Anggriani, Indira (2016) Pengaruh Magnetohydrodynamic (MHD) Pada Fluida Micropolar Yang Melewati Bola Berpori - The Effect Of Magnetohydrodynamic (MHD) In Micropolar Fluid Past A Porous Sphere. Masters thesis, Institut Teknologi Sepuluh Nopember.
Preview |
Text
1214201025-Master Thesis.pdf - Accepted Version Download (1MB) | Preview |
Abstract
Fluida micropolar adalah tipe fluida non-Newtonian dengan struktur mikro.
Fluida micropolar mendukung body couples dan berakibat pada perilaku mikro
rotasi. Magnetohydrodynamic (MHD) adalah ilmu tentang pergerakan aliran
konduksi listrik di bawah medan magnet. Pada tesis ini dibahas mengenai
pengaruh MHD pada fluida micropolar yang mengalir melewati sebuah bola
berpori. Untuk menyelesaikan permasalahan tersebut akan dikembangkan model
matematika dari aliran fluida micropolar yang dipengaruhi oleh medan magnet
sehingga menimbulkan lapisan batas. Persamaan lapisan batas yang terbentuk
kemudian diformulasikan untuk mendapatkan persamaan dimensional. Persamaan
pembangun dimensional yang terbentuk adalah persamaan kontinuitas, momentum
dan momentum anguler. Kemudian persamaan tersebut ditransformasikan ke
dalam bentuk non-dimensi. Aliran yang diteliti merupakan aliran unsteady
sehingga persamaan kendali ditransformasikan ke dalam variabel similiaritas.
Persamaan similiaritas yang didapatkan diselesaikan secara numerik dengan metode
Keller-Box. Pada tesis ini dipelajari mengenai pengaruh parameter magnetik,
parameter micropolar,parameter porositas serta parameter permeabilitas terhadap
profil kecepatan dan profil mikro rotasi. Hasil simulasi numerik menunjukkan
bahwa profil kecepatan semakin besar dengan bertambahnya parameter magnetik
dan porositas. Sedangkan kecepatan menurun dengan bertambahnya parameter
micropolar dan permeabilitas. Profil mikro rotasi semakin menurun dengan bertambahnya
parameter magnetik dan porositas, sedangkan mengalami kenaikan pada
saat pertambahan parameter micropolar dan permeabilitas
========================================================================================================================
Micropolar fluid is non-Newtonian fluid type with microstructure. Micropolar
fluid support body couples and exhibit microrotational effects. The MHD is
study about the motion of electrically conducting fluids under magnetic fields.
These thesis is researched about the effect of MHD in micropolar fluid past a
porous sphere.For resolve these issues is developed a mathematical model of
micropolar fluid flow is influenced by the magnetic field evoke the boundary
layer. From the boundary layer formed a dimensional governing equation, it
was continuity equation, momentum equation and angular of momentum equation.
Then the equation is transformed into non-dimensional form and similiarity
equation. The similiarity equations are solved numerically solution by Keller-
Box method.Numerical results obtained, used to observe the influence of some
parameters: magnetic parameter, micropolar parameter, porosity parameter and
permeability parameter of the velocity profile and the profile of the microrotation.
The result of numerical solution that the velocity profile be increased
along with magnetic parameter and porosity parameter increased. Moreover
the velocity decreased when micropolar parameter and permeability parameter
increased. Profile microrotation increased with increased micropolar parameters
and permeability parameter. Whereas profile microrotation decreased with
increased magnetic parameter and porosity parameter.
Item Type: | Thesis (Masters) |
---|---|
Additional Information: | RTMa 530.141 Ang p |
Uncontrolled Keywords: | Fluida micropolar, MHD, unsteady, bola berpori, Metode Keller- Box, Micropolar fluid, MHD, unsteady,porous sphere, Keller-Box method |
Subjects: | Q Science > QA Mathematics > QA911 Fluid dynamics. Hydrodynamics |
Divisions: | Faculty of Mathematics and Science > Mathematics > 44101-(S2) Master Thesis |
Depositing User: | ansi aflacha |
Date Deposited: | 02 Jan 2020 08:06 |
Last Modified: | 02 Jan 2020 08:09 |
URI: | http://repository.its.ac.id/id/eprint/72505 |
Actions (login required)
View Item |