PERBANDINGAN DIAGRAM KONTROL EXPONENTIALLY WEIGHTED MOVING VARIANCE (EWMV) DAN DOUBLE MOVING AVERAGE-S (DMA-S) BERDASARKAN NEOTERIC RANKED SET SAMPLING (NRSS) DAN RANKED SET SAMPLING (RSS)

Putri, Roudlotul Jannah Mega (2020) PERBANDINGAN DIAGRAM KONTROL EXPONENTIALLY WEIGHTED MOVING VARIANCE (EWMV) DAN DOUBLE MOVING AVERAGE-S (DMA-S) BERDASARKAN NEOTERIC RANKED SET SAMPLING (NRSS) DAN RANKED SET SAMPLING (RSS). Masters thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 06211750012001-Master_Thesis.pdf] Text
06211750012001-Master_Thesis.pdf
Restricted to Repository staff only

Download (2MB) | Request a copy

Abstract

Kualitas dalam dunia industri merupakan hal yang sangat penting sebab kualitas dapat menentukan kepuasan konsumen dan dapat menunjukkan keistimewaan suatu produk. Upaya yang dapat dilakukan oleh perusahaan untuk mempertahankan kualitas produk yaitu dengan cara melakukan monitoring dan pengendalian kualitas. Salah satu metode statistika yang dapat digunakan untuk monitoring dan pengendalian kualitas yaitu diagram kontrol. Secara umum terdapat dua jenis diagram kontrol, yaitu diagram kontrol untuk monitoring mean dan diagram kontrol untuk monitoring variabilitas proses. Saat ini telah dikembangkan tiga tipe diagram kontrol, yaitu tipe Shewhart, tipe CUSUM dan tipe EWMA. Dalam penelitian ini akan dikemukakan diagram kontrol Exponentially Weighted Moving Variance (EWMV) dan Double Moving Average-S (DMA-S) untuk monitoring variabilitas berdasarkan Neoteric Ranked Set Sampling (NRSS) dan Ranked Set Sampling (RSS). Diagram kontrol EWMV dan DMA-S mampu mendeteksi shift kecil, sedangkan NRSS memiliki performa yang lebih baik jika dibandingkan dengan Ranked Set Sampling (RSS). Selanjutnya kinerja diagram kontrol EWMV dan DMA-S berdasarkan NRSS dan RSS akan dibandingkan dan dievaluasi berdasarkan nilai Average Run Length (ARL) dengan pendekatan simulasi Monte Carlo untuk mendeteksi shift tertentu. Kinerja kedua diagram kontrol akan diaplikasikan pada kasus Combined Cycle Power Plant. Kinerja diagram kontrol EWMV-NRSS lebih sensitif mendeteksi adanya shift daripada EWMV-RSS, sebaliknya diagram kontrol DMA-S RSS lebih sensitif mendeteksi adanya shift daripada DMA-S NRSS.

=========================================================

In manufacturing industry, quality is very important, because it can determine customers’ satisfaction and distinguish the product from others. The effort that can be made by companies to maintain the products quality is by monitoring and controlling them. One of the statistical methods that can be used for monitoring and controlling quality is control charts. Generally, there are two types of control charts, control chart for monitoring mean and control chart for monitoring variability process. Three models of control charts, recently, have been developed, such as Shewhart, Cumulative Sum (CUSUM), and Exponentially Weighted Moving Average (EWMA). This research will use Exponentially Weighted Moving Variance (EWMV) and Double Moving Average-S (DMA-S) control charts for monitoring variability based on Neoteric Ranked Set Sampling (NRSS) and Ranked Set Sampling (RSS). EWMV and DMA-S control charts can detect small shifts, and NRSS has better performance than Ranked Set Sampling (RSS). Furthermore, the performance of EWMV based on NRSS and DMA-S based on NRSS and RSS control charts will be compared and evaluated by using Average Run Length (ARL) value with Monte Carlo simulation approach to detect any particular shifts. Both of the control chart models will be applied in Combined Cycle Power Plant (CCPP) case. By this evaluation, the result shows that the EWMV control chart based on NRSS performs better than the EWMV control chart based on RSS. Otherwise, the DMA-S control chart based on RSS performs better than DMA-S control chart based on NRSS.

Item Type: Thesis (Masters)
Additional Information: RTSt 519.86 Put p-1
Uncontrolled Keywords: EWMV, DMA-S, NRSS, RSS, ARL, Simulasi Monte Carlo, CCPP.
Subjects: Q Science > QA Mathematics > QA76.9 Computer algorithms. Virtual Reality. Computer simulation.
Divisions: Faculty of Science and Data Analytics (SCIENTICS) > Statistics > 49101-(S2) Master Thesis
Depositing User: Roudlotul Jannah Mega Putri
Date Deposited: 21 Sep 2020 04:42
Last Modified: 21 Sep 2020 04:42
URI: http://repository.its.ac.id/id/eprint/74374

Actions (login required)

View Item View Item