 Jumlah bed RSK 30 Jumlah pasien rawat jalan RSK 31 Timbulan limbah medis pasien rawat jalan RSK 32 Pertumbuhan pasien rawat jalan RSK 33 Timbulan limbah medis pasien rawat jalan RSK 34 Berat limbah medis pasien rawat jalan RSK 35 Jumlah bed RSK 36 Timbulan limbah medis pasien rawat jalan rumah sakit khusus 36 Timbulan limbah medis pasien rawat jalan rumah sakit khusus 37 Jumlah bed RSK 38 Jumlah puskesmas induk (PKM) 38 Jumlah puskesmas induk (PKM) 39 Jumlah puskesmas induk (PKM) 30 Jumlah pasien rawat jalan rumah sakit khusus 30 Jumlah puskesmas induk (PKM) 30 Jumlah pasien rawat jalan rumah sakit khusus 31 Timbulan limbah medis pasien rawat jalan rumah sakit khusus 32 Jumlah puskesmas induk (PKM) 33 Jumlah puskesmas induk (PKM) 34 Berat limbah medis pasien rawat jalan rumah sakit khusus 35 Jumlah puskesmas induk (PKM) 36 Jumlah puskesmas induk (PKM) 37 Jumlah puskesmas induk (PKM) 38 Jumlah puskesmas induk (PKM) 39 Jumlah puskesmas induk (PKM) 30 Jumlah puskesmas induk (PKM) 30 Jumlah puskesmas induk (PKM) 31 Jumlah pasien rawat inap rawa	24	Timbulan limbah		ton/unit/
25 Jumlah pasien rawat inap RSK 26 Tingkat pertumbuhan pasien rawat inap RSK 27 Pertumbuhan pasien rawat inap RSK 28 Timbulan limbah medis pasien rawat inap RSK 29 Berat limbah medis pasien rawat inap RSK 30 Jumlah pasien rawat jalan RSK 31 Tingkat pertumbuhan pasien rawat jalan RSK 32 Pertumbuhan pasien rawat jalan RSK 33 Timbulan limbah medis pasien rawat jalan RSK 34 Berat limbah medis pasien rawat jalan RSK 35 Jumlah bed RSK 36 Timbulan limbah medis pasien rawat jalan RSK 37 Timbulan limbah medis pasien rawat jalan RSK 38 Jumlah pasien rawat jalan RSK 39 Jumlah pasien rawat jalan RSK 30 Jumlah pasien rawat jalan RSK 31 Tingkat pertumbuhan pasien rawat jalan RSK 32 Pertumbuhan pasien rawat jalan RSK 33 Timbulan limbah medis pasien rawat jalan RSK 34 Berat limbah medis pasien rawat jalan RSK 35 Jumlah bed RSK 36 Timbulan limbah medis pasien rawat jalan rumah sakit khusus 36 Timbulan limbah medis pasien rawat jalan rumah sakit khusus 37 Timbulan limbah medis pasien rawat jalan rumah sakit khusus 38 Jumlah puskesmas induk (PKM) 39 Jumlah puskesmas induk (PKM) 30 Jumlah puskesmas induk (PKM) 30 Jumlah pasien rawat jalan pasien rawat jalan rumah sakit khusus 31 Timbulan limbah medis pasien rawat jalan rumah sakit khusus 33 Timbulan limbah medis pasien rawat jalan rumah sakit khusus 34 Jumlah puskesmas induk (PKM) 35 Jumlah puskesmas induk (PKM) 36 Timbulan paskesmas induk (PKM) 37 Dimlah puskesmas induk (PKM) 38 Jumlah puskesmas induk (PKM) 39 Jumlah puskesmas induk (PKM) 30 Jumlah pasien rawat jalan rawat jalan rumah sakit khusus 30 Jumlah puskesmas induk (PKM) 30 Jumlah puskesmas induk (PKM) di unit	24			
inap RSK Tingkat pertumbuhan pasien rawat inap RSK Pertumbuhan pasien rawat inap RSK Timbulan limbah medis pasien rawat inap RSK Pertumbuhan pasien rawat inap RSK Diumlah pasien rawat jalan RSK Diumlah pasien rawat jalan RSK Diumlah pasien rawat jalan RSK Pertumbuhan pasien rawat jalan RSK Diumlah pasien rawat jalan rumah sakit khusus	25			
Tingkat pertumbuhan pasien rawat inap RSK 27 Pertumbuhan pasien rawat inap RSK 28 Timbulan limbah medis pasien rawat inap RSK 29 Berat limbah medis pasien rawat inap RSK 30 Jumlah pasien rawat jalan RSK 31 Tingkat pertumbuhan pasien rawat jalan RSK 32 Pertumbuhan pasien rawat jalan RSK 33 Timbulan limbah medis pasien rawat jalan RSK 34 Berat limbah medis pasien rawat jalan RSK 35 Jumlah bed RSK 36 Timbulan limbah medis pasien rawat jalan RSK 37 Berat limbah medis RS K 38 Jumlah bed RSK 39 Berat limbah medis pasien rawat jalan RSK 30 Jumlah pasien rawat jalan RSK 31 Tingkat pertumbuhan pasien rawat jalan RSK 32 Pertumbuhan pasien rawat jalan RSK 33 Timbulan limbah medis pasien rawat jalan RSK 34 Berat limbah medis pasien rawat jalan RSK 35 Jumlah bed RSK 36 Timbulan limbah medis pasien rawat jalan rumah sakit khusus 37 Berat limbah medis RS Khusus 38 Jumlah puskesmas induk (PKM) 39 Tingkat pertumbuhan pasien rawat jalan rumah sakit khusus 30 Timbulan limbah medis pasien rawat jalan rumah sakit khusus 31 Timbulan limbah medis yang dihasilkan dari pasien rawat jalan rumah sakit khusus 38 Jumlah puskesmas induk (PKM) di unit	23	_		Orang
pasien rawat inap RSK 27 Pertumbuhan pasien rawat inap RSK 28 Timbulan limbah medis pasien rawat inap RSK 28 Timbulan limbah medis pasien rawat inap RSK 29 Berat limbah medis pasien rawat inap RSK 30 Jumlah pasien rawat jalan RSK 31 Tingkat pertumbuhan pasien rawat jalan RSK 32 Pertumbuhan pasien rawat jalan RSK 33 Timbulan limbah medis pasien rawat jalan RSK 34 Berat limbah medis pasien rawat jalan RSK 35 Jumlah bed RSK 36 Timbulan limbah medis pasien rawat jalan RSK 37 Berat limbah medis RSK 38 Jumlah bed RSK 39 Jumlah bed RSK 30 Jumlah pasien rawat jalan RSK 30 Jumlah pasien rawat jalan RSK 31 Tingkat pertumbuhan pasien rawat jalan RSK 32 Pertumbuhan pasien rawat jalan RSK 33 Timbulan limbah medis pasien rawat jalan RSK 34 Berat limbah medis pasien rawat jalan RSK 35 Jumlah bed RSK 36 Timbulan limbah medis per bed RSK 37 Berat limbah medis RS Khusus 38 Jumlah puskesmas induk (PKM) 39 Surabaya Timur di rumah sakit khusus Timbulan limbah pasien rawat jalan rumah sakit khusus Timbulan limbah medis yang dihasilkan per bed di rumah sakit khusus Total berat limbah padat medis yang dihasilkan ton/bed/ tahun ton/orang/ tahun ton/ang/ tahun ton/orang/ tahun ton/alan ton/orang/ tahun ton/orang/ tahun ton/alan ton/orang/ tahun ton/alan ton/orang/ tahun ton/alan ton/orang/ tahun ton/orang/ tahun ton/orang/ tahun ton/orang/ tahun ton/alan ton/orang/ tahun ton/orang/ tahun ton/alan ton/al	26	_		per tahun
RSK 27 Pertumbuhan pasien rawat inap RSK 28 Timbulan limbah medis pasien rawat inap RSK 29 Berat limbah medis pasien rawat inap rumah sakit khusus 29 Berat limbah medis pasien rawat inap rawat jalan di rumah sakit khusus 30 Pertumbuhan pasien rawat inap rawat jalan rawat jalan rawat inap rawat inap rawat inap rawat jalan rawat jalan rawat inap rawat inap rawat inap rawat jalan	20			per tarrari
27Pertumbuhan pasien rawat inap RSKPertumbuhan pasien rawat inap di rumah sakit khususorang/tahun28Timbulan limbah medis pasien rawat inap RSKTimbulan limbah medis pasien rawat inap RSKton/orang/ tahun29Berat limbah medis pasien rawat inap RSKBerat limbah medis yang dihasilkan dari pasien rawat inap rumah sakit khususton/tahun30Jumlah pasien rawat jalan RSKJumlah pasien rawat jalan di rumah sakit khususTingkat pertumbuhan pasien rawat jalan di rumah sakit khususorang31Tingkat pertumbuhan pasien rawat jalan RSKTimgkat pertumbuhan pasien rawat jalan di rumah sakit khususper tahun32Pertumbuhan pasien rawat jalan RSKPertumbuhan pasien rawat jalan rumah sakit khususorang/tahun33Timbulan limbah medis pasien rawat jalan RSKTimbulan limbah medis pasien rawat jalan rumah sakit khususton/orang/ tahun34Berat limbah medis pasien rawat jalan rawat jalan rumah sakit khususbed35Jumlah bed RSKJumlah bed yang ada di rumah sakit khususbed36Timbulan limbah medis per bed RSKJumlah bed yang ada di rumah sakit khususton/bed/ tahun37Berat limbah medis RS KhususTimbulan limbah medis yang dihasilkan rumah sakit khususton/bed/ tahun38Jumlah puskesmas induk (PKM)Total berat limbah padat medis yang dihasilkan rumah sakit khususton/tahun		-		
rawat inap RSK 28 Timbulan limbah medis pasien rawat inap RSK 29 Berat limbah medis pasien rawat inap rumah sakit khusus 29 Berat limbah medis pasien rawat inap rumah sakit khusus 30 Jumlah pasien rawat jalan RSK 31 Tingkat pertumbuhan pasien rawat jalan RSK 32 Pertumbuhan pasien rawat jalan RSK 33 Timbulan limbah medis pasien rawat jalan RSK 33 Timbulan limbah medis pasien rawat jalan di rumah sakit khusus 33 Timbulan limbah medis pasien rawat jalan di rumah sakit khusus 34 Berat limbah medis pasien rawat jalan rumah sakit khusus 35 Jumlah bed RSK 36 Timbulan limbah medis pasien rawat jalan rumah sakit khusus 37 Berat limbah medis per bed RSK 38 Jumlah puskesmas induk (PKM) 39 Jumlah puskesmas induk (PKM) 30 Jumlah puskesmas induk (PKM) 31 Timbulan limbah medis pasien rawat jalan rumah sakit khusus 32 Jumlah puskesmas induk (PKM) 33 Jumlah puskesmas induk (PKM) 34 Derat limbah medis pasien rawat jalan rumah sakit khusus 35 Jumlah puskesmas induk (PKM) 36 Jumlah puskesmas induk (PKM) 37 Derat limbah medis pasien rawat jalan per bed di rumah sakit khusus 38 Jumlah puskesmas induk (PKM) 39 Jumlah puskesmas induk (PKM) 30 Jumlah puskesmas induk (PKM) 30 Jumlah puskesmas induk (PKM) 31 Timbulan limbah medis pasien rawat jalan rumah sakit khusus 32 Jumlah puskesmas induk (PKM) 33 Jumlah puskesmas induk (PKM)	27		Pertumbuhan pasien rawat inap di rumah	orang/tahun
medis pasien rawat inap RSK 29 Berat limbah medis pasien rawat inap RSK 30 Jumlah pasien rawat jalan RSK 31 Tingkat pertumbuhan pasien rawat jalan RSK 32 Pertumbuhan pasien rawat jalan RSK 33 Timbulan limbah medis pasien rawat jalan RSK 34 Berat limbah medis pasien rawat jalan RSK 35 Jumlah bed RSK 36 Timbulan limbah medis pasien rawat jalan medis pasien rawat jalan RSK 37 Berat limbah medis pasien rawat jalan medis pasien rawat jalan RSK 38 Jumlah bed RSK 39 Jumlah bed RSK 30 Jumlah bed RSK 30 Jumlah bed RSK 31 Tingkat pertumbuhan pasien rawat jalan rumah sakit khusus 32 Pertumbuhan pasien rawat jalan rumah sakit khusus 33 Timbulan limbah medis pasien rawat jalan di rumah sakit khusus 34 Berat limbah medis pasien rawat jalan rumah sakit khusus 35 Jumlah bed RSK 36 Timbulan limbah medis per bed RSK 37 Berat limbah medis RSK 38 Jumlah puskesmas jumlah puskesmas induk (PKM) di Surabaya Timur tahun ton/tahun tahun ton/tahun ton/bed/ tahun				C
inap RSK 29 Berat limbah medis pasien rawat inap rumah sakit khusus 30 Jumlah pasien rawat jalan RSK 31 Tingkat pertumbuhan pasien rawat jalan pasien rawat jalan RSK 32 Pertumbuhan pasien rawat jalan RSK 33 Timbulan limbah medis pasien rawat jalan RSK 34 Berat limbah medis pasien rawat jalan pasien rawat jalan RSK 35 Jumlah bed RSK 36 Timbulan limbah medis pasien rawat jalan rumah sakit khusus 37 Berat limbah medis pasien rawat jalan rumah sakit khusus 38 Jumlah puskesmas induk (PKM) 39 Berat limbah medis pasien rawat jalan rumah sakit khusus 30 Jumlah puskesmas jumlah puskesmas induk (PKM) di surabaya Timur	28	Timbulan limbah	Timbulan limbah medis pasien rawat	ton/orang/
Berat limbah medis pasien rawat inap RSK Jumlah pasien rawat jalan RSK Jumlah pasien rawat jalan di rumah sakit khusus Tingkat pertumbuhan pasien rawat jalan pasien rawat jalan RSK Pertumbuhan pasien rawat jalan RSK Timbulan limbah medis pasien rawat jalan di rumah sakit khusus Tingkat pertumbuhan pasien rawat jalan rumah sakit khusus Pertumbuhan pasien rawat jalan rumah sakit khusus Timbulan limbah medis pasien rawat jalan rumah sakit khusus Berat limbah medis pasien rawat jalan rumah sakit khusus Jumlah bed RSK Jumlah bed RSK Jumlah bed yang ada di rumah sakit khusus Timbulan limbah medis pasien rawat jalan rumah sakit khusus Timbulan limbah medis yang dihasilkan dari pasien rawat jalan rumah sakit khusus Timbulan limbah medis yang ada di rumah sakit khusus Timbulan limbah medis yang dihasilkan ton/bed/ tahun Timbulan limbah medis yang dihasilkan ton/bed/ tahun Timbulan limbah padat medis yang dihasilkan ton/bed/ tahun Total berat limbah padat medis yang dihasilkan ton/bed/ tahun Total berat limbah padat medis yang dihasilkan ton/bed/ tahun Total berat limbah padat medis yang dihasilkan ton/bed/ tahun Total berat limbah padat medis yang dihasilkan ton/bed/ tahun Total berat limbah padat medis yang dihasilkan ton/bed/ tahun Total berat limbah padat medis yang dihasilkan ton/bed/ tahun Total berat limbah padat medis yang dihasilkan ton/bed/ tahun Total berat limbah padat medis yang dihasilkan ton/bed/ tahun Total berat limbah padat medis yang dihasilkan ton/bed/ tahun		medis pasien rawat	inap rumah sakit khusus	tahun
pasien rawat inap RSK Jumlah pasien rawat jalan RSK Jumlah pasien rawat jalan RSK Jumlah pasien rawat jalan pasien rawat jalan pasien rawat jalan pasien rawat jalan RSK Pertumbuhan pasien rawat jalan RSK Pertumbuhan pasien rawat jalan RSK Timbulan limbah medis pasien rawat jalan RSK RSK Pertumbuhan pasien rawat jalan rumah sakit khusus Timbulan limbah medis pasien rawat jalan RSK Pertumbuhan pasien rawat jalan rumah sakit khusus Timbulan limbah medis yang dihasilkan dari pasien rawat jalan pasien rawat jalan rumah sakit khusus Timbulan limbah medis yang ada di rumah sakit khusus Timbulan limbah medis yang dihasilkan pasien rawat jalan rumah sakit khusus Timbulan limbah medis yang dihasilkan pasien rawat jalan rumah sakit khusus Timbulan limbah medis yang dihasilkan per bed di rumah sakit khusus Total berat limbah padat medis yang dihasilkan rumah sakit khusus Jumlah puskesmas induk (PKM) Surabaya Timur				
RSK Jumlah pasien rawat jalan di rumah sakit jalan RSK Tingkat pertumbuhan pasien rawat jalan di rumah sakit khusus Tingkat pertumbuhan pasien rawat jalan di rumah sakit khusus RSK Pertumbuhan pasien rawat jalan per tahun di rumah sakit khusus Tingkat pertumbuhan pasien rawat jalan per tahun di rumah sakit khusus Timbulan limbah pasien rawat jalan rumah sakit khusus Timbulan limbah medis pasien rawat jalan di rumah sakit khusus Berat limbah medis yang dihasilkan dari pasien rawat jalan rumah sakit khusus Jumlah bed RSK Jumlah bed yang ada di rumah sakit khusus Timbulan limbah medis yang dihasilkan per bed di rumah sakit khusus Timbulan limbah medis yang dihasilkan per bed di rumah sakit khusus Total berat limbah padat medis yang dihasilkan ton/tahun RS Khusus Jumlah puskesmas jumlah puskesmas induk (PKM) di unit	29		· · ·	ton/tahun
Jumlah pasien rawat jalan RSK Tingkat pertumbuhan pasien rawat jalan di rumah sakit khusus Tingkat pertumbuhan pasien rawat jalan di rumah sakit khusus Tingkat pertumbuhan pasien rawat jalan RSK Pertumbuhan pasien rawat jalan RSK Timbulan limbah sakit khusus Timbulan limbah medis pasien rawat jalan RSK Berat limbah medis pasien rawat jalan rumah sakit khusus Timbulan limbah medis yang dihasilkan dari pasien rawat jalan rumah sakit khusus Timbulan limbah medis yang dihasilkan dari pasien rawat jalan rumah sakit khusus Timbulan limbah medis yang ada di rumah sakit khusus Timbulan limbah medis yang dihasilkan ton/bed/ khusus Timbulan limbah medis yang dihasilkan ton/bed/ per bed di rumah sakit khusus Total berat limbah padat medis yang dihasilkan rumah sakit khusus Jumlah puskesmas jumlah puskesmas induk (PKM) di surabaya Timur			pasien rawat inap rumah sakit khusus	
jalan RSK Tingkat pertumbuhan pasien rawat jalan RSK 32 Pertumbuhan pasien rawat jalan RSK 33 Timbulan limbah medis pasien rawat jalan RSK 34 Berat limbah medis pasien rawat jalan RSK 35 Jumlah bed RSK 36 Timbulan limbah medis pasien rawat jalan pasien rawat jalan RSK 37 Berat limbah medis pasien rawat jalan pasien rawat jalan RSK 38 Jumlah bed RSK 39 Jumlah bed RSK 30 Timbulan limbah medis pasien rawat jalan rumah sakit khusus Timbulan limbah medis pasien rawat jalan rumah sakit khusus Timbulan limbah medis yang dihasilkan ton/tahun Timbulan limbah medis yang dihasilkan per bed di rumah sakit khusus Total berat limbah padat medis yang dihasilkan per bed di rumah sakit khusus Total berat limbah padat medis yang dihasilkan rumah sakit khusus Total berat limbah padat medis yang dihasilkan rumah sakit khusus Total berat limbah padat medis yang dihasilkan rumah sakit khusus Total berat limbah padat medis yang dihasilkan rumah sakit khusus Total berat limbah padat medis yang dihasilkan rumah sakit khusus Total berat limbah padat medis yang dihasilkan rumah sakit khusus Total berat limbah padat medis yang dihasilkan rumah sakit khusus Timbulan limbah medis yang dihasilkan rumah sakit khusus	20	· -	.	
Tingkat pertumbuhan pasien rawat jalan di rumah sakit khusus Pertumbuhan pasien rawat jalan RSK Pertumbuhan pasien rawat jalan RSK Timbulan limbah sakit khusus Timbulan limbah medis pasien rawat jalan rumah sakit khusus Berat limbah medis pasien rawat jalan rumah sakit khusus Jumlah bed RSK Jumlah bed RSK Timbulan limbah medis yang dihasilkan dari pasien rawat jalan rumah sakit khusus Timbulan limbah medis yang dihasilkan dari pasien rawat jalan rumah sakit khusus Timbulan limbah medis yang dihasilkan dari pasien rawat jalan rumah sakit khusus Timbulan limbah medis yang dihasilkan ton/bed/ tahun Total berat limbah padat medis yang ton/tahun RS Khusus Jumlah puskesmas induk (PKM) di surabaya Timur	30		· · · · · · · · · · · · · · · · · · ·	orang
pasien rawat jalan RSK 32 Pertumbuhan pasien rawat jalan RSK 33 Timbulan limbah sakit khusus 34 Berat limbah medis pasien rawat jalan rumah sakit khusus Berat limbah medis pasien rawat jalan rumah sakit khusus 35 Jumlah bed RSK 36 Timbulan limbah medis pasien rawat jalan rumah sakit khusus 36 Timbulan limbah medis pasien rawat jalan rumah sakit khusus 37 Berat limbah medis per bed RSK 38 Jumlah puskesmas induk (PKM) 39 Pertumbuhan pasien rawat jalan rumah sakit khusus 30 Timbulan limbah medis yang dihasilkan ton/bed/tahun 31 Timbulan limbah medis yang dihasilkan ton/bed/tahun 32 Timbulan limbah medis yang dihasilkan ton/bed/tahun 33 Timbulan limbah medis yang dihasilkan ton/bed/tahun 34 Dimlah puskesmas jumlah puskesmas induk (PKM) di sunit	21			man tahun
RSK 32 Pertumbuhan pasien rawat jalan rumah sakit khusus 33 Timbulan limbah medis pasien rawat jalan RSK 34 Berat limbah medis pasien rawat jalan rumah sakit khusus 35 Jumlah bed RSK 36 Timbulan limbah medis pasien rawat jalan rumah sakit khusus 37 Berat limbah medis pasien rawat jalan rumah sakit khusus 38 Jumlah puskesmas induk (PKM) 39 Pertumbuhan pasien rawat jalan rumah sakit khusus 30 Timbulan limbah medis pasien rawat jalan rumah sakit khusus 31 Timbulan limbah medis yang ada di rumah sakit bed 32 Timbulan limbah medis yang dihasilkan ton/bed/ 33 Timbulan limbah medis yang dihasilkan ton/bed/ 34 Berat limbah medis pasien rawat jalan rumah sakit khusus 35 Jumlah puskesmas jumlah padat medis yang ton/tahun 36 Timbulan limbah medis yang dihasilkan ton/bed/ 37 Berat limbah medis per bed di rumah sakit khusus 38 Jumlah puskesmas jumlah padat medis yang ton/tahun 39 Jumlah puskesmas jumlah puskesmas induk (PKM) di unit	31			per tanun
32Pertumbuhan pasien rawat jalan RSKPertumbuhan pasien rawat jalan rumah sakit khususorang/tahun33Timbulan limbah medis pasien rawat jalan RSKTimbulan limbah medis pasien rawat jalan di rumah sakit khususton/orang/ tahun34Berat limbah medis pasien rawat jalan RSKBerat limbah medis yang dihasilkan dari pasien rawat jalan rumah sakit khususton/tahun35Jumlah bed RSKJumlah bed yang ada di rumah sakit khususbed36Timbulan limbah medis per bed RSKTimbulan limbah medis yang dihasilkan per bed di rumah sakit khususton/bed/ tahun37Berat limbah medis RS KhususTotal berat limbah padat medis yang dihasilkan rumah sakit khususton/tahun38Jumlah puskesmas induk (PKM)Jumlah puskesmas induk (PKM) di Surabaya Timurunit			di fuman sakit khusus	
rawat jalan RSK 33 Timbulan limbah medis pasien rawat jalan RSK 34 Berat limbah medis pasien rawat jalan RSK 35 Jumlah bed RSK Jumlah bed yang ada di rumah sakit khusus 36 Timbulan limbah medis per bed RSK per bed di rumah sakit khusus Total berat limbah padat medis yang RS Khusus 37 Berat limbah medis RS Khusus Jumlah puskesmas Jumlah puskesmas induk (PKM) Surabaya Timur	32		Pertumbuhan pasien rawat ialan rumah	orang/tahun
Timbulan limbah medis pasien rawat jalan RSK 34 Berat limbah medis pasien rawat jalan medis pasien rawat jalan medis pasien rawat jalan rumah sakit khusus 35 Jumlah bed RSK Jumlah bed yang ada di rumah sakit khusus 36 Timbulan limbah medis per bed RSK per bed di rumah sakit khusus 37 Berat limbah medis medis per bed di rumah sakit khusus 38 Jumlah puskesmas jumlah puskesmas induk (PKM) di unit 39 Surabaya Timur			-	<i>y y</i>
medis pasien rawat jalan RSK 34 Berat limbah medis pasien rawat jalan RSK 35 Jumlah bed RSK Jumlah bed yang ada di rumah sakit khusus Khusus 36 Timbulan limbah medis per bed RSK 37 Berat limbah medis RSK 38 Jumlah puskesmas Jumlah puskesmas induk (PKM) jalan di rumah sakit khusus Berat limbah medis yang dihasilkan dari pasien rawat jalan rumah sakit khusus bed khusus Timbulan limbah medis yang dihasilkan per bed di rumah sakit khusus tahun ton/bed/ tahun ton/tahun ton/tahun ton/tahun Surabaya Timur	33		Timbulan limbah medis pasien rawat	ton/orang/
Berat limbah medis pasien rawat jalan rumah sakit khusus Jumlah bed RSK Jumlah bed yang ada di rumah sakit bed khusus Timbulan limbah per bed di rumah sakit khusus Total berat limbah padat medis yang ton/tahun RS Khusus Jumlah puskesmas jumlah puskesmas induk (PKM) di unit Surabaya Timur		medis pasien rawat		
pasien rawat jalan RSK 35 Jumlah bed RSK Jumlah bed yang ada di rumah sakit khusus 36 Timbulan limbah medis per bed RSK per bed di rumah sakit khusus 37 Berat limbah medis RS Khusus 38 Jumlah puskesmas induk (PKM) pasien rawat jalan rumah sakit khusus Jumlah bed yang ada di rumah sakit bed khusus Timbulan limbah medis yang dihasilkan per bed di rumah sakit khusus ton/bed/ per bed di rumah sakit khusus Jumlah padat medis yang dihasilkan rumah sakit khusus Surabaya Timur		jalan RSK		
RSK 35 Jumlah bed RSK Jumlah bed yang ada di rumah sakit bed khusus 36 Timbulan limbah Timbulan limbah medis yang dihasilkan per bed di rumah sakit khusus 37 Berat limbah medis Total berat limbah padat medis yang ton/tahun RS Khusus 38 Jumlah puskesmas Jumlah puskesmas induk (PKM) di unit surabaya Timur	34	Berat limbah medis	Berat limbah medis yang dihasilkan dari	ton/tahun
Jumlah bed RSK Jumlah bed yang ada di rumah sakit khusus Timbulan limbah medis per bed RSK Berat limbah medis RS Khusus Jumlah puskesmas induk (PKM) Jumlah bed yang ada di rumah sakit khusus ton/bed/ tahun ton/tahun			pasien rawat jalan rumah sakit khusus	
khusus Timbulan limbah Timbulan limbah medis yang dihasilkan ton/bed/ medis per bed RSK per bed di rumah sakit khusus tahun Total berat limbah padat medis yang ton/tahun RS Khusus dihasilkan rumah sakit khusus Jumlah puskesmas jumlah puskesmas induk (PKM) di unit Surabaya Timur		· -		
Timbulan limbah medis yang dihasilkan ton/bed/medis per bed RSK per bed di rumah sakit khusus tahun Total berat limbah padat medis yang ton/tahun RS Khusus dihasilkan rumah sakit khusus Jumlah puskesmas jumlah puskesmas induk (PKM) di unit Surabaya Timur	35	Jumlah bed RSK	· -	bed
medis per bed RSK per bed di rumah sakit khusus tahun 37 Berat limbah medis Total berat limbah padat medis yang ton/tahun RS Khusus dihasilkan rumah sakit khusus 38 Jumlah puskesmas Jumlah puskesmas induk (PKM) di unit induk (PKM) Surabaya Timur	26	Timbulan limbah		4 a sa /la a d /
37 Berat limbah medis RS Khusus 38 Jumlah puskesmas induk (PKM) Total berat limbah padat medis yang dihasilkan rumah sakit khusus Jumlah puskesmas induk (PKM) di unit Surabaya Timur	30		• •	
RS Khusus dihasilkan rumah sakit khusus 38 Jumlah puskesmas Jumlah puskesmas induk (PKM) di unit induk (PKM) Surabaya Timur	37	•	-	
Jumlah puskesmas Jumlah puskesmas induk (PKM) di unit induk (PKM) Surabaya Timur	31			ton/tanun
induk (PKM) Surabaya Timur	38			unit
	30	-		difft
	39	Tingkat pertumbuhan	Tingkat pertumbuhan puskesmas induk	per tahun
PKM di Surabaya Timur				•
40 Pertumbuhan PKM Pertumbuhan puskesmas induk di unit/tahun	40	Pertumbuhan PKM		unit/tahun
Surabaya Timur				
41 Timbulan limbah Timbulan limbah padat medis dari ton/unit/	41		•	
medis PKM puskesmas induk tahun		medis PKM	puskesmas induk	tahun

No.	Variabel	Definisi	Satuan
42	Jumlah pasien rawat inap PKM	Jumlah pasien rawat inap di puskesmas induk	orang
43	Tingkat pertumbuhan pasien rawat inap PKM	Tingkat pertumbuhan pasien rawat inap puskesmas induk	per tahun
44	Pertumbuhan pasien rawat inap PKM	Pertumbuhan pasien rawat inap puskesmas induk	orang/tahun
45	Timbulan limbah medis pasien rawat inap PKM	Timbulan limbah medis pasien rawat inap puskesmas induk	ton/orang/ tahun
46	Berat limbah medis pasien rawat inap PKM	Berat limbah medis yang dihasilkan pasien rawat inap puskesmas induk	ton/tahun
47	Jumlah pasien rawat jalan PKM	Jumlah pasien rawat jalan di puskesmas induk	orang
48	Tingkat pertumbuhan pasien rawat jalan PKM	Tingkat pertumbuhan pasien rawat jalan puskesmas induk	pertahun
49	Pertumbuhan pasien jalan PKM	Pertumbuhan pasien jalan inap puskesmas induk	orang/tahun
50	Timbulan limbah medis pasien rawat jalan PKM	Timbulan limbah medis pasien rawat jalan puskesmas induk	ton/orang/ tahun
51	Berat limbah medis pasien rawat jalan PKM	Berat limbah medis pasien rawat jalan puskesmas induk	ton/tahun
52	Jumlah bed PKM	Jumlah bed yang ada di puskesmas induk	bed
53	Timbulan limbah medis bed PKM	Timbulan limbah medis yang dihasilkan per bed di puskesmas induk	ton/bed/ tahun
54	Berat limbah medis PKM	Total berat limbah padat medis yang dihasilkan puskesmas induk	ton/tahun
55	Jumlah Puskesmas Pembantu (Pustu)	Jumlah puskesmas pembantu (Pustu) di Surabaya Timur	unit
56	Tingkat pertumbuhan Pustu	Tingkat pertumbuhan puskesmas pembantu di Surabaya Timur	pertahun
57	Pertumbuhan pustu	Pertumbuhan puskesmas pembantu di Surabaya Timur	unit/tahun
58	Timbulan limbah medis pustu	Timbulan limbah padat medis yang dihasilkan puskesmas pembantu	ton/unit/ tahun
59	Jumlah pasien pustu	Jumlah pasien di puskesmas pembantu	orang
60	Tingkat pertumbuhan pasien pustu	Tingkat pertumbuhan pasien puskesmas pembantu di Surabaya Timur	per tahun
61	Pertumbuhan pasien pustu	Pertumbuhan pasien puskesmas pembantu	orang/tahun
62	Timbulan limbah medis pasien pustu	Timbulan limbah medis yang dihasilkan oleh pasien di puskesmas pembantu	ton/orang /tahun
63	Berat limbah medis pasien pustu	Berat limbah medis yang dihasilkan oleh pasien di puskesmas pembantu	ton/tahun
64	Berat limbah medis pustu	Total berat limbah padat medis dari puskesmas pembantu	ton/tahun

No.	Variabel	Definisi	Satuan
65	Berat limbah medis	Total berat limbah padat medis dari	ton/tahun
	puskesmas	puskesmas induk dan puskesmas	
		pembantu	
66	Jumlah Balai	Jumlah balai pengobatan (BP) di	unit
	Pengobatan (BP)	Surabaya Timur	
67	Tingkat pertumbuhan	Tingkat pertumbuhan balai pengobatan	per tahun
	BP	di Surabaya Timur	
68	Pertumbuhan BP	Pertumbuhan balai pengobatan di Surabaya Timur	unit/tahun
69	Timbulan limbah	Timbulan limbah padat medis yang	ton/unit/
	medis BP	dihasilkan balai pengobatan	tahun
70	Jumlah pasien BP	Jumlah pasien yang berobat di balai	orang
	_	pengobatan	-
71	Tingkat pertumbuhan	Tingkat pertumbuhan pasien balai	per tahun
	pasien BP	pengobatan di Surabaya Timur	
72	Pertumbuhan pasien	Pertumbuhan pasien balai pengobatan di	orang/tahun
	BP	Surabaya Timur	
73	Timbulan limbah	Timbulan limbah medis tian pasien di	ton/orang/
	medis pasien BP	balai pengobatan	tahun
74	Berat limbah medis	Berat limbah medis yang dihasilkan	ton/tahun
	pasien BP	pasien di balai pengobatan	
75	Berat limbah medis	Total berat limbah padat medis dari balai	ton/tahun
	BP	pengobatan	
76	Jumlah Laboratorium	Jumlah laboratorium medis (Lab Medis)	unit
	Medis (Lab Medis)	di Surabaya Timur	_
77	Tingkat pertumbuhan	Tingkat pertumbuhan laboratorium	per tahun
70	Lab Medis	medis di Surabaya Timur	• . /. •
78	Pertumbuhan Lab	Pertumbuhan laboratorium medis di	unit/tahun
70	Medis	Surabaya Timur	400/2014/
79	Timbulan limbah medis Lab Medis	Timbulan limbah padat medis dari laboratorium medis	ton/unit/ tahun
80	Jumlah pasien Lab		
00	Medis	Jumlah pasien di laboratorium medis	orang
81	Tingkat pertumbuhan	Tingkat pertumbuhan pasien	pertahun
01	pasien Lab Medis	laboratorium medis	pertanun
82	Pertumbuhan pasien	Pertumbuhan pasien laboratorium medis	orang/tahun
02	Lab Medis	r crtumounan pasien iaboratorium medis	Orang/tanun
83	Timbulan limbah	Timbulan limbah medis yang dihasilkan	ton/orang/
03	medis pasien Lab	pasien laboratorium medis	tahun
	Medis Pasien Eas	pusion into orai orain medis	tuituii
84	Berat limbah medis	Berat limbah medis yang dihasilkan	ton/tahun
٠.	pasien Lab Medis	pasien laboratorium medis	
85	Berat limbah medis	Total berat limbah padat medis dari	ton/tahun
30	Lab Medis	laboratorium medis	
86	Total berat limbah	Total berat limbah padat medis dari	ton/tahun
	medis	seluruh fasilitas kesehatan di Surabaya	
		Timur	
87	Jumlah alat	Jumlah alat transportasi yang digunakan	unit
	transportasi	untuk mengangkut limbah padat medis	
88	Tingkat penambahan	Tingkat penambahan alat transportasi	pertahun
		- ^	-


No.	Variabel	Definisi	Satuan
1,0.	alat transportasi	untuk mengankut limbah padat medis	Suruun
89	Penambahan alat	Penambahan alat transportasi untuk	unit/tahun
0)	transportasi	mengangkut limbah padat medis	anny tanàn
90	Kebutuhan alat	Alat angkut tambahan yan dibutuhkan	unit
	angkut	untuk mengangkut limbah padat medis	
91	Total alat pengangkut	Total alat pengangkut yang digunakan	unit
		untuk mengangkut limbah padat medis	
92	Kapasitas alat angkut	Kapasitas alat transportasi yan	m3
		digunakan untuk mengangkut limbah	
02	Dahan trian alat	padat medis	tuin /la aui
93	Beban trip tiap alat angkut	Beban trip setiap satu alat angkut	trip/hari
94	Beban limbah medis	Banyaknya limbah padat medis yang	ton per trip
74	tiap trip	mampu diangkut dalam satu kali trip	ton per unp
95	Kebutuhan trip	Kebutuhan trip pengangkutan limbah	per tahun
	r	padat medis	1
96	Densitas limbah	Densitas limbah padat medis	ton/m ³
	medis	_	
97	Jumlah insinerator	Jumlah unit insinerator yang digunakan	unit
		untuk mengolah limbah padat medis di	
00	T1-11	Surabaya Timur	1
98	Jarak ke pengumpul	Jarak yang dibutuhkan untuk	km
		mengangkut limbah padat medis dari sumber ke pengumpul	
99	Jarak ke pengolah	Jarak yang dibutuhkan untuk	km
,,	sarak ke pengolan	mengangkut limbah padat medis dari	KIII
		sumber ke pengolah dan dari pengumpul	
		ke pengolah	
100	Jarak tempuh	Total jarak yang dibutuhkan untuk	km
		mengangkut limbah padat medis ke	
		pengolah	
101	Kapasitas	Kapasitas pembakaran insinerator dalam	ton/unit
102	pembakaran Erakuansi	satu kali pembakaran	m amb ami
102	Frekuensi pembakaran	Frekuensi pembakaran yang dapat dilakukan dalam sehari	perhari
	решоакаган	Aspek Lingkungan	
103	Keb bahan bakar tiap	Bahan bakar yang dibutuhkan untuk	liter
103	Keb bahan bakar dap	pengangkutan setiap satu kilometer	IIICI
104	Keb bahan bakar	Kebutuhan bahan bakar yang digunakan	liter
	pengangkutan	untuk mengangkut limbah padat medis	
105	Densitas bahan bakar	Densitas bahan bakar yang dikonsumsi	kg/m ³
		oleh alat angkut	-
106	Massa bahan bakar	Massa bahan bakar yang dikonsumsi	kg
. ~ -	**	oleh alat angkut	
107	Konsumsi bahan	Bahan bakar yang dibutuhkan untuk	TJ
100	bakar	mengangkut limbah padat medis	TI/C -
108	NCV bahan bakar	Net Caloric Value bahan bakar untuk	TJ/Gg
109	EF bahan bakar	pengangkutan Faktor emisi CO2 bahan bakar	kg CO2/
10)	Li bulluli bukul	1 artor chilor CO2 banan baran	ton limbah
			ton mnoun

No.	Variabel	Definisi	Satuan
110	EF CH4 Cold Start	Faktor emisi CH4 pada saat pertama kali	kg CH ₄ / ton
		mesin kendaraan dinyalakan	limbah
111	EF CH4 Running	Faktor emisi CH4 pada saat mesin	kg CH ₄ / ton
110	EENOO C. II	kendaraan pada suhu optimum	limbah
112	EF N2O Cold start	Faktor emisi N2O pada saat pertama kali	kg N2O/
112	FENOO C 11	mesin kendaraan dinyalakan	ton limbah
113	EF N2O Cold running	Faktor emisi N2O pada saat mesin	kg N2O/
114	Emisi CO2	kendaraan pada suhu optimum	ton limbah ton/tahun
114	pengangkutan	Emisi CO2 yang dikeluarkan alat pengangkut	ton/tanun
115	Emisi CH4	Emisi CH4 yang dikeluarkan alat	ton/tahun
113	pengangkutan	pengangkut	ton/tanun
116	Emisi N2O	Emisi NO2 yang dikeluarkan alat	ton/tahun
110	pengangkutan	pengangkut	ton/tanan
117	Total emisi GRK	Total emisi Gas Rumah Kaca yang	ton/tahun
	pengangkutan	dihasilkan dari pengangkutan	0011/ 0011 011
118	dmi	Konten material kering dalam limbah	-
		(berat basah) yang diinsinerasi atau	
		dibakar	
119	CFi	Fraksi karbon dalam material kering	-
		(totan karbon konten)	
120	FCFi	Fraksi karbon fosil dalam total karbon	-
121	OFi	Faktor oksidasi	-
122	EFi N2O	faktor emisi N2O	kg N2O/
			ton limbah
123	EFi CH4	faktor emisi CH ₄	kg CH ₄ / ton
			limbah
124	Emisi CO2	Emisi CO2 dari proses insinerasi	ton/tahun
105	pengolahan	F	. /. 1
125	Emisi N2O	Emisi N2O dari proses insinerasi	ton/tahun
126	pengolahan Emisi CH4	Enrici CIIA desi massas incinensi	404/401
126		Emisi CH4 dari proses insinerasi	ton/tahun
127	pengolahan Total emisi GRK	Total emisi Gas Rumah Kaca yang	ton/tahun
14/	pengolahan	dihasilkan dari pengolahan	wii/taiiuli
128	Total emisi GRK	Total emisis Gas Rumah Kaca yang	ton/tahun
120	Tomi Cillioi Cilli	dihasilkan dari pengolahan dan	com tunuli
		pengangkutan	
-		Aspek Biaya	
129	Keb bahan bakar per	Bahan bakar yang dibutuhkan untuk	liter
/	pembakaran	sekali insinerasi	
130	Kebutuhan bahan	Total kebutuhan bahan bakar untuk	liter
	bakar pengolahan	mengolah limbah padat medis	
131	Harga bahan bakar	Harga bahan bakar yang digunakan	IDR/liter
	pengolahan	untuk mengolah limbah padat medis	
132	Biaya pengolahan	Total biaya yang dikeluarkan untuk	IDR/tahun
		mengolah seluruh limbah medis	
133	Frekuensi	Frekuensi pengangkutan yang dapat	perhari
	pengangkutan	dilakukan dalam sehari	

No.	Variabel	Definisi	Satuan
134	Keb bahan bakar per km	Kebutuhan bahan bakar yang digunakan untuk ijarak satu km	liter
135	Harga bahan bakar pengangkutan	Harga bahan bakar yang digunakan alat angkut	IDR/liter
136	Biaya pengangkutan	Biaya yang dibutuhkan untuk mengangkut limbah medis	IDR/tahun
137	Biaya O&M	Biaya pengangkutan dan pengolahan	IDR/tahun
138	Pengadaan alat angkut	Pengadaan alat angkut baru khusus limbah medis	unit
139	Harga alat angkut khusus	Harga satu unit alat angkut khusus limbah medis	IDR/unit
140	Biaya investasi alat angkut	Biaya yang harus dikeluarkan untuk investasi alat angkut khusus limbah medis	IDR/tahun
141	Penambahan insinerator baru	Pengadaan insinerator baru	unit
142	Harga insinerator per unit	Harga satu unit alat insinerator	IDR/unit
143	Biaya investasi insinerator baru	Biaya yang dikeluarkan untuk pengadaan insinerator baru	IDR
144	Biaya investasi	Biaya yang harus dikeluarkan untuk investasi insinerator baru	IDR/tahun
145	Total biaya	Total biaya dari keseluruhan pengelolaan limbah medis	IDR/tahun

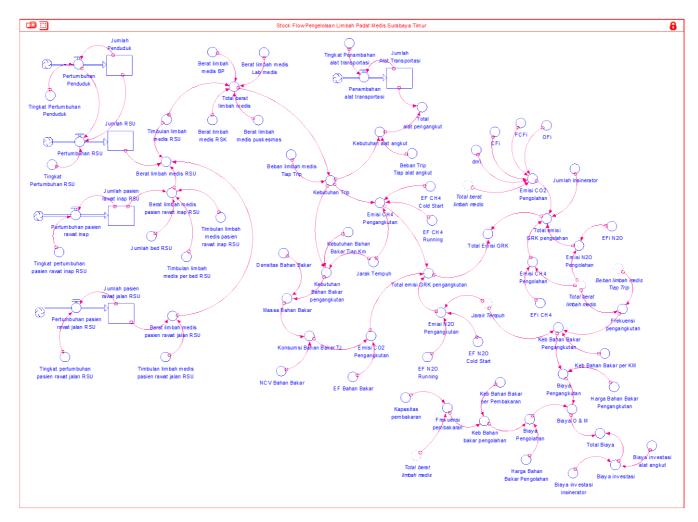
B. Causal loop Diagram

Causal loop diagram dibuat untuk menunjukkan variabel utama yang akan digambarkan dalam model, dalam hal ini telah disusun berdasarkan variabel-variabel awal yang sudah diidentifikasi pada Tabel 4.2. Hubungan sebab-akibat pada causal loop digambarkan dengan anak panah. Anak panah yang bertanda positif menunjukkan hubungan variabel tersebut berbanding lurus. Artinya, jika terjadi penambahan nilai pada variabel tersebut akan menyebabkan penambahan nilai pada variabel yang dipengaruhinya (Chaerul et al., 2008). Sebaliknya, anak panah yang bertanda negatif menunjukkan hubungan berbanding terbalik. Artinya, penambahan nilai pada variabel tersebut akan menyebabkan pengurangan nilai pada variabel yang dipengaruhinya. Causal loop diagram dari sistem pengelolaan limbah padat medis ditunjukkan pada Gambar 4.7.

Gambar 4.7 Diagram *causal loop* aplikasi sistem dinamik pengelolaan limbah padat medis fasilitas kesehatan di Surabaya Timur

C. Stock and Flow Diagram

Penyusunan stock and flow diagram dilakukan berdasarkan causal loop diagram yang sudah disusun sebelumnya. Stock and flow diagram ini merupakan penjabaran rinci dari sistem yang sebelumnya ditunjukkan oleh causal loop diagram ini memperhatikan pengaruh waktu terhadap keterkaitan antar variabel, sehingga nantinya setiap variabel mampu menunjukkan hasil akumulasi untuk variabel level/stock, dan variabel yang merupakan laju aktivitas sistem tiap periode wajtu yang disebut rate/flow. Rate/flow merupakan variabel yang mempengaruhi stock, sedangkan conventer merupakan variabel yang bersifat informasi yang nilainya konstan. Untuk menghubungkan variabel satu dengan


lainnya dibutuhkan *connector* yang dapat menghubungkan antara *conventer* dengan *conventer*, *conventer* ke *rate*, *rate*, ke *conventer*, *level* ke *rate*, dan *level* ke *conventer*. Setiap variabel dalam model sistem dinamik pengelolaan limbah padat medis di Surabaya Timur akan memiliki formulasi yang berbeda berdasarkan rumus-rumus umum, kondisi aktual yang terjadi, dan data terkait. Diagram *Stock and flow* pada penelitian ini dapat dilihat pada Gambar 4.8.

4.3.3.4 Luaran Simulasi Model Sistem Dinamik

Luaran yang diharapkan dari simulasi model sistem dinamik pada penelitian ini adalah aplikasi sistem dinamik pengelolaan limbah padat medis dari fasilitas kesehatan di Surabaya Timur terutama dari segi pengolahannya dengan insinerator dan berbagai alternatif pengembangan pengelolaan limbah padat medis di Surabaya Timur.

4.3.4 Kesimpulan dan Saran

Setelah melakukan analisis dan pembahasan, maka dapat diambil suatu kesimpulan atau ringkasan hasil penelitian yang menjawab rumusan masalah. Kesimpulan yang didapat diharapkan mampu memberikan rekomendasi solusi terbaik pengelolaan limbah padat medis fasilitas kesehatan di Surabaya Timur. Apabila diperlukan, ditambahkan saran agar ada perbaikan untuk penelitian selanjutnya.

Gambar 4.8 Diagram Stock-Flow Model Pengelolaan Limbah Padat Medis Fasilitas Kesehatan di Surabaya Timur

BAB 5

HASIL DAN PEMBAHASAN

Model dinamik terbagi menjadi 3 submodel yaitu (1) submodel teknis (2) submodel lingkungan, (3) submodel biaya. Pembagian model utama menjadi beberapa s ubmodel di maksudkan untuk m empermudah p engerjaan, pemahaman perilaku sistem, dan lebih teliti dalam menganalisis serangkaian hubungan kausal dalam konteks tertentu. Selain itu, dengan membagi beberapa submodel, keterkaitan antara aspek untuk kondisi eksisting pengelolaan limbah padat medis di Surabaya Timur dapat terlihat secara jelas.

5.1 Pengelolaan Limbah Padat Medis di Surabaya Timur

Pengelolaan limbah padat medis dilakukan untuk menangani timbulan limbah medis di Surabaya Timur. Timbulan limbah padat medis dihasilkan dari fasilitas kesehatan. Jumlah timbulan limbah padat medis dipengaruhi oleh jumlah penduduk dan jumlah unit fasilitas kesehatan di Surabaya Timur. Laju pertumbuhan penduduk dan laju penambahan fasilitas menjadi variabel penting dalam dinamisasi timbulan limbah medis di Surabaya Timur. Data pengelolaan limbah padat medis Surabaya Timur digunakan untuk pembentukan struktur model dinamik sehingga menghasilkan model yang handal dan valid. Data yang didapat apabila dalam bentuk persentase dinyatakan dalam desimal pada saat input data model. Penelitian pengelolaan limbah medis di Surabaya Timur dilakukan dalam waktu Oktober-Nopember 2014. Penelitian rentang membutuhkan data primer yaitu pengukuran timbulan dan densitas limbah padat medis. Pengambilan data dilakukan dengan pengukuran limbah padat medis di puskesmas, puskesmas pembantu, dan balai pengobatan selama 8 hari.

5.1.1 Laju Pertumbuhan Penduduk dan Penambahan Fasilitas Kesehatan di Surabaya Timur

Jumlah penduduk di Surabaya Timur mengalami pertumbuhan setiap tahun. Laju pertumbuhan penduduk dan fasilitas kesehatan digunakan untuk dinamisasi model agar perilaku model sesuai dengan kondisi eksisting sistem. Laju pertumbuhan penduduk dan penambahan fasilitas ditentukan dengan mengetahui data *time series* jumlah penduduk dan jumlah fasilitas kesehatan di Surabaya Timur. Penentuan laju pertumbuhan penduduk menggunakan data sekunder penduduk tiap tahun. Penentuan hanya dilakukan untuk pertumbuhan/pertambahan jumlah penduduk karena jumlah pengurangan penduduk Indonesia, khususnya Surabaya Timur sangat kecil.

Penentuan laju penambahan fasilitas kesehatan dilakukan pada fasilitas rumah sakit umum, rumah sakit khusus, puskesmas, puskesmas pembantu, balai pengobatan, dan laboratorium medis. Laju pertumbuhan penduduk dan fasilitas kesehatan di Surabaya Timur dapat dilihat pada Tabel 5.1.

Tabel 5.1 Laju Pertumbuhan Penduduk dan Fasilitas Kesehatan di Surabaya

Timur

Parameter	Jumlah pada Tahun 2013	Laju Pertumbuhan/ Peningkatan
Jumlah penduduk	836.679	1,89%
Jumlah rumah sakit umum	4	0,42%
Jumlah rumah sakit khusus	7	0,66%
Jumlah puskesmas induk	14	1,65%
Jumlah puskesmas pembantu	13	-3,58%
Jumlah Balai Pengobatan	12	-3,85%
Jumlah Laboratorium Medis	28	0,91%

Sumber: Badan Pusat Statistik Kota Surabaya, 2003–2014

Laju pertumbuhan puskesmas pembantu negatif karena dua puskesmas pembantu berkembang menjadi puskesmas induk, yaitu puskesmas Kalijudan dan Puskesmas Keputih. Banyaknya jumlah pasien di fasilitas kesehatan menunjukkan

kualitas kesehatan. Banyaknya kunjungan pasien ke fasilitas kesehatan dapat dilihat pada Tabel 5.2. Data ini digunakan sebagai input data pada *stock flow* diagram untuk menentukan jumlah berat limbah padat medis yang dihasilkan dari fasilitas kesehatan di Surabaya Timur. Laju pertumbuhan pasien di balai pengobatan menunjukkan angka negatif. Adanya BPJS mengakibatkan pasien lebih memilih berobat ke fasilitas kesehatan yang menerima pasien BPJS. Hampir seluruh balai pengobatan tidak menerima pasien BPJS, oleh karena itu jumlah pasien di balai pengobatan berkurang. Laju pertumbuhan negatif menunjukkan bahwa jumlah pasien yang berkunjung berkurang, namun input data dalam model dimasukkan angka 0 karena dianggap tidak ada pertumbuhan.

Tabel 5.2 Banyaknya Kunjungan Pasien ke Fasilitas Kesehatan

Parameter	Jumlah Pasien (2013)	Laju Pertumbuhan/Tahun
Pasien rawat inap rumah sakit umum	64.587	16,16%
Pasien rawat jalan rumah sakit umum	737.415	-2,02%
Pasien rawat inap rumah sakit khusus	10.497	7,18%
Pasien rawat jalan rumah sakit khusus	155.809	12,07%
Pasien rawat inap puskesmas	165	0,96%
Pasien rawat jalan puskesmas	65.330	0,16%
Pasien puskesmas pembantu	72.303	6,91%
Pasien balai pengobatan	89.367	-3,92%
Pasien laboratorium medis	182.865	14,26%

Sumber: Dinas Kesehatan Kota Surabaya, 2006-2013

5.1.2 Timbulan Limbah Padat Medis Fasilitas Kesehatan di Surabaya Timur

5.1.2.1 Timbulan Limbah Padat Medis Rumah Sakit Umum dan Khusus

Timbulan limbah padat medis rumah sakit umum dan khusus di Surabaya Timur didapatkan dari data sekunder penelitian terdahulu dan juga data primer yang berasal dari kuisioner. Total timbulan limbah padat medis rumah sakit umum di Surabaya Timur adalah 2.155 kg/hari. Rata-rata setiap unit rumah sakit umum menghasilkan 538,8 kg/hari. Total timbulan yang dihasilkan rumah sakit khusus

adalah 23,27 kg/hari. Rata-rata unit rumah sakit khusus menghasilkan limbah padat medis sebesar 3,32 kg/hari. Data timbulan ini digunakan untuk mendapatkan total berat limbah padat medis di Surabaya Timur.

5.1.2.2 Timbulan Limbah Padat Medis Puskesmas

Timbulan dan densitas limbah padat medis puskesmas di Surabaya Timur didapatkan dari data primer dengan melakukan sampling selama 8 hari. Densitas limbah padat medis diukur menggunakan kotak volume 40 liter. Kotak densitas diisi limbah medis yang telah diketahui beratnya kemudian diukur volumenya. Data timbulan dan densitas limbah padat medis puskesmas di Surabaya Timur dapat dilihat pada Tabel 5.3.

Tabel 5.3 Timbulan dan Densitas Limbah Padat Medis Puskesmas

No.	Puskesmas	Timbulan	Volume (10 ⁻³ m ³)	Densitas
		(kg/hari)		$\frac{(kg/m^3)}{20.02}$
1	Kalirungkut	1,05	11,83	88,83
2	Tenggilis	2,46	11,41	205,78
3	Menur	0,32	3,54	76,69
4	Klampis Ngasem	0,49	3,18	125,64
5	Medokan Ayu	1,23	4,88	218,78
6	Pucang Sewu	0,93	10,56	73,49
7	Mojo	0,79	1,26	446,36
8	Gading	0,19	1,40	66,13
9	Gunung Anyar	0,73	5,39	113,11
10	Rangkah	0,20	2,75	54,97
11	Pacar Keling	0,13	0,94	132,68
12	Keputih	0,65	3,20	191,90
13	Mulyorejo	0,67	5,30	104,12
14	Kalijudan	0,63	3,44	118,25
	Jumlah	10,47	69,10	2.016,73
	Rata-rata	0,75	4,93	144,05

5.1.2.3 Timbulan Limbah Padat Medis Puskesmas Pembantu

Timbulan dan densitas limbah padat medis puskesmas pembantu di Surabaya Timur didapatkan dari data primer dengan melakukan sampling. Data timbulan dan densitas limbah padat medis puskesmas pembantu di Surabaya Timur tersaji pada Tabel 5.4.

Tabel 5.4 Timbulan dan Densitas Limbah Padat Medis Puskesmas Pembantu

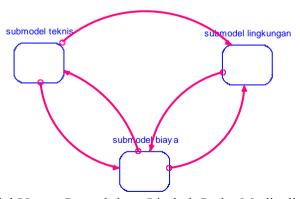
No.	Puskesmas	Timbulan	Volume	Densitas
	Pembantu	(kg/hari)	(10^{-3} m^3)	(kg/m^3)
1	Barata Jaya	0,01	0,04	232,36
2	Semolowaru	0,04	0,14	152,17
3	Karang Empat	0,00	0,00	0,00
4	Rungkut Menanggal	0,02	0,18	76,82
5	Sutorejo	0,05	0,37	101,77
6	Wisma Permai	0,16	0,37	220,45
7	Kutisari	0,08	0,35	199,44
8	Gubeng Klingsingan	0,06	0,38	118,36
9	Rungkut Kidul	0,05	0,66	57,96
10	Penjaringan Sari	0,00	0,01	196,43
11	Medokan Ayu	0,00	0,00	0,00
12	Medokan Semampir	0,01	0,15	66,14
13	Gebang Putih	0,09	0,19	356,46
	Jumlah	0,56	2,82	1.778,36
	Rata-rata	0.04	0.22	136.80

5.1.2.4 Timbulan Limbah Padat Medis Balai Pengobatan

Timbulan dan densitas limbah padat medis balai pengobatan di Surabaya Timur didapatkan dari data primer dengan melakukan sampling selama 8 hari. Data timbulan dan densitas limbah padat medis balai pengobatan di Surabaya Timur dapat dilihat pada Tabel 5.5.

Tabel 5.5 Timbulan dan Densitas Limbah Padat Medis Balai Pengobatan

No.	Balai Pengobatan	Timbulan	Volume	Densitas
110.	Baiai i engocatan	(kg/hari)	(10^{-3} m^3)	(kg/m^3)
1	Poliklinik STIESIA	0,16	1,41	103,33
2	BP At-Taufiq	0,06	0,69	77,36
3	BP W-Care	0,09	0,78	80,91
4	Klinik Medis Ubaya	0,11	0,91	91,22
5	BP dr. Eko	0,84	6,04	122,52
6	BP Santa Anna	0,01	0,07	187,31


No.	Balai Pengobatan	Timbulan (kg/hari)	Volume (10 ⁻³ m ³)	Densitas (kg/m³)
7	BP International Chemical Industry	0,01	0,02	235,23
8	Medical center ITS	0,35	1,78	106,04
	Jumlah	1,62	11,71	1.003,92
	Rata-rata	0,20	1,46	125,49

5.1.2.5 Timbulan Limbah Padat Medis Laboratorium Medis

Timbulan limbah padat medis laboratorium medis di Surabaya Timur didapatkan dari data sekunder penelitian terdahulu. Total limbah padat medis dari fasilitas laboratorium medis adalah 20,13 kg/hari. Rata-rata unit laboratorium medis menghasilkan 0,92 kg/hari.

5.2 Rekapitulasi Data untuk Pemodelan

Model utama sistem tergambar pada Gambar 5.1. Gambar tersebut dapat dilihat perspektif yang digunakan dalam mendeskripsikan variabel mempengaruhi pengelolaan limbah padat medis di Surabaya Timur. Variabel dalam submodel satu dengan lainya saling berinteraksi satu sama lain sehingga membentuk *loop* tertutup yang merupakan salah satu kelebihan motode sistem dinamik.

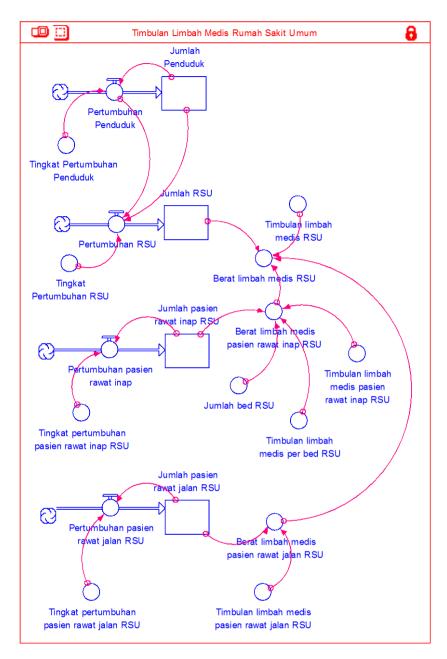
Gambar 5.1 Model Utama Pengelolaan Limbah Padat Medis di Surabaya Timur

Dalam modul utama di atas, dapat dilihat konsep gambaran utama dari *causal* loop yang telah dibuat sebelumnya. Model tersebut dibuat menjadi modul untuk

menyederhanakan *stock flow* yang nantinya akan dibuat, sehingga diharapkan dapat dilihat konsep secara holistik dari sistem yang diteliti. Data yang digunakan dalam model adalah data terbaru tahun 2013.

5.2.1 Input Aspek Teknis

5.2.1.1 Berat Total Limbah Padat Medis

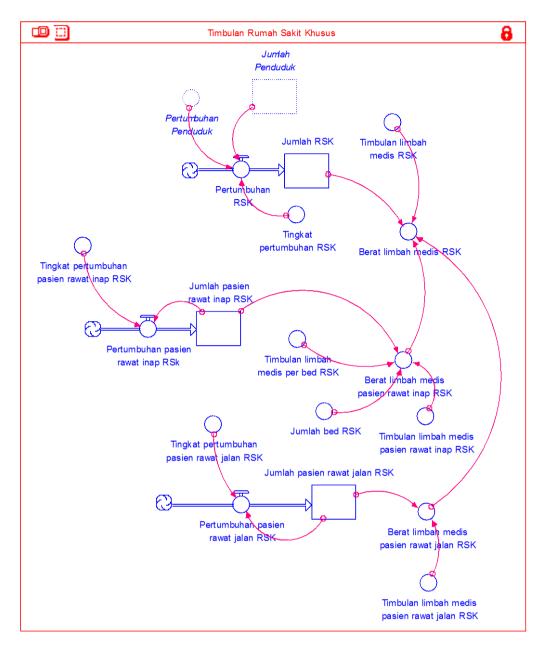

Dalam pengelolaan limbah padat medis, timbulan limbah medis berasal dari fasilitas kesehatan yang meliputi rumah sakit umum dan khusus, puskesmas dan puskesmas pembantu, balai pengobatan, dan laboratorium medis. Timbulan limbah padat medis terbesar dihasilkan dari rumah sakit umum dibandingkan dengan fasilitas kesehatan lainnya.

Pembagian timbulan berdasarkan masing-masing sumber limbah digunakan untuk menunjang pe mbentukan struktur m odel s esuai d engan pe rilaku sistem eksisting. Pada penelitian ini, timbulan limbah medis dinyatakan dalam satuan berat (ton). Data timbulan ini digunakan untuk mendapatkan total berat limbah padat medis yang dihasilkan oleh masing-masing fasilitas kesehatan di Surabaya Timur.

Gambar 5.2 menunjukkan jumlah penduduk, jumlah pasien rawat inap dan rawat jalan, berat limbah yang dihasilkan masing-masing unit rumah sakit umum, berat limbah yang dihasilkan pasien, dan total berat limbah padat medis yang berasal dari rumah sakit umum. Jumlah bed dan timbulan yang dihasilkan juga mempengaruhi total limbah medis. Kenaikan total berat limbah padat medis akan sebanding dengan kenaikan jumlah rumah sakit umum, jumlah penduduk, jumlah pasien, dan jumlah bed.

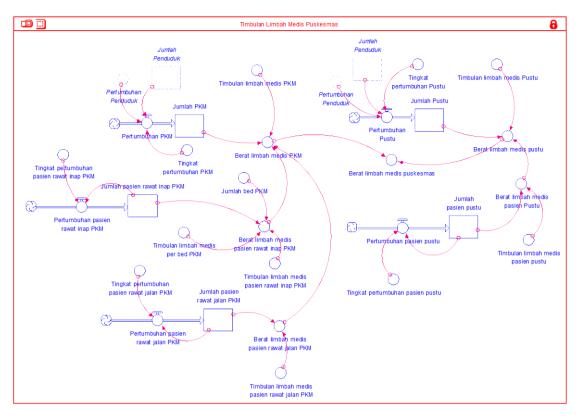
Data yang dimasukkan dalam *stock flow* timbulan limbah padat medis fasilitas rumah sakit umum adalah:

1. jumlah penduduk (836.679 orang)


Gambar 5.2 Timbulan Limbah Padat Medis Rumah Sakit Umum

- 2. tingkat pertumbuhan penduduk (0,0189)
- 3. jumlah rumah sakit umum (4 unit)
- 4. tingkat pertumbuhan rumah sakit umum (0,0042)
- 5. timbulan limbah medis rumah sakit umum (196,6438 ton/unit/tahun)
- 6. jumlah pasien rawat inap rumah sakit umum (64.587 orang)
- 7. tingkat pertumbuhan pasien rawat inap rumah sakit umum (0,1616)

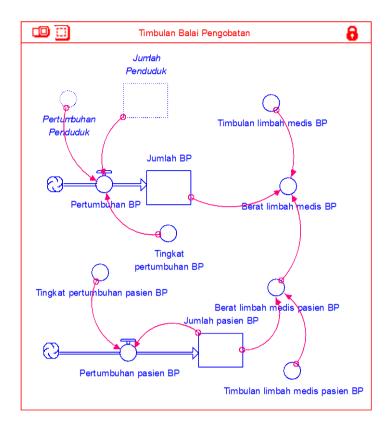
- 8. timbulan limbah padat medis pasien rawat inap rumah sakit umum (0,0542 ton/pasien/tahun)
- 9. jumlah bed di rumah sakit umum (1.811 unit)
- 10. timbulan limbah padat medis per bed di rumah sakit umum (0,0503 ton/bed/tahun)
- 11. jumlah pasien rawat jalan rumah sakit umum (737.415 orang)
- 12. tingkat pertumbuhan pasien rawat jalan rumah sakit umum (-0,0202)
- 13. timbulan limbah padat medis pasien rawat jalan rumah sakit umum (0,0024 ton/pasien/tahun).


Sama halnya seperti Gambar 5.2, Gambar 5.3 menunjukkan total berat limbah padat medis yang berasal dari rumah sakit khusus. Data yang dimasukkan dalam *stock flow* timbulan limbah padat medis fasilitas rumah sakit khusus adalah:

- 1. jumlah penduduk (836.679 orang)
- 2. tingkat pertumbuhan penduduk (0,0189)
- 3. jumlah rumah sakit khusus (7 unit)
- 4. tingkat pertumbuhan rumah sakit khusus (0,0066)
- 5. timbulan limbah medis rumah sakit khusus (1,6988 ton/unit/tahun)
- 6. jumlah pasien rawat inap rumah sakit khusus (10.497 orang)
- 7. tingkat pertumbuhan pasien rawat inap rumah sakit khusus (0,0718)
- 8. timbulan limbah padat medis pasien rawat inap rumah sakit khusus (0,2604 ton/pasien/tahun)
- 9. jumlah bed di rumah sakit khusus (480 unit)
- 10. timbulan limbah padat medis per bed di rumah sakit khusus (0,0218 ton/bed/tahun)
- 11. jumlah pasien rawat jalan rumah sakit khusus (155.809 orang)
- 12. tingkat pertumbuhan pasien rawat jalan rumah sakit khusus (0,1207)
- 13. timbulan limbah padat medis pasien rawat jalan rumah sakit khusus (0,0079 ton/pasien/tahun).

Gambar 5.3 Timbulan Limbah Padat Medis Rumah Sakit Khusus

Gambar 5.4 menunjukkan total berat limbah padat medis yang berasal dari puskesmas yang merupakan gabungan dari berat limbah medis puskesmas induk dan berat limbah medis dari puskesmas pembantu. Berat limbah padat medis fasilitas puskesmas merupakan gabungan dari berat limbah padat medis dari puskesmas induk dan puskesmas pembantu. Data yang dimasukkan dalam *stock flow* timbulan limbah padat medis fasilitas puskesmas meliputi:

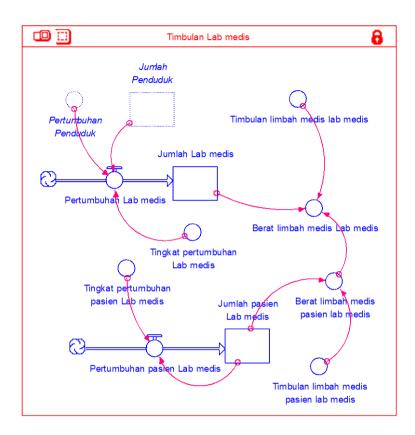

Gambar 5.4 Timbulan Limbah Padat Medis Puskesmas

- 1. jumlah penduduk (836.679 orang)
- 2. tingkat pertumbuhan penduduk (0,0189)
- 3. jumlah puskesmas induk (14 unit)
- 4. tingkat pertumbuhan puskesmas induk (0,0165)
- 5. timbulan limbah medis puskesmas induk (0,2727 ton/unit/tahun)
- 6. jumlah pasien rawat inap puskesmas induk (165 orang)
- 7. tingkat pertumbuhan pasien rawat inap puskesmas induk (0,0096)
- 8. timbulan limbah padat medis pasien rawat inap puskesmas induk (0,0023 ton/pasien/tahun)
- 9. jumlah bed di puskesmas induk (27 unit)
- 10. timbulan limbah padat medis per bed di puskesmas induk (0,2727 ton/bed/tahun)
- 11. jumlah pasien rawat jalan puskesmas induk (65.330 orang)
- 12. tingkat pertumbuhan pasien rawat jalan puskesmas induk (0,0016)

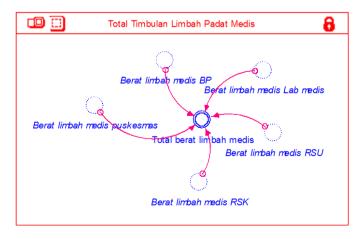
- 13. timbulan limbah padat medis pasien rawat jalan puskesmas induk (0,0014 ton/pasien/tahun)
- 14. jumlah puskesmas pembantu (13 unit)
- 15. tingkat pertumbuhan puskesmas pembantu (-0,0358)
- 16. timbulan limbah medis puskesmas pembantu (0,0156 ton/unit/tahun)
- 17. jumlah pasien puskesmas pembantu (72.303 orang)
- 18. tingkat pertumbuhan pasien puskesmas pembantu (0,0691)
- 19. timbulan limbah padat medis pasien puskesmas pembantu (0,0015 ton/pasien/tahun).

Gambar 5.5 menunjukkan total berat limbah padat medis yang berasal dari balai pengobatan. Input data yang dimasukan adalah:

- 1. jumlah penduduk (836.679 orang)
- 2. tingkat pertumbuhan penduduk (0,0189)
- 3. jumlah balai pengobatan (12 unit)
- 4. tidak ada penambahan jumlah balai pengobatan, sehingga tingkat pertumbuhan balai pengobatan adalah 0
- 5. timbulan limbah medis balai pengobatan (0,0738 ton/unit/tahun)
- 6. jumlah pasien balai pengobatan (89.367 orang)
- 7. tidak tersedia data *time series* jumlah pasien balai pengobatan sehingga tidak diketahui tingkat pertumbuhan pasien balai pengobatan. Tingkat pertumbuhan pasien balai pengobatan akan disamakan dengan puskesmas pembantu (0,0691) karena jumlah pasien fasilitas kesehatan yang paling mendekati jumlah pasien balai pengobatan adalah puskesmas pembantu. Tipe pasien yang berobat ke puskesmas pembantu hampir sama dengan balai pengobatan dimana tidak ada pasien rawat inap dan tidak ada tindakan operasi.
- 8. Timbulan limbah padat medis pasien balai pengobatan (0,011 ton/pasien/tahun).


Gambar 5.5 Timbulan Limbah Padat Medis Balai Pengobatan

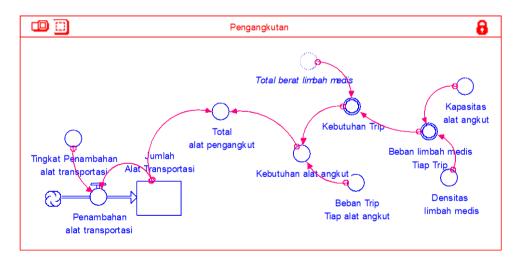
Gambar 5.6 menunjukkan total berat limbah padat medis yang berasal dari laboratorium medis. Input data yang digunakan adalah:


- 1. jumlah penduduk (836.679 orang)
- 2. tingkat pertumbuhan penduduk (0,0189)
- 3. jumlah laboratorium medis (28 unit)
- 4. tingkat pertumbuhan laboratorium medis (0,0091)
- 5. timbulan limbah medis laboratorium medis (0,1087 ton/unit/tahun)
- 6. jumlah pasien laboratorium medis (182.865 orang)
- 7. tingkat pertumbuhan pasien laboratorium medis (0,1426)
- 8. timbulan limbah padat medis pasien balai pengobatan (0,0104 ton/pasien/tahun).

Total berat limbah padat medis di Surabaya Timur merupakan penjumlahan dari berat limbah padat medis dari masing-masing fasilitas kesehatan. *Stock flow*

diagram total timbulan limbah padat medis di Surabaya Timur dapat dilihat pada Gambar 5.7.

Gambar 5.6 Timbulan Limbah Padat Medis Laboratorium Medis

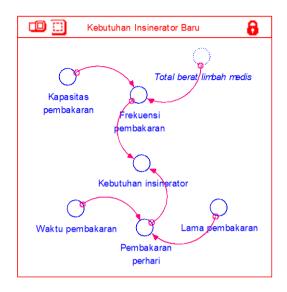


Gambar 5.7 Total Timbulan Limbah Padat Medis Fasilitas Kesehatan di Surabaya Timur

5.2.12 Pengangkutan Limbah Padat Medis

Parameter pengangkutan limbah medis fokus pada jumlah trip dan jumlah alat angkut yang harus disediakan. Variabel tersebut berubah sesuai berat limbah padat medis yang meningkat dari waktu ke waktu, kenaikan berat limbah padat medis akan sebanding dengan penambahan jumlah alat pengangkut. Gambar 5.8 merupakan model dari pengangkutan limbah padat medis di Surabaya Timur. Input model pengangkutan limbah padat medis meliputi:

- 1. kapasitas alat angkut sesuai jenis alat angkut yang digunakan
- 2. densitas limbah padat medis (0,1864 ton/m³)
- 3. total berat limbah padat medis hasil dari penjumlahan berat limbah padat medis dari setiap fasilitas
- 4. beban trip tiap alat angkut sesuai dengan jarak dan waktu yang mampu dilalui satu alat angkut.



Gambar 5.8 Pengangkutan Limbah Padat Medis

Gambar 5.9 merupakan model dari kebutuhan insinerator untuk membakar limbah padat medis di Surabaya Timur. Input model kebutuhan insinerator meliputi:

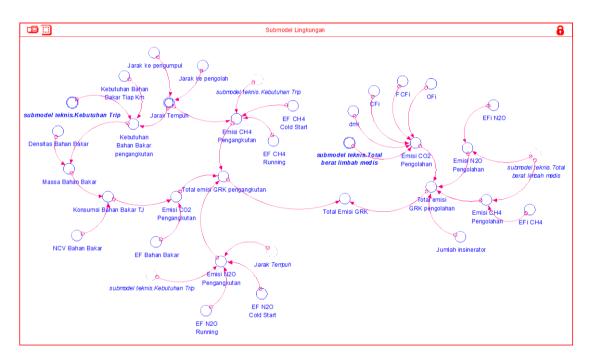
- total berat limbah padat medis hasil dari penjumlahan berat limbah padat medis dari setiap fasilitas
- 2. Kapasitas pembakaran tiap insinerator.

- 3. Lama pembakaran, yaitu waktu yang dibutuhkan untuk sekali pembakaran.
- 4. Waktu pembakaran, yaitu jam operasional insinerator dalam sehari.

Gambar 5.9 Kebutuhan Insinerator

5.2.2 Input Aspek Lingkungan

Parameter yang digunakan dalam aspek lingkungan adalah emisi GRK. Emisi GRK meliputi emisi GRK yang dihasilkan dari pengangkutan dan emisi GRK yang dihasilkan dari pengolahan. Submodel lingkungan menunjukkan total emisi GRK yang bertambah dari waktu ke waktu sesuai dengan berat limbah padat medis. Emisi GRK dinyatakan dengan satuan ton/tahun CO₂ equivalen (ton CO₂e/tahun). CO₂ equivalen didapat dari mengalikan dengan GWP masing masing GRK. Submodel lingkungan ditampilkan pada Gambar 5.10.


Emisi GRK pengangkutan mencakup emisi CH₄, CO₂, dan N₂O. Untuk menghitung emisi CO₂ pengangkutan mengikuti langkah perhitungan berikut:

1. Konsumsi bahan bakar (L/hari) = jarak tempuh (km/hari)/0,0856 L/km

U.S. Corporate Average Fuel Economy (CAFE) standart menghitung kebutuhan bahan bakar rata-rata mobil penumpang adalah 27,5 mpg (1 mpg =

0,425 km/l) dan 22,5 mpg untuk truk ringan (Wu, 2011). 11,69 km/L adalah kebutuhan bahan bakar rata-rata mobil, sehingga bahan bakar yang dibutuhkan mobil per km adalah 0,0856 liter.

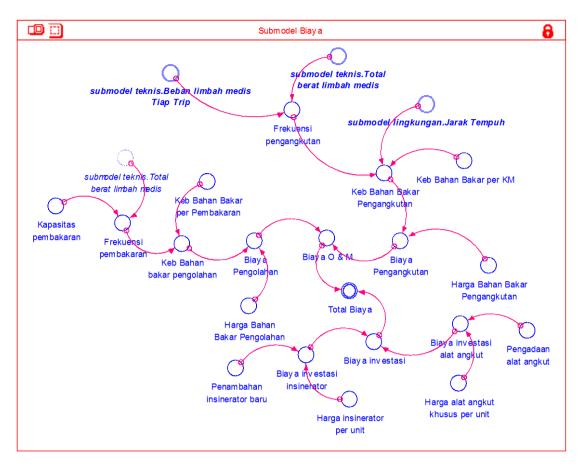
- Massa bahan bakar gasoline (Gg)
 Massa gasoline = ρ gasoline (km/m³) × konsumsi bahan bakar m³/10⁶
 ρ gasoline adalah densitas minyak gasoline, berdasarkan MSDS dari Pertamina ρ gasoline adalah 740 kg/m³.
- Konsumsi bahan bakar (TJ)
 Konsumsi bahan bakar (TJ) = NCV gasoline (TJ/Gg) × massa gasoline (Gg)
 NCV = Net Caloric Value (TJ/Gg)

Gambar 5.10 Submodel Lingkungan

Emisi GRK pengangkutan sangat bergantung pada jarak yang dilalui dan kebutuhan trip. Input data emisi GRK dari kegiatan pengangkutan adalah:

- 1. Jarak tempuh pengangkutan (km)
- 2. kebutuhan bahan bakar tiap km (0,0856 liter)
- 3. densitas bahan bakar *gasoline* berdasarkan MSDS dari Pertamina (740 kg/m³)

- 4. NCV gasoline berdasarkan Tabel 2.5 (44,3)
- 5. EF bahan bakar berdasarkan Tabel 2.6 (69300)
- 6. faktor emisi CH₄ dan N₂O berdasarkan Tabel 2.7: EF CH₄ *cold start* (62), EF CH₄ *running* (101), EF N₂O *cold start* (28), EF N₂O *running* (8)


Selain pengangkutan, dihitung pula emisi GRK dari kegiatan pengolahan atau pembakaran menggunakan insinerator. Input data emisi GRK pengolahan adalah:

- 1. emisi CO_2 berdasarkan Tabel 2.2: CF_i (60%), FCF_i (40%), dan OF_i (100%)
- faktor emisi CH₄ berdasarkan Tabel 2.3 ditentukan menggunakan faktor emisi CH₄ insinerasi MSW karena tidak tersedia EF_i untuk limbah medis (237)
- 3. faktor emisi N₂O berdasarkan Tabel 2.4 ditentukan menggunakan faktor emisi N₂O insinerasi MSW karena tidak tersedia EF_i untuk limbah medis (60)
- 4. jumlah insinerator yang beroperasi (unit).

5.2.3 Input Aspek Biaya

Aspek pembiayaan pengelolaan limbah padat medis merupakan aspek yang penting dalam menunjang keberhasilan suatu sistem pengelolaan. Pembiayaan sangat berpengaruh dalam menjalankan pola operasi maupun untuk mengembangkan kualitas pelayanannya. Kebutuhan biaya pengelolaan limbah medis akan meningkat sesuai dengan berat limbah medis yang harus dikelola. Dengan demikian alokasi biaya yang harus disediakan setiap tahun oleh pihak institusi harus direncanakan sesuai dengan kebutuhan teknis operasional.

Perhitungan biaya didasarkan pada berat limbah medis yang dihasilkan di sumber hingga ke pengolahan. Biaya pengelolaan dinyatakan dalam satuan rupiah dan fokus pada biaya pengangkutan, biaya pengolahan (insinerasi), dan biaya investasi. Submodel biaya dapat dilihat pada Gambar 5.11.

Gambar 5.11 Submodel Biaya

Input data biaya pengangkutan adalah.

- 1. total berat limbah padat medis (ton/tahun)
- 2. jarak tempuh (km)
- 3. beban limbah medis tiap trip (ton/trip)
- 4. kebutuhan bahan bakar *gasolie* per km (0,0855 liter/km)
- 5. harga bahan bakar gasoline (Rp 7.400).

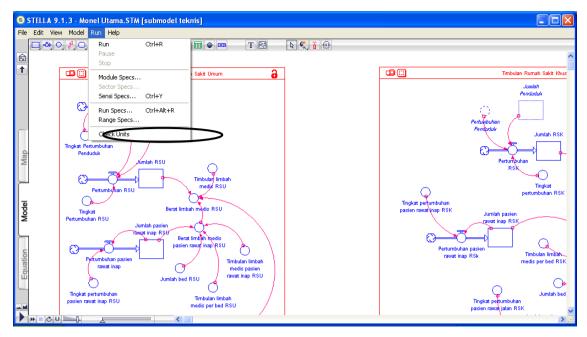
Input data biaya pengolahan adalah:

- 1. kebutuhan bahan bakar setiap satu kali pembakaran (20 liter solar)
- 2. kapasitas pembakaran insinerator
- 3. harga bahan bakar solar yang digunakan untuk pembakaran (Rp 6.900).

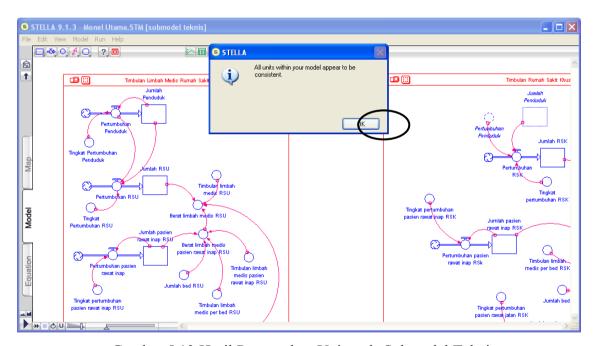
Input biaya investasi meliputi:

1. pengadaan insinerator baru dengan harga incinerator baru di pasaran (Rp 450.000.000,-)

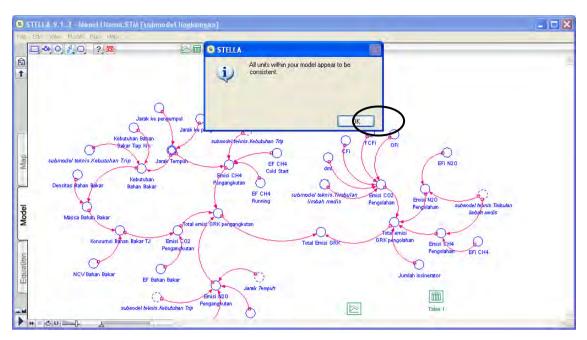
2. pengadaan alat angkut baru dengan harga alat angkut khusus baru (Rp 300.000.000,-)

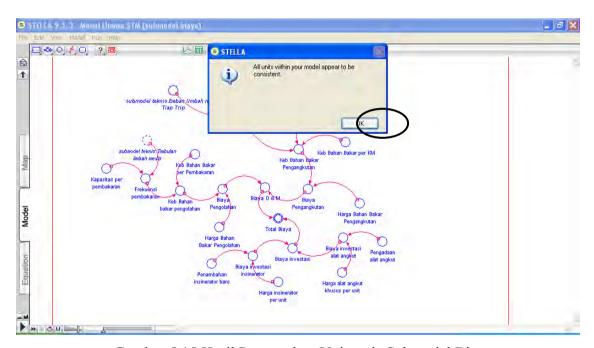

5.3 Verifikasi dan Validasi Model

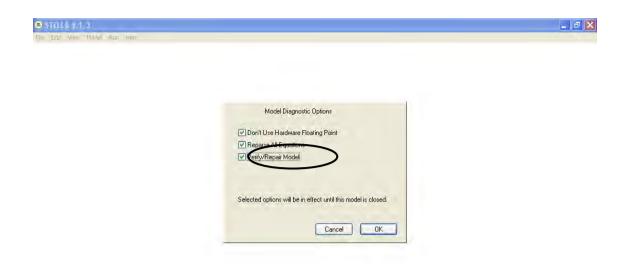
Verifikasi dan validasi bertujuan untuk mengetahui apakah model dapat *running* atau terdapat *error*. Verifikasi dan validasi sekaligus berguna untuk membandingkan struktur model beserta perilakunya apakah sudah representatif terhadap sistem sebenarnya.

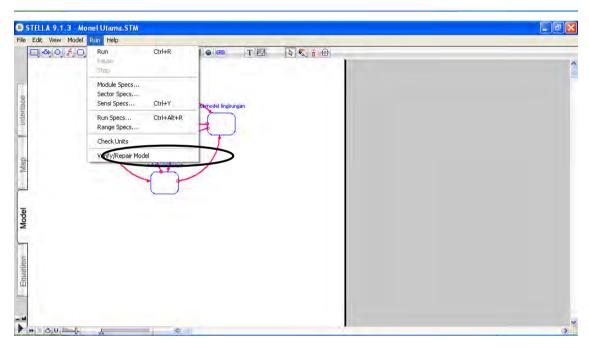

5.3.1 Verifikasi Model

Verifikasi model merupakan tahapan untuk menentukan apakah model simulasi merepresentasikan model konseptual dengan tepat. Verifikasi model dilakukan dengan memeriksa *error* pada model dan meyakinkan bahwa model berfungsi sesuai dengan logika pada obyek sistem. Verifikasi juga perlu dilakukan dengan memeriksa formulasi (equations), model dan memeriksa unit (satuan) variabel dari model. Jika tidak terdapat *error* pada model, maka dapat dikatakan model sudah terverifikasi.

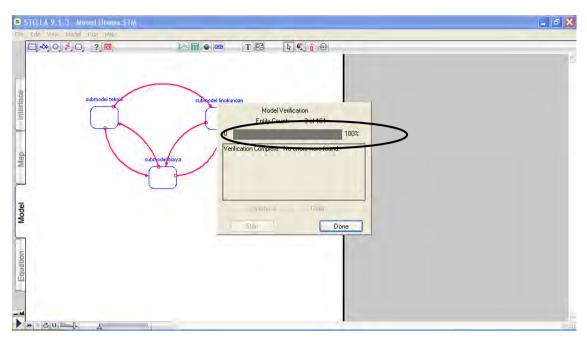

Berdasarkan ha sil simulasi model, program sudah berjalan dengan baik, tanpa terjadi *error* pada unit maupun formulasi. Berikut ini merupakan verifikasi model pengelolaan limbah padat medis fasilitas kesehatan di Surabaya Timur.


Gambar 5.12 Cek Unit

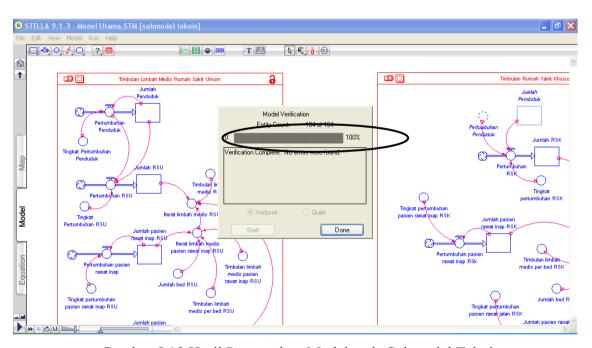

Gambar 5.13 Hasil Pengecekan Unit pada Submodel Teknis

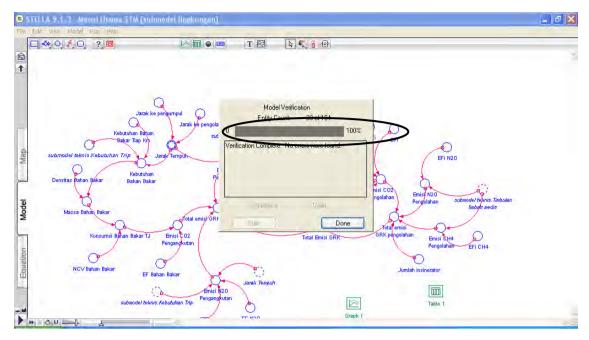


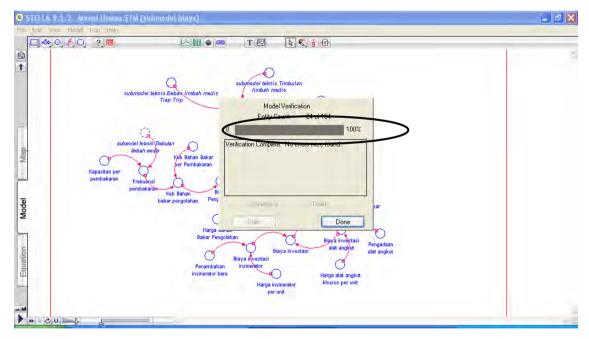
Gambar 5.14 Hasil Pengecekan Unit pada Submodel Lingkungan



Gambar 5.15 Hasil Pengecekan Unit pada Submodel Biaya




Gambar 5.16 Verifikasi Struktur Model


Gambar 5.17 Hasil Pengecekan Model pada Model Utama

Gambar 5.18 Hasil Pengecekan Model pada Submodel Teknis

Gambar 5.19 Hasil Pengecekan Model pada Submodel Lingkungan

Gambar 5.20 Hasil Pengecekan Model pada Submodel Biaya

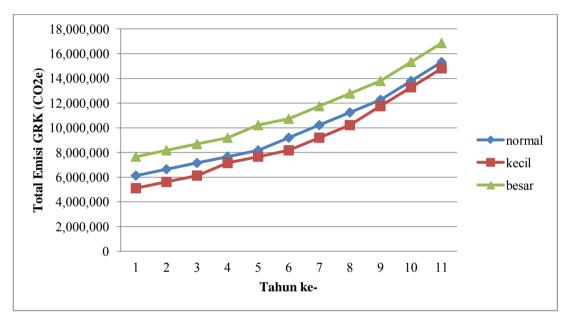
5.3.2 Validasi Model

Validasi merupakan tahapan dalam mengevaluasi apakah model yang dibuat representatif dengan keadaan nyata. Beberapa cara dapat dilakukan untuk validasi

model sistem dinamik pengelolaan limbah padat medis fasilitas kesehatan di Surabaya Timur, antara lain:

1. Uji Parameter Model (Model Parameter Test)

Uji parameter model dilakukan dengan melihat dua variabel yang saling berhubungan, serta membandingkan hasil logika aktual dengan hasil simulasi. Pada model ini, digunakan variabel jumlah pasien rawat inap di rumah sakit umum (RSU) dan berat limbah padat medis rumah sakit umum yang memiliki hubungan *causal loops* positif. Logika ini kemudian dibandingkan dengan hasil simulasi pada Gambar 5.21.



Gambar 5.21 Uji parameter model

Berdasarkan gambar dapat diketahui bahwa parameter simulasi model sudah berjalan sesuai logika actual. Ketika jumlah pasien rawat inap di rumah sakit umum meningkat maka berat limbah padat medis yang dihasilkan fasilitas kesehatan rumah sakit umum juga meningkat, begitupula sebaliknya. Jika simulasi model sudah berjalan sesuai logika aktual maka model dikatakan valid.

2. Uji Kondisi Ekstrim (Extreme Conditions Test)

Uji kondisi ekstrim bertujuan untuk menguji kemampuan model pada kondisi ekstrim ketika nilai variabel berubah signifikan sehingga memberikan kontribusi sebagai alat evaluasi kebijakan. Pengujian dilakukan dengan memasukkan nilai ekstrim terbesar dan terkecil. Pengujian ini menggunakan variabel jumlah pasien rawat jalan di rumah sakit khusus dengan nilai normal 155.809, nilai ekstrim besar 517.848, dan nilai ekstrim kecil 7.030.

Gambar 5.22 Uji Kondisi Ekstrim

Hasil simulasi pada Gambar 5.22 saat dimasukkan nilai ekstrim besar dan kecil, nilai output total emisi GRK pada tiap-tiap model masih menunjukkan pola yang sama ketika nilai input diubah. Total emisi GRK salah satunya dipengaruhi oleh jumlah pasien rawat jalan di rumah sakit khusus, dengan kondisi ekstrim tersebut, model masih berfungsi sesuai dengan logika tujuan yang ingin dicapai sehingga model dikatakan valid.

3. Uji Perilaku Model/Replikasi

Uji perilaku model dilakukan dengan membandingkan data simulasi dengan data sebenarnya hasil simulasi model. Rata-rata nilai pada data aktual dengan data

hasil s imulasi untuk menemukan rata-rata *error* yang terjadi dengan menggunakan persamaan 5.1 berikut ini.

$$E = |(S - A)/A| \tag{5.1}$$

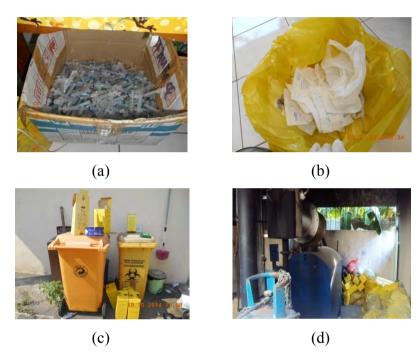
Dengan:

A = Data aktual

S = Data hasil simulasi

E = Variansi *error* antara data aktual dan data simulasi, dimana jika E < 0,1, maka model valid.

Model sistem dinamik pengelolaan limbah padat medis di Surabaya Timur disimulasikan selama 10 tahun. Untuk validasi perilaku model, digunakan data jumlah penduduk simulasi dan dibandingkan dengan jumlah penduduk aktual selama 10 tahun terakhir.


Tabel 5.6 Perhitungan *Error* antara Data Aktual dan Simulasi

Tahun	Jumlah Penduduk	Jumlah penduduk (simulasi)	E
2002	651.742	651.742	0
2003	692.721	664.060	0,041
2004	695.597	676.611	0,027
2005	709.901	689.399	0,029
2006	722.056	702.428	0,027
2007	733.782	715.704	0,025
2008	752.753	729.231	0,031
2009	766.839	743.013	0,031
2010	762.031	757.056	0,007
2011	787.207	771.365	0,020
2012	815.252	785.944	0,036
	Rata-rat	a	0,027

Berdasarkan perhitungan pada Tabel 5.6, nilai rata-rata *error* (E) adalah 0,027, dimana nilai error tersebut lebih kecil dari 0,1. Oleh karena itu, model dikatakan valid secara kuantitatif.

5.4 Analisis Kondisi Eksisting

Kondisi eksisting merupakan *baseline* dari pemodelan limbah padat medis fasilitas kesehatan di Surabaya Timur. Pengelolaan limbah padat medis dari fasilitas kesehatan di Surabaya Timur banyak yang tidak memenuhi peraturan seperti yang terlihat pada Gambar 5.23.

Gambar 5.23 Pengelolaan Limbah Padat Medis yang Tidak Sesuai dengan Peraturan: (a) Pewadahan Limbah Spuit Menggunakan Kardus Terbuka, (b) Limbah Padat Medis Bercampur dengan Limbah Kertas dan Plastik, (c) Tempat Penyimpanan Sementara Limbah Padat Medis yang Terbuka, (d) Limbah Padat Medis yang Menumpuk di Lokasi Insinerator

Pada Gambar 5.23 (a) dapat dilihat bahwa limbah padat medis berupa spuit bekas dikumpulkan menggunakan pewadahan berupa kardus terbuka. Seharusnya pewadahan limbah padat medis menggunakan wadah dan diberi label sesuai Gambar 2.1. Limbah spuit ini telah terkumpul selama lebih dari seminggu dan tidak dilakukan pengangkutan ke pengolah karena jumlah timbulan perharinya sangat kecil. Hal ini tentu melanggar permenkes No. 1204 tahun 2004, yaitu penyimpanan limbah medis padat harus sesuai iklim tropis yaitu pada musim

hujan paling lama 48 jam dan musim kemarau paling lama 24 jam (Menteri Kesehatan Republik Indonesia, 2004). Oleh karena itu, pengangkutan limbah padat medis dari sumber seharusnya dilakukan maksimal 2 hari sekali. Pada kenyataannya masih banyak fasilitas kesehatan di Surabaya Timur yang melakukan pengangkutan lebih dari 2 hari tergantung limbah medis yang dihasilkan.

Pada Gambar 5.23 (b), limbah padat medis bercampur dengan limbah domestik yaitu limbah kertas dan plastik. Pada beberapa fasilitas kesehatan juga ditemukan limbah padat medis yang bercampur dengan limbah makanan. Gambar 5.23 (c) menunjukkan lokasi penyimpanan sementara limbah padat medis di luar ruangan yang tebuka memungkinkan terkena air hujan. Hal ini tentu tidak memenuhi peraturan yang berlaku. Berdasarkan permenkes No. 1204 tahun 2004, tempat penampungan sementara limbah padat medis harus kedap air, bertutup dan selalu dalam keadaan tertutup bila sedang tidak diisi serta mudah dibersihkan. Gambar 5.23 (d) menunjukkan limbah padat medis yang menumpuk di lokasi insinerasi. Limbah ini seharusnya segera dilakukan pembakaran karena waktu penyimpanan tidak boleh lebih dari 2 hari.

Kota Surabaya tidak memiliki alat khusus pengangkut limbah padat medis, sebanyak 75% pengangkutan limbah padat medis menggunakan mobil ambulans (Badan Lingkungan Hidup Kota Surabaya, 2014). Penggunaan mobil ambulans sebagai alat angkut limbah padat medis tidak sesuai dengan Peraturan Pemerintah No. 101 Tahun 2014. Peraturan tersebut menentukan bahwa pengangkutan limbah padat medis menggunakan alat angkut khusus yang tertutup (Presiden Republik Indonesia, 2014), s edangkan ambulans merupakan alat angkut khusus untuk mengangkut pasien, bukan untuk mengangkut limbah padat medis.

Pemerintah Kota Surabaya belum melibatkan pihak lain dalam menangani pengelolaan limbah medis. Namun ada beberapa fasilitas kesehatan yang bekerja sama dengan pihak lain (swasta) dalam pengolahan limbah medis. Input data kondisi eksisting meliputi kapasitas mobil ambulan, jarak pengangkutan dari

sumber ke pengumpul (72,5 km), jarak dari pengumpul ke pengolah (27,5 km), jumlah unit insinerator yang beroperasi 8 unit. Hasil simulasi kondisi eksisting dapat dilihat pada Tabel 5.7 dan Tabel 5.8.

Table 5.7 Hasil Simulasi Aspek Teknis dan Lingkungan Kondisi Eksisting

Tahun	- ·	Berat Limbah	Kebutuhan	Emisi (ton CO ₂ e/tahun)			
Proyeksi	Tahun	Medis (ton/ tahun)	Trip (trip/hari)	Pengangkutan	Pengolahan	Total	
0	2014	5.019	16	8.165.185	35.336	8.200.521	
1	2015	5.424	18	9.185.832	38.185	9.224.017	
2	2016	5.885	19	9.696.156	41.433	9.737.589	
3	2017	6.412	21	10.716.804	45.140	10.761.944	
4	2018	7.014	23	11.737.452	49.377	11.786.828	
5	2019	7.702	25	12.758.099	54.221	12.812.320	
6	2020	8.489	28	14.289.071	59.764	14.348.835	
7	2021	9.391	31	15.820.042	66.112	15.886.154	
8	2022	10.424	34	17.351.014	73.384	17.424.398	
9	2023	11.608	38	19.392.309	81.722	19.474.031	
Final	2024	12.966	42	21.433.604	91.284	21.524.888	

Hasil simulasi kondisi eksisting menunjukkan bahwa trip yang dibutuhkan setiap hari untuk mengangkut limbah padat medis sebanyak 16 trip. Jumlah trip yang dibutuhkan besar karena alat angkut yang digunakan adalah mobil ambulans yang memiliki kapasitas 4,5 m³. Emisi pengolahan yang dihasilkan besar karena jumlah insinerator yang beroperasi sebanyak 8 unit dengan kapasitas pembakaran 100 kg/pembakaran.

Table 5.8 Hasil Simulasi Aspek Biaya Kondisi Eksisting

Tahun	Tahun	Biaya (Rupiah/tahun)					
Proyeksi	Tanun	Pengangkutan	Pengolahan	Total			
0	2014	1.012.320	19.044.000	20.056.320			
1	2015	1.138.860	20.562.000	21.700.860			
2	2016	1.202.130	22.218.000	23.420.130			
3	2017	1.328.670	24.288.000	25.616.670			
4	2018	1.455.210	26.496.000	27.951.210			
5	2019	1.581.750	29.118.000	30.699.750			
6	2020	1.771.560	32.154.000	33.925.560			
7	2021	1.961.370	35.466.000	37.427.370			

Tahun	Tahun	Biaya (Rupiah/tahun)					
Proyeksi	1 alluli	Pengangkutan	Pengolahan	Total			
8	2022	2.151.180	39.468.000	41.619.180			
9	2023	2.404.260	43.884.000	46.288.260			
Final	2024	2.657.340	48.990.000	51.647.340			

Pada kondisi eksisting tidak terdapat biaya investasi karena tidak ada pengadaan insinerator dan alat angkut baru. Hasil simulasi menunjukkan bahwa limbah padat medis meningkat dari tahun ke tahun, hal ini karena jumlah penduduk di Surabaya Timur terus meningkat. Data yang didapat menunjukkan bahwa jumlah pasien yang berobat di fasilitas kesehatan meningkat sehingga mempengaruhi timbulan. Meningkatnya jumlah timbulan mengakibatkan peningkatan kebutuhan trip, emisi GRK, dan kebutuhan biaya.

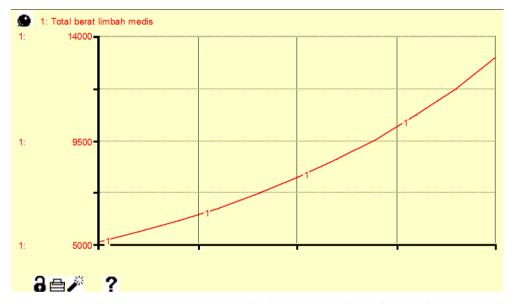
5.5 Hasil Pemodelan Skenario Pengelolaan Limbah Padat Medis

Analisis hasil pemodelan sistem dinamik dilakukan dengan menerapkan skenario yang telah ditetapkan sebelumnya yaitu skenario eksisting dan skenario terpusat. Perhitungan menggunakan skala waktu per tahun dan dilakukan simulasi dengan jangka waktu 10 tahun.

5.5.1 Aspek Teknis

Hasil pemodelan aspek teknis meliputi total berat limbah padat medis yang merupakan akumulasi dari berat yang dihasilkan masing-masing fasilitas kesehatan dan pengangkutan. Gambar 5.24 dan Tabel 5.9 merupakan hasil simulasi berat limbah padat medis masing-masing fasilitas kesehatan. Grafik menunjukkan bahwa berat limbah padat medis dari masing-masing fasilitas kesehatan meningkat dari tahun ke tahun.

Gambar 5.24 Simulasi berat limbah padat medis masing-masing fasilitas kesehatan

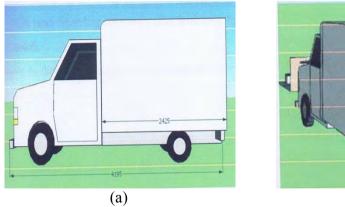

Tabel 5.9 Hasil Simulasi Berat Limbah Padat Medis Masing-masing Fasilitas Kesehatan

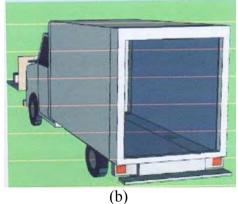
Tahun			Berat Limbah Padat Medis (Ton/Tahun)						
Proyeksi	Tahun	Rumah Sakit Umum	Rumah Sakit Khusus	Puskesmas	Balai Pengobatan	Laboratorium Medis			
0	2014	2.606,10	1.307,36	103,89	49,59	952,42			
1	2015	2.769,38	1.431,01	107,83	52,99	1.088,04			
2	2016	2.955,50	1.567,14	112,03	56,62	1.243,00			
3	2017	3.168,18	1.717,10	116,50	60,50	1.420,06			
4	2018	3.411,69	1.882,37	121,27	64,65	1.622,36			
5	2019	3.691,03	2.064,59	126,36	69,09	1.853,50			
6	2020	4.011,97	2.265,61	131,79	73,83	2.117,60			
7	2021	4.381,25	2.487,46	137,58	78,91	2.419,36			
8	2022	4.806,67	2.732,42	143,76	84,33	2.764,14			
9	2023	5.297,31	3.003,00	150,34	90,12	3.158,08			
Final	2024	5.863,71	3.302,04	157,38	96,32	3.608,20			

Hasil simulasi menunjukkan bahwa fasilitas yang menghasilkan limbah padat medis paling besar berasal dari rumah sakit umum kemudian rumah sakit khusus. Hal ini dikarenakan jumlah pasien yang besar, selain itu timbulan limbah padat medis yang dihasilkan per unit rumah sakit juga besar karena terdapat pasien rawat inap, tindakan operasi, dan aktivitas laboratorium yang menghasilkan

banyak limbah padat medis. Balai pengobatan menghasilkan limbah padat medis paling kecil yaitu 96,32 ton/tahun pada tahun 2024 k arena pada fasilitas balai pengobatan tidak terdapat pasien rawat inap, operasi yang dilakukan terbatas pada operasi kecil misalkan operasi cabut gigi.

Berat limbah padat medis dari masing-masing fasilitas diakumulasikan menjadi total berat limbah padat medis fasilitas kesehatan di Surabaya Timur yang ditampilkan Gambar 5.25 dan Tabel 5.10. Hasil simulasi total berat limbah padat medis menunjukkan adanya peningkatan timbulan limbah padat medis dari tahun ke tahun.

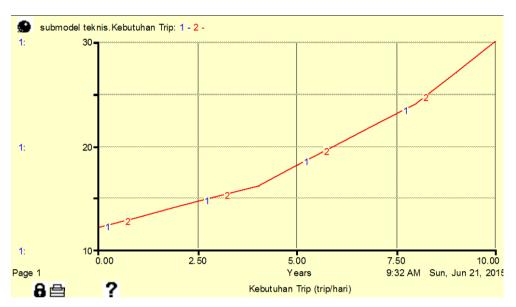

Gambar 5.25 Simulasi Berat Limbah Padat di Surabaya Timur


Tabel 5.10 Hasil Simulasi Berat Limbah Padat Medis di Surabaya Timur

Tahun Proyeksi	Tahun	Berat Limbah Padat Medis (Ton/Tahun)
0	2014	5.019,37
1	2015	5.449,25
2	2016	5.934,30
3	2017	6.482,35
4	2018	7.102,35
5	2019	7.804,58
6	2020	8.600,81
7	2021	9.504,55

Tahun Proyeksi	Tahun	Berat Limbah Padat Medis (Ton/Tahun)		
8	2022	10.531,31		
9	2023	11.698,87		
Final	2024	13.027,64		

Secara teknis, total berat limbah padat medis pada skenario terpusat sama dengan total berat limbah padat medis pada skenario wilayah karena tidak ada upaya reduksi, seluruh limbah padat medis diolah menggunakan insinerator. Selain berat limbah padat medis. dalam aspek teknis juga memperhatikan pengangkutan. Pada skenario terpusat dan wilayah direncanakan menggunakan kendaraan pengangkut khusus limbah padat medis yang sama. Menurut PP No. 101 Tahun 2014, limbah padat medis adalah limbah B3 kategori 1 yang merupakan limbah B3 yang berdampak akut dan langsung terhadap manusia dan dapat dipastikan akan berdampak negatif terhadap lingkungan hidup. Peraturan tersebut menentukan bahwa pengangkutan limbah B3 kategori 1 wajib dilakukan dengan menggunakan alat angkut yang tertutup. Mengacu pada hal tersebut. maka alternatif armada yang akan digunakan adalah mobil box aluminium tertutup kapasitas 6,34 m³ dengan ukuran panjang box 2.425 mm, lebar 1.665 mm, dan tinggi 1.570 mm seperti Gambar 5.26.



Gambar 5.26 Alat angkut limbah padat medis (a) tampak samping. (b) tampak belakang

Gambar 5.27 merupakan hasil simulasi variabel kebutuhan trip skenario terpusat (garis 1) dan skenario wilayah (garis 2). Kebutuhan trip pada tahun proyeksi 10

tahun kedepan ditampilkan pada Tabel 5.11. Dari grafik dapat dilihat bahwa kebutuhan trip semakin meningkat seiring dengan meningkatnya total berat limbah padat medis. Hasil simulasi kebutuhan trip skenario terpusat dan wilayah sama karena alat angkut yang digunakan direncanakan sama sehingga memiliki kapasitas yang sama pula.

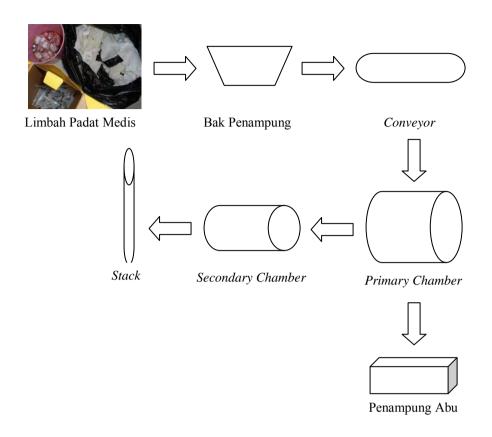
Gambar 5.27 Grafik Hasil Simulasi Kebutuhan Trip

Tabel 5.11 Hasil Simulasi Kebutuhan Trip

Tahun	Tahun	Kebutuhan trip per hari				
Proyeksi	Tanun	Skenario Terpusat	Skenario Wilayah			
0	2014	12	12			
1	2015	13	13			
2	2016	14	14			
3	2017	15	15			
4	2018	16	16			
5	2019	18	18			
6	2020	20	20			
7	2021	22	22			
8	2022	24	24			
9	2023	27	27			
Final	2024	30	30			

Meskipun jumlah trip skenario terpusat dan skenario wilayah sama, namun kebutuhan alat angkut berbeda. Rute pengangkutan mempengaruhi beban trip tiap

alat angkut. Pada skenario terpusat, satu alat angkut melakukan satu kali trip dari Tambak Osowilangun ke fasilitas kesehatan di Surabaya Timur kemudian kembali lagi ke Tambak Osowilangun diperkirakan membutuhkan waktu selama 4 jam. Waktu kerja selama 8 jam perhari, maka beban trip tiap alat angkut pada skenario terpusat sebanyak 2 trip perhari. Pada skenario wilayah, pengangkutan limbah padat medis dari sumber disesuaikan dengan jarak terdekat. Misalkan limbah padat medis dari RSUD Dr. Soetomo akan diangkut menuju Puskesmas Mulyorejo karena jaraknya lebih dekat daripada diangkut menuju Puskesmas Gunung Anyar. Pada skenario wilayah ini satu alat angkut diperkirakan membutuhkan waktu 2 jam untuk mengangkut limbah padat medis menuju ke Puskesmas Mulyorejo atau Puskesmas Gunung Anyar. Beban trip tiap alat angkut pada skenario terpusat sebanyak 4 trip perhari dengan waktu kerja selama 8 jam perhari. Rute dan waktu yang dibutuhkan untuk pengangkutan dapat dilihat pada Lampiran A. Peta pengangkutan skenario terpusat dapat dilihat pada Gambar 5.28, sedangkan peta pengangkutan skenario wilayah dapat dilihat pada Gambar 5.29. Kebutuhan alat angkut masing-masing skenario dapat diketahui dengan menginput data beban trip tiap alat angkut seperti dapat dilihat pada Tabel 5.12.


Tabel 5.12 Kebutuhan Alat Angkut Masing-masing Skenario

Tahun	Tahun	Kebutuhan Alat Angkut (unit)				
Proyeksi	Tanun	Skenario Terpusat	Skenario Wilayah			
0	2014	6	3			
1	2015	7	3			
2	2016	7	4			
3	2017	8	4			
4	2018	8	4			
5	2019	9	5			
6	2020	10	5			
7	2021	11	6			
8	2022	12	6			
9	2023	14	7			
Final	2024	15	8			

Skenario terpusat dan wilayah membutuhkan pengadaan insinerator baru untuk mengolah limbah padat medis. Jenis insinerator yang akan digunakan pada kedua skenario adalah *Bacth Process Smokeless Pyrolitics* dengan *static chamber* sehingga dihasilkan *finishes product* yang ramah lingkungan. Pembakaran dilakukan setiap hari. Jam operasional pembakaran selama 24 jam dengan kapasitas 200 kg. Satu kali pembakaran membutuhkan waktu + 4 jam.

Gambar 5.30 m enunjukkan alur proses pembakaran. Limbah padat medis diumpankan dengan *handling* sistem menggunakan conveyor masuk ke *primary chamber* untuk dibakar. Limbah padat medis di *primary chamber* dibakar selama 1 jam pada suhu minimal 400-800 °C (pembakaran tahap satu). Selanjutnya pembakaran tahap dua selama 3 j am dengan suhu 900-1200 °C. Asap hasil pembakaran dari *primary chamber* naik ke *secondary chamber*. Asap dibakar sampai suhu 1200 °C untuk membakar partikel yang terkandung dalam asap. Pembakaran dilakukan bersamaan antara limbah padat medis tajam, sitotoksik, infeksius, dan farmasi. Limbah padat medis benda tajam dibakar bersama dengan *safety box* nya, sedangkan limbah sitotoksik, infeksius dan farmasi dibakar dengan plastik pembungkusnya. Abu residu pembakaran dikumpulkan secara mekanik. Grating dipasang pada dasar insinerator dan disisi atas fly ash chamber. Abu dalam kondisi dingin dikelola lebih lanjut dengan proses solidifikasi atau dikirim ke pihak ketiga.

Ruang bakar didesain dengan dinding dalam dari batu tahan api dengan perekat dan pelapis sebagai bahan insulasi atau penahan panas. Bagian luar ruang bakar terbuat dari plat baja. Ruang bakar dilengkapi dengan burner sebagai alat membakar limbah padat medis. Burner dikontrol oleh sensor temperatur untuk mengatur panas pembakaran dalam ruang bakar. Blower berfungsi memompa udara untuk memasok udara atau oksigen dari udara luar ke dalam ruang bakar. Lubang cerobong digunakan untuk mengalirkan asap hasil pembakaran dari ruang bakar utama menuju ke ruang pembakaran asap. Bak abu digunakan untuk menampung abu hasil pembakaran. Insinerator dilengkapi pula dengan pintu kontrol digunakan untuk keperluan pemeriksaan dan perawatan ruang. Kebutuhan insinerator dapat dilihat pada Tabel 5.13.

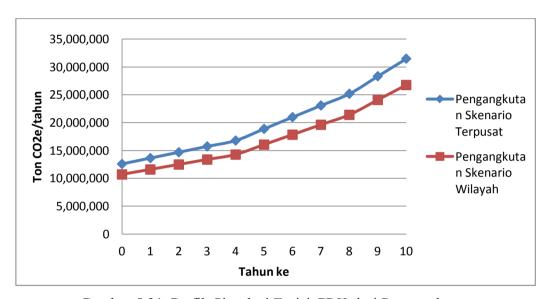
Gambar 5.30 Alur proses pembakaran

Tabel 5.13 Kebutuhan Insinerator Masing-masing Skenario

Tahun	Tahun	Kebutuhan Insinerator (unit)					
Proyeksi	Tanun	Skenario Terpusat	Skenario Wilayah				
0	2014	12	12				
1	2015	13	13				
2	2016	14	14				
3	2017	15	15				
4	2018	16	16				
5	2019	18	18				
6	2020	20	20				
7	2021	22	22				
8	2022	24	24				
9	2023	27	27				
Final	2024	30	30				

Kebutuhan insinerator skenario terpusat dan skenario wilayah sama karena total berat limbah padat medis yang diinsinerasi sama. Jumlah insinerator yang akan dioperasikan pada tahun pertama adalah 12 unit. Pada skenario terpusat, 6

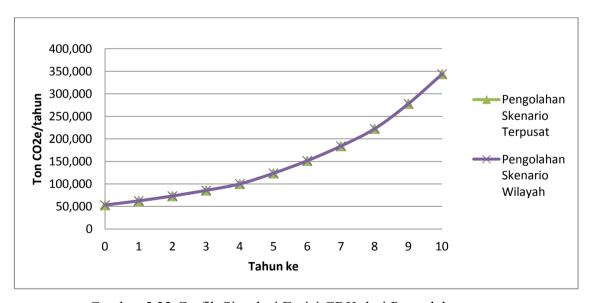
insinerator digunakan di satu lokasi di Tambak Osowilangun. Pada skenario wilayah 6 insinerator diletakkan di Puskesmas Gunung Anyar dan 6 insinerator diletakkan di Puskesmas Mulyorejo. Pada tahun kedua direncanakan ada penambahan satu unit insinerator. Insinerator tambahan akan dioperasikan di Puskesmas Mulyorejo karena beban limbah padat medis yang diterima puskesmas Mulyorejo lebih besar. Hal ini karena banyak lokasi fasilitas kesehatan yang berdekatan dengan puskesmas Mulyorejo, selain itu terdapat rumah sakit besar yaitu RSUD Dr. Soetomo dan RSU Haji yang jarak pengangkutannya lebih dekat ke Puskesmas Mulyorejo daripada ke Puskesmas Gunung Anyar.


Dimensi insinerator kapasitas 200 kg/pembakaran adalah panjang = 3,6 m, lebar = 1,5 m, dan tinggi = 1,9 m. Tinggi cerobongnya adalah 8 m dengan diameter 250 mm. Kebutuhan area untuk satu unit insinerator dan perlengkapan penunjangnya adalah 6×9 m. Perlengkapan penunjang meliputi *spark arrester/screening*, cerobong, tangki bahan bakar, dan konveyor. Tahun 2014, jumlah insinerator yang dibutuhkan adalah 12 unit, sehingga lahan yang harus disediakan minimal 648 m^2 . Tahun 2024, lahan yang harus disediakan minimal 1.620 m^2 .

5.5.2 Aspek Lingkungan

Aspek lingkungan meliputi perhitungan total emisi GRK pengangkutan dan pengolahan. Gambar 5.31 merupakan hasil simulasi emisi GRK dari kegiatan pengangkutan masing-masing skenario. Hasil simulasi menunjukkan bahwa total emisi pengangkutan meningkat dari waktu ke waktu, hal ini dikarenakan berat limbah padat medis yang meningkat tiap tahun sehingga mempengaruhi kebutuhan trip. Kebutuhan trip mempengaruhi secara langsung emisi yang dihasilkan baik CO₂, N₂O, maupun CH₄.

Emisi GRK yang dihasilkan dari pengangkutan skenario terpusat lebih besar daripada skenario wilayah, karena jarak tempuh pengangkutan yang sangat jauh. Pada skenario terpusat jarak yang dibutuhkan pengangkutan yaitu 205,7 km. Alat angkut berangkat dari Tambak Osowilangun lalu keliling menuju fasilitas


kesehatan di Surabaya Timur kemudian kembali lagi ke Tambak Osowilangun. Pada skenario wilayah jarak yang dibutuhkan yaitu 174,8 km. Alat angkut berangkat dari Puskesmas Mulyorejo dan Puskesmas Gunung Anyar menuju fasilitas kesehatan sesuai rute yang telah ditentukan lalu kembali lagi ke puskesmas Mulyorejo dan Puskesmas Gunung Anyar. Emisi GRK pengangkutan skenario terpusat pada tahun 2024 a dalah 31.492.087 CO₂e/tahun sedangkan skenario wilayah adalah 26.761.385 CO₂e/tahun.

Gambar 5.31 Grafik Simulasi Emisi GRK dari Pengangkutan

Pengangkutan limbah padat medis dengan alat angkut khusus dilakukan dengan sistem kontainer tetap (*Stationary Container System* = SCS). Kendaraan berangkat dari pusat pengolahan dengan kontainer kosong menuju ke fasilitas kesehatan penghasil limbah padat medis pertama. Setelah mengangkut limbah padat medis dari lokasi pertama kemudian mengangkut ke lokasi kedua hingga kontainer penuh dan kembali ke pusat pengolahan. Operasional pengangkutan dimulai antara pukul 21.00 WIB dan berakhir sampai antara pukul 05.00 WIB. Setiap alat angkut yang dioperasikan terdapat 1 personil yang bertugas sebagai supir dan 1 orang sebagai pengambil limbah padat medis dari tempat pengumpulan sementara fasilitas kesehatan.

Gambar 5.32 merupakan hasil simulasi emisi GRK dari kegiatan pengolahan masing-masing skenario. Hasil simulasi menunjukkan adanya peningkatan emisi pengolahan tiap tahun. Total berat limbah padat medis merupakan variabel utama penentu emisi GRK dari pengolahan. Skenario terpusat dan wilayah direncanakan pengadaan unit insinerator baru. Emisi CH₄ berasal dari pembakaran tidak sempurna dan nilainya sangat kecil jika insinerator berfungsi dengan benar (Institute for Global Environmental Strategies. 2006). Diasumsikan insinerator baru berfungsi dengan benar sehingga emisi CH₄ dianggap tidak ada. Emisi N₂O terbentuk jika suhu pembakaran rendah yaitu 500-950°C (Institute for Global Environmental Strategies. 2006), de ngan penggunaan insinerator baru yang mencapai suhu pembakaran > 1000 °C diperkirakan emisi N₂O dapat diabaikan. Emisi GRK dari kegiatan pengolahan skenario terpusat dan wilayah adalah sama yaitu 79.874 ton CO₂e/tahun pada tahun 2024. Jumlah limbah padat medis yang diolah sama, jumlah dan jenis insinerator yang akan digunakanpun juga sama, sehingga menghasilkan output yang sama pula. Tabel 5.14 merupakan hasil simulasi emisi GRK dari kegiatan pengangkutan dan pengolahan limbah padat medis berdasarkan masing-masing skenario.

Gambar 5.32 Grafik Simulasi Emisi GRK dari Pengolahan

Tabel 5.14 Hasil Simulasi Emisi GRK Pengangkutan dan Pengolahan Limbah Padat Medis

		Emisi (ton CO ₂ e/tahun)							
Tahun Proyeksi	Tahun	Ske	enario Terpusat	t	Ske	enario Wilayah	1		
Troyensi		Pengangkutan	Pengolahan	Total	Pengangkutan	Pengolahan	Total		
0	2014	12.596.837	53.005	12.649.841	10.704.556	53.005	10.757.561		
1	2015	13.646.573	62.339	13.708.912	11.596.602	62.339	11.658.942		
2	2016	14.696.309	73.111	14.769.420	12.488.648	73.111	12.561.759		
3	2017	15.746.045	85.567	15.831.612	13.380.694	85.567	13.466.261		
4	2018	16.795.781	100.001	16.895.782	14.272.740	100.001	14.372.741		
5	2019	18.895.254	123.624	19.018.878	16.056.833	123.624	16.180.457		
6	2020	20.994.726	151.374	21.146.100	17.840.925	151.374	17.992.299		
7	2021	23.094.198	184.008	23.278.206	19.625.017	184.008	19.809.025		
8	2022	25.193.670	222.421	25.416.092	21.409.109	222.421	21.631.530		
9	2023	28.342.879	277.965	28.620.844	24.085.247	277.965	24.363.212		
Final	2024	31.492.087	343.930	31.836.017	26.761.385	343.930	27.105.315		

5.5.3 Aspek Biaya

Sama halnya seperti aspek lingkungan. aspek biaya juga meliputi biaya yang dibutuhkan untuk pengangkutan dan biaya untuk pengolahan. Aspek biaya ditambahkan pula biaya investasi untuk pengadaan alat angkut dan insinerator yang baru. Dengan menggunakan satuan biaya yang telah ditentukan. dapat dihitung biaya pengelolaan limbah padat medis pada kondisi eksisting saat ini. Gambar 5.33 adalah hasil simulasi biaya yang dibutuhkan untuk pengangkutan dan pengolahan limbah padat medis pada skenario terpusat. Gambar 5.34 adalah hasil simulasi biaya yang dibutuhkan untuk pengangkutan dan pengolahan limbah padat medis pada skenario wilayah. Hasil simulasi menunjukkan bahwa biaya pengangkutan meningkat tiap tahun mengikuti berat limbah padat medis yang harus dikelola.

Biaya investasi disesuaikan dengan kebutuhan alat angkut pada Tabel 5.12 dan kebutuhan insinerator pada Tabel 5.13. Adanya investasi pengadaan insinerator dan alat angkut khusus pada skenario terpusat dan wilayah menyebabkan peningkatan biaya yang dibutuhkan untuk pengelolaan limbah padat medis seperti ditampilkan pada Tabel 5.15.

Gambar 5.33 Grafik Simulasi Kebutuhan Biaya Skenario Terpusat

Gambar 5.34 Grafik Simulasi Kebutuhan Biaya Skenario Wilayah

Biaya awal yang dibutuhkan pada skenario terpusat untuk pengangkutan limbah padat medis adalah Rp 1.561.757, biaya pengolahan Rp 9.522.000, sedangkan biaya investasi pada tahun pertama Rp 7.200.000.000. Biaya yang harus dikeluarkan untuk pengolahan besar karena kebutuhan bahan bakarnya besar. Bahan bakar yang dibutuhkan dalam sekali pembakaran sebanyak 20 liter solar dengan kapasitas sekali pembakaran adalah 200 kg, sedangkan limbah padat medis yang harus dimusnahkan dalam sehari adalah 5.019,37 ton/tahun atau 13.751,7 kg/hari.

Tabel 5.15 Hasil Simulasi Biaya Masing-masing Skenario

T. 1					Biaya (Rup	viah/tahun)			
Tahun Proyeksi	Tahun		Skenario	Terpusat			Skenari	o Wilayah	
TTOYCKST		Pengangkutan	Pengolahan	Investasi	Total	Pengangkutan	Pengolahan	Investasi	Total
0	2014	1.561.757	9.522.000	7.200.000.000	7.211.083.757	759.240	9.522.000	6.300.000.000	6.310.281.240
1	2015	1.691.903	10.212.000	750.000.000	761.903.903	822.510	10.212.000	450.000.000	461.034.510
2	2016	1.822.049	11.178.000	450.000.000	463.000.049	885.780	11.178.000	750.000.000	762.063.780
3	2017	1.952.196	12.144.000	750.000.000	764.096.196	949.050	12.144.000	450.000.000	463.093.050
4	2018	2.082.342	13.248.000	450.000.000	465.330.342	1.012.320	13.248.000	450.000.000	464.260.320
5	2019	2.342.635	14.628.000	1.200.000.000	1.216.970.635	1.138.860	14.628.000	1.200.000.000	1.215.766.860
6	2020	2.602.928	16.008.000	1.200.000.000	1.218.610.928	1.265.400	16.008.000	900.000.000	917.273.400
7	2021	2.863.221	17.802.000	1.200.000.000	1.220.665.221	1.391.940	17.802.000	1.200.000.000	1.219.193.940
8	2022	3.123.513	19.734.000	1.200.000.000	1.222.857.513	1.518.480	19.734.000	900.000.000	921.252.480
9	2023	3.513.953	21.942.000	1.950.000.000	1.975.455.953	1.708.290	21.942.000	1.650.000.000	1.673.650.290
Final	2024	3.904.392	24.564.000	1.650.000.000	1.678.468.392	1.898.100	24.564.000	1.650.000.000	1.676.462.100

Kebutuhan biaya pengangkutan skenario terpusat lebih besar daripada skenario wilayah karena jarak tempuh pengangkutan yang yang lebih jauh. Kebutuhan biaya pengolahan skenario terpusat dan wilayah sama karena jumlah limbah padat medis yang diolah sama, jumlah dan jenis insinerator yang akan digunakanpun juga sama.

5.6 Pemilihan Alternatif Pengelolaan Limbah Padat Medis

Pemilihan alternatif pengelolaan limbah padat medis dilakukan dengan membandingkan hasil simulasi skenario terpusat dan skenario wilayah yang dapat dilihat pada Tabel 5.16.

Tabel 5.16 Perbandingan Hasil Simulasi pada Tahun 2024 Masing-masing Skenario

Skenario	Berat Limbah	Jumlah Trip	Emisi ((ton CO ₂ e		Biaya (Rupiah/tahun)		
	Medis (ton/tahun)	(trip/hari)	Pengangkutan	Pengolahan	Pengangkutan	Pengolahan	
Skenario Terpusat	12.966.48	30	31.492.087	343.930	3.904.392	24.564.000	
Skenario Wilayah	12.966.48	30	26.761.385	343.930	1.898.100	24.564.000	

Hasil simulasi kebutuhan trip skenario terpusat dan wilayah sama karena alat angkut yang digunakan direncanakan sama sehingga memiliki kapasitas yang sama pula. Namun kebutuhan alat angkut berbeda karena beban trip tiap alat angkut berbeda. Beban trip tiap alat angkut pada skenario terpusat sebanyak 2 trip perhari. sedangkan beban trip tiap alat angkut pada skenario terpusat sebanyak 4 trip perhari. Emisi GRK dan kebutuhan biaya pengolahan skenario terpusat dan wilayah sama karena jumlah limbah padat medis yang diolah sama. jumlah dan jenis insinerator yang akan digunakanpun juga sama. Berdasarkan Tabel 5.16 dapat dilihat bahwa skenario wilayah menghasilkan *output* lebih baik karena emisi GRK yang dihasilkan dan biaya yang dibutuhkan lebih kecil daripada skenario terpusat. Kelemahan sistem dinamik dalam penelitian ini adalah tidak dapat memperkirakan kemacetan jika pengangkutan dilakukan pada siang hari. Data

yang menunjukkan laju pertumbuhan negatif atau dianggap tidak ada penambahan tidak dapat dianalisis dalam pemodelan ini, sehingga memerlukan perhitungan manual untuk analisisnya.

Hasil pemodelan menunjukkan bahwa skenario wilayah lebih menguntungkan daripada skenario terpusat. namun demikian perlu diperhatikan beberapa persyaratan lokasi pengolahan limbah padat medis terpusat yang telah ditetapkan dalam Kep 01/BAPEDAL/09/1995 tentang Tata Cara dan Persyaratan Teknis dan Penyimpanan dan Pengumpulan Limbah Bahan Berbahaya dan Beracun (Badan Pengendalian Dampak Lingkungan. 1995) sebagai berikut:

- 1. Luas lahan termasuk untuk bangunan penyimpanan dan fasilitas lainnya sekurang-kurangnya 1 (satu) hektar.
- 2. Area secara geologis merupakan daerah bebas banjir tahunan.
- 3. Lokasi harus cukup jauh dari fasilitas umum dan ekosistem tertentu. Jarak terdekat yang diperkenankan adalah:
 - a. 150 m dari jalan utama atau jalan tol. 50 m dari jalan lainnya.
 - b. 300 m dari fasilitas umum seperti: daerah permukiman. perdagangan. rumah sakit. pelayanan kesehatan atau kegiatan sosial. hotel. restoran. fasilitas keagamaan. fasilitas pendidikan. dll.
 - c. 300 m dari perairan seperti: garis pasang tertinggi laut. badan sungai. daerah pasang surut. kolam. danau. rawa. mata air. sumur penduduk. dll.
 - d. 300 m dari daerah yang dilindungi seperti: cagar alam. hutan lindung. kawasan suaka. dll.

Puskesmas Gunung Anyar dan Mulyorejo dipilih karena merupakan fasilitas kesehatan paling memungkinkan untuk dikembangkan menjadi pengolahan terpusat di Surabaya Timur. Kedua lokasi tersebut terdapat lahan kosong tersedia meskipun bukan kepemilikan Pemerintah Kota Surabaya. Tabel 5.17 berikut menunjukkan perbandingan kesesuaian masing-masing lokasi rencana pengolahan limbah padat medis dengan Kep 01/BAPEDAL/09/1995.

Tabel 5.17 Perbandingan Lokasi Rencana Pengelolaan Limbah Padat Medis

		Skenario Terpusat	Skenario	Wilayah
No.	Persyaratan	Kelurahan Tambak Osowilangun	Puskesmas Gunung Anyar	Puskesmas Mulyorejo
1	Luas lahan termasuk untuk bangunan penyimpanan dan fasilitas lainnya sekurang-kurangnya satu hektar.	$\sqrt{}$	$\sqrt{}$	\checkmark
2	Area secara geologis merupakan daerah bebas banjir tahunan.	√	$\sqrt{}$	V
3	150 m dari jalan utama atau jalan tol. 50 m dari jalan lainnya.	$\sqrt{}$	$\sqrt{}$	\checkmark
4	300 m dari fasilitas umum seperti: daerah permukiman, perdagangan, rumah sakit, pelayanan kesehatan atau kegiatan social, hotel, restoran, fasilitas keagamaan, fasilitas pendidikan, dll.	V	×	×
5	300 m dari perairan seperti: garis pasang tertinggi laut, badan sungai, daerah pasang surut, kolam, danau, rawa, mata air, sumur penduduk. dll.	×	×	×
6	300 m dari daerah yang dilindungi seperti: cagar alam, hutan lindung, kawasan suaka, dll	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$

Tabel 5.17 menunjukkan pada skenario wilayah masih ada persyaratan yang belum dipenuhi oleh lokasi yang direncanakan, yaitu jarak antara lokasi yang direncanakan di skenario wilayah kurang dari 300 m dari fasilitas umum berupa permukiman dan juga berdekatan dengan sumur warga. Sedangkan pada skenario terpusat, jarak lokasi yang direncanakan dengan fasilitas umum lebih dari 300 m namun di sekitar daerah masih terdapat perairan berupa tambak. Melihat permasalahan tersebut, maka perlu dicari lokasi baru di Surabaya Timur untuk dijadikan pusat pengolahan limbah padat medis yang memenuhi keriteria di atas.

BAB 6

KESIMPULAN DAN SARAN

6.1 Kesimpulan

Kesimpulan dari penelitian mengenai limbah padat medis fasilitas kesehatan di Surabaya Timur ini adalah:

- Aspek teknis berat limbah padat medis fasilitas kesehatan di Surabaya Timur meningkat dari tahun ke tahun dengan kebutuhan trip 12 trip perhari.
- Aspek lingkungan total emisi GRK skenario terpusat lebih besar daripada skenario wilayah. Total emisi GRK skenario terpusat adalah 12.605.671 ton/tahun, sedangkan skenario wilayah adalah 6.132.724 ton/tahun
- 3. Aspek biaya skenario terpusat lebih besar daripada skenario wilayah. Total biaya yang dibutuhkan skenario terpusat adalah 20.605.757 rupiah/tahun, sedangkan skenario wilayah adalah 19.803.240 rupiah/tahun
- 4. Alternatif solusi terbaik untuk pengelolaan limbah padat medis fasilitas kesehatan di Surabaya Timur adalah skenario pengolahan wilayah karena menghasilkan emisi dan membutuhkan biaya yang lebih kecil daripada skenario terpusat.

6.2 Saran

Saran yang dapat diberikan dari penelitian mengenai limbah padat medis fasilitas kesehatan di Surabaya Timur ini adalah:

 Sebaiknya dilakukan penelitian serupa untuk wilayah Kota Surabaya yang lain agar diketahui pengelolaan limbah padat medis yang sesuai untuk keseluruhan Kota Surabaya. Selain itu, perlu juga dilakukan analisis lanjutan dari hasil skenario terpusat dengan menggunakan metode selain

- sistem dinamik, misalkan CBA (*Cost Benefit Analysis*) sehingga sesuai dengan kesanggupan pemerintah Kota.
- 2. Belum ada penelitian mengenai pengumpulan dan pengangkutan limbah padat medis, sehingga perlu dilakukan analisis mengenai detail sistem pengangkutan limbah padat medis dari fasilitas kesehatan di Surabaya Timur.
- 3. Perlu dicari lokasi baru di Surabaya Timur untuk dikembangkan menjadi pusat pengolahan limbah padat medis yang sesuai dengan Kep 01/BAPEDAL/09/1995 tentang Tata Cara dan Persyaratan Teknis dan Penyimpanan dan Pengumpulan Limbah Bahan Berbahaya dan Beracun.

DAFTAR PUSTAKA

- Agustina, R. 2012. "Pola penyebaran limbah padat dan B3 dari fasilitas kesehatan di Surabaya Utara dan Pusat". Tugas Akhir. Jurusan Teknik Lingkungan ITS. Surabaya
- Amriana. 2012. "Pengelolaan Limbah Padat B3 Laboratorium Medis di Surabaya Timur". Tugas Akhir. Jurusan Teknik Lingkungan ITS. Surabaya
- Ananth, A.P., Prashanthini, V., dan Visvanathan, C. 2010. "Healthcare Waste Management in Asia". Waste Management **30**, Ha. 154-161
- Badan Lingkungan Hidup Kota Surabaya. 2014. "Kajian Pengelolaan Limbah Bahan Berbahaya dan Berracun (B3) Padat Medis Kota Surabaya". Surabaya, Indonesia
- Badan Pengendalian Dampak Lingkungan. 1995. "Kep 01/BAPEDAL/09/1995 tentang Tata Cara dan Persyaratan Teknis dan Penyimpanan dan Pengumpulan Limbah Bahan Berbahaya dan Beracun". Jakarta, Indonesia
- Badan Perencanaan Pembangunan Kota Surabaya. 2012. "Peraturan Daerah No. 18 tahun 2012 tentang Rencana Pembangunan Jangka Menengah Daerah Kota Surabaya Tahun 2010 2015". Surabaya, Indonesia
- Badan Pusat Statistik Kota Surabaya. 2003. "Surabaya dalam Angka 2003". Surabaya, Indonesia
- Badan Pusat Statistik Kota Surabaya. 2004. "Surabaya dalam Angka 2004". Surabaya, Indonesia
- Badan Pusat Statistik Kota Surabaya. 2005. "Surabaya dalam Angka 2005". Surabaya, Indonesia
- Badan Pusat Statistik Kota Surabaya. 2006. "Surabaya dalam Angka 2006". Surabaya, Indonesia
- Badan Pusat Statistik Kota Surabaya. 2007. "Surabaya dalam Angka 2007". Surabaya, Indonesia
- Badan Pusat Statistik Kota Surabaya. 2008. "Surabaya dalam Angka 2008". Surabaya, Indonesia

- Badan Pusat Statistik Kota Surabaya. 2009. "Surabaya dalam Angka 2009". Surabaya, Indonesia
- Badan Pusat Statistik Kota Surabaya. 2010. "Surabaya dalam Angka 2010". Surabaya, Indonesia
- Badan Pusat Statistik Kota Surabaya. 2011. "Surabaya dalam Angka 2011". Surabaya, Indonesia
- Badan Pusat Statistik Kota Surabaya. 2012. "Surabaya dalam Angka 2012". Surabaya, Indonesia
- Badan Pusat Statistik Kota Surabaya. 2013. "Surabaya dalam Angka 2013". Surabaya, Indonesia
- Badan Pusat Statistik Kota Surabaya. 2014. "Surabaya dalam Angka 2014". Surabaya, Indonesia
- Badan Standarisasi Nasional. 1995. "SNI 19-3964-1994 tentang Metode Pengambilan dan Pengukuran Contoh Timbulan dan Komposisi Sampah Perkotaan". Jakarta, Indonesia
- Chaerul, M., Tanaka, M., dan Shekdar, A.V. 2008. "A System Dynamic Approach for Hospital Waste Management". Waste Management **28**, Hal. 442–449
- Ciplak, N. dan Barton, J.R. 2012. "A System Dynamics Approach for Healthcare Waste Management: A Case Study in Istanbul Metropolitan City, Turkey". Waste Manag Res **30**, Hal. 576
- Dinas Kesehatan Kota Surabaya. 2013. "Daftar Klinik Pratama Kota Surabaya Tahun 2013". Surabaya, Indonesia
- Dinas Kesehatan Kota Surabaya. 2006. "Profil Kesehatan Kota Surabaya Tahun 2006". Surabaya, Indonesia
- Dinas Kesehatan Kota Surabaya. 2007. "Profil Kesehatan Kota Surabaya Tahun 2007". Surabaya, Indonesia
- Dinas Kesehatan Kota Surabaya. 2008. "Profil Kesehatan Kota Surabaya Tahun 2008". Surabaya, Indonesia
- Dinas Kesehatan Kota Surabaya. 2009. "Profil Kesehatan Kota Surabaya Tahun 2009". Surabaya, Indonesia
- Dinas Kesehatan Kota Surabaya. 2010. "Profil Kesehatan Kota Surabaya Tahun 2010". Surabaya, Indonesia

- Dinas Kesehatan Kota Surabaya. 2011. "Profil Kesehatan Kota Surabaya Tahun 2011". Surabaya, Indonesia
- Dinas Kesehatan Kota Surabaya. 2012. "Profil Kesehatan Kota Surabaya Tahun 2012". Surabaya, Indonesia
- Dinas Kesehatan Kota Surabaya. 2013. "Anggaran Kesehatan Kabupaten/Kota Surabaya Tahun 2013". Surabaya, Indonesia
- Dinas Kesehatan Kota Surabaya. 2013. "Profil Kesehatan Kota Surabaya Tahun 2013". Surabaya, Indonesia
- Eleyan, D., Al-Khatib, I.A., dan Garfield, J. 2013. "System Dynamics Model for Hospital Waste Characterization and Generation in Developing Countries". Waste Manag Res **10**, Hal. 986-95
- Girsang. 2013. "Evaluasi Pengelolaan Limbah Padat B3 Hasil Insinerasi di Rumah Sakit Umum Daerah Dr. Soetomo Surabaya". Tugas Akhir. Jurusan Teknik Lingkungan ITS. Surabaya
- Institute for Global Environmental Strategies (IGES). 2006. "Intergovermental Panel on Climate Change (IPCC) Guidelines for National Greenhouse Gas Inventories Volume 2: Energy, Prepared by the National Greenhouse Gas Inventories Programme"
- Institute for Global Environmental Strategies (IGES). 2006. "Intergovermental Panel on Climate Change (IPCC) Guidelines for National Greenhouse Gas Inventories Volume 5: Waste, Prepared by the National Greenhouse Gas Inventories Programme"
- Jang, Y.C. 2011. "Infectious/Medical/Hospital Waste: General Characteristics". Elsevier
- Karagiannidis, A., Papageorgiou, A., Perkoulidis, G., Sanida, G., dan Samaras, P. 2010. "A Multi-criteria Assessment of Scenarios on Thermal Processing of Infectious Hospital Wastes: A Case Study for Central Macedonia". Waste Management 30, Hal. 251–262
- Kollikkathara, N., Feng, H., dan Yu, D. 2010. "A System Dynamic Modeling Approach for Evaluating Municipal Solid Waste Generation, Landfill Capacity and Related Cost Management Issues". Waste Management 30, Hal. 2194-2203

- Komilis, D., Fouki, A., dan Papadopoulos, D. 2012. "Hazardous Medical Waste Generation Rates of Different Categories of Health-care Facilities". Waste Management **32**, Hal. 1434–1441
- Li, M., Zhu, Y., Xue, C., Liu, Y., dan Zhang, L. 2014. "The Problem of Unreasonably High Pharmaceutical Fees for Patients in Chinese Hospital:
 A System Dynamics Simulation Model". Computers in Biology and Medicine 47, Hal. 58–65
- Long, Y.Y., Feng, Y.J., Cai, S.S., Hu, L.F., dan Shen, D.S. 2014. "Reduction of Heavy Metals in Residues from the Dismantling of Waste Electrical and Electronic Equipment before Incineration". Journal of Hazardous Materials Volume 272, Hal. 59–65
- Manga, V.E., Forton, O.T., Mofor, L.A., dan Woodard, R. 2011. "Health care waste management in Cameroon: A Case Study from the Southwestern Region". Jurnal Resources, Conservation and Recycling 57. Hal. 108-116
- Menteri Kesehatan Republik Indonesia, 2004. "Keputusan No. 1204 tahun 2004 tentang Persyaratan Kesehatan Lingkungan Rumah Sakit". Jakarta, Indonesia
- Menteri Kesehatan Republik Indonesia. 2004. "Keputusan No. 128 tahun 2004 tentang Kebijakan Dasar Pusat Kesehatan Masyarakat". Jakarta, Indonesia
- Menteri Kesehatan Republik Indonesia. 2007. "Keputusan No. 812 tahun 2007 tentang Kebijakan Perawatan Paliatif". Jakarta, Indonesia
- Menteri Kesehatan Republik Indonesia, 2010. "Peraturan No. 340 tahun 2010 tentang Klasifikasi Rumah Sakit". Jakarta, Indonesia
- Muhammadi, Aminullah, E., dan Soesilo, B. 2001. "Analisis Sistem Dinamis". Jakarta: UMJ Press
- Neto, A.D.C.L., Legey, L.F.L., Araya, M.C.G., dan Jablonski, S. 2006. "A System Dynamics Model for The Environmental Management of the Sepetiba Bay Watershed, Brazil". Environmental Manage 38, Hal. 879-888
- Novitasari, A.K. 2011. "Kajian Pengelolaan Limbah Padat B3 di Rumah Sakit Umum Haji Surabaya". Tugas Akhir. Jurusan Teknik Lingkungan ITS. Surabaya

- Perdana, P.M. 2011. "Kajian Pengelolaan Limbah Padat B3 di Rumah Sakit Umum Daerah Dr. Soetomo". Tugas Akhir. Jurusan Teknik Lingkungan ITS. Surabaya
- Perdani, I.P. 2011. "Identifikasi Pola Penyebaran Limbah Padat B3 dari Fasilitas Kesehatan di Surabaya Timur". Tugas Akhir. Jurusan Teknik Lingkungan ITS. Surabaya
- Pramesti, I.A. 2012. "Pengelolaan Limbah B3 Medis Rumah Sakit Khusus di Surabaya Timur". Tugas Akhir. Jurusan Teknik Lingkungan — ITS. Surabaya
- Presiden Republik Indonesia. 2014. "Peraturan Pemerintah Republik Indonesia Nomor 101 Tahun 2014 tentang Pengelolaan Limbah Bahan Berbahaya dan Beracun". Jakarta, Indonesia
- Rahno, D., Roebijoso, J., dan Leksono, A.S. 2015. "Pengelolaan Limbah Medis Padat di Puskesmas Borong Kabupaten Manggarai Timur Propinsi Nusa Tenggara Timur". J-PAL, Vol. 6, No. 1 ISSN: 2087-3522 E-ISSN: 2338-1671
- Suryawan, I.W.K. 2014. "Evaluasi Pengelolaan Limbah Padat B3 di Fasilitas Insinerator untuk Puskesmas Kota Surabaya". Tugas Akhir. Jurusan Teknik Lingkungan ITS. Surabaya
- Taha, H.A. 1982. "Operation Research". New York: Macmillan Publishing Co., Inc.
- Tzanakos, K., Mimilidou, A., Anastasiadou, K., Stratakis, A., dan Gidarakos, E. 2014. "Solidification/stabilization of Ash from Medical Waste Incineration into Geopolymers". Waste Managemen xxx, Hal. xxx-xxx
- Walikota Surabaya. 2012. "Peraturan Walikota Surabaya Nomor 27 Tahun 2012 tentang Perubahan Ketiga Atas Peraturan Walikota Surabaya Nomor 80 Tahun 2008 Tentang Organisasi Unit Pelaksana Teknis Dinas Pusat Kesehatan Masyarakat Pada Dinas Kesehatan Kota Surabaya". Surabaya, Indonesia
- Windasari, D. 2011. "Pengelolaan limbah B3 medis rumah sakit khusus di Surabaya Pusat & Selatan". Tugas Akhir. Jurusan Teknik Lingkungan ITS. Surabaya

- Wirjodirdjo, B. 2012. "Pengantar Metodologi Sistem Dinamik". Surabaya: itspress
- Wu, J.D. dan Liu, J.C. 2011. "Development of A Predictive System for Car Fuel Consumtion using An Arfificial Neuron Network". Expert System with Applications 38, Hal. 4967-4971
- Yuan, H. 2012. "A Model for Evaluating The Social Performance of Constrution Waste Management". Waste Management **32**, Hal. 1218-1228
- Zhao, M., Ren, H., dan Rotter, V.S. 2011. "A System Dynamics Model for Evaluating The Alternative of Type in Construction and Demolition Waste Recycling Center The Case of Chongqing, China". Resources, Conservation and Recycling 55, Hal. 933–944

LAMPIRAN A DATA LIMBAH MEDIS

1. Jumlah dan Laju Pertumbuhan Fasilitas Kesehatan

Tabel Lamp. A.1 Jumlah dan Laju Pertumbuhan Rumah Sakit Umum

Tahun	Jumlah Rumah Sakit Umum	Laju Pertumbuhan
1938	1	0
1993	2	0.0126
2011	3	0.0225
2012	4	0.2877
2013	4	0.0000
	Rata-rata	0.0042

Tabel Lamp. A.2 Jumlah dan Laju Pertumbuhan Rumah Sakit Khusus

Tahun	Jumlah Rumah Sakit Khusus	Tingkat Pertumbuhan
1954	1	0
1974	2	0.0347
1999	3	0.0162
2003	4	0.0719
2006	5	0.0744
2010	6	0.0456
2011	7	0.1542
2012	7	0.0000
2013	7	0.0000
	Rata-rata	0.0066

Tabel Lamp. A.3 Jumlah dan Laju Pertumbuhan Puskesmas Induk

Tahun	Jumlah Puskesmas	Laju pertumbuhan
2005	12	0
2006	12	0.0000
2007	12	0.0000
2008	12	0.0000
2009	12	0.0000
2010	12	0.0000
2011	13	0.0769
2012	14	0.0714
2013	14	0.0000
Rata-rata		0.0165

Tabel Lamp. A.4 Jumlah dan Laju Pertumbuhan Puskesmas Pembantu

Tahun	Jumlah Puskesmas Pembantu	Laju Pertumbuhan
2010	15	0
2011	15	0.0000
2012	12	-0.2231
2013	13	0.0800
Rata-rata		-0.0358

2. Timbulan Limbah Padat Medis Fasilitas Kesehatan

Tabel Lamp. A.5 Berat Limbah Padat Medis Rumah Sakit Umum

Dymah Calrit I Imyym	Berat Limbah	
Rumah Sakit Umum —	kg/hari	ton/tahun
RSUD Dr. Seotomo	1285	469.0250
RSU Haji	290	105.8500
RS Unair	290	105.8500
RS Royal	290	105.8500
Total	2155	786.5750
Rata-rata	538.8	196.6438

Tabel Lamp. A.6 Berat Limbah Padat Medis Rumah Sakit Khusus

Rumah Sakit Khusus -	Berat Limbah	
Kulliali Sakit Kliusus	kg/hari	ton/tahun
RSB Pura Raharja	1.61	0.5877
RSB Putri	5.40	1.9703
RS bedah Surabaya	6.65	2.4273
RSGM UNAIR	0.80	0.2924
RSGM Hang Tuah	0.80	0.2924
RSJ Menur	1.36	0.4968
Rumah sakit Onkologi	6.65	2.4273
Total	23.27	8.4939
Rata-rata	3.32	1.6988

Tabel Lamp. A.7 Timbulan Limbah Padat Medis Pasien Rawat Inap Rumah Sakit

Umum		
Fasilitas	Timbulan (ton/pasien/tahun)	
RSUD Dr. Soetomo	0.1033	
RSU Haji	0.0378	
RS Unair	0.0378	
RS Royal	0.0378	
Total	0.2168	
Rata-rata	0.0542	

Tabel Lamp. A.8 Timbulan Limbah Padat Medis Pasien Rawat Inap Rumah Sakit Khusus

Fasilitas	Timbulan (ton/pasien/tahun)
RSB Pura Raharja	0.4551
RSB Putri	0.4551
RS bedah Surabaya	0.4551
RSGM UNAIR	0
RSGM Hang Tuah	0
RSJ Menur	0.0021
Rumah sakit Onkologi	0.4551
Total	1.8225
Rata-rata	0.2604

Tabel Lamp. A.9 Timbulan Limbah Padat Medis Pasien Rawat Jalan Rumah Sakit Khusus

Fasilitas	Timbulan (ton/pasien/tahun)
RSB Pura Raharja	0.0065
RSB Putri	0.0065
RS Bedah Surabaya	0.0065
RSGM UNAIR	0.0097
RSGM Hang Tuah	0.0097
RSJ Menur	0.0097
Rumah sakit Onkologi	0.0065
Rata-rata	0.0079

Tabel Lamp. A.10 Timbulan Limbah Padat Medis Per Bed Rumah Sakit Umum

Fasilitas	Timbulan (ton/bed/tahun)
RSUD Dr. Soetomo	0.1436
RSU Haji	0.0192
RS Unair	0.0192
RS Royal	0.0192
Total	0.2012
Rata-rata	0.0503

Tabel Lamp. A.11 Timbulan Limbah Padat Medis Per Bed Rumah Sakit Khusus

Fasilitas	Timbulan (ton/bed/tahun)
RSB Pura Raharja	0.0379
RSB Putri	0.0379
RS Bedah Surabaya	0.0379
RSGM UNAIR	0

Fasilitas	Timbulan (ton/bed/tahun)	
RSGM Hang Tuah	0	
RSJ Menur	0.0011	
Rumah sakit Onkologi	0.0379	
Rata-rata	0.0218	

3. Jumlah dan Tingkat Pertumbuhan Pasien Fasilitas Kesehatan

Tabel Lamp. A.12 Jumlah dan Tingkat Pertumbuhan Pasien Rawat Inap Puskesmas Induk

Tahun	Jumlah Rawat Inap	Tingkat Pertumbuhan
2006	57	0
2007	54	-0.0556
2008	53	-0.0189
2009	70	0.2429
2010	110	0.3636
2011	97	-0,1340
2012	100	0.0300
2013	74	-0,3514
	Rata-rata	0.0096

Tabel Lamp. A.13 Jumlah dan Tingkat Pertumbuhan Pasien Rawat Jalan Puskesmas Induk

Tahun	Jumlah Rawat Jalan	Tingkat Pertumbuhan
2007	64,593	0
2008	65,597	0.0154
2009	69,935	0.0640
2010	105,978	0.4157
2011	67,266	-0.4546
2012	64,633	-0.0399
2013	65,330	0.0107
	Rata-rata	0.0016

4. Rute Pengangkutan

Tabel Lamp. A.14 Rute Pengangkutan Skenario Terpusat

No.	Nama fasilitas kesehatan	Jarak Tempuh (km)	Waktu Tempuh (jam)
	Tambak Osowilangun		
1	Puskesmas Pacar Keling	15.1	1.15
2	Puskesmas Gading	1.2	0.09
3	Puskesmas Rangkah	0.4	0.03
4	Puskesmas Pembantu Karang Empat	0.9	0.07
5	Puskesmas Mulyorejo	3.2	0.24
6	BP Surya Giri Jaya 14	3.1	0.24
7	Lab Medis Pratama Granostic Diagnostic Center	3.6	0.27
8	Lab Medis Pratama Pramita	1.6	0.12
9	Lab Medis Pratama Parahita Diagnostic Center	4.7	0.36
10	Lab Medis Pratama Sehat	2.6	0.20
11	Lab Medis Pratama Prodia	4.4	0.33
12	Puskesmas Pembantu Sutorejo	3	0.23
13	BP Keluarga Mulyosari	4.6	0.35
14	Puskesmas Pembantu Sarana Wisma Permai	1.4	0.11
15	RSU Unair	1.5	0.11
16	Klinik PLK Unair C	0.5	0.04
17	Puskesmas Kalijudan	1.7	0.13
18	Puskesmas Mojo	1.4	0.11
19	Puskesmas Pembantu Gubeng Klingsingan	4	0.30
20	RSGM UNAIR	1.2	0.09
21	RSUD Dr. Seotomo	0.4	0.03
22	BP Santa Anna	3.2	0.24
23	Lab Medis Pratama Kimia Farma	4.2	0.32
24	Lab Medis Pratama Sumbawa	3.8	0.29
25	Lab Medis Pratama Promitra	2.7	0.21
26	Lab Medis Pratama Resident	6.3	0.48
27	Lab Medis Pratama Prolab	5.4	0.41
28	Lab Medis Pratama Fertilab	4.8	0.37
29	Lab Medis Utama Pramita	1.7	0.13
30	Lab Medis Utama Kedungdoro	4.6	0.35
31	Lab Medis Utama Klinika	2.1	0.16
32	Lab Medis Barata Medika	1.8	0.14
33	Rumah Sakit Bersalin Pura Raharja	2.4	0.18
34	Puskesmas Pucang Sewu	1.3	0.10

No.	Nama fasilitas kesehatan	Jarak Tempuh (km)	Waktu Tempuh (jam)
35	Puskesmas Pembantu Barata Jaya	1.3	0.10
36	Puskesmas Menur	0.9	0.07
37	Poliklinik STIESIA	0.5	0.04
38	Rumah Sakit Bedah Surabaya	1.4	0.11
39	RSJ Menur	2.1	0.16
40	Puskesmas Pembantu Semolowaru	3.4	0.26
41	Puskesmas Klampis Ngasem	2.4	0.18
42	Lab Medis Pratama Pantai Bethany Care	0.7	0.05
43	Lab Medis Utama Mitra Husada	1.2	0.09
44	Lab Medis Pratama Sigma Medika	0.3	0.02
45	RSU Haji	0.5	0.04
46	Puskesmas Pembantu Gebang Putih	0.5	0.04
47	Rumah Sakit Bersalin Putri	1.3	0.10
48	Rumah sakit onkologi	0.5	0.04
49	Medical center ITS	0.8	0.06
50	RSGM Hang Tuah	0.5	0.04
51	Puskesmas Keputih	2.4	0.18
52	Puskesmas Pembantu Medokan Semampir	2.3	0.18
53	Puskesmas Pembantu Penjaringan Sari	1.4	0.11
54	Puskesmas Pembantu Medokan Ayu	4.0	0.30
55	Puskesmas Medokan Ayu	6.0	0.46
56	BP dr. Eko	4.0	0.30
57	Lab Medis Pratama Optima	3.0	0.23
58	Puskesmas Gunung Anyar	2.0	0.15
59	Puskesmas Pembantu Rungkut Menanggal	2.4	0.18
60	BP At-Taufiq	3.5	0.27
61	Lab Medis Pratama D'Dothe	2.0	0.15
62	Lab Medis Pratama Larisa	3.0	0.23
63	Lab Medis Pratama Akurat	1.6	0.12
64	Lab Medis Utama Parahita	2.1	0.16
65	Lab Medis Pratama Pusura	3.1	0.24
66	Puskesmas Pembantu Rungkut Kidul	0.9	0.07
67	Puskesmas Kalirungkut	1.1	0.08
68	BP International Chemical Industry	4.5	0.34
69	RS Royal	2	0.15
70	Puskesmas Tenggilis	4	0.30
71	Klinik Medis Ubaya	0.8	0.06
72	Puskesmas Pembantu Kutisari	3.7	0.28
73	BP W-Care	1	0.08
74	Lab Medis Pratama Sentra Medika	1.3	0.10

No.	Nama fasilitas kesehatan	Jarak Tempuh (km)	Waktu Tempuh (jam)
	Surabaya		
75	Lab Medis Pratama Kencana Medika	1.9	0.14
	Tambak Osowilangun	18.6	1.42
	Total	205.7	15.65

Tabel Lamp. A.15 Rute Pengangkutan Skenario Wilayah

No.	Nama fasilitas kesehatan	Jarak Tempuh (km)	Waktu Tempuh (jam)
	Puskesmas Mulyorejo		
1	Puskesmas Pembantu Karang Empat	3.2	0.24
2	BP Surya Giri Jaya 14	3.1	0.24
3	Lab Medis Pratama Granostic Diagnostic Center	3.6	0.27
4	Lab Medis Pratama Pramita	1.6	0.12
5	Lab Medis Pratama Parahita Diagnostic Center	4.7	0.36
6	Lab Medis Pratama Sehat	2.6	0.20
7	Lab Medis Pratama Prodia	4.4	0.33
8	Puskesmas Rangkah	0.9	0.07
9	Puskesmas Gading	0.4	0.03
10	Puskesmas Pacar Keling	1.2	0.09
11	RSGM UNAIR	1.2	0.09
12	RSUD Dr. Seotomo	0.4	0.03
13	BP Santa Anna	3.2	0.24
14	Lab Medis Pratama Kimia Farma	4.2	0.32
15	Lab Medis Pratama Sumbawa	3.8	0.29
16	Lab Medis Pratama Promitra	2.7	0.21
17	Lab Medis Pratama Resident	6.3	0.48
18	Lab Medis Pratama Prolab	5.4	0.41
19	Lab Medis Pratama Fertilab	4.8	0.37
20	Lab Medis Utama Pramita	1.7	0.13
21	Lab Medis Utama Kedungdoro	4.6	0.35
22	Lab Medis Utama Klinika	2.1	0.16
23	Lab Medis Barata Medika	0.8	0.06
24	Rumah Sakit Bersalin Pura Raharja	2.1	0.16
25	Puskesmas Pucang Sewu	1.3	0.10
26	Puskesmas Pembantu Barata Jaya	1.3	0.10
27	Puskesmas Menur	0.9	0.07
28	Poliklinik STIESIA	0.5	0.04
29	Rumah Sakit Bedah Surabaya	1.4	0.11

No.	Nama fasilitas kesehatan	Jarak Tempuh (km)	Waktu Tempuh (jam)
30	RSJ Menur	2.1	0.16
31	Puskesmas Pembantu Gubeng Klingsingan	2.8	0.21
32	Puskesmas Mojo	4	0.30
33	Puskesmas Kalijudan	1.4	0.11
34	Klinik PLK Unair C	1.7	0.13
35	RSU Unair	0.5	0.04
36	Puskesmas Pembantu Sarana Wisma Permai	1.5	0.11
37	BP Keluarga Mulyosari	1.4	0.11
38	Puskesmas Pembantu Sutorejo	4.6	0.35
	Puskesmas Mulyorejo	2.5	0.19
	Puskesmas Gunung Anyar		
1	Puskesmas Pembantu Rungkut Menanggal	1.2	0.09
2	BP At-Taufiq	3.5	0.27
3	Lab Medis Pratama D'Dothe	2	0.15
4	Lab Medis Pratama Larisa	3	0.23
5	Lab Medis Pratama Akurat	1.6	0.12
6	Lab Medis Utama Parahita	2.1	0.16
7	Lab Medis Pratama Pusura	3.1	0.24
8	Puskesmas Pembantu Rungkut Kidul	0.9	0.07
9	Puskesmas Pembantu Kutisari	1.1	0.08
10	BP W-Care	1	0.08
11	Lab Medis Pratama Sentra Medika Surabaya	2	0.15
12	Lab Medis Pratama Kencana Medika	4	0.30
13	Lab Medis Pratama Sigma Medika	0.8	0.06
14	Puskesmas Tenggilis	3.7	0.28
15	Klinik Medis Ubaya	0.8	0.06
16	RS Royal	4	0.30
17	BP International Chemical Industry	2	0.15
18	Puskesmas Kalirungkut	4.5	0.34
19	Puskesmas Pembantu Semolowaru	2.8	0.21
20	Puskesmas Klampis Ngasem	2.4	0.18
21	Lab Medis Pratama Pantai Bethany Care	0.7	0.05
22	Lab Medis Utama Mitra Husada	1.2	0.09
23	Lab Medis Pratama Sigma Medika	0.3	0.02
24	RSU Haji	0.5	0.04
25	Puskesmas Pembantu Gebang Putih	0.5	0.04
26	Rumah Sakit Bersalin Putri	1.3	0.10
27	Rumah sakit onkologi	0.5	0.04
28	Medical center ITS	0.8	0.06

No.	Nama fasilitas kesehatan	Jarak Tempuh (km)	Waktu Tempuh (jam)
29	RSGM Hang Tuah	0.5	0.04
30	Puskesmas Keputih	2.4	0.18
31	Puskesmas Pembantu Medokan Semampir	2.3	0.18
32	Puskesmas Pembantu Penjaringan Sari	1.4	0.11
33	Puskesmas Pembantu Medokan Ayu	4.0	0.30
34	Puskesmas Medokan Ayu	6.0	0.46
35	BP dr. Eko	4.0	0.30
36	Lab Medis Pratama Optima	3.0	0.23
	Puskesmas Gunung Anyar	2.0	0.15
Tota	1	174.80	13.30

"Halaman ini sengaja dikosongkan"

LAMPIRAN B

FORMULASI MODEL STOCK AND FLOW DIAGRAM

Submodel Teknis:

```
    Jumlah_BP(t) = Jumlah_BP(t - dt) + (Pertumbuhan_BP) * dt
        INIT Jumlah_BP = 12
        INFLOWS: Pertumbuhan_BP =
        Jumlah_Penduduk/Pertumbuhan_Penduduk*Tingkat_pertumbuhan_BP
```

2. $Jumlah_Lab_medis(t) = Jumlah_Lab_medis(t - dt) +$

(Pertumbuhan_Lab_medis) * dt

INIT Jumlah_Lab_medis = 28

INFLOWS: Pertumbuhan_Lab_medis =

Jumlah__Penduduk/Pertumbuhan_Penduduk*Tingkat_pertumbuhan__Lab_m edis

3. $Jumlah_pasien_BP(t) = Jumlah_pasien_BP(t - dt) +$

(Pertumbuhan pasien BP) * dt

INIT Jumlah_pasien_BP = 89367

INFLOWS: Pertumbuhan pasien BP =

Jumlah pasien BP*Tingkat pertumbuhan pasien BP

- 4. Jumlah pasien rawat inap PKM(t) = Jumlah pasien rawat inap PKM(t t)
 - dt) + (Pertumbuhan pasien rawat inap PKM) * dt

INIT Jumlah pasien rawat inap PKM = 165

INFLOWS: Pertumbuhan pasien rawat inap PKM =

Jumlah_pasien_rawat_inap_PKM*Tingkat_pertumbuhan_pasien_rawat_inap_ PKM

5. Jumlah_pasien_rawat_jalan_RSK(t) = Jumlah_pasien_rawat_jalan_RSK(t -

dt) + (Pertumbuhan pasien rawat jalan RSK) * dt

INIT Jumlah pasien rawat jalan RSK = 155809

```
INFLOWS: Pertumbuhan pasien rawat jalan RSK =
             Jumlah pasien rawat jalan RSK*Tingkat pertumbuhan pasien rawat jalan
             RSK
6. Jumlah pasien Lab medis(t) = Jumlah pasien Lab medis(t - dt) +
            (Pertumbuhan pasien Lab medis) * dt
            INIT Jumlah pasien Lab medis = 182865
             INFLOWS: Pertumbuhan pasien Lab medis =
            Jumlah pasien Lab medis*Tingkat pertumbuhan pasien Lab medis
7. Jumlah pasien rawat inap RSK(t) = Jumlah pasien rawat inap <math>RSK(t) = Jumlah pasien rawat inap RSK(t) = 
            dt) + (Pertumbuhan pasien rawat inap RSk) * dt
            INIT Jumlah pasien rawat inap RSK = 10497
             INFLOWS: Pertumbuhan pasien rawat inap RSk =
            Jumlah pasien rawat inap RSK*Tingkat pertumbuhan pasien rawat inap
            RSK
8. Jumlah pasien rawat inap RSU(t) = Jumlah pasien rawat inap RSU(t - t)
            dt) + (Pertumbuhan pasien rawat inap) * dt
            INIT Jumlah pasien rawat inap RSU = 64587
            INFLOWS: Pertumbuhan pasien rawat inap =
            Jumlah pasien rawat inap RSU*Tingkat pertumbuhan pasien rawat inap
            _RSU
9. Jumlah pasien rawat jalan PKM(t) = Jumlah pasien rawat jalan PKM(t
            - dt) + (Pertumbuhan pasien rawat jalan PKM) * dt
            INIT Jumlah pasien rawat jalan PKM = 65330
            INFLOWS: Pertumbuhan pasien rawat jalan PKM =
            Jumlah pasien rawat jalan PKM*Tingkat pertumbuhan pasien rawat jala
            n PKM
 10. Jumlah pasien rawat jalan RSU(t) = Jumlah pasien rawat jalan <math>RSU(t) = Jumlah pasien rawat jalan RSU(t) = Jumlah PSU(t) = Jumlah P
             dt) + (Pertumbuhan pasien rawat jalan RSU) * dt
            INIT Jumlah pasien rawat jalan RSU = 737415
```

Jumlah pasien rawat jalan RSU*Tingkat pertumbuhan pasien rawat jala

INFLOWS: Pertumbuhan pasien rawat jalan RSU =

n RSU

```
11. Jumlah PKM(t) = Jumlah PKM(t - dt) + (Pertumbuhan PKM) * dt
   INIT Jumlah PKM = 14
   INFLOWS: Pertumbuhan PKM =
   Jumlah Penduduk/Pertumbuhan Penduduk*Tingkat pertumbuhan PKM
12. Jumlah Pustu(t) = Jumlah Pustu(t - dt) + (Pertumbuhan Pustu) * dt
   INIT Jumlah Pustu = 13
   INFLOWS: Pertumbuhan Pustu =
   (Jumlah Penduduk/Pertumbuhan Penduduk*(-
   Tingkat pertumbuhan Pustu))
13. Jumlah RSK(t) = Jumlah RSK(t - dt) + (Pertumbuhan RSK) * dt
   INIT Jumlah RSK = 7
   INFLOWS: Pertumbuhan RSK =
   Jumlah Penduduk/Pertumbuhan Penduduk*Tingkat pertumbuhan RSK
14. Jumlah RSU(t) = Jumlah RSU(t - dt) + (Pertumbuhan RSU) * dt
   INIT Jumlah RSU = 4
   INFLOWS: Pertumbuhan RSU =
   Jumlah Penduduk/Pertumbuhan Penduduk*Tingkat Pertumbuhan RSU
15. Jumlah__Alat_Transportasi(t) = Jumlah Alat Transportasi(t - dt) +
   (Penambahan alat transportasi) * dt
   INIT Jumlah Alat Transportasi = 40
   INFLOWS: Penambahan alat transportasi =
   Jumlah Alat Transportasi*Tingkat Penambahan alat transportasi
16. Jumlah pasien pustu(t) = Jumlah pasien pustu(t - dt) +
   (Pertumbuhan pasien pustu) * dt
   INIT Jumlah pasien pustu = 72303
   INFLOWS: Pertumbuhan pasien pustu =
   Jumlah pasien pustu*Tingkat pertumbuhan pasien pustu
17. Jumlah Penduduk(t) = Jumlah Penduduk(t - dt) +
   (Pertumbuhan Penduduk) * dt
   INIT Jumlah Penduduk = 836679
   INFLOWS: Pertumbuhan Penduduk =
   Jumlah__Penduduk*Tingkat_Pertumbuhan__Penduduk
```

- 18. Beban_Limbah_Medis_tiap_Trip =

 Densitas_Limbah_Medis*Kapasitas__alat_angkut
- 19. Beban_Trip__Tiap_alat_angkut = 2
- 20. Berat_limbah_medis_BP =
 ((Jumlah_BP*Timbulan_limbah_medis_BP)+Berat_limbah_medis_pasien_BP
)/2
- 21. Berat_limbah_medis_Lab_medis =

 ((Jumlah_Lab_medis*Timbulan_limbah_medis_lab_medis)+Berat_limbah_m

 edis pasien lab medis)/2
- 22. Berat_limbah_medis_pasien_BP =

 Jumlah pasien BP*Timbulan limbah medis pasien BP
- 23. Berat_limbah_medis_pasien_lab_medis =

 Jumlah_pasien_Lab_medis*Timbulan_limbah_medis_pasien_lab_medis
- 24. Berat_limbah_medis_pasien_rawat_inap_PKM =

 ((Jumlah_pasien_rawat_inap_PKM*Timbulan_limbah_medis_pasien_rawat_i

 nap_PKM)+(Jumlah_bed_PKM*Timbulan_limbah_medis_per_bed_PKM))/2
- 25. Berat_limbah_medis_pasien_rawat_inap_RSK =

 ((Jumlah_pasien__rawat_inap_RSK*Timbulan_limbah_medis_pasien_rawat_inap_RSK)+(Jumlah_bed_RSK*Timbulan_limbah_medis_per_bed_RSK))/2
- 26. Berat_limbah_medis_pasien_rawat_inap_RSU =
 ((Jumlah_pasien__rawat_inap_RSU*Timbulan_limbah__medis_pasien__rawat_inap_RSU)+(Jumlah_bed_RSU+Timbulan_limbah__medis_per_bed_RSU))
 /2
- 27. Berat_limbah_medis_pasien_rawat_jalan_PKM =

 Jumlah_pasien__rawat_jalan_PKM*Timbulan_limbah_medis_pasien_rawat_j

 alan_PKM
- 28. Berat_limbah_medis_pasien_rawat_jalan_RSK =

 Jumlah_pasien_rawat_jalan_RSK*Timbulan_limbah_medis_pasien_rawat_jal

 an RSK
- 29. Berat_limbah_medis_pasien_rawat_jalan_RSU =

 Jumlah_pasien__rawat_jalan_RSU*Timbulan_limbah_medis_pasien_rawat_j

 alan_RSU

- 30. Berat_limbah_medis_PKM =

 ((Jumlah_PKM*Timbulan_limbah_medis_PKM)+(Berat_limbah_medis_pasie

 n rawat inap PKM+Berat limbah medis pasien rawat jalan PKM))/2
- 31. Berat_limbah_medis_puskesmas =

 Berat limbah medis PKM+Berat limbah medis pustu
- 32. Berat_limbah_medis_pustu =

 ((Jumlah_Pustu*Timbulan_limbah_medis_Pustu)+Berat_limbah_medis_pasi
 en Pustu)/2
- 33. Berat_limbah_medis_RSK =

 (Berat_limbah_medis_pasien_rawat_inap_RSK+Berat_limbah_medis_pasien_
 rawat_jalan_RSK+(Jumlah_RSK*Timbulan_limbah_medis_RSK))/2
- 34. Berat_limbah_medis_RSU =

 ((Berat_limbah_medis_pasien_rawat_inap_RSU+Berat_limbah_medis_pasien
 _rawat_jalan_RSU)+(Jumlah_RSU*Timbulan_limbah__medis_RSU))/2
- 35. Berat_limbah_medis__pasien_Pustu =

 Jumlah__pasien_pustu*Timbulan_limbah_medis__pasien_pustu
- 36. Densitas Limbah Medis = 0.1864
- 37. Jumlah bed PKM = 27
- 38. Jumlah bed RSK = 480
- 39. Jumlah bed RSU = 1811
- 40. Kapasitas alat angkut = 6.3391
- 41. Kebutuhan_alat_angkut = ROUND(Kebutuhan_Trip/Beban_Trip__Tiap_alat_angkut)
- 42. Kebutuhan_Trip =

 ROUND(Total berat limbah medis/Beban Limbah Medis tiap Trip/365)
- 43. Timbulan limbah medis BP = 0.0738
- 44. Timbulan limbah medis lab medis = 0.1087
- 45. Timbulan limbah medis pasien BP = 0.0011
- 46. Timbulan limbah medis pasien lab medis = 0.0104
- 47. Timbulan limbah medis pasien rawat inap PKM = 0.0023
- 48. Timbulan limbah medis pasien rawat inap RSK = 0.2604
- 49. Timbulan_limbah_medis_pasien_rawat_jalan_PKM = 0.0014

- 50. Timbulan limbah medis pasien rawat jalan RSK = 0.0079
- 51. Timbulan limbah medis pasien rawat jalan RSU = 0.0024
- 52. Timbulan limbah medis per bed PKM = 0.2701
- 53. Timbulan limbah medis per bed RSK = 0.0218
- 54. Timbulan limbah medis PKM = 0.2727
- 55. Timbulan limbah medis Pustu = 0.0156
- 56. Timbulan limbah medis pasien pustu = 0.0015
- 57. Timbulan limbah medis pasien rawat inap RSU = 0.0542
- 58. Timbulan limbah medis per bed RSU = 0.0503
- 59. Timbulan limbah medis RSK = 1.6988
- 60. Timbulan limbah medis RSU = 196.6438
- 61. Tingkat_Penambahan_alat_transportasi = 0.0542
- 62. Tingkat pertumbuhan pasien BP = 0.0691
- 63. Tingkat pertumbuhan pasien Lab medis = 0.1426
- 64. Tingkat pertumbuhan pasien pustu = 0.0691
- 65. Tingkat_pertumbuhan_pasien_rawat_inap_PKM = 0.0096
- 66. Tingkat pertumbuhan pasien rawat inap RSK = 0.0718
- 67. Tingkat_pertumbuhan_pasien_rawat_inap_RSU = 0.1616
- 68. Tingkat pertumbuhan pasien rawat jalan PKM = 0.0016
- 69. Tingkat pertumbuhan pasien rawat jalan RSK = 0.1207
- 70. Tingkat pertumbuhan pasien rawat jalan RSU = -0.0202
- 71. Tingkat pertumbuhan Lab medis = 0.0091
- 72. Tingkat Pertumbuhan Penduduk = 0.0189
- 73. Tingkat _pertumbuhan_BP = 0
- 74. Tingkat pertumbuhan PKM = 0.0165
- 75. Tingkat pertumbuhan Pustu = 0.0358
- 76. Tingkat pertumbuhan RSK = 0.0066
- 77. Tingkat Pertumbuhan RSU = 0.0042
- 78. Total_alat_pengangkut = ROUND(Kebutuhan_alat_angkut-Jumlah Alat Transportasi)

79. Total_berat_limbah_medis =

Berat_limbah_medis_RSU+Berat_limbah_medis_RSK+Berat_limbah_medis_
puskesmas+Berat_limbah_medis_BP+Berat_limbah_medis_Lab_medis_

Submodel Lingkungan:

- 1. CFi = 0.6
- 2. Densitas Bahan Bakar = 740
- 3. dmi = 1
- 4. EFi CH4 = 237
- 5. EFi N2O = 60
- 6. EF Bahan Bakar = 69300
- 7. EF CH4 Running = 101
- 8. EF CH4 Cold Start = 62
- 9. EF N2O Running = 8
- 10. EF_N2O__Cold_Start = 28
- 11. Emisi_CH4__Pengangkutan =

 (((Jarak_Tempuh*submodel_teknis.Kebutuhan_Trip)*EF_CH4_Running)+EF

 _CH4__Cold_Start*(365/10^6))*25
- 12. Emisi_CH4__Pengolahan =
 (submodel_teknis.Total_berat_limbah_medis*EFi_CH4*0.000001)*25
- 13. Emisi_CO2__Pengangkutan = Konsumsi_Bahan_Bakar_TJ*EF_Bahan_Bakar
- 14. Emisi_CO2__Pengolahan = submodel_teknis.Total_berat_limbah_medis*CFi*dmi*FCFi*OFi*44/12
- 15. Emisi_N2O__Pengangkutan =
 (((Jarak_Tempuh*submodel_teknis.Kebutuhan_Trip)*EF_N2O_Running)+EF
 _N2O__Cold_Start*(365/10^6))*298
- 16. Emisi_N2O__Pengolahan = (submodel_teknis.Total_berat_limbah_medis*EFi_N2O*0.000001)*298
- 17. FCFi = 0.4
- 18. Jarak Tempuh = 205.7

- 19. Kebutuhan__Bahan_Bakar_pengangkutan =
 Jarak_Tempuh*Keb_Bahan_Bakar_Tiap_Trip*submodel_teknis.Kebutuhan_
 Trip
- 20. Keb Bahan Bakar Tiap Trip = 0.0855
- 21. Konsumsi_Bahan_Bakar_TJ = NCV_Bahan_Bakar*Massa_Bahan_Bakar
- 22. Massa_Bahan_Bakar =

 Densitas_Bahan_Bakar*Kebutuhan_Bahan_Bakar_pengangkutan/10^6
- 23. NCV Bahan Bakar = 44.3
- 24. OFi = 1
- 25. Total_Emisi_GRK =

 Total emisi GRK pengangkutan+Total emisi GRK pengolahan
- 26. Total_emisi_GRK_pengangkutan =

 Emisi_CH4__Pengangkutan+Emisi_CO2__Pengangkutan+Emisi_N2O__Pen
 gangkutan
- 27. Total_emisi__GRK_pengolahan =
 submodel_biaya.Kebutuhan_insinerator*(Emisi_CH4__Pengolahan+Emisi_C
 O2 Pengolahan+Emisi N2O Pengolahan)

Submodel biaya:

- 1. Biaya investasi = Biaya investasi alat angkut+Biaya investasi insinerator
- Biaya_investasi_alat_angkut =
 Harga alat angkut khusus per unit*Pengadaan alat angkut
- 3. Biaya_investasi__insinerator =

 Harga_insinerator_per_unit*Penambahan_insinerator_baru
- 4. Biaya_O_&_M = Biaya__Pengangkutan+Biaya__Pengolahan
- Biaya_Pengangkutan =
 Keb Bahan Bakar Pengangkutan*Harga Bahan Bakar Pengangkutan
- Biaya_Pengolahan =
 Keb Bahan bakar pengolahan*Harga Bahan Bakar Pengolahan
- 7. Frekuensi__pembakaran =

 ROUND(submodel_teknis.Total_berat_limbah_medis/Kapasitas__pembakara
 n/365)

- 8. Frekuensi__pengangkutan =

 ROUND(submodel_teknis.Total_berat_limbah_medis/submodel_teknis.Beban

 Limbah Medis tiap Trip/365)
- 9. Harga alat angkut khusus per unit = 300000000
- 10. Harga Bahan Bakar Pengangkutan = 7400
- 11. Harga Bahan Bakar Pengolahan = 6900
- 12. Harga insinerator per unit = 450000000
- 13. Kapasitas pembakaran = 0.2
- 14. Kebutuhan_insinerator =

 ROUND(Frekuensi pembakaran/Pembakaran perhari)
- 15. Keb_Bahan_bakar_pengolahan =

 Frekuensi pembakaran*Keb Bahan Bakar per Pembakaran
- 16. Keb Bahan Bakar per KM = 0.0855
- 17. Keb_Bahan_Bakar__Pengangkutan =
 Frekuensi__pengangkutan*submodel_lingkungan.Jarak_Tempuh*Keb_Bahan
 _Bakar_per_KM
- 18. Keb Bahan Bakar per Pembakaran = 20
- 19. Lama pembakaran = 4
- 20. Pembakaran perhari = Waktu pembakaran/Lama pembakaran
- 21. Total Biaya = Biaya O & M+Biaya investasi
- 22. Waktu pembakaran = 24
- 23. Penambahan_insinerator_baru = GRAPH(TIME) (0.00, 12.0), (1.00, 1.00), (2.00, 1.00), (3.00, 1.00), (4.00, 1.00), (5.00, 2.00), (6.00, 2.00), (7.00, 2.00), (8.00, 2.00), (9.00, 3.00), (10.0, 3.00)
- 24. Pengadaan__alat_angkut = GRAPH(TIME) (0.00, 6.00), (1.00, 1.00), (2.00, 0.00), (3.00, 1.00), (4.00, 0.00), (5.00, 1.00), (6.00, 1.00), (7.00, 1.00), (8.00, 1.00), (9.00, 2.00), (10.0, 1.00)

"Halaman ini sengaja dikosongkan"

LAMPIRAN C KUISIONER

KUISIONER A

Pengelolaan Limbah Padat Medis Fasilitas Kesehatan di Surabaya Timur

Tujuan:

Kuisioner ini merupakan salah satu inventarisasi data yang dilakukan oleh mahasiswa Teknik Lingkungan yang bekerjasama dengan fasilitas kesehatan di Surabaya Timur sebagai salah satu database tentang pengelolaan limbah medis.

Tata cara menjawab:

Kuisioner ini wajib diisi dengan sebenar-benarnya sesuai dengan kondisi di lapangan. Untuk pertanyaan pilihan, jawaban dilingkari salah satu.

I. IDENTITAS
Nama lembaga/institusi :
Jenis lembaga/institusi :
*Lingkari salah satu
1. Rumah Sakit Umum
2. Rumah Sakit Khusus
3. Puskesmas (Beri tanda √ di bawah ini yang sesuai)
1. () Induk
2. () Pembantu
4. Poliklinik/Balai Kesehatan
Lama jam operasional : jam/hari hari/minggu.
Rata-rata jumlah pasien/hari : orang
Kapasitas tempat tidur : buah

Pelaya	nan y	ang ditawarkan:					
Conto	h: 1.	Radiologi					
	2.	Akupuntur					
*Isikaı	n sesu	ai contoh					
1			5				
2	6						
3			7				
4			8				
II. ID	ENT	IFIKASI LIMBAH PADA	AT MEDIS				
1.	Jenis	s limbah padat medis apa saj	ja yang dihasilkan da	ri lembaga/institusi			
	And	a?					
2.	*Lin	gkari yang sesuai, bisa lebil	n dari satu				
	a) I	Limbah benda tajam (jarur	n suntik, pipet, pisa	nu bedah)			
	b) Limbah infeksius (kapas, kantong darah)						
	c) I	Limbah patologi (jaringan	tubuh, organ tubuh,	cairan tubuh)			
	d) I	Limbah genotoksik (terapi k	anker)				
	e) I	Limbah farmasi (obat-obatar	1)				
	f) Limbah kimia (bahan-bahan kimia yang dihasilkan dari aktivitas						
	medis)						
	g) I	g) Residu sisa insinerator					
	h) I	Lainnya, sebutkan					
3.	Dari aktifitas apa saja limbah padat medis tersebut dihasilkan dan						
	berapa jumlahnya dalam 1 hari?						
Contoh:							
	No		Jenis Limbah	Jumlah (g/hari)			
	1. UGD Jarum suntik 200 *Isikan sesuai contoh						
	No		Jenis Limbah	Jumlah (g/hari)			
	110	· Sumber Dimbuil	Jems Diiivaii	Juman (g/mm)			
	-						

4.	Apaka	h limbah padat medis ters	sebut dikumpulkan seca	ra terpisah?		
	a) Ti	dak				
	b) Ya	ì				
5.	5. Bagaimana cara pemisahan limbah padat medis tersebut? (boleh dijaw					
	lebih d	dari satu)				
	a) De	engan pewadahan berbeda	L			
	b) De	engan penyimbolan berbed	da			
	c) Di	kumpulkan menjadi satu				
	d) Be	eberapa limbah disatukan				
	e) La	innya, sebutkan				
6.	Apa w	adah yang digunakan unt	uk masing-masing limb	ah tersebut?		
	Conto	h:				
	No.	Jenis Limbah	Jenis Wadah	Volume (m ³)		
	1.	Jarum Suntik	Safety Box	0,125		
		n sesuai contoh	<u> </u>	1		
	No.	Jenis Limbah	Jenis Wadah	Volume (m ³)		
7	Ragair	 mana Frekuensi pengump	ulan limbah tersebut?			
7.	_		uran minoan terseout!			
	a) 1 hari sekali					
	b) 2 hari sekali					
	,	bih dari 2 hari sekali, seb				
8.	8. Apakah ada pihak lain yang mengirim limbah padat medisi			adat medisnya ke		
			7 - 5 - F	-		
	lemba	ga/institusi Anda?		·		
	lemba a) Ti	ga/institusi Anda?	у 3	·		
	a) Ti	ga/institusi Anda?				
	a) Ti b) Ya	ga/institusi Anda? dak				

No.	Nama Institusi	Alamat	Jenis Limbah	Jumlah Limbah
1.	Laboratorium XXX	Jl. Keputih no. 2 Surabaya	Jarum suntik	3 kg/hari

^{*}isikan sesuai contoh

No.	Nama Institusi	Alamat	Jenis Limbah	Jumlah Limbah

III. PENGELOLAAN LIMBAH PADAT MEDIS SETEMPAT

- 1. Apakah dilakukan pemanfaatan kembali limbah padat medis yang ada?
- 2. *lingkari salah satu
 - a. Tidak
 - b. Ya, pemanfaatan yang dilakukan

No.	Jenis Limbah	Jumlah	Pemanfaatan
1.	Pisau bedah	5 pisau/hari	Didesinfeksi kemudian digunakan
			kembali

^{*}isikan sesuai contoh

No.	Jenis Limbah	Jumlah	Pemanfaatan

- 3. Apakah lembaga/institusi Anda melakukan pengolahan terhadap limbah padat medis yang dihasilkan?
 - a) Tidak
 - b) Ya, Sebutkan jenis pengolahan yang dilakukan

No.	Jenis Limbah	Jumlah	Jenis Pengolahan
	Jarum suntik	3 kg/hari	Insinerator

^{*}isikan sesuai contoh

No.	Jenis Limbah	Jumlah	Jenis Pengolahan

- 4. Apakah lembaga/institusi Anda melakukan penyimpanan limbah padat medis?
 - a) Tidak
 - b) Ya, sebutkan berapa lama penyimpanan di lokasi Contoh:

No.	Jenis Limbah	Lama penyimpanan (hari)
1.	Jarum suntik bekas	1

^{*}isikan sesuai contoh

No.	Jenis Limbah	Lama penyimpanan (hari)

- 5. Apakah lembaga/institusi Anda memiliki tempat penyimpanan limbah sementara?
 - a) Tidak
 - b) Ya,
 - Luas TPS = \dots m²
 - Apakah penyimpanan semua limbah dilakukan terpisah atau dicampur?

	6.	Ap	akah lembaga/institusi Anda melakukan kerjasama dengan pihak lain
		dal	am pengelolaan limbahnya?
		a)	Tidak
		b)	Ya, Sebutkan
IV.	TF	RAN	IPORTASI LIMBAH PADAT MEDIS
	1.	Jar	ak lembaga/institusi Anda dengan pihak pengolah/pemanfaat Km
	2.		rapa frekuensi pengangkutan?
		a)	Satu kali sehari
		b)	Dua hari sekali
		c)	Tiga hari sekali
		d)	Lainnya, sebutkan
	3.	Na	ma instansi pengolah/pemanfaat:
	4.	Ala	amat instansi pengolah/pemanfaat
	5.	Sia	pakah petugas pengangkut limbah tersebut?
		a)	Petugas khusus dari lembaga/institusi Anda
		b)	Petugas khusus dari instansi pengolah/pemanfaat
		c)	Pihak ketiga
		d)	Lainnya, Sebutkan
	6.	Ala	at pengangkutan apa yang digunakan?
		a)	Alat angkut khusus, sebutkan
		b)	Ambulans
		c)	Sepeda motor
		d)	Lainnya, sebutkan
v.	PE	ЕМВ	BUANGAN
	1.	Ba	gaimana pembuangan limbah padat medis pada lembaga/institusi
		An	da?
		a)	Diberi ke pihak lain
		b)	Dibuang ke TPA
		c)	Dibuang ke Secure landfill (PPLi dan sejenisnya)
		4)	Lainnya sehutkan:

2. Jenis limbah apa saja yang akan dibuang?

Contoh:

No.	Jenis Limbah	Jumlah	Jenis Pembuangan
1.	Jarum suntik	3 kg/hari	Diberi ke pihak lain

1		. 1
*isikan	CACITAL	contoh
isinan	Sesuai	COIILOII

No.	Jenis Limbah	Jumlah	Jenis Pembuangan

Demikian kuisioner ini dibuat dengan sebenar-benarnya

Petugas Inspeksi	Surabaya,
Nama:	Penanggungjawab Kegiatan
Tandatangan	Usaha
	Jabatan:

"Halaman ini sengaja dikosongkan"

KUISIONER B

Pengelolaan Limbah Padat Medis Fasilitas Kesehatan di Surabaya Timur

Tujuan:

Kuisioner ini merupakan salah satu inventarisasi data yang dilakukan oleh mahasiswa Teknik Lingkungan yang bekerjasama dengan fasilitas kesehatan di Surabaya Timur yang memiliki insinerator sebagai salah satu database tentang pengelolaan limbah medis.

Tata cara menjawab:

2. Akupuntur

Kuisioner ini wajib diisi dengan sebenar-benarnya sesuai dengan kondisi di lapangan. Untuk pertanyaan pilihan, jawaban dilingkari salah satu.

I. ID	ENTITAS	
Nama	lembaga/institusi	:
Jenis l	embaga/institusi	:
*Lingl	kari salah satu	
1.	Rumah Sakit Umum	
2.	Rumah Sakit Khusus	
3.	Puskesmas (Beri tand	a √ di bawah ini yang sesuai)
3.	() Induk	
4.	() Pembantu	
4.	Poliklinik/Balai Kesel	hatan
Lama	jam operasional	: jam/hari hari/minggu.
Rata-ra	ata jumlah pasien/hari	: orang
Kapas	itas tempat tidur	: buah
Pelaya	nan yang ditawarkan:	
Contol	h:	
1.	Radiologi	

			UGD	Jarum suntik	200		
		No.	Sumber Limbah	Jenis Limbah	Jumlah (g/hari)		
		Conto	oh:				
		berapa jumlahnya dalam 1 hari?					
	3.	Dari aktifitas apa saja limbah padat medis tersebut dihasilkan dan					
		h) L	ainnya, sebutkan				
		g) R	esidu sisa insinerator				
		m	nedis)				
		f) L	imbah kimia (bahan-baha	n kimia yang dihasilka	n dari aktivitas		
		e) L	imbah farmasi (obat-obata	an)			
		d) L	imbah genotoksik (terapi	kanker)			
		c) L	imbah patologi (jaringan	tubuh, organ tubuh,	cairan tubuh)		
		b) L	imbah infeksius (kapas, k	antong darah)			
		a) L	imbah benda tajam (jarı	um suntik, pipet, pisa	u bedah)		
	2.	*Ling	gkari yang sesuai, bisa leb	ih dari satu			
	1.	Jenis	limbah padat medis apa s	aja yang dihasilkan da	ri lembaga/institusi?		
II.	ID	ENTI	FIKASI LIMBAH PAD	AT MEDIS			
4.		8					
3.				7			
2.		6					
1.		5					
*Is	sikaı	n sesua	ni contoh				

No.	Sumber Limbah	Jenis Limbah	Jumlah (g/hari)
	UGD	Jarum suntik	200

^{*}Isikan sesuai contoh

No.	Sumber Limbah	Jenis Limbah	Jumlah (g/hari)

	a) Tio	dak					
	b) Ya	L					
5.	Bagair	nana cara pemisahan lim	nbah padat medis terseb	out? (boleh dijawab			
	lebih d	lari satu)					
	a) De	ngan pewadahan berbeda	l.				
	b) De	engan penyimbolan berbec	da				
	c) Di	kumpulkan menjadi satu					
	d) Be	berapa limbah disatukan					
	e) La	innya, sebutkan					
6.	Apa w	adah yang digunakan unt	uk masing-masing limba	ah tersebut?			
	Conto						
	No.	Jenis Limbah	Jenis Wadah	Volume (m ³)			
	1.	Jarum Suntik	Safety Box	0,125			
	*ısıkaı	n sesuai contoh					
	No.	Jenis Limbah	Jenis Wadah	Volume (m ³)			
7.	Bagair	nana frekuensi pengumpu	ılan limbah tersebut ?				
	a) 1 h	nari sekali					
	b) 2 h	nari sekali					
	c) Le	bih dari 2 hari sekali, sebi	utkan				
8.	Apaka	Apakah ada pihak lain yang mengirim limbah padat medisnya ke					
	lemba	ga/institusi Anda?					
	c) Tio	dak					
	d) Ya	, sebutkan pihak lain yan	g mengirim limbah pada	nt medis ke			
	ler	nbaga/institusi Anda:	-				
		•					

4. Apakah limbah padat medis tersebut dikumpulkan secara terpisah?

No.	Nama Institusi	Alamat	Jenis Limbah	Jumlah Limbah
1.	Laboratorium XXX	Jl. Keputih no. 2 Surabaya	Jarum suntik	3 kg/hari

^{*}isikan sesuai contoh

No.	Nama Institusi	Alamat	Jenis Limbah	Jumlah Limbah

III. PENGELOLAAN LIMBAH PADAT MEDIS SETEMPAT

- 1. Apakah dilakukan pemanfaatan kembali limbah padat medis yang ada?
- 5. *lingkari salah satu
 - a. Tidak
 - b. Ya, pemanfaatan yang dilakukan

No	Jenis Limbah	Jumlah	Pemanfaatan
1.	Pisau bedah	5 pisau/hari	Didesinfeksi kemudian digunakan
			kembali

^{*}isikan sesuai contoh

No.	Jenis Limbah	Jumlah	Pemanfaatan

- 2. Apakah lembaga/institusi Anda melakukan pengolahan terhadap limbah padat medis yang dihasilkan?
 - a) Tidak
 - b) Ya, Sebutkan jenis pengolahan yang dilakukan

No.	Jenis Limbah	Jumlah	Jenis Pengolahan
1.	Jarum suntik	3 kg/hari	Insinerator

^{*}isikan sesuai contoh

No.	Jenis Limbah	Jumlah	Jenis Pengolahan

- 3. Apakah lembaga/institusi Anda melakukan penyimpanan limbah padat medis?
 - a) Tidak
 - b) Ya, sebutkan berapa lama penyimpanan di lokasi

No.	Jenis Limbah	Lama penyimpanan (hari)
1.	Jarum suntik bekas	1

^{*}isikan sesuai contoh

No.	Jenis Limbah	Lama penyimpanan (hari)
		_
_		
		_

- 4. Apakah lembaga/institusi Anda memiliki tempat penyimpanan limbah sementara?
 - a) Tidak
 - b) Ya,
 - Luas TPS = \dots m²
 - Apakah penyimpanan semua limbah dilakukan terpisah atau dicampur?

	5.	Apakah lembaga/institusi Anda melakukan	kerjasama dengan pihak lain				
		dalam pengelolaan limbahnya?					
		a) Tidak					
		b) Ya, Sebutkan					
IV.	TF	RANPORTASI LIMBAH PADAT MEDIS					
	1.	Frekuensi pengangkutan limbah dari pihal	mitra ke lembaga/institusi				
		Anda?					
		a) Satu kali sehari					
		b) Dua kali sehari					
		c) Tiga kali sehari					
		d) Lainnya, sebutkan					
	2.	Siapakah petugas pengangkut limbah tersebu	nt?				
		a) Petugas khusus dari lembaga/institusi Ar	nda				
		b) Petugas khusus dari Pihak mitra					
		c) Pihak ketiga					
		d) Lainnya, Sebutkan					
	3.	Apa jenis kendaraan yang digunakan per	ngangkutan dari tiap fasilitas				
		kesehatan					
		Contoh:					
		No. Nama Fasilitas Kesehatan	Jenis Kendaraan				
		1. Puskesmas XXX	Sepeda motor				
		*isikan sesuai contoh					
		No. Nama Fasilitas Kesehatan	Jenis Kendaraan				

4. Berapa frekuensi pengangkutan yang dilakukan dari tiap fasilitas

Contoh:

kesehatan

No.Nama Fasilitas KesehatanFrekuensi1.Puskesmas XXX2x seminggu

*1S1	kan	sesuai	conto	h

No.	Nama Fasilitas Kesehatan	Frekuensi

V.

PENGOLAHAN LIMBAH PADAT MEDIS DENGAN INSINERATOR							
1.	Apakah lembaga/institusi anda memiliki insinerator untuk mengolah						
	limbah padat medis?						
	a) Tidak						
	b) Ya, Insinerator jenis						
2.	Berapa kapasitas incinerator lembaga/institusi Anda dalam sekali						
	pembakaran? kg/pembakaran.						
3.	Berapa banyak limbah padat medis yang dapat insinerasi dalam sehari?						
	kg/hari pembakaran.						
4.	Berapa frekuensi pembakaran yang lembaga/institusi Anda lakukan?						
	a) Satu kali sehari						
	b) Dua kali sehari						
	c) Tiga kali sehari						
	d) Lainnya, sebutkan						
5.	Kapan waktu pengoperasian insinerator pada lembaga/institusi Anda?						
	a) Malam hari						
	b) Pagi hari						
	c) Lainnya, sebutkan						
6.	Jenis limbah apa yang masuk ke dalam insinerator?						
	Contoh:						
	No. Jenis Limbah Jumlah (kg)						
	1. Jarum suntik bekas 1						
	*isikan sesuai contoh						

No.	Jenis Limbah	Jumlah	

	7.	Ba	gaimana pengoperasian i	insinerator pada lembaga/institus	si Anda?		
		a)	Waktu jan	1			
		b)	Suhu°C	1 ,			
		c)	Bahan bakar yang digunakan				
		d)	Jumlah bahan bakar yang diperlukan dalam sekali pembakaran				
		e)	Efisiensi penghancuran	dan penghilangan (DRE)			
	8.	Berapa jarak insinerator dengan fasilitas umum? mete					
	9.	Be	Berapa biaya yang dibebankan kepada pihak yang mengirimkan limbal				
		padat medisnya ke lembaga/institusi Anda?					
V]			BUANGAN				
	1.			esidu limbah hasil pengolahan?)		
		a)	Diberi kepihak selanjut	nya			
		6.	anjutnya:				
		7.	Alamat instansi ihak sel	lanjutnya:			
b) Dibuang ke TPA							
		c)	Dibuang ke Secure land	dfill (PPLi dan sejenisnya)			
		d)	Dikelola sendiri, jelaska	an:			
	e) Lainnya, sebutkan:						
Ι	Demik	cian	kuisioner ini dibuat deng	gan sebenar-benarnya			
	<u> </u>			0 1	1		
Petugas Inspeksi		Inspeksi	Surabaya,				
Nama :			Penanggungjawab Kegiatan				
Tandatangan		gan	Usaha				
				Jabatan:			

BIODATA PENULIS

Penulis dilahirkan di Gresik, 09 Oktober 1990, merupakan anak terakhir dari 4 bersaudara pasangan Asrikan dan Maro'ah. Penulis menempuh pendidikan formal di MI Miftahul Huda Karangrejo Manyar Gresik (1996-2003), SMP NU Karangrejo Manyar Gresik (2003-2006), MA Assa'adah Bungah Gresik (2006-2009), dan Jurusan Teknik Lingkungan FTSP ITS (2009-2013). Penulis diterima di Pascasarjana Jurusan

Teknik Lingkungan FTSP-ITS Surabaya melalui jalur Beasiswa *Fresh Graduate* dan terdaftar dengan NRP 3313 201 025. Di jurusan Teknik Lingkungan, penulis pernah menjabat sebagai Sekretaris II Himpunan Mahasiswa Teknik Lingkungan periode 2010-2011, Sekretaris I pada periode 2011-2012 dan aktif sebagai Asisten Laboratorium Mikrobiologi Lingkungan. Penulis pernah mengikuti kerja praktek di PT Petrokimia Gresik pada Departemen Lingkungan dan K3 dengan fokus studi pengelolaan limbah bahan berbahaya dan beracun (B3). Penulis mengambil tesis mengenai pengelolaan limbah padat medis di Surabaya Timur di bawah bimbingan IDAA Warmadewanthi, ST, MT, Ph.D. Penulis dapat dihubungi di email sulistiya703@gmail.com atau nomor *handphone* 085648411911.

