Negotiation-Based Capacity Planning With A Learning Mechanism Using Adaptive Neurofuzzy Inference System

Fikri, Aulia Rahman Mufti (2016) Negotiation-Based Capacity Planning With A Learning Mechanism Using Adaptive Neurofuzzy Inference System. Masters thesis, Institut Technology Sepuluh Nopember.

[thumbnail of 2514206006-Master_Thesis.pdf]
Preview
Text
2514206006-Master_Thesis.pdf - Accepted Version

Download (1MB) | Preview

Abstract

In decentralized manufacturing environment with multiple factories that are
scattered geographically, the complexity of production systems increases, and
capacity planning and allocation of resources have become a significant concern
that affects system performances. This study focuses on the development of an
integrated framework to allocate limited budget in a multiple-factory
environment. We develop a negotiation framework with learning mechanism to
allocate autonomously finite budget provided by a headquarter and to facilitate the
use of limited manufacturing resources that are scattered over individual factories.
The outcome of the experiments shows good prediction of the opponent offers
during negotiation, so it enables the reduction of negotiation time.

Item Type: Thesis (Masters)
Additional Information: RTI 629.831 2 Fik n
Uncontrolled Keywords: Automated negotiation, capacity planning, learning mechanism, negotiation decision function
Subjects: Q Science > QA Mathematics > QA9.64 Fuzzy logic
Divisions: Faculty of Industrial Technology > Industrial Engineering > 26101-(S2) Master Thesis
Depositing User: Mr. Tondo Indra Nyata
Date Deposited: 17 Feb 2020 06:30
Last Modified: 20 Aug 2024 06:15
URI: http://repository.its.ac.id/id/eprint/74980

Actions (login required)

View Item View Item