ANALISA UMUR KELELAHAN STRUKTUR SEPINGGAN Q PLATFORM YANG MEMILIKI RETAK AWAL *SEMI-ELLIPTICAL* DENGAN MENGGUNAKAN METODE *LINEAR ELASTIC FRACTURE MECHANICS*

Muhammad Fauzi(1), Nur Syahroni(2), dan Handayanu(3) ⁽¹⁾Mahasiswa Teknik Kelautan ITS^{, (2)(3)}Staf Pengajar Teknik Kelautan ITS Jurusan Teknik Kelautan, Fakultas Teknlogi Kelautan, Institut Teknologi Sepuluh Nopember (ITS) Jl. Arief Rahman Hakim, Surabaya 60111 Indonesia *e-mail:* <u>nsyahroni@oe.its.ac.id</u>, <u>handayanu@oe.its.ac.id</u>

Abstrak—Fatigue adalah salah satu masalah yang dapat dijumpai dalam operasi struktur bangunan lepas pantai. Fatigue pada struktur terjadi pada sambungan terkritis struktur dan mengalami perambatan akibat beban siklis hingga terjadi kegagalan struktur. Sambungan tubular terkritis ditentukan berdasarkan nilai *fatigue damage* tertinggi yang terjadi pada multiplanar tubular joint 502. Metode vang digunakan dalam penelitian ini adalah dengan pendekatan fracture mechanics. Pemodelan retak awal dilakukan pada titik hotspot dimana terjadi tegangan terbesar. Analisis ini dimulai dengan menentukan stress intensity factor (SIF) dan laju perambatan retak yang terjadi pada titik hotspot sehingga umur kelelahan struktur dapat diprediksi. Hasil analisis yang didapat yaitu besarnya nilai SIF dengan pembebanan maksimum adalah 6,86 MPa√m sedangkan besarnya nilai SIF dengan pembebanan minimum adalah 6,02 MPa√m. Laju perambatan retak yang terjadi pada tubular *joint* 502 sebesar 1,59 x 10⁻¹⁰ in/cycle. Perhitungan umur kelelahan struktur menggunakan metode fracture mechanics adalah 1,12 x 10^8 cycles (27 tahun).

Kata kunci—fatigue damage, fracture mechanics, hotspot, laju perambatan retak, stress intensity factor.

I. PENDAHULUAN

Fatigue adalah salah satu masalah yang dapat dijumpai dalam perancangan struktur bangunan lepas pantai. Salah satunya adalah struktur *jacket platform*, dimana struktur tersebut teridiri dari beberapa member berbentuk silinder yang biasanya disebut *tubular*. Terdapat member tubular bertindak sebagai member utama yang disebut *chord* dan member tubular bertindak sebagai cabang yang disebut *brace*. Sambungan tiap member tubular biasanya disebut *tubular joint*. Dalam sambungan tubular juga terdapat istilah-istilah atau notasi-notasi yang perlu diketahui seperti pada Gambar 1.

Gambar 1 Notasi Geometrik Tubular Joint

Fatigue pada struktur terjadi akibat dari pembebanan yang memicu munculnya retak pada salah satu bagian struktur yang kemudian menjalar secara global sehingga struktur mengalami kegagalan. Beban yang diterima bangunan laut didominasi oleh beban gelombang sehingga menyebabkan bangunan laut lebih cenderung mengalami kelelahan, selain itu faktor operasi pada tingkat tertentu menambah beban siklis sehingga struktur menjadi bertambah kritis.[1]

Salah satu hal yang sangat penting dalam analisa suatu struktur bangunan lepas pantai adalah melakukan analisa atas kemampuan suatu struktur tersebut memenuhi tujuan desain yang telah ditetapkan, termasuk disini adalah bahwa struktur tidak akan mengalami kegagalan dalam berbagai kondisi kerja.[2]

Penelitian ini merupakan studi kasus pada struktur Sepinggan Q *Platform* milik Chevron

Indonesia Company yang beroperasi di "Sepinggan Field" Selat Makassar. Platform ini memiliki 4 kaki (tetrapod) berfungsi sebagai Living Quarter atau tempat tinggal engineer. Platform didesain untuk masa operasi selama 30 tahun. Platform Sepinggan Q berdiri pada kedalaman 132.87 ft.

Gambar 2 Sepinggan Q Platform

(lihat Platform Sepinggan Q Gambar 2)tersusun atas 2 level utama, yakni Main Deck pada ketinggian 72'-11¹¹/₁₆" dan Cellar Deck pada ketinggian 51'-9" di atas MSL (Mean Sea Level) struktur dengan tambahan mezzanine deck, sub-cellar deck dan quarter deck di atas main deck. Setiap deck ditopang oleh 4 kaki jacket yang terpancang hingga mencapai seabed pada kedalaman 132'-10³/₈" dibawah MSL struktur. Struktur jacket memiliki diameter 40" dan ungrouted pile berdiameter 36" dengan kedalaman penetrasi sebesar 285 ft. Analisis dalam tugas akhir ini bertujuan untuk:

- 1. Menghitung *Stress Intensity Factor* (SIF) tubular joint terkritis yang memiliki retak awal berbentuk semi-elliptical
- 2. Menghitung *Stress Intensity Factor* (SIF) tubular joint terkritis yang memiliki retak awal berbentuk semi-elliptical
- 3. Menghitung umur kelelahan *tubular joint* terkritis yang memiliki retak awal berbentuk semi-elliptical

Seluruh analisis dalam penelitian ini dibantu menggunakan program elemen hingga yakni, SACS 5.7 dan ANSYS 16.0

II. METODOLOGI PENELITIAN

Penelitian dilakukan dalam beberapa tahap yang tersusun pada Gambar 3 berikut:

Gambar 3 Diagram Alir Penelitian

Gambar 3 Diagram Alir Penelitian (lanjutan)

III. HASIL DAN PEMBAHASAN

A. Pemodelan Struktur Global

Pemodelan struktur Sepinggan Q menggunakan *software* SACS 5.7. Gambar 4 ini pemodelan struktur disesuaikan dengan data struktur dan data lingkungan.

Gambar 4 Pemodelan Struktur Sepinggan Q Platform

B. Validasi Model

Validasi model dilakukan dengan membandingkan berat struktur, periode natural struktur dan letak titik berat (COG) pada model dengan struktur asli. Berikut hasil validasi disajikan pada Tabel 1 dan Tabel 2:

 Tabel 1
 Validasi Berat Struktur dan Periode Natural

Validasi	Model	Report	Selisih (%)
Selfweight (kips)	3343.06	3458.09	3.33%
Periode Natural (s)	1.52	1.55	1.94%

Tabel 2	Validasi	COG	Struktur
---------	----------	-----	----------

	х	у	Z	
REPORT	0.080	2.930	2.070	
MODEL	0.078	2.927	2.071	
ERROR (%)	2.500	0.102	0.048	

C. Penentuan Sambungan Kritis

Sambungan kritis diperoleh dari nilai *fatigue damage* tertinggi hasil analisis *fatigue* dan *input* pembebanan diambil dari analisis *inplace*. Penentuan *joint* terkritis dapat dilihat pada Tabel 3.

|--|

IONT	ANALISIS INPLACE	ANALISIS F	ATIGUE			
JOINT	UNITY CHECK	SERVICE LIFE (YEARS)	FATIGUE DAMAGE			
604	1.389	130.9537	0.3055			
601	1.254	1157.828	0.0345			
603	1.246	1122.742	0.0356			
602	1.137	118.1484	0.3386			
502	0.903	18.80965	2.1266			
504	0.873	32.80037	1.2195			
107L	0.834	301.4156	0.1327			
105L	0.821	417.5374	0.0958			
102	0.792	10691.23	0.0037			
104	0.789	13709.56	0.0029			

D. Pemodelan Sambungan Kritis

Dari hasil analisis *fatigue* didapatkan bahwa joint kritis terletak pada 502, sehingga dilakukan pemodelan *solid element* dengan data geometri seperti pada Tabel 4 dan Gambar 5.

Tabel 4 Geometri Multiplanar Tubular Joint 502					
Mombor	Member	Length	O.D	W.T	
Member	Туре	m	in	in	
503L-502	Chord	7.42	14	0.375	
502-507L	Chord	7.42	14	0.375	
524-502	Brace	2.68	12.75	0.375	
502-503	Brace	10.50	12.75	0.375	
502 - 603L	Brace	11.04	12.75	0.375	
502 - 602	Brace	9.06	10.75	0.375	
521-502	Brace	2.17	14	0.375	
502-607L	Brace	11.04	12.75	0.375	

 Image
 <th

Gambar 5 Pemodelan Multiplanar Tubular Joint 502

E. Kondisi Batas dan Pembebanan

Dalam pemodelan secara detail, model diberikan kondisi batas berupa *fixed support* (lihat Gambar 6) dan pembebanan diperoleh dari hasil analisis *inplace* pada kondisi pembebanan minimum dan maksimum (lihat Tabel 5 dan 6).

Fabel 5 Input Pembeb	anan Minimum
----------------------	--------------

Mambar	Fx	Fy	Fz	Mx	Му	Mz
Member	kN	kN	kN	kN.m	kN.m	kN.m
502 - 603I	104.108	-1.094	0.835	-14.009	-15.539	112.957
502 - 602	-35.168	-0.086	-2.413	0.324	264.265	-2.178
502-607L	-44.671	1.393	-0.288	0.611	-32.132	-184.515
524-502	-6.554	0.642	-6.660	30.164	-355.799	16.372
502-503	8.555	1.282	-0.234	30.204	59.946	-75.473
521-502	0.028	0.129	-7.296	-75.684	-426.351	10.024
502-507L	35.775	0.916	0.970	47.440	-123.856	-144.385

Tabel 6 Input Pembebanan Maksimum

Mambar	Fx	Fy	Fz	Mx	Му	Mz
Wember	kN	kN	kN	kN.m	kN.m	kN.m
502 - 603L	123.847	-1.182	0.330	-11.764	45.342	129.592
502 - 602	-36.837	-0.121	-2.696	0.712	303.648	0.253
502-607L	-60.313	1.462	-0.791	-0.324	29.428	-200.122
524-502	-0.853	0.855	-0.770	17.332	-419.336	-67.912
502-503	8.006	1.173	-0.156	35.162	58.852	-71.323
521-502	-0.189	0.139	-8.517	-89.758	-502.229	11.171
502-507L	55.302	0.868	1.069	50.705	-135.352	-134.539

F. Analisis Meshing Sensitivity

Analisis Meshing Sensitivity dilakukan untuk mengukur keakuratan output dari pemodelan ANSYS akibat dari jumlah penggunaan elemen. Nilai pembebanan pada analisis ini sama namun penggunaan jumlah elemen divariasikan. Pada model sambungan tubular, jumlah elemen yang digunakan bervariasi dengan nilai pembebenan yang sama. Hasil analisis ini dapat disajikan dalam Gambar 7 dan Tabel 7 berikut.

Gambar 7 Hasil analisis meshing sentivity

Tabel 7 Tabulasi Hasil Analisis Meshing Sensitivity

Element Size (mm)	Element	Maximum Principal Stress (MPa)
9	323425	215.16
10	308528	214.99
11	300461	214.06
12	295626	218.07
13	292069	216.22
14	289336	219.17
15	287137	215.50
16	285710	216.30

Dari Tabel 7, dilakukan *ploting* sehingga hasilnya seperti pada Grafik 1.

Grafik 1 Analisis Meshing Sensitivity

Dari grafik 1 didapatkan tegangan yang stabil sebesar 214.99 MPa pada ukuran elemen 10 mm dengan jumlah elemen sebanyak 308528 elemen.

G. Penentuan Titik Retak

Dikarenakan pemodelan *crack* tidak dapat dilakukan pada titik tegangan maksimum yang berada tepat di *weld toe*, sehingga dipilih 5 titik terdekat dari *weld toe* sebagai titik tinjauan *crack* seperti pada Gambar 8.

Gambar 8 Node yang ditinjau

H. Pemodelan *surface crack*

Setelah menentukan titik retak yang ditinjau, pemodelan *crack* dilakukan berdasarkan data sebagai berikut.

a (crack depth) = 0.5 mm (aturan ABS) a/2c = 0.15 Sehingga didapatkan nilai *crack length* (2c) sebesar 3.33 mm. Hasil *meshing surface crack* dapat dilihat pada Gambar 9.

Gambar 9 Meshing Surface Crack

I. Validasi SIF

Kelima titik retak dilakukan validasi SIF antara analitis dan numeric saat kondisi pembebanan minimum dan maksimum. Hasil validasi dapat dilihat pada tabel 8 dan tabel 9.

Tabel 8 Validasi SIF kondisi pembebanan Minimum

Titik	K ₁ (MPa	$\mathbf{Error}(0)$	
1 ILIK	Manual	ANSYS	L1101 (70)
1	5.797	5.763	0.590
2	5.751	5.890	2.428
3	6.045	5.837	3.439
4	6.025	5.830	3.245
5	6.361	5.819	8.522

Tabel 9 Validasi SIF kondisi pembebanan maksimum

Titik	K_1 (MPa.m ¹ / ₂)		Error (%)	
1 ILIK	Manual	ANSYS		
1	7.299	6.737	7.704	
2	7.229	6.738	6.800	
3	7.035	6.677	5.088	
4	6.862	6.650	3.090	
5	7.363	6.664	9.499	

Titik 4 dipilih dikarenakan memiliki tingkat *error* < 5% saat kondisi pembebanan minimum dan maksimum.

J. Perhitungan *crack propagation* Perhitungan *crack propagation* dilakukan menggunakan persamaan pada Gambar 10.

Gambar 10 Perhitungan Crack Propagation

Besarnya laju perambatan retak yang terjadi pada *multiplanar tubular joint* 502 adalah 1,59E-10 in/cycles.

K. Perhitungan Kedalaman Kritis

Untuk mengetahui kedalaman retak maksimal yang mampu ditahan material dihitung menggunakan persamaan (1): [3]

$$a_{cr} = \left(\frac{\kappa_{IC}}{\sigma max \sqrt{\pi/Q}}\right)^2 \tag{1}$$

Dengan nilai

 $K_{IC} = 165.8 \text{ ksi.} \sqrt{\text{in}} = 185.19 \text{ MPa.} \sqrt{\text{m}}$ $\sigma max = 214.99 \text{ MPa} = 31 \text{ ksi}$

$$Q = 1.22$$
 (didapat dari Grafik 2)

Grafik 2 Perhitungan SIF

Didapatkan,

$$a_{cr} = \left(\frac{165.8}{31\sqrt{3.14/1.22}}\right)^2$$

 $a_{cr} = 8.756 \text{ in}$

Sehingga apabila retak mencapai kedalaman 8.756 in struktur tersebut akan runtuh. Namun, untuk tubular ini hanya memiliki ketebalan 0.375 in sehingga akan dihitung sampai kedalaman tersebut.

L. Perhitungan SIF & umur kelelahan

Perhitungan SIF dilakukan secara manual dan dengan bantuan proram ANSYS. Dalam perhitungan manual menggunakan persaman (2):

$$\Delta K = 1.12 \Delta \sigma \sqrt{\pi \frac{a \, a v g}{Q}}. \, \mathrm{Mk} \tag{2}$$

Seletah mendapatkan parameter ΔK / SIF dilakukan perhitungan umur kelelahan dengan persamaan (3):

$$N = \int_{ao}^{af} \frac{da}{3.6.10^{-10} (\Delta K)^3}$$
(3)

Perhitungan umur kelelahan dapat dilihat pada tabel 10.

Tabel10PerhitunganUmurKelelahanStrukturSepinggan Q Platfrom

a ₀ (in)	$\boldsymbol{a}_{f}\left(in\right)$	a _{avg} (in)	ΔK_1 (ksi.in ^{1/2})		ANALYTICAL			NUMERICAL		
			ANALYTICAL	NUMERICAL	ΔN	ΣN	N(tahun)	ΔN	ΣN	N(tahun)
0.0197	0.0394	0.0295	1.081	1.364	43251266	43251266	10.56	21570905	21570905	5.27
0.0394	0.0591	0.0492	1.396	1.640	20101372	63352638	15.47	12401127	33972031	8.29
0.0591	0.0787	0.0689	1.652	1.861	12134829	75487467	18.43	8485251	42457282	10.37
0.0787	0.0984	0.0886	1.873	2.049	8323710	83811177	20.46	6352630	48809912	11.92
0.0984	0.1181	0.1083	2.071	2.029	6160156	89971333	21.97	6546176	55356088	13.52
0.1181	0.1378	0.1280	2.251	2.102	4794747	94766079	23.14	5884708	61240796	14.95
0.1378	0.1575	0.1476	2.418	2.137	3868511	98634590	24.08	5602995	66843791	16.32
0.1575	0.1772	0.1673	2.574	2.128	3206323	101840914	24.87	5674387	72518177	17.71
0.1772	0.1969	0.1870	2.721	2.167	2713628	104554542	25.53	5373498	77891675	19.02
0.1969	0.2165	0.2067	3.037	2.211	1952960	106507501	26.01	5059034	82950709	20.25
0.2165	0.2362	0.2264	3.366	2.371	1433229	107940730	26.36	4102411	87053119	21.26
0.2362	0.2559	0.2461	3.706	2.392	1073935	109014664	26.62	3995308	91048427	22.23
0.2559	0.2756	0.2657	4.056	2.508	819397.7	109834062	26.82	3466181	94514608	23.08
0.2756	0.2953	0.2854	4.415	2.597	635194.5	110469257	26.97	3121892	97636500	23.84
0.2953	0.3150	0.3051	4.784	2.677	499373	110968630	27.09	2850288	100486788	24.54
0.3150	0.3346	0.3248	5.162	2.586	397550.6	111366180	27.19	3161901	103648688	25.31
0.3346	0.3543	0.3445	5.549	2.428	320077.2	111686257	27.27	3820828	107469517	26.24
0.3543	0.3740	0.3642	5.944	2.423	260339.5	1.12E+08	27.33	3842539	1.11E+08	27.18

Dari tabel 10 terlihat hasil analitis dan numerik memiliki selisih sebesar 0,567%.

Untuk konversi ke dalam satuan tahun dapat dijelaskan seperti berikut.

 $N(tahun) = N(cycle) \times T(periode gelombang)$

 $N(tahun) = 1.12E + 08 \times 7,7$

N(tahun) = 8.62E+08 sekon

N(tahun) = 27,33 tahun

IV. KESIMPULAN

Dari penelitian tugas akhir ini, dapat diambil kesimpulan antara lain:

- Nilai Stress Intensity Factor (SIF) terbesar dengan pembebanan maksimum 6,86 MPa√m dan 6,02 MPa√m dengan pembebanan minimum serta nilai ini masih jauh dari besarnya nilai fracture toughness yaitu 182.19 MPa√m yang merupakan nilai SIF kritis, sehingga kondisi tubular joint 502 masih memenuhi dalam kriteria perancangan.
- 2. Laju perambatan retak terbesar pada tubular joint 502 yaitu 1,59E-10 in/cycle.
- 3. Perhitungan umur kelelahan yang terjadi pada tubular joint 502 dengan metode *Linear Elastic Fracture Mechanic* adalah 1,12E+08 *cycle* (27 tahun).

DAFTAR PUSTAKA

- [1] Djatmiko, E. B. and Murdijanto, 2003, Seakeeping : Perilaku Bangunan Apung di atas Gelombang, Surabaya : Jurusan Teknik Kelautan, Institut Teknologi Sepuluh Nopember.
- [2] Murdjito, 1996, Diktat Pengantar Bangunan Lepas Pantai. Kursus Segitiga Biru ITS – Unhas – Unpati. Surabaya : FTK ITS.
- [3] Barsom, J. M., dan Rolfe, S.T. 1999. *Fracture and Fatigue Control in Structures, Third Edition*. New Jersey: Prentice Hall, Inc.