

TUGAS AKHIR - MO 141316

ANALISIS INTERAKSI HIDRODINAMIS STRUKTUR FPSO BERLAMBUNG SILINDER SEVAN STABILIZED PLATFORM DENGAN SHUTTLE TANKER

Maria Putri Rosari NRP 4312 100 069

Dosen Pembimbing Prof. Ir. Eko Budi Djatmiko, M.Sc., Ph.D., F.RINA. Murdjito, M.Sc.Eng.

JURUSAN TEKNIK KELAUTAN Fakultas Teknologi Kelautan Institut Teknologi Sepuluh Nopember Surabaya 2016

FINAL PROJECT - MO 141316

HYDRODYNAMIC INTERACTION ANALYSIS OF CYLINDRICAL HULL FPSO SEVAN STABILIZED PLATFORM AND SHUTTLE TANKER

Maria Putri Rosari NRP 4312100069

Supervisors Prof. Ir. Eko Budi Djatmiko, M.Sc., Ph.D., F.RINA. Murdjito, M.Sc.Eng.

OCEAN ENGINEERING DEPARTMENT Faculty of Marine Technology Institut Teknologi Sepuluh Nopember Surabaya 2016

Analisis Interaksi Hidrosdinamis Struktur FPSO Berlambung Silinder Sevan Stabilized Platform dengan Shuttle Tanker

TUGAS AKHIR

Diajukan untuk Memenuhi Salah Satu Persyaratan Memperoleh Gelar Sarjana Teknik pada Program Studi S-1 Jurusan Teknik Kelautan Fakultas Teknologi Kelautan Institut Teknologi Sepuluh Nopember Surabaya

Oleh :

MARIA PUTRI ROSARI

.

4312100069

Disetujui olen :	
1. Prof. In Eko Budi Djatmiko, M.Sc., Ph.D., F.RINA	(Pembimbing I)
2 strivental to ATSIS seg	(Pembimbing II)
I I RUSAN Denny	
3. Dr.Eng. Rudi Walujo Prastianto, S.T., M.T.	(Penguji)
4. Ir. Joswan Joesoef Soedjono, M.Sc	(Penguji)
from	
5. Agro Wisudawan, S.T., M.T.	(Penguji)
all	
6. Sujantoko, S.T., M.T.	(Penguji)

SURABAYA, JULI 2016

iii

ANALISIS INTERAKSI HIDRODINAMIS STRUKTUR FPSO BERLAMBUNG SILINDER *SEVAN STABILIZED PLATFORM* DENGAN *SHUTTLE TANKER*

Nama:Maria Putri RosariNRP:4312100069Dosen Pembimbing:Prof. Ir. Eko Budi Djatmiko, M.Sc., Ph.D., F.RINA
Murdjito, M.Sc.Eng

ABSTRAK

Sevan Stabilized Platform (SSP) merupakan inovasi baru dalam dunia eksplorasi dan eksploitasi minyak dan gas lepas pantai. Struktur tersebut diklaim mampu menyediakan luasan geladak dan kapasitas muat beban yang lebih besar sekaligus menelan biaya pengadaan yang lebih murah dibandingkan dengan konsep struktur sejenis yang sudah terbilang konvensional seperti Semisubmersible, TLP, dan SPAR. Analisis yang dilakukan pada penelitian ini mencakup analisis respon gerak SSP S400 dan Shuttle Tanker 35,000, analisis tension sistem tambat SSP dan Shuttle Tanker, dan nilai operabilitas SSP. Analisis operabilitas diasumsikan hanya dipengaruhi oleh kondisi lingkungan (beban angin, beban arus, dan beban gelombang) tanpa mempertimbangkan aspek lain seperti penjadwalan, aspek mechanical, dan lain-lain. Penelitian ini menyajikan luaran berupa karakteristik respon gerak dan tension sistem tambat dalam bentuk time domain dari hasil pemodelan numerik. Berdasarkan hasil analisis, dinyatakan bahwa nilai respon gerak terbesar pada operasi stand alone terjadi pada kondisi SSP 75% muatan dengan rentang nilai tension 2,000 kN sampai 7,000 kN. Nilai respon gerak terbesar SSP dengan Shuttle Tanker pada operasi side by side offloading dengan jarak 3.3 m terjadi akibat arah pembebanan gelombang sisi. Berdasarkan korelasi antara kriteria operabilitas side by side offloading dengan data lingkunga, didapatkan bahwa operabilitas sistem yang didapat dalam pengoperasiannya di perairan Blok Masela adalah sebesar 88.55%. Operasi side by side offloading hanya dapat dilakukan pada tinggi gelombang signifikan 2.0 m. Nilai operabilitas SSP dan Shuttle Tanker dapat terjadi lebih besar apabila jarak side by side offloading antara keduanya ditambahkan.

Kata kunci : Sevan Stabilized Platform, side by side offloading, respon gerak, tension, operabilitas

HYDRODYNAMIC ANALYSIS OF CYLINDRICAL HULL FPSO SEVAN STABILIZED PLATFORM AND SHUTTLE TANKER

Name:Maria Putri RosariNRP:4312100069Supervisors:Prof. Ir. Eko Budi Djatmiko, M.Sc., Ph.D., F.RINA
Murdjito, M.Sc.Eng

ABSTRACT

Sevan Stabilized Platform (SSP) is a new type of mono-hull concept to be function as an oil production. SSP offer greater deck area and load capacitiy along with storage and low motion characteristics for lower cost, compared to other concepts, such as the Semisubmersibles, TLPs, and SPARs. This research has been carried out by analyzing responses of both SSP S400 and the accompanying 35,000 DWT Shuttle Tanker, tension characteristic of their mooring system, and its operability. The operability of SSP is only analyzed based on environmental condition (wind load, current load, and wave load) and not related to other aspects, such as scheduling, mechanical aspects, etc. Numerical model with time domain simulation is used to perform the analysis on the mooring system and vessel motion due to environmental effects. Based on the analysis, the greater motion of stand alone operation happens when SSP is in 75% load condition with the value range of tension 2,000 to 7,000 kN. Greater interaction between SSP and Shuttle Tanker at a side by side distance 3.3 m occurss at beam sea direction of wave heading. Based on the correlation between operability criteria for the side by side offloading operation and environtmenal data, it can be concluded that operability of the system may achieve up to 88.55%. Maximum sea condition for safe side by side offloading operation would be about 2.0 m significant wave height. The operation may be conducted at higher wave heights if the side by side distance is made larger.

Keywords : Sevan Stabilized Platform, side by side offloading, motion, tension, operability

DAFTAR ISI

HAI	LAMAN JUDUL	i
LEN	IBAR PENGESAHAN	iii
ABS	STRAK	iv
KA	ΓΑ PENGANTAR	vi
UCA	APAN TERIMA KASIH	vii
DAI	FTAR ISI	ix
DAI	FTAR GAMBAR	xi
DAI	FTAR TABEL	xvii
DAI	FTAR LAMPIRAN	xxi
BAE	3 I PENDAHULUAN	
1.1	LATAR BELAKANG	1
1.2	RUMUSAN MASALAH	3
1.3	TUJUAN PENELITIAN	3
1.4	MANFAAT PENELITIAN	4
1.5	BATASAN MASALAH	4
1.6	SISTEMATIKA PENULISAN	5
BAE	3 II TINJAUAN PUSTAKA DAN DASAR TEORI	
2.1	TINJAUAN PUSTAKA	7
2.2	DASAR TEORI	8
BAH	3 III METODOLOGI PENELTITIAN	
3.1	LANGKAH KERJA	29
3.2	PENGUMPULAN DATA	31
3.3	SKENARIO PENELITIAN	34
BAE	3 IV ANALISIS DAN PEMBAHASAN	
4.1	PEMODELAN STRUKTUR DAN VALIDASI	35
4.2	KARAKTERISTIK GERAK STRUKTUR SSP PADA KONDISI	
	TERAPUNG BEBAS	39
4.3	KARAKTERISTIK GERAK STRUKTUR SHUTTLE TANKER	
	PADA KONDISI TERAPUNG BEBAS	48
4.4	PERHITUNGAN GELOMBANG DALAM KURUN WAKTU	

	PANJANG	59
4.5	ANALISIS RESPON GERAK DAN TENSION TALI TAMBAT	
	SSP PADA KONDISI TERTAMBAT STAND ALONE	62
4.6	ANALISIS RESPON GERAK DAN TENSION TALI TAMBAT	
	SSP DAN SHUTTLE TANKER PADA KONDISI SIDE BY SIDE	
	OFFLOADING	77
4.7	ANALISIS OPERABILITAS SSP DI PERAIRAN BLOK	
	MASELA	111
BAB	V PENUTUP	
5.1	SIMPULAN	115
5.2	SARAN	116
DAF	TAR PUSTAKA	117
LAM	IPIRAN	121

DAFTAR GAMBAR

Gambar 1.1 Proses side by side offloading antara SSP dengan Shuttle	
Tanker (Sevan Marine, 2011)	
Gambar 2.1 Sevan Stabilized Platform (Sevan Marine, 2011)	
Gambar 2.2 Moda offloading pada SSP (Major, 2013)	
Gambar 2.3 Gerak bangunan apung (Soetomo, 2010)	
Gambar 2.4 Bentuk umum grafik respons gerakan bangunan apung	
(Djatmiko, 2012)	
Gambar 2.5 Gaya lingkungan yang bekerja pada struktur terapung kondisi	
heading head seas dan gerakan transversal dari mooring lines	
(Chakrabarti, 1994)	
Gambar 2.6 Panjang minimum mooring line (Faltinsen, 1990)	
Gambar 3.1 Diagram alir langkah kerja penelitian	
Gambar 3.2 Model Sevan S400 dalam tiga dimensi	
(Sevan Marine, 2011)	
Gambar 3.3 Principal Dimension Sevan S400 (Sevan Marine, 2011)	
Gambar 3.4 General Arrangement Shuttle Tanker	
(Tanker Shipping, 2014)	
Gambar 4.1 Model SSP Sevan tampak samping sekaligus	
tampak depan	
Gambar 4.2 Model Shuttle Tanker tampak longitudinal	
Gambar 4.3 Model Shuttle Tanker tampak haluan	
Gambar 4.4 Model Shuttle Tanker tampak buritan	
Gambar 4.5 RAO surge pada SSP muatan 100%	
Gambar 4.6 RAO sway pada SSP muatan 100%	
Gambar 4.7 RAO heave pada SSP muatan 100%	
Gambar 4.8 RAO <i>roll</i> pada SSP muatan 100%	
Gambar 4.9 RAO <i>pitch</i> pada SSP muatan 100%	
Gambar 4.10 RAO yaw pada SSP muatan 100%	
Gambar 4.11 RAO <i>surge</i> pada SSP muatan 83%	
Gambar 4.12 RAO <i>sway</i> pada SSP muatan 83%	

Gambar 4.13 RAO <i>heave</i> pada SSP muatan 83%	44
Gambar 4.14 RAO <i>roll</i> pada SSP muatan 83%	44
Gambar 4.15 RAO <i>pitch</i> pada SSP muatan 83%	45
Gambar 4.16 RAO <i>yaw</i> pada SSP muatan 83%	45
Gambar 4.17 RAO <i>surge</i> pada SSP muatan 75%	46
Gambar 4.18 RAO <i>sway</i> pada SSP muatan 75%	46
Gambar 4.19 RAO <i>heave</i> pada SSP muatan 75%	47
Gambar 4.20 RAO <i>roll</i> pada SSP muatan 75%	47
Gambar 4.21 RAO <i>pitch</i> pada SSP muatan 75%	48
Gambar 4.22 RAO <i>yaw</i> pada SSP muatan 75%	48
Gambar 4.23 RAO <i>surge</i> pada <i>Shuttle Tanker</i> muatan 90%	49
Gambar 4.24 RAO <i>sway</i> pada <i>Shuttle Tanker</i> muatan 90%	50
Gambar 4.25 RAO <i>heave</i> pada <i>Shuttle Tanker</i> muatan 90%	50
Gambar 4.26 RAO <i>roll</i> pada <i>Shuttle Tanker</i> muatan 90%	51
Gambar 4.27 RAO <i>pitch</i> pada <i>Shuttle Tanker</i> muatan 90%	51
Gambar 4.28 RAO yaw pada SSP Shuttle Tanker muatan 90%	52
Gambar 4.29 RAO <i>surge</i> pada <i>Shuttle Tanker</i> muatan 60%	53
Gambar 4.30 RAO <i>sway</i> pada <i>Shuttle Tanker</i> muatan 60%	53
Gambar 4.31 RAO heave pada Shuttle Tanker muatan 60%	54
Gambar 4.32 RAO <i>roll</i> pada <i>Shuttle Tanker</i> muatan 60%	54
Gambar 4.33 RAO <i>pitch</i> pada <i>Shuttle Tanker</i> muatan 60%	55
Gambar 4.34 RAO yaw pada SSP Shuttle Tanker muatan 60%	55
Gambar 4.35 RAO <i>surge</i> pada <i>Shuttle Tanker</i> muatan 10%	56
Gambar 4.36 RAO <i>sway</i> pada <i>Shuttle Tanker</i> muatan 10%	57
Gambar 4.37 RAO <i>heave</i> pada <i>Shuttle Tanker</i> muatan 10%	57
Gambar 4.38 RAO <i>roll</i> pada <i>Shuttle Tanker</i> muatan 10%	57
Gambar 4.39 RAO <i>pitch</i> pada <i>Shuttle Tanker</i> muatan 10%	58
Gambar 4.40 RAO yaw pada SSP Shuttle Tanker muatan 10%	59
Gambar 4.41 Grafik korelasi antara tinggi gelombang dan	
distribusi kumulatif	61
Gambar 4.42 Konfigurasi SSP tertambat	63
Gambar 4.43 Respon signifikan <i>surge</i> pada SSP tertambat 100%	

muatan	
Gambar 4.44 Respon signifikan sway pada SSP tertambat 100%	
muatan	
Gambar 4.45 Respon signifikan heave pada SSP tertambat 100%	
muatan	
Gambar 4.46 Respon signifikan roll pada SSP tertambat 100%	
muatan	
Gambar 4.47 Respon signifikan pitch pada SSP tertambat 100%	
muatan	
Gambar 4.48 Respon signifikan yaw pada SSP tertambat 100%	
muatan	
Gambar 4.49 Time history gaya tarik mooring line	
Gambar 4.50 Tension pada line 12 pada setiap tinggi gelombang	
signifikan pada SSP tertambat 100% muatan	
Gambar 4.51 Respon signifikan surge pada SSP tertambat 75%	
muatan	
Gambar 4.52 Respon signifikan sway pada SSP tertambat 75%	
muatan	
Gambar 4.53 Respon signifikan heave pada SSP tertambat 75%	
muatan	
Gambar 4.54 Respon signifikan roll pada SSP tertambat 75%	
muatan	
Gambar 4.55 Respon signifikan <i>pitch</i> pada SSP tertambat 75%	
muatan	
Gambar 4.56 Respon signifikan yawy pada SSP tertambat 75%	
muatan	
Gambar 4.57 Tension pada line 12 pada setiap tinggi gelombang	
signifikan pada SSP tertambat 75% muatan	
Gambar 4.58 Konfigurasi side by side offloading antara SSP	
dengan Shuttle Tanker tampak atas	
Gambar 4.59 Grafik time history gerak sway SSP dan Shuttle Tanker	
kondisi 1 dengan arah pembebanan 0° dan Hs 2 m	

Gambar 4.60 Grafik time history double amplitude heave SSP dan Shuttle	
<i>Tanker</i> kondisi 1 dengan arah pembebanan 0° dan Hs 2 m	81
Gambar 4.61 Grafik time history double amplitude roll SSP dan Shuttle	
<i>Tanker</i> kondisi 1 dengan arah pembebanan 0° dan Hs 2 m	81
Gambar 4.62 Respon gerak surge SSP dan Shuttle Tanker pada kondisi	
side by side offloading kondisi 1	83
Gambar 4.63 Respon gerak sway SSP dan Shuttle Tanker pada kondisi	
side by side offloading kondisi 1	84
Gambar 4.64 Respon gerak heave SSP dan Shuttle Tanker pada kondisi	
side by side offloading kondisi 1	84
Gambar 4.65 Respon gerak roll SSP dan Shuttle Tanker pada kondisi	
side by side offloading kondisi 1	85
Gambar 4.66 Respon gerak pitch SSP dan Shuttle Tanker pada kondisi	
side by side offloading kondisi 1	85
Gambar 4.67 Respon gerak yaw SSP dan Shuttle Tanker pada kondisi	
side by side offloading kondisi 1	86
Gambar 4.68 Respon gerak surge SSP dan Shuttle Tanker pada kondisi	
side by side offloading kondisi 2	88
Gambar 4.69 Respon gerak sway SSP dan Shuttle Tanker pada kondisi	
side by side offloading kondisi 2	89
Gambar 4.70 Respon gerak heave SSP dan Shuttle Tanker pada kondisi	
side by side offloading kondisi 2	89
Gambar 4.71 Respon gerak roll SSP dan Shuttle Tanker pada kondisi	
side by side offloading kondisi 2	89
Gambar 4.72 Respon gerak pitch SSP dan Shuttle Tanker pada kondisi	
side by side offloading kondisi 2	90
Gambar 4.73 Respon gerak yaw SSP dan Shuttle Tanker pada kondisi	
side by side offloading kondisi 2	90
Gambar 4.74 Respon gerak surge SSP dan Shuttle Tanker pada kondisi	
side by side offloading kondisi 3	92
Gambar 4.75 Respon gerak sway SSP dan Shuttle Tanker pada kondisi	
side by side offloading kondisi 3	93

Gambar 4.76 Respon gerak heave SSP dan Shuttle Tanker pada kondisi	
side by side offloading kondisi 3	93
Gambar 4.77 Respon gerak roll SSP dan Shuttle Tanker pada kondisi	
side by side offloading kondisi 3	93
Gambar 4.78 Respon gerak pitch SSP dan Shuttle Tanker pada kondisi	
side by side offloading kondisi 3	94
Gambar 4.79 Respon gerak yaw SSP dan Shuttle Tanker pada kondisi	
side by side offloading kondisi 3	94
Gambar 4.80 Tension line 12 pada skenario side by side offloading	
kondisi 1, kondisi 2, kondisi 3	105
Gambar 4.81 Konfigurasi tali tambat kapal	106
Gambar 4.82 Tension tali tambat kapal 1 pada skenario side by side	
offloading kondisi 1, kondisi 2, kondisi 3	108

DAFTAR TABEL

Tabel 2.1 Kriteria safety factor tali tambat berdasarkan API RP 2 SK	25
Tabel 3.1 Principal Dimension Sevan S400	32
Tabel 3.2 Principal dimension Shuttle Tanker	33
Tabel 3.3 Mooring line properties Sevan S400	33
Tabel 3.4 <i>Properties</i> tali tambat kapal	34
Tabel 3.5 Data sebaran gelombang Blok Masela	34
Tabel 3.6 Data angin dan arus Blok Masela	34
Tabel 4.1 Validasi pemodelan Hydrostar SSP terhadap data asli	36
Tabel 4.2 Kondisi side by side offloading dengan ukuran Shuttle Tanker	
maksimum 35000 DWT	37
Tabel 4.3 Validasi pemodelan Hydrostar Shuttle Tanker	
terhadap pemodelan Maxsurf	38
Tabel 4.4 Nilai maksimum RAO SSP kondisi 100% muatan	39
Tabel 4.5 Nilai maksimum RAO SSP kondisi 83% muatan	42
Tabel 4.6 Nilai maksimum RAO SSP kondisi 75% muatan	45
Tabel 4.7 Nilai maksimum RAO Shuttle Tanker kondisi 90% muatan	49
Tabel 4.8 Nilai maksimum RAO Shuttle Tanker kondisi 60% muatan	52
Tabel 4.9 Nilai maksimum RAO Shuttle Tanker kondisi 10% muatan	56
Tabel 4.10 Data sebaran gelombang Blok Masela	59
Tabel 4.11 Tabulasi perhitungan komponen peluang kumulatif	60
Tabel 4.12 Tabulasi perhitungan kurun waktu panjang	61
Tabel 4.13 Skenario kasus SSP tertambat	63
Tabel 4.14 Tabulasi respon gerak signifikan dari SSP kondisi muatan	
100%	64
Tabel 4.15 Tabulasi <i>tension</i> signifikan dari SSP kondisi muatan 100%	68
Tabel 4.16 Nilai safety factor dari tension signifikan pada struktur	
SSP tertambat dengan kondisi muatan 100%	70
Tabel 4.17 Tabulasi repson gerak signifikan dari SSP kondisi muatan	
75%	70
Tabel 4.18 Tabulasi tension signifikan dari SSP kondisi muatan 75%	74

Tabel 4.19 Nilai safety factor dari tension signifikan pada struktur
SSP tertambat dengan kondisi muatan 75%
Tabel 4.20 Skenario kasus side by side offloading
Tabel 4.21 Penentuan dimensi fender
Tabel 4.22 Respon gerak signifikan SSP pada kondisi side by side
offloading kondisi 1
Tabel 4.23 Respon gerak signifikan Shuttle Tanker pada kondisi side by
side offloading kondisi 1
Tabel 4.24 Respon gerak signifikan SSP pada kondisi side by side
offloading kondisi 2
Tabel 4.25 Respon gerak signifikan Shuttle Tanker pada kondisi side by
side offloading kondisi 2
Tabel 4.26 Respon gerak signifikan SSP pada kondisi side by side
offloading kondisi 3
Tabel 4.27 Respon gerak signifikan Shuttle Tanker pada kondisi side by
side offloading kondisi 3
Tabel 4.28 Rangkuman kondisi kritis side by side offloading berdasarkan
respon gerak pada kondisi 1
Tabel 4.29 Rangkuman kondisi kritis side by side offloading berdasarkan
respon gerak pada kondisi 2
Tabel 4.30 Rangkuman kondisi kritis side by side offloading berdasarkan
respon gerak pada kondisi 3
Tabel 4.31 Ilustrasi kondisi kritis pada setiap kasus berdasarkan
respon gerak
Tabel 4.32 Tension mooring lines pada skenario side by side offloading
kondisi 1
Tabel 4.33 Tension mooring lines pada skenario side by side offloading
kondisi 2
Tabel 4.34 Tension mooring lines pada skenario side by side offloading
kondisi 3
Tabel 4.35 Tension tali tambat kapal pada skenario side by side offloading
kondisi

Tabel 4.36 Rangkuman kondisi kritis pada setiap kasus berdasarkan tension	
mooring line	109
Tabel 4.37 Rangkuman kondisi kritis pada setiap kasus berdasarkan tension	
Tali tambat kapal	110
Tabel 4.38 Kondisi akhir keseluruhan side by side offloading	112
Tabel 4.39 Korelasi kondisi batas dengan data sebaran gelombang Blok	
Masela	113

DAFTAR LAMPIRAN

Lampiran A	Grafik Time history respon	gerak sway,	heave,	dan <i>roll</i>	pada	skenario	side	by
	side offloading kondisi 1							

- Lampiran B Grafik *Time history* respon gerak *sway*, *heave*, dan *roll* pada skenario *side by side offloading* kondisi 2
- Lampiran C Grafik *Time history* respon gerak *sway*, *heave*, dan *roll* pada skenario *side by side offloading* kondisi 3

BAB I PENDAHULUAN

1.1 LATAR BELAKANG

Pertumbuhan populasi dan perkembangan ekonomi merupakan penyebab utama dalam peningkatan kebutuhan energi. Dalam kurun waktu 2010-2040, kebutuhan energi dunia diperkirakan terus meningkat dengan nilai rata-rata peningkatan 1% per tahun (Outlook for Energy, 2013). Padahal cadangan hidrokarbon yang tersedia semakin hari semakin sulit didapatkan di perairan-perairan dangkal. Hal ini mengharuskan kegiatan eksplorasi dan eksploitasi bergerak menuju perairan dalam (deepwater) bahkan sangat dalam (ultra-deep water). Fenomena yang terjadi terkait pemenuhan kebutuhan energi di lingkup aktivitas eksplorasi dan eksploitasi hidrokarbon lepas pantai adalah semakin mahalnya biaya yang harus dikeluarkan seiring dengan bertambahnya kedalaman operasi. Terkait dengan kenyataan tersebut, demi memperoleh keuntungan dari aktivitas laut dalam dengan biaya investasi yang besar adalah menambah ukuran ukuran unit processing dan jumlah riser yang digunakan. Sehingga, diperlukan suatu unit struktur yang besar yang mampu menopang beban besar dengan area geladak dan kapasitas penyimpanan yang besar pula.

Pada tahun-tahun terakhir, ditemukanlah sebuah inovasi teknologi konsep struktur apung berlambung silindris yang diklaim mampu menyediakan luasan geladak dan kapasitas muat beban yang lebih besar. Selain itu, dikatakan pula bahwa menelan biaya pengadaan yang harus dikeluarkan lebih murah dibandingkan dengan konsep struktur sejenis yang tipe konvensional seperti struktur apung berbadan dasar kapal (*ship-based*). Lebih lanjut, struktur yang dinamai *Sevan Stabilized Platform* (SSP) ini diklaim memiliki karakteristik gerak yang lebih halus (Sevan Marine, 2011).

Konsep struktur SSP ini pada dasarnya adalah struktur dengan sebuah lambung tunggal berbentuk silinder. Berbeda dengan SPAR yang juga memiliki lambung silinder, lambung SSP memiliki diameter lebih besar dibandingkan dengan tingginya. Konsep SSP diciptakan untuk digunakan sebagai anjungan pengeboran (*drilling platform*) dan anjungan produksi (*production platform*) seperti FPSO. Melalui penambahan sistem *turret* dan *swivel*, FPSO akan memiliki keandalan yang tinggi untuk dioperasikan di perairan yang lebih ganas. Sedangkan untuk aplikasi di perairan yang lebih moderat cukup dipakai sistem tambat sebar (*spread-mooring*) konvensional (Syvertsen, 2011).

Dalam pengoperasian struktur apung, diperlukan adanya sebuah analisis terhadap perilaku gerak struktur tersebut di lokasi instalasinya. Hal tersebut jelas dilakukan pula terhadap FPSO yang memegang fungsi sebagai sarana pemrosesan dan penyimpanan hidrokarbon hasil pengeboran. Respon gerak struktur baik dalam kondisi *stand alone* ataupun dalam kondisi *offloading* perlu dianalisis. Analisis respon gerak dilakukan untuk melihat bagaimana operabilitas yang dimiliki struktur di lokasi tertentu agar struktur dapat beroperasi secara optimal dan menguntungkan (Dianiswara, 2013).

Keberadaan struktur apung dalam pengoperasiannya juga perlu didukung dengan adanya sistem tambat yang memadai. Sistem tambat berguna sebagai pengikat dan penjaga struktur agar tetap berada pada posisinya. Menurut Djatmiko (2003), gerakan dari suatu struktur terapung menimbulkan adanya gaya-gaya yang bekerja pada sistem tambat (*mooring system*). Begitu juga sebaliknya sistem tambat memberikan gaya pengembali pada struktur agar gerakannya menjadi kecil. Oleh sebab itu, analisis pada sistem tambat perlu dilakukan guna menjaga operabilitas dan keselamatan kinerja di lokasi struktur tersebut beroperasi.

Gambar 1.1 Proses side by side offloading antara SSP dengan Shuttle Tanker (Sevan Marine, 2011)

Penelitian ini dilakukan guna melihat performa SSP baik dalam kondisi stand alone maupun kondisi offloading secara side by side dengan Shuttle Tanker. Hidrokarbon yang ditransfer dari SSP dengan Shuttle Tanker diasumsikan adalah minyak.

Analisis dalam penelitian ini diawali dengan melihat terlebih dahulu bagaimana karakteristik gerak struktur SSP dan *Shuttle Tanker* pada kondisi terapung bebas. Analisis dilanjutkan dengan menghitung respon gerak struktur dan *tension* tali tambat SSP pada kondisi tertambat tunggal. Konfigurasi tali tambat SSP adalah secara menyebar dengan jumlah tali tambat sebanyak dua belas buah. Analisis dilanjutkan dengan menghitung respon gerak struktur dan *tension* tali tambat SSP saat proses *offloading* dengan *Shuttle Tanker*. Terakhir, perhitungan nilai operabilitas dilakukan terhadap kriteria kondisi lingkungan setempat.

1.2 RUMUSAN MASALAH

Permasalahan yang akan dikaji dalam penelitian ini meliputi

- 1. Bagaimana respon gerak struktur dan besar *tension* tali tambat SSP pada kondisi tertambat?
- 2. Bagaimana respon gerak struktur dan besar *tension* tali tambat SSP pada saat proses *side by side offloading* dengan *Shuttle Tanker*?
- 3. Bagaimana nilai operabilitas SSP?

1.3 TUJUAN PENELITIAN

Tujuan yang ingin dicapai dalam penelitian ini meliputi

- 1. Mengetahui respon gerak struktur dan besar *tension* tali tambat SSP pada kondisi tertambat.
- 2. Mengetahui respon gerak struktur dan besar *tension* tali tambat SSP pada saat proses *side by side offloading* dengan *Shuttle Tanker*.
- 3. Mengetahui nilai operabilitas SSP.

1.4 MANFAAT PENELITIAN

Penelitian ini dapat memberikan manfaat yakni menyediakan informasi mengenai karakteristik dan respon gerak struktur SSP, besar *tension* sistem tambat, serta nilai operabilitas struktur SSP. Selain itu, penelitian ini juga dapat memberikan wawasan baru mengenai inovasi teknologi lepas pantai berupa FPSO berlambung silinder yang digunakan dalam operasi wilayah laut dalam.

1.5 BATASAN MASALAH

Batasan masalah yang terdapat dalam penelitian ini meliputi

- Penelitian ini memakai objek SSP S400 dan *Shuttle Tanker* kapasitas 35000 DWT.
- 2. Objek yang dianalisis yakni SSP dan *Shuttle Tanker* dianggap *rigid body*. Beban lingkungan yang ditinjau adalah beban gelombang, beban arus, dan beban angin.
- 3. Lokasi analisis adalah perairan Laut Masela.
- 4. Arah pembebanan dalam analisis meliputi 0° , 45° , dan 90° .
- 5. Tali tambat SSP berjumlah dua belas buah yang dipasang pada tiga titik. Sedangkan konfigurasi *Shuttle Tanker* saat proses *side by side offloading* meliputi empat tali penghubung yang terkoneksi ke struktur SSP.
- 6. Jangkar pada sistem tambat dianggap *fixed* sehingga tidak diperlukan adanya analisis *holding capacity*.
- 7. Operasi *offloading* diasumsikan sebagai kegiatan yang harus selesai pada satu kali operasi dari awal dimulainya operasi. Operasi *offloading* tidak dapat ditunda maupun dihentikan sementara.
- 8. Analisis gaya yang bekerja pada *fender* diabaikan tetapi pemilihan *fender* tetap diperhitungkan.
- 9. Kontur dasar laut dianggap datar dan rata.
- 10. Riser tidak dianalisis.
- Faktor operabilitas hanya disebabkan oleh kondisi cuaca dan lingkungan, bukan karena keterlambatan armada, *maintenance*, maupun faktor penghambat yang lain.

1.6 SISTEMATIKA PENULISAN

Sistematika penulisan penelitian dalam tugas akhir ini adalah sebagai berikut

1. Bab I Pendahuluan

Bab ini menjelaskan tentang latar belakang penelitian yang akan dilakukan, perumusan masalah, tujuan yang hendak dicapai dalam penelitian, manfaat yang diperoleh, ruang lingkup penelitian untuk membatasi analisis yang dilakukan, serta sistematika penulisan laporan dari hasil penelitian yang telah dilakukan.

2. Bab II Tinjauan Pustaka dan Dasar Teori

Bab ini berisi referensi dan juga teori-teori pendukung yang digunakan sebagai acuan atau pedoman dalam menyelesaikan Tugas Akhir. Referensi tersebut bersumber pada jurnal lokal maupun internasional, literatur, *code* dan juga buku yang berkaitan dengan topik yang dibahas.

3. Bab III Metode Penelitian

Bab ini berisi tentang alur pengerjaan Tugas Akhir dengan tujuan untuk memecahkan masalah yang diangkat dalam bentuk diagram alir atau *flow chart* yang disusun secara sistematik yang dilengkapi pula dengan data-data penelitian serta penjelasan detail untuk setiap langkah pengerjaannya.

4. Bab IV Analisis dan Pembahasan

Bab ini berisi penjelasan mengenai pengolahan data yang diperoleh, pemodelan struktur, pemodelan sistem tambat, serta hasil analisis simulasi model pada *software*. Hasil analisis simulasi mencakup analisis karakteristik SSP dan *Shuttle Tanker* dalam kondisi terapung bebas, analisis respon gerak struktur SSP dan *tension* tali tambat dalam kondisi SSP tertambat, analisis respon gerak SSP dan *Shuttle Tanker* serta *tension* tali tambat pada saat proses *side by side offloading*, dan nilai operabilitas SSP di perairan Masela.

5. Bab V Penutup

Bab ini berisi simpulan yang merupakan uraian singkat dari keseluruhan hasil analisis. Uraian singkat ini diharapkan bisa menjawab rumusan

masalah yang ada. Pada bab ini terdapat pula saran yang yang bermanfaat guna keberlanjutan penelitian terkait ke depannya.

BAB II

TINJAUAN PUSTAKA DAN DASAR TEORI

2.1 TINJAUAN PUSTAKA

Penggunaan bangunan apung dalam kegiatan eksplorasi dan eksploitasi minyak dan gas lepas pantai dewasa ini diakibatkan oleh beberapa pertimbangan. Menurut Wibowo (2014), alasan memilih bangunan apung dibandingkan dengan jenis bangunan lain didasari pada kemampuan struktur untuk bisa berpindah setelah operasi selesai dan pertimbangan biaya operasi yang lebih rendah dibanding biaya instalasi sistem perpipaan. Selain itu pertimbangan kapasitas muat dan distribusi cukup besar yang dimiliki bangunan apung juga menjadi alasan masuk akal mengapa keberadaan bangunan apung lebih diunggulkan.

FPSO (*Floating Production Storage and Offloading*) merupakan sebuah fasilitas terapung yang dipasang di sekitar ladang minyak dan gas bumi lepas pantai yang berfungsi untuk menerima, memproses, menyimpan, dan menyalurkan minyak dan gas bumi ke tanker (Bungawardani, 2007).

Penelitian mengenai operabilitas struktur apung yang pernah ada salah satunya dilakukan oleh Aghnia (2013) pada objek FSRU dan LNG *Carrier* pada wilayah perairan Lampung. Penelitian tersebut kemudian lebih dispesifikkan menjadi analisis operabilitas sebatas pada siklus *side by side offloading* oleh Dianiswara (2013). Penelitian kemudian dilanjutkan oleh Wibowo (2014) dengan menambahkan analisis akibat variasi jarak horizontal pada saat proses *side by side offloading* dengan objek dan lingkungan yang sama. Dari ketiga penelitian yang saling terkait tersebut, objek yang digunakan masih bersifat konvensional dalam artian bentuk struktur apung yang konvensional berupa struktur berbadan dasar kapal.

Penelitian ini dilakukan dengan mengacu kepada objek temuan terbaru berkonsep struktur apung berlambung silindris, *Sevan Stabilized Platform* yang sebelumnya turut dianalisis oleh Perwitasari (2010) perihal interaksi hidrodinamisnya di wilayah laut utara. Afriana (2011) juga telah melakukan penelitiannya mengenai SSP dalam hal analisis dinamik *coupled* antara FPSO berlambung silinder, *mooring*, dan *riser* oleh Afriana (2011).

Dalam penelitian yang telah dilakukan oleh Sevan Marine (2011) dan juga Syvertsen (2011), struktur SSP ini dikatakan mampu menghemat biaya pengadaan dibandingkan dengan konsep struktur sejenis yang tipe konvensional seperti struktur apung berbadan dasar kapal. Gagasan tersebut diperkuat dengan hasil penelitian yang menyatakan bahwa struktur SSP diklaim memiliki karakteristik gerak yang lebih halus.

2.2 DASAR TEORI

Berikut ini teori-teori pendukung yang digunakan sebagai referensi dalam penelitian ini

2.2.1 Sevan Stabilized Platform

Gambar 2.1 Sevan Stabilized Platform (Sevan Marine, 2011)

Konsep Sevan *Stabilized Platform* pada dasarnya adalah struktur dengan sebuah lambung tunggal berbentuk bundar dan berdasarkan pada prinsip stabilitas yang sama dengan struktur apung lainnya. Berbeda dengan SPAR yang juga memiliki lambung silindris, lambung Sevan *Stabilized Platform* berdiameter lebih besar dibandingkan dengan dimensi tingginya, karena sarat operasionalnya biasanya kurang dari sepertiga diameternya. Penampang lambung yang bundar memungkinkan struktur memiliki tahanan hidrodinamis yang sama untuk segala arah pada saat terkena gelombang. Sehingga dalam hal ini Sevan *Stabilized Platform* tidak memerlukan sistem tambahan seperti *turret* maupun *swivel* seperti pada jenis FPSO berbadan kapal.

Dimensi karakteristik dari Sevan *Stabilized Platform* adalah diameter. Hal ini membuatnya menjadi sebuah desain yang berbasis modul yakni ukuran diameter akan menjadi penentu dimensi dari anjungan tersebut. Saat ini Sevan Marine (produsen Sevan *Stabilized Platform*) telah mendesain Sevan *Stabilized Platform* untuk tiga ukuran berdasarkan pada kapasitas penyimpanan minyaknya.

Stabilitas Sevan *Stabilized Platform* sama dengan bangunan apung berbentuk kapal seperti pada umumnya. Luasan bidang air (*water plane area*) yang besar menyebabkan stabilitas yang tinggi sehingga memiliki kapasitas beban geladak yang besar.

2.2.2 Offloading pada Sevan Stabilized Platform

Gambar 2.2 Moda offloading pada SSP (Major, 2013)

Dalam penciptaannya, terdapat tiga jenis moda *offloading* yang mampu dilakukan oleh SSP untuk melakukan transfer hidrokarborn

ke kapal-kapal dengan ukuran yang lebih kecil. Ketiga moda *offloading* tersebut meliputi

a. Side by side offloading

Moda *offloading* ini merupakan *offloading* dengan posisi SSP dengan objek kapal bersebelahan. Seperti pengoperasian *side by side offloading* pada umumnya, diperlukan *fender* untuk menahan benturan dan tali tambat kapal yang terhubung antara objek SSP dengan objek kapal.

b. Tandem offloading

Konfigurasi *offloading* secara *tandem* memosisikan objek SSP dan objek kapal berada pada satu garis dengan jarak tertentu. Dalam kriteria desain yang dibuat oleh Sevan Marine, disebutkan bahwa *offloading* jenis ini mampu beroperasi sampai pada tinggi gelombang signifikan 4.5 m. Berbeda dengan moda *side by side*, kondisi sarat air kedua objek tidak saling memberikan pengaruh satu sama lain.

c. Offset side by side offloading

Offloading jenis ini pada dasarnya serupa dengan *side by side offloading*, tetapi, ada jarak yang diberikan antara objek SSP dengan objek kapal. Sistem *fender* tidak lagi diperlukan dan kondisi sarat air kedua objek tidak saling memberikan pengaruh satu sama lain.

2.2.3 Dasar analisis sistem tambat

Menurut Portella et al (2000), tipe analisis *mooring* bergantung dari metodologi perhitungan yang melingkupi kompleksitas perhitungan serta efek fisik yang terlibat. Tipe analisis *mooring* tersebut meliputi

a. Analisis statis

Analisis *mooring* yang paling sederhana yang dapat diselesaikan menggunakan persamaan kesetimbangan antara *mean environmental loads* dan gaya pengembali dari tali tambat, dengan beban statis dari *restoring curves* dihitung dengan

formula *catenary*. Parameter yang dapat divariasi pada perhitungan beban statis meliputi jumlah tali tambat, jenis tali tambat, *pre tension* pada tali tambat, dan ukuran tali tambat.

Normalnya, analisis statis digunakan untuk menghitung tegangan pada tali tambat pada kapal di pelabuhan atau *jetty*, dengan kondisi aksi dari gelombang tidak kritis.

b. Analisis quasi statis

Pada analisis quasi-statis, nilai posisi rata-rata dari *floater* dihitung berdasarkan kesetimbangan statis dibawah aksi dari rata-rata beban eksternal. Posisi rata-rata dari *floater* yakni gerakan frekuensi gelombang ditentukan berdasarkan analisis spektral yang dilakukan dengan *transfer function* dari pergerakan horizontal dari *floater* dan spektrum gelombang. Respon dari pergerakan horizontal serta tegangan pada tali tambat selanjutnya ditentukan berdasarkan *offset* akhir dari *floater*. Pada tipe analisis ini, gerakan vertikal dari *fairlead* serta efek dinamis yang diasosiasikan dengan massa, *damping*, dan percepatan fluida diabaikan.

c. Analisis dinamis

Analisis dinamis memiliki efek variasi waktu terhadap massa, *damping*, dan percepatan fluida. Gerakan dihitung berdasarkan enam derajat kebebasan. Analisis dinamis dipengaruhi oleh efek non linear serta interaksi antar struktur terapung yang selanjutnya disertakan dalam perhitungan.

2.2.4 Dasar analisis dinamis

Berdasarkan DNV OS E301 (2004), metode analisis simulasi domain pada bangunan lepas pantai dibagi menjadi dua, yaitu

a. Frequency Domain Analysis

Frequency domain analysis adalah simulasi kejadian pada saat tertentu dengan interval frekuensi yang telah ditentukan sebelumnya. Metode ini bisa digunakan untuk memperkirakan respon gelombang acak, seperti gerakan dan percepatan *platform*, gaya, dan sudut. Keuntungan metode ini adalah tidak membutuhkan banyak waktu untuk perhitungan, *input* dan *output* juga lebih sering digunakan oleh perancang. Kekurangannya adalah untuk setiap persamaan non-linear harus diubah menjadi linear. Pada *frequency domain analysis*, keseimbangan dinamik dari sistem *linear* dapat diformulasikan dengan persamaan berikut

$$M_{(\omega)}r + C_{(\omega)}r + K_{(\omega)}r = Xe^{i\omega t}$$
(2.1)
densen

dengan

r

 $M(\omega)$ = matriks massa fungsi frekuensi (ton)

 $C(\omega)$ = matriks *damping* fungsi frekuensi (ton/s)

$$K(\omega)$$
 = matriks kekakuan fungsi frekuensi (kN/m)

= vektor *displacement* (m)

b. Time Domain Analysis

Time domain analysis adalah penyelesaian gerakan dinamis berdasarkan fungsi waktu. Pendekatan yang dilakukan dalam metode ini akan menggunakan prosedur integrasi waktu dan menghasilkan *time history response* berdasarkan fungsi waktu x(t).

Metode analisis *time domain* umumnya dapat digunakan untuk menganalisis semua situasi tali tambat di bawah pengaruh dinamika frekuensi gelombang. Keuntungan metode ini dibandingkan metode *frequency domain* adalah semua tipe nonlinear (matriks sistem dan beban-beban eksternal) dapat dimodelkan dengan lebih tepat. Sedangkan kerugiaannya adalah membutuhkan waktu perhitungan yang lebih. Menurut DNV OS E301, minimal simulasi *time domain* adalah selama 3 jam (10800 detik). Berikut ini persamaan dalam penyelesaian analisis respon gerak berdasarkan fungsi waktu.

$$[m + A(\omega)]\ddot{x} + C(\omega)\dot{x} + D_1\dot{x} + D_2f(\dot{x}) + Kx$$

$$= q_{WI} + q_{WA}^1 + q_{WA}^2 + q_{CU} + q_{EXT}$$
(2.2)
dengan

$$q_{WI} = \text{gaya drag angin}$$

$$q_{WA}^1 = \text{gaya gelombang orde 1}$$

$$q_{WA}^2 = \text{gaya gelombang orde 2}$$

$$q_{CU} = \text{gaya arus}$$

$$q_{EXT} = \text{gaya eksitasi}$$

2.2.5 Beban angin

Beban angin merupakan beban dinamis, tapi beberapa struktur akan meresponnya pada model statis yang paling mendekati. Dalam perancangan bangunan lepas pantai pada umumnya perhitungan beban angin disyaratkan untuk didasarkan pada besarnya kecepatan ekstrem dengan periode ulang 50 atau 100 tahun. Semakin lama periode ulang yang digunakan maka risiko kegagalan semakin besar. Berdasarkan OCIMF *Mooring Equipment Guidelines* (1997), perhitungan beban angin didefinisikan sebagai berikut

$$F_{xw} = C_{xW} \left(\frac{\rho_w}{7600}\right) V_w^2 A_T$$
(2.3)

$$F_{yw} = C_{yW} \left(\frac{\rho_w}{7600}\right) V_w^2 A_L$$
 (2.4)

dengan,

 F_{xw} = gaya angin longitudinal (kN)

 F_{yw} = gaya angin lateral (kN)

- C_{xw} = koefisien gaya angin longitudinal non dimensional
- C_{yw} = koefisien gaya angin transversal non dimensional

$$\rho_{\rm w}$$
 = massa jenis udara (1.223 kg/m³)

 V_w^2 = kecepatan angin pada ketinggian 10 m (m/s)

$$A_T$$
 = luas penampang transversal di atas air (m²)

 A_L = luas penampang longitudinal di atas air (m²)

2.2.6 Beban arus

Arus akibat pasang surut memiliki kecepatan yang berkurang seiring dengan bertambahnya kedalaman sesuai fungsi non-linear. Sedangkan arus yang disebabkan karena angin memiliki karakter yang sama tetapi dalam fungsi linear. Arus permukaan di sekitar kapal dibangkitkan dari angin lokal, pasang surut, *stokes drift*, massa jenis arus lokal, dan fenomena *set-up* (Faltinsen, 1990). Berdasarkan OCIMF *Mooring Equipment Guidelines* (1997), perhitungan beban arus didefinisikan sebagai berikut

$$F_{xc} = C_{xc} \left(\frac{\rho_c}{7600}\right) V_c^2 T L_{PP}$$
(2.5)

$$F_{yc} = C_{yc} \left(\frac{\rho_c}{7600}\right) V_c^2 T L_{PP}$$
(2.6)

dengan

 F_{xc} = gaya arus longitudinal (kN)

 $F_{yc} = gaya arus lateral (kN)$

C_{xc} = koefisien gaya arus longitudinal non dimensional

C_{yc} = koefisien gaya arus transversal non dimensional

 ρ_c = massa jenis air laut (kg/m³)

 V_c^2 = kecepatan arus pada kedalaman 10 m (m/s)

T = sarat air kapal (m)

 L_{PP} = length between perpendicular (m)

2.2.7 Teori gerak bangunan apung

Bangunan apung secara garis besar dibagi menjadi dua kategori, meliputi bangunan apung berbadan silindris dan bangunan apung berbadan kapal (Soetomo, 2010). Bangunan apung berbadan silindris dibagi lagi menjadi dua bagian yaitu *single bodied* dan *space framed bodied*. Bangunan apung ramping memiliki kriteria perbandingan antara diameter struktur dengan panjang gelombang datang kurang dari sama dengan 0.2, sedangkan bangunan apung gemuk memiliki kriteria perbandingan antara diameter struktur dengan panjang gelombang datang lebih dari 0.2. Struktur bangunan apung memiliki enam moda gerakan bebas yang terbagi menjadi dua kelompok yakni moda gerak translasional dan moda gerak rotasional (Bhattacaryya, 1972).

- a. Moda gerak translasional
 - i. Surge, arah gerak sumbu x
 - ii. Sway, arah gerak sumbu y
 - iii. Heave, arah gerak sumbu z
- b. Moda gerak rotasional
 - i. *Roll*, arah gerak sumbu x
 - ii. Pitch, arah gerak sumbu y
 - iii. Yaw, arah gerak sumbu z

Gambar 2.3 Gerak bangunan apung (Soetomo, 2010)

2.2.8 Respon struktur pada gelombang reguler

2.2.8.1 *Response Amplitude Operator* (RAO)

Response Amplitude Operator (RAO) merupakan fungsi respon gerakan dinamis struktur yang disebabkan oleh gelombang dengan rentang frekuensi tertentu. RAO merupakan alat untuk mentransfer gaya gelombang menjadi respon gerakan dinamis struktur. Menurut Chakrabarti (1987) RAO dapat didefinisikan sebagai

$$RAO(\omega) = \frac{X_p(\omega)}{\eta(\omega)}$$
(2.7)

dengan

 $X_p(\omega)$ = amplitudo struktur $\eta(\omega)$ = amplitudo gelombang Response Amplitude Operator (RAO) atau disebut juga dengan transfer function merupakan fungsi respon yang terjadi akibat gelombang dalam rentang frekuensi yang mengenai sruktur. RAO merupakan alat untuk mentransfer gaya gelombang menjadi respon gerakan dinamis struktur (Prasiwi, 2014).

Respon gerakan RAO untuk gerakan translasi (*surge, sway, heave*) merupakan perbandingan langsung antara amplitudo gerakan dibanding dengan amplitudo gelombang insiden (keduanya dalam satuan panjang) (Djatmiko, 2012). Persamaan RAO untuk gerakan translasi sama dengan persamaan (2.7).

Sedangkan untuk respon gerakan RAO untuk gerakan rotasi (*roll, pitch, yaw*) merupakan perbandingan antara amplitudo gerakan rotasi (dalam radian) dengan kemiringan gelombang, yakni yang merupakan perkalian antara gelombang ($k_w = \omega^2/g$) dengan amplitudo gelombang insiden (Djtamiko, 2012)

Gambar 2.4 Bentuk umum grafik respons gerakan bangunan apung (Djatmiko, 2012)

Berdasarkan gambar 2.4, kurva respon gerakan bangunan apung pada dasarnya dapat dibagi menjadi tiga bagian meliputi

- a. Pertama adalah bagian frekuensi rendah, atau gelombang (dengan periode) panjang, yang disebut daerah sub-kritis. Pada daerah ini bangunan laut akan bergerak mengikuti pola atau kontur elevasi gelombang yang panjang sehingga amplitudo gerakan kurang lebih akan ekuivalen dengan amplitudo gelombang, atau disebut sebagai *contouring*. Dalam korelasi persamaan hidrodinamis, di daerah frekuensi rendah, atau $\omega^2 < k/(m+a)$, gerakan akan didominasi oleh faktor kekakuan.
- b. Kedua adalah daerah kritis, meliputi pertengahan lengan kurva di sisi frekuensi rendah sampai dengan puncak kurva dan diteruskan ke pertengahan lengan kurva di sisi frekuensi tinggi. Puncak kurva berada pada frekuensi alami, yang merupakan daerah resonansi, sehingga respons gerakan mengalami magnifikasi, atau amplitudo gerakan akan beberapa kali lebih besar daripada amplitudo gelombang. Secara hidrodinamis di daerah frekuensi alami, yakni $k/(m+a) < \omega^2 < k/a$, gerakan akan didominasi oleh faktor redaman.
- c. Ketiga adalah daerah super kritis, yaitu daerah frekuensi tinggi, atau gelombang-gelombag (dengan periode) pendek. Pada daerah ini respons gerakan akan mengecil. Semakin tinggi frekuensi, atau semakin rapat antara puncak-puncak gelombang yang berurutan, maka akan memberikan efek seperti bangunan laut bergerak di atas air yang relatif datar. Oleh karena itu gerakan bangunan laut diistilahkan sebagai *platforming*. Dalam hal korelasi hidrodinamis, gerakan di daerah frekuensi

tinggi ini, dimana $\omega^2 < k/a$, gerakan akan didominasi oleh faktor massa (Djatmiko, 2012).

2.2.8.2 Single body

Pada bangunan apung *single body*, gerakan enam derajat kebebasan disusun dalam matriks 6N, N untuk menunjukkan jumlah badan yang ditinjau. Permasalahan hidrodinamis pada struktur bangunan apung kondisi ini meliputi

a. Gaya dan momen struktur yang berosilasi pada kondisi *still water*

Struktur bangunan apung yang berosilasi terhadap dirinya sendiri akan memberi pengaruh pada osilasi fluida di sekelilingnya dan integrasi fluida yang terpengaruh akan menghasilkan gaya dan momen yang bekerja pada struktur. Total gaya pada struktur didapatkan dari hasil integrasi tekanan yang mengenai luasan permukaan stuktur yang dikenainya. Berdasarkan persamaan gerak koefisien, massa tambah dan redaman pada gerakan harmonik dapat ditentukan. dan momen Gaya pengembali dapat dihitung berdasarkan perhitungan hidrostatis dan massa.

b. Gaya dan momen struktur yang berosilasi akibat gelombang

Gelombang dan momen struktur yang bekerja dikenal dengan gaya dan momen Froude-Krylov dan defraksi. Gaya Froude-Krylov dihasilkan dari area yang dikenai tekanan yang tidak terganggu pola alirannya. Sedangkan gaya defraksi diperoleh dari perubahan area yang dikenai tekanan yang terganggu pola alirannya akibat defraksi.

2.2.8.3 Multi Body

Pada bangunan apung multi body, jumlah matriks massa derajat kebebasan, matriks gerak bangunan apung, dan matriks gaya menjadi 6N Х 6N. Hal tersebut mengindikasikan persamaan gerak kedua bangunan apung merupakan superposisi dari persamaan gerak untuk masingmasing bangunan. Koefisien-koefisien hidrodinamis dapat diselesaikan dengan meninjau radiasi dan defraksi dari masing-masing bangunan interaksi apung serta hidrodinamis bangunan satu akibat bangunan lain, begitu sebaliknya.

2.2.9 Respon struktur pada gelombang acak

Dalam analisis respon bangunan apung pada gelombang reguler dapat diketahui pengaruh interaksi hidrodinamik pada massa tambah, *potential damping*, dan gaya eksternal. Analisis tersebut menghasilkan respon struktur pada gelombang reguler. Sedangkan gelombang yang terjadi di lapangan merupakan gelombang acak sehingga dituntut untuk melakukan analisis respon struktur pada gelombang acak.

Gelombang acak merupakan superposisi dari komponenkomponen pembentuknya berupa gelombang sinusoidal dalam jumlah yang tak terhingga. Tiap-tiap komponen gelombang memiliki tingkat energi tertentu yang dikontribusikan dan secara keseluruhan dapat diakumulasikan dalam bentuk spektrum energi gelombang (Djatmiko, 2012).

Respon struktur pada gelombang acak dapat dilakukan dengan mentransformasikan spektrum gelombang menjadi spektrum respon. Spektrum respon didefinisikan sebagai respon kerapatan energi pada struktur akibat gelombang. Hal ini dapat dilakukan dengan mengalikan harga kuadrat dari *Response Amplitude Operator* (RAO) dengan spektrum gelombang pada daerah struktur bangunan apung tersebut beroperasi. Persamaan spektrum respon secara matematis dapat dituliskan sebagai

$$S_{R} = [RAO(\omega)]^{2}S(\omega)$$
(2.9)
dengan
$$S_{R} = spektrum respons (m^{2}s)$$
$$S(\omega) = spektrum gelombang (m^{2}s)$$

 $RAO(\omega) = transfer function$

 ω = frekuensi gelombang (rad/s)

Setelah spektrum respon diperoleh maka intensitas gerakan dapat dihitung sebagai fungsi luasan di bawah kurva spektrum respon atau merupakan variasi elevasi gerakan, yaitu sebagai berikut

$$m_{r0} = \int_0^\infty S_{\zeta}(\omega) d\omega \tag{2.10}$$

Jika persamaan (2.9) diturunkan akan didapatkan harga-harga statistik gerakan sebagai fungsi varian elevasi gerakan m_{r0} , misalnya sebagai amplitudo gerakan rata-rata yang dihitung sebagai

$$\overline{\zeta_r} = 1.25\sqrt{m_{r0}} \tag{2.11}$$

Harga amplitudo gerakan signifikan dihitung sebagai

$$\zeta_{rs} = 2.0\sqrt{m_{r0}} \tag{2.12}$$

Amplitudo respon ekstrem yang berpeluang terjadi dalam waktu T jam dapat dihitung dengan persamaan

$$\widehat{\zeta}_r = \sqrt{m_{r0}} \times \sqrt{\left\{ 2 \ln\left(\frac{60^2 T}{2\pi} \sqrt{\frac{m_{r2}}{m_{r0}}}\right) \right\}}$$
(2.13)

Harga m_{r2} merupakan momen kedua dari luasan di bawah kurva spektrum respon.

2.2.9.1 Spektrum Gelombang

Sebuah gelombang reguler memuat energi yang diidentifikasikan pada setiap unit atau satuan luas permukaannya ekuivalen dengan harga kuadrat amplitudonya (Djatmiko, 2012).

$$\frac{dE_T}{dA} = \frac{dE_p + dE_K}{dA} = \frac{1}{2}\rho g \zeta_0^2$$
(2.14)
dengan

dE_{T}	=	energi total
dA	=	luas permukaan
dE _P	=	energi potensial
dE_K	=	energi kinetik
${\zeta}_0$	=	amplitudo gelombang

Penjumlahan energi dari seluruh komponen gelombang reguler per satuan luas permukaan dapat diekspresikan sebagai kepadatan spektrum gelombang atau lebih dikenal dengan istilah spektrum gelombang.

Bersamaan dengan semakin meningkatnya intensitas studi yang dilakukan mengenai respon gerak pada gelombang acak telah banyak dihasilkan spektrum gelombang beragam sesuai dengan kondisi yang lingkungan yang dianalisis. Jenis-jenis spektrum gelombang yang biasa digunakan dalam perhitungan adalah model Pierson-Moskowitz (1964), ISSC (1964), Scott (1965), Bretschneider (1969), JONSWAP (1973), ITTC (1975) dan Wang (1991).

Spektrum gelombang yang digunakan dalam analisis ini mengacu pada spektrum gelombang JONSWAP karena karakteristik perairan Indonesia yang tertutup atau kepulauan sehingga cocok dengan karakter spektrum JONSWAP (Djatmiko, 2012). Spektrum JONSWAP didasarkan pada percobaan yang dilakukan di *North Sea* merupakan persamaan spektrum hasil modifikasi persamaan spektrum Pierson-Moskowitz dengan persamaan berikut

$$S_{j}(\omega) = A_{\gamma} S_{pm}(\omega) \gamma^{\exp\left(\frac{\omega}{\sigma}-0.5\left(\frac{\omega-\omega_{p}}{\sigma\omega_{p}}\right)^{2}\right)}$$
(2.15)

$$S_{pm}(\omega) = \frac{5}{16} H_s^2 \omega_p^4 \, \omega^{-5} \exp[\frac{\omega}{4} - \frac{5}{4} \left(\frac{\omega}{\omega_p}\right)^{-4} \right)$$
(2.16)

dengan

γ	=	parameter puncak
σ	=	parameter bentuk (shape parameter)
		untuk $\omega \leq \omega_0 = 0.07 \operatorname{dan} \omega \geq \omega_0 = 0.09$
A_{γ}	=	normalizing factor
	=	$1 - 0.287 \ln(\gamma)$
ω	=	periode gelombang (rad/s)
ω_p	=	angular spectral peak frequency (rad/s)
H _s	=	tinggi gelombang signifikan (m)
Тр	=	periode puncak (s)

2.2.10 Sistem tambat

Desain dari sistem tambat memerlukan simulasi yang panjang serta *trial* dan *error* akibat dari banyaknya parameter desain. *Trial* dan *error* sangat dibutuhkan mengingat efek non linear dari dinamika sistem tambat.

Sistem tambat berfungsi untuk menahan gerakan struktur terhadap eksitasi gaya lingkungan. Menurut Chakrabarti (1994), dalam mendesain sistem tambat diperlukan suatu sistem cukup kuat untuk menghindari beban signifikan pada suatu *floater* dan membuatnya cukup kaku apabila terjadi *offset* berlebihan.

Gambar 2.5 Gaya lingkungan yang bekerja pada struktur terapung kondisi *heading head seas* dan gerakan transversal dari *mooring lines* (Chakrabarti, 1994)

Menurut API-RP 2SK (2005), tipe *mooring line* yang digunakan pada struktur terapung dibagi menjadi 3 (tiga) kategori, yakni

a. Semua mooring line dari tali kabel (wire rope)

Wire rope lebih ringan daripada rantai. Karena itu, pada umumnya *wire rope* memiliki *restoring force* yang lebih di perairan laut dalam dan memerlukan tegangan awal (*pretension*) yang rendah daripada rantai. Bagaimanapun juga, untuk menghindari terangkatnya *anchor* dari dasar laut maka diperlukan *wire rope* yang sangat panjang. Rusak yang disebabkan oleh abrasi antara *wire rope* dengan dasar laut yang keras terkadang dapat menjadi suatu masalah. Terlebih lagi *wire rope* memerlukan perawatan yang sangat hati-hati. Korosi yang diakibatkan oleh kurangnya pelumasan atau kerusakan mekanik pada *wire rope* dapat menyebabkan lebih banyak kegagalan.

b. Semua mooring line dari chain.

Rantai telah menunjukkan keunggulannya pada *offshore operations*. Rantai juga memiliki daya tahan yang lebih terhadap abrasi dasar laut dan memiliki kontribusi terhadap daya cengkeram *anchor* yang sangat signifikan. Namun, karena rantai memiliki berat yang besar maka rantai tidak terlalu banyak digunakan pada kondisi operasi perairan laut dalam.

c. Kombinasi antara chain dan wire rope.

Dengan pemilihan panjang yang tepat dari gabungan antara wire rope dan chain, maka akan diperoleh sistem mooring yang menguntungkan dengan kondisi pre tension yang rendah, restoring force yang tinggi, holding anchor yang lebih besar, dan daya tahan terhadap abrasi dasar laut yang bagus. Untuk itulah, sistem ini adalah sistem yang paling cocok untuk operasi laut dalam.

2.2.11 Penentuan panjang mooring line

Penentuan panjang *mooring line* berfungsi untuk menjaga benda apung agar berada pada posisi yang tepat dan juga agar *mooring line* itu sendiri memiliki panjang dan *pre tension* yang sesuai.

Gambar 2.6 Panjang minimum mooring line (Faltinsen, 1990)

$$\frac{l}{h} = \sqrt{\frac{2F_H}{wh} + 1} = \sqrt{\frac{2T}{wh} + 1}$$
(2.17)

dengan

1 = panjang minimum tali tambat (m)

h = jarak vertikal dari *fairlead* ke *seabed* (m)

 $h_m =$ kedalaman air (m)

h_c = tinggi *fairlead* di atas permukaan air (m)

w = berat tali tambat di dalam air per satuan panjang

 $F_{\rm H}$ = horizontal pre tension

= 10% MBL

$$\Gamma = tension \text{ maksimum dari tali tambat } (pre tension) (kN)$$

D = *length resting on the seabed* (panjang tali tambat yang menempel pada *seabed*) (m)

2.2.12 Tension pada mooring line

Gerakan pada bangunan apung karena pengaruh beban lingkungan menyebabkan adanya tarikan pada *mooring line*. Tarikan (*tension*) yang terjadi pada *mooring line* dapat dibedakan menjadi dua, yaitu

a. Mean Tension

Tension pada *mooring line* yang berkaitan dengan *mean* offset pada vessel.

b. Maximum Tension

Mean tension yang mendapat pengaruh dari kombinasi frekuensi gelombang dan *low-frequency tension*.

Menurut Faltinsen (1990), perhitungan *tension* maksimum tali tambat dapat menggunakan persamaan berikut

$$T_{max} = T_H + wh \tag{2.18}$$

dengan

 $T_{max} = tension$ maksimum tali tambat (ton)

 $T_{\rm H}$ = *horizontal pre tension* (ton)

w = berat *chain* di air (ton/m)

h = kedalaman perairan (m)

Untuk mengetahui apakah desain sistem tambat pada suatu struktur telah memenuhi batas aman atau tidak, maka harus dilakukan pengecekan terlebih dahulu. Pengecekan tersebut salah satunya didasarkan pada nilai *tension* yang dihasilkan oleh masing-masing tali tambat. Nilai *tension* pada tali tambat harus sesuai dengan kriteria/batasan yang memenuhi *safety factor*. Kriteria *safety factor* tersebut berdasar pada suatu *rule*. Dan yang digunakan pada Tugas Akhir ini adalah mengacu pada *rule* API RP 2SK (2005), yakni sebagai berikut

Tabel 2.1 Kriteria safety factor tali tambat berdasarkan API

RP 2 SK

Kondisi	Safety Factor
Intact	> 1.67
Damage	> 1.25

Dengan persamaan *safety factor* menurut API RP 2SK adalah

$$Safety \ factor = \frac{Minimum \ breaking \ load}{Maximum \ tension}$$
(2.19)

2.2.13 Tali tambat antar kapal

Tali tambat antar kapal pada konfigurasi *side by side* umumnya menggunakan *fibre mooring lines*. Berdasarkan OCIMF *Mooring Equipment Guidelines* (1997), *fibre mooring lines* terbuat dari bahan sintetis dan material yang umum digunakan adalah *polyester*, *nylon*, *polypropylene* dan *polyethylene*. *Safety factor* tegangan tali tambat kapal bernilai 2.2 untuk material *nylon* dan 2 untuk material sintetis lainnya.

2.2.14 Persamaan gerak sistem

Respon gerak yang terjadi pada bangunan apung yang tertambat dalam sistem dapat dianggap sebagai gerak orde satu (*high frequency*) dan gerak order dua (*low frequency*).

Menurut Liu dan Miao (1987), *wave frequency motions* pada struktur terapung dapat dirumuskan dalam persamaan berikut

$$(M_{ij} + \mu_{ij}) \dot{x}_{j}^{(l)} + \int_{0}^{\infty} K_{ij}(\tau) \dot{x}_{j}^{(l)}(\tau - \tau) d\tau + C_{ij} x_{j}^{(l)}$$

= $F_{i}^{moor} + F_{i}^{wave(l)}$
 $i = 1, 2...6, j = 1, 2...6$ (2.20)

dengan

$$x_i^{(l)}$$
 = wave frequency motion
 $F^{wave(l)}$ = first order wave force
 F^{moor} = mooring force
 M = matriks inersia struktur apung

Sedangkan, persamaan low frequency motions yang terjadi

(Wichers, 1988) adalah sebagai berikut.

$$(m+\mu_{11}) \ddot{x}_{1}^{(2)} + \mu_{12} \ddot{x}_{2}^{(2)} + \mu_{16} \ddot{x}_{6}^{(2)} + (\mathbf{B}_{11} + \mathbf{B}_{wdd}) \dot{x}_{1}^{(2)}$$

= $F_{1}^{wind} + F_{1}^{current} + F_{1}^{wave(2)} + F_{1}^{moor}$ (2.21)

$$\mu_{21} \ddot{x}_{1}^{(2)} + (m + \mu_{22}) \ddot{x}_{2}^{(2)} + \mu_{26} \ddot{x}_{6}^{(2)} + B_{22} \dot{x}_{2}^{(2)}$$

= $F_{2}^{\text{wind}} + F_{2}^{\text{current}} + F_{2}^{\text{wave}(2)} + F_{2}^{\text{moor}}$ (2.22)

$$=F_6^{\text{wind}} + F_6^{\text{current}} + F_6^{\text{wave}(2)} + F_6^{\text{moor}}$$
(2.23)

dengan

 $x^{(2)}$ = low frequency motion

B_{11}, B_{22}, B_{33}	=	koefisien damping
B _{wdd}	=	koefisien wave drift damping arah sumbu-x
F _i ^{current}	=	gaya arus
F_i^{wind}	=	gaya angin
F_i^{moor}	=	gaya mooring
F _i ^{wave(2)}	=	second order wave drift force

2.2.15 Operabilitas

Operabilitas merupakan gambaran kemampuan struktur untuk bekerja yakni dengan membandingkan peluang struktur untuk bekerja dan data sebaran gelombang di tempat struktur beroperasi. Operabilitas dicapai jika batasan kriteria tidak terlampaui. Apabila kriteria operabilitas terlampaui, maka bangunan laut harus menghentikan operasinya, atau yang disebut dengan *down time*

Menurut Djatmiko (2012), langkah paling awal dalam melakukan evaluasi operabilitas adalah menetapkan skenario pengoperasian bangunan laut. Skenario harus memuat semua faktor yang akan terkait, baik secara langsung maupun tidak langsung. Berikut merupakan kriteria operabilitas yang digunakan pada saat offloading dan connecting.

Sedangkan persamaan operabilitas (Djatmiko, 2012) adalah sebagai berikut

$$operabilitas = \left(\frac{Na}{Na+Nd}\right) x 100\%$$
(2.19)

dengan

Na : Jumlah kejadian di bawah syarat batas

Nd : Jumlah kejadian melebihi syarat batas

BAB III METODOLOGI PENELITIAN

3.1 LANGKAH KERJA

Langkah kerja penelitian yang digunakan pada penelitian ini dapat dilihat pada diagram alir (*flow chart*) berikut

Gambar 3.1 Diagram alir langkah kerja penelitian

Gambar 3.1 Diagram alir langkah kerja penelitian (lanjutan)

Diagram alir langkah kerja tersebut dapat dijelaskan sebagai berikut

1. Studi literatur dan pengumpulan data

Studi literatur dilakukan dengan mempelajari berbagai bahan acuan seperti jurnal, buku, dan refensi lain seperti artikel di internet. Studi literatur bertujuan untuk membantu memahami dan menguraikan permasalahan dalam penelitian ini. Pengumpulan data dilakukan dengan mengumpulkan penelitian-penelitian terkait yang sudah dilakukan di waktu sebelumnya.

- Pemodelan SSP dan dan Shuttle Tanker
 Pemodelan struktur dilakukan berdasarkan data-data yang telah dikumpulkan. Pemodelan dilakukan pada software Hydrostar.
- 3. Validasi

Validasi dilakukan untuk memastikan apakah model yang dibuat sudah valid dengan data yang tersedia. Nilai toleransi validasi mengacu kepada ABS *Rules for Building and Classing* MODU (2012).

4. RAO SSP dan RAO Shuttle Tanker

Model yang telah valid kemudian di *run* untuk mendapatkan karakteristik geraknya atau disebut pula dengan RAO. RAO ini pula yang akan dijadikan masukan dalam langkah analisis selanjutnya.

5. Pemodelan SSP tertambat

Pemodelan ini menggambarkan SSP dalam kondisi tertambat. Masukan pemodelan adalah hasil dari analisis hidrodinamik objek pada kondisi terapung bebas.

6. Perhitungan *tension* dan respon gerak struktur SSP pada kondisi tertambat

Analisis pada tahap ini dilakukanuntuk mendapatkan besar *tension* tali tambat dan juga respon gerak SSP. Analisis dilakukan dengan arah pembebanan 0°, 45°, dan 90°.

- 7. Pemodelan side by side offloading antara SSP dan Shuttle Tanker Pemodelan ini menggambarkan SSP dalam kondisi side by side offloading dengan Shuttle Tanker. Masukan pemodelan adalah hasil dari analisis hidrodinamik objek pada kondisi terapung bebas.
- 8. Perhitungan *tension* dan respon gerak struktur SSP pada saat proses *side by side offloading* dengan *Shuttle Tanker*

Analisis pada tahap ini dilakukan untuk mendapatkan *tension* tali tambat dan juga respon SSP pada saat kondisi *side by side offloading* dengan *Shuttle Tanker*. Analisis dilakukan dengan arah pembebanan 0° , 45° , dan 90° .

- Analisis nilai operabilitas SSP berdasarkan Perhitungan nilai operabilitas juga meninjau aspek lingkungan dengan melihat data sebaran gelombang.
- 10. Simpulan dan saran.

3.2 PENGUMPULAN DATA

3.2.1 Data Sevan S400

Berikut data struktur FPSO berlambung silinder Sevan yang akan digunakan sebagai objek dalam penelitian ini.

Parameter	Satuan	Dimensi
Diameter main hull cylinder	m	70
Diameter main deck	m	78
Diameter process deck	m	84
Area process deck	m ²	5675
Diameter pontoon	m	87.5
Tinggi pontoon	m	2.5 / 5.0
Elevasi main deck	m	32
Elevasi process deck	m	38
Elevasi start flare	m	24
Radius girasi roll	m	22.3
Radius girasi pitch	m	22.3
Radius girasi yaw	m	32
Sarat	m	20.72
Displacement	ton	87900
Free board ke main deck	m	11.3
Free board ke process deck	m	16.3
VCG	m	18.23
GM	m	5.14

Tabel 3.1 Principal Dimension Sevan S400

(sumber : Sevan Marine, 2011)

Gambar 3.2 Model Sevan S400 dalam tiga dimensi (Sevan Marine, 2011)

Gambar 3.3 Principal Dimension Sevan S400 (Sevan Marine, 2011)

3.2.2 Data Shuttle Tanker 35000 DWT

Berikut data struktur *Shuttle Tanker* yang akan digunakan sebagai objek dalam penelitian ini.

Gambar 3.4 General Arrangement Shuttle Tanker (Tanker Shipping, 2014)

Tabel 3.2 Principal dimension Shuttle Tanker

Parameter	Satuan	Dimensi
LOA	m	181
LPP	m	171
В	m	28
D	m	15.4
Т	m	11.7

3.2.3 Data mooring line properties pada Sevan S400

Berikut data *mooring line* pada Sevan S400 yang akan digunakan dalam penelitian ini.

	Diamatan	Minimum	Modulus	Berat di
Segmen	(mm)	Breaking	Elastisitas	Udara
C		Load (kN)	(kN/m^2)	(kN/m)
Lower Chain	178	21027	6.218	$0.46 \ge 10^8$
Polyester Rope	290	14336	500	$1 \ge 10^8$
Upper chain	178	21027	6.218	$0.46 \ge 10^8$

Tabel 3.3 Mooring line properties Sevan S400

(sumber : Sevan Marine, 2011)

3.2.4 Data tali tambat kapal

Berikut data tali tambat kapal yang akan digunakan dalam penelitian ini.

Tabel 3.4 Properties tali tambat kapal

Material	Diameter (mm)	Minimum Breaking Load (kN)	Axial Stiffness (kN/m)	Berat di Udara (kN/m)
Polyester rope	95	1538.462	0.544 x 10 ⁵	0.06
1 D 4	. 0010			

(sumber : Perwitasari, 2010)

3.2.5 Data lingkungan

Berikut ini data lingkungan dari lokasi yang akan dipakai sebagai lokasi analisis dalam penelitian ini. Penelitian ini dilakukan dengan memakai data dari Blok Masela (09° 07' 51" S / 130° 28' 00" E). Data lingkungan meliputi data gelombang, data angin, dan data arus.

Tabel 3.5 Data sebaran gelombang Blok Masela

		Hs (m)					Total
		0.1 - 1	1.1 - 2	2.1 - 3	3.1 - 4	4.1 - 5	Total
	0.1 - 2	0	0	0	0	0	0
	2.1 - 4	0.58	0	0	0	0	0.58
	4.1 - 6	9.51	4.43	0	0	0	13.94
	6.1 - 8	5.12	6.9	4.74	0.03	0	16.79
Тр	8.1 - 10	8.2	3.5	5.6	0.78	0.04	18.12
(s)	10.1 - 12	10.8	20.8	0.15	0.01	0.01	31.77
	12.1 - 14	9.3	2.68	0.02	0	0	12
	14.1 - 16	2.93	2.46	0.04	0	0	5.43
	16.1 - 18	0.42	0.77	0.03	0	0	1.22
	18.1 - 20	0.05	0.096	0	0	0	0.146
	Total	46.91	41.636	10.58	0.82	0.05	100.0
K	umulatif	46.9	88.5	99.1	99.9	100.0	
K	18.1 - 20 Total Cumulatif	0.05 46.91 46.9	0.096 41.636 88.5	0 10.58 99.1	0 0.82 99.9	0 0.05 100.0	0.14 100.

(sumber : FUGRO, 2012)

Tabel 3.6 Data angin dan arus Blok Masela

Parameter	Kecepatan (m/s)				
Angin	16.91				
Arus	0.5				

(sumber : Mahdarreza, 2010)

3.3 SKENARIO PENELITIAN

Skenario analisis yang dilakukan dalam penelitian ini terdiri dari dua kondisi utama meliputi kondisi *stand alone* SSP dan kondisi *side by side offloading* SSP dengan *Shuttle Tanker*. Analisis dilakukan dari tiga *heading* yang berbeda meliputi 0 °, 45 °, dan 90°. Lebih lanjut, analisis dilanjutkan dengan menambahkan variasi tinggi gelombang signifikan sesuai dengan data sebaran gelombang yang ada dengan tujuan untuk mencari nilai operabilitas FPSO berlambung silinder Sevan di lokasi Blok Masela.

BAB IV ANALISIS DAN PEMBAHASAN

4.1 PEMODELAN STRUKTUR DAN VALIDASI

Langkah awal penelitian ini adalah melakukan pemodelan terhadap objek yakni objek SSP dan *Shuttle Tanker*. Pemodelan dilakukan dengan menggunakan *software* Hydrostar dibantu dengan *software* Maxsurf dalam menentukan koordinat atau *marker* dari objek yang akan diamati serta sebagai acuan validasi dimensi dan aspek-aspek hidrostatis.

4.1.1 Pemodelan dan Validasi Struktur SSP

Berikut ini adalah hasil pemodelan SSP pada software Hydrostar.

Gambar 4.1 Model SSP tampak samping sekaligus tampak depan

Validasi pemodelan SSP dilakukan terhadap data asli berdasarkan ABS *Rules for Building and Classing* MODU 2012. Validasi dilakukan untuk memastikan bahwa model yang sudah dibuat sesuai dengan kondisi nyata di lapangan. Hasil validasi pemodelan SSP dapat dilihat pada Tabel 4.1.

Aspek yang ditinjau dalam validasi meliputi beberapa aspek hidrostatis struktur yakni *displacement*, *displacement volume*, luas bidang garias air (WPA), jarak antara titik *keel* ke titik *metacenter* baik secara transversal (KMT) maupun longitudinal (KML), jari-jari *metacenter* transversal (BMT) dan longitudinal (BML), tinggi *metacenter* transversal (GMT) dan longitudinal (GML), serta titik apung objek yang dalam hal ini hanya ditinjau pada sumbu Z (VCB) saja dikarenakan nilai titik apung pada sumbu X (LCB) dan sumbu Y (TCB) bernilai 0.

Asmala	Batas Kriteria		Persentase			
Aspek	Selisih	Data	Data		Hydrostar	
Displacement	2.00%	87900.00	ton	88259.31	ton	0.41%
Displacement volume	1.00%	85756.09	m ³	86106.643 9	m ³	0.41%
WPA	1.00%	3840	m ²	3843.563	m ²	0.09%
KMT	1.00%	23.34	m	23.34	m	0.00%
KML	1.00%	23.34	m	23.34	m	0.00%
BMT	1.00%	13.61	m	13.65	m	0.29%
BML	1.00%	13.61	m	13.65	m	0.29%
VCB	1.00%	9.73	m	9.69	m	0.41%
GMT	1.00%	5.14	m	5.11	m	0.58%
GML	1.00%	5.14	m	5.11	m	0.58%

Tabel 4.1 Validasi pemodelan SSP

Hasil validasi menunjukkan bahwa model SSP yang dibuat telah valid. Hal ini dibuktikan dengan persentase selisih antara nilai dari hasil pemodelan dan nilai dari data asli tidak melampaui nilai batas kriteria selisih.

4.1.2 Pemodelan dan Validasi Struktur Shuttle Tanker

Pemilihan *Shuttle Tanker* yang sesuai dalam penelitian ini diperlukan mengingat bentuk geometris SSP yang cenderung sulit. Penyesuaian bentuk *Shuttle Tanker* berpengaruh kepada kemampuan proses *offloading* dalam moda *side by side* dilakukan. Penyesuaian ukuran *Shuttle Tanker* juga diperlukan dengan mempertimbangkan perubahan-perubahan sarat air pada kedua objek ketika *side by side offloading* terjadi.

Dari hasil perhitungan dan pengilustrasian operasi *side by side* offloading, didapatkan ketentuan bahwa ukuran maksimum Shuttle Tanker yang dapat melakukan operasi *side by side offloading* secara optimal adalah Shuttle Tanker berkapasitas 35000 DWT.

Pada Tabel 4.2, ditunjukkan bahwa pemindahan 90% muatan pada *Shuttle Tanker* sama dengan 25% muatan pada SSP. Perubahan

sarat air yang terjadi pada kedua objek masih berada pada batas aman posisi *side by side offloading*. Artinya, pada kondisi *still water*, baik lambung *Shuttle Tanker* maupun lambung SSP tidak saling bersentuhan bahkan bertubrukan.

	FPSO S	evan	Shuttle Tanker		
Kondisi	Persentase muatan (%)	Sarat air (m)	Persentase muatan (%)	Sarat air (m)	Ilustrasi
1	100	20.72	10	6.8	Kondisi 1
2	83	17.13	60	8.4	Kondisi 2
3	75	15.19	100	10.7	Kondisi 3

Tabel 4.2 Kondisi *side by side offloading* dengan ukuran *Shuttle Tanker* maksimum 35000 DWT

Sama halnya dengan pemodelan SSP, pemodelan *Shuttle Tanker* dilakukan pada *software* Hydrostar. Namun, dalam melakukan pemodelan *Shuttle Tanker*, diperlukan bantuan *software* Maxsurf untuk mempermudah menentukan koordinat-koordinat *Shuttle Tanker*. Berikut ini hasil pemodelan *Shuttle Tanker*.

Gambar 4.2 Model Shuttle Tanker tampak longitudinal

Gambar 4.3 Model Shuttle Tanker tampak haluan

Gambar 4.4 Model Shuttle Tanker tampak buritan

Validasi *Shuttle Tanker* dilakukan terhadap data hidrostatik hasil pemodelan *software* Maxsurf berdasarkan ABS *Rules for Building and Classing* MODU 2012. Hasil validasi *Shuttle Tanker* dapat dilihat pada Tabel 4.3

	Batas		Ni			
Aspek	Kriteria Selisih	Maxsu	rf	Hydrostar		Persentase Selisih
Displacement	2.00%	43349	ton	42949.7	ton	0.92%
Displacement volume	1.00%	224.183	m ³	225.09	m ³	0.40%
WPA	1.00%	4424.662	m ²	4414.042	m ²	0.24%
KMT	1.00%	11.738	m	11.79	m	0.44%
KML	1.00%	231.463	m	232.37	m	0.39%
BMT	1.00%	6.16	m	6.18	m	0.32%
BML	1.00%	225.885	m	226.76	m	0.39%
VCB	1.00%	81.359	m	81.29	m	0.08%
GMT	1.00%	5.578	m	5.61	m	0.57%
GML	1.00%	4.46	m	4.5	m	0.94%

Tabel 4.3 Validasi pemodelan Shuttle Tanker

Hasil validasi menunjukkan bahwa model *Shuttle Tanker* yang dibuat telah valid. Hal ini dibuktikan dengan persentase selisih antara nilai dari hasil pemodelan dan nilai dari data asli tidak melampaui nilai batas kriteria selisih.

4.2 KARAKTERISTIK GERAK STRUKTUR SSP PADA KONDISI TERAPUNG BEBAS

Langkah analisis setelah dilakukan pemodelan dan validasi struktur adalah mencari karakteristik struktur. Karakteristik struktur ini merupakan karakteristik yang didapatkan ketika struktur dalam posisi terapung bebas. Karakteristik ini dikenal dengan istilah *Response Amplitude Operator* (RAO) seperti sudah dijelaskan pada bab sebelumnya.

Karakteristik SSP ditinjau dalam tiga kondisi muatan mengacu kepada skenario analisis secara keseluruhan. Tiga kondisi tersebut meliputi SSP 100% muatan, SSP 83% muatan, dan SSP 75% muatan.

4.2.1 SSP kondisi 100% muatan

Rangkuman nilai maksimum RAO pada struktur SSP kondisi 100% muatan dapat dilihat pada Tabel 4.4 berikut.

Mada corak	Heading					
woud gerak	0°	45°	90°	135°	180°	
Surge (m/m)	0.842	0.595	0.000	0.595	0.842	
Sway (m/m)	0.000	0.595	0.842	0.595	0.000	
Heave (m/m)	3.851	3.851	3.851	3.851	3.851	
Roll (deg/m)	0.000	1.136	1.376	1.136	0.000	
Pitch (deg/m)	1.376	1.136	0.000	1.136	1.376	
Yaw (deg/m)	0.026	0.024	0.028	0.030	0.026	

Tabel 4.4 Nilai maksimum RAO SSP kondisi 100% muatan

Karakteristik SSP pada muatan 100% dapat dilihat pada gambar 4.5 sampai dengan 4.10.

Karakterisitik gerak SSP memiliki kesamaan antara gerak *surge* dengan moda gerak *sway* dan antara moda gerak *roll* dan moda gerak *pitch*. Nilai amplitudo tertinggi dalam moda gerak *surge* dan *sway* sebesar 0.842 m/m pada arah pembebanan 0° dan 180° untuk *surge* dan 90° pada *sway*. Pada arah pembebanan 45° dan 135° amplitudo

keduanya memiliki nilai yang sama yakni sebesar 0.595 m/m. RAO bernilai 0 m/m pada sudut 90° untuk gerak *surge* serta 0° dan 180° untuk gerak *sway*.

Gambar 4.5 RAO surge pada SSP muatan 100%

Gambar 4.6 RAO sway pada SSP muatan 100%

Bentuk dasar benda yang berupa silinder juga menyebabkan nilai RAO pada moda gerak *heave* sama untuk setiap sudut pembebanan. Amplitudo RAO terjadi dengan nilai sebesar 3.851 m/m.

Gambar 4.7 RAO heave pada SSP muatan 100%

Gambar 4.8 RAO roll pada SSP muatan 100%

Gambar 4.9 RAO pitch pada SSP muatan 100%

Pada moda gerak *roll* dan *pitch* amplitudo tertinggi yang terjadi bernilai 1.376 deg/m pada sudut 90° untuk moda gerak *roll* serta sudut 0° dan 180° untuk moda gerak *pitch*. Pada sudut 45° dan 135°, keduanya memiliki nilai amplitudo sebesar 1.136 deg/m. RAO memiliki nilai 0 deg/m pada sudut 90° untuk moda gerak *roll* serta sudut 0° dan 180° untuk moda gerak *pitch*.

Gambar 4.10 RAO yaw pada SSP muatan 100%

Nilai RAO pada moda gerak *yaw*, karakteristik gerak memiliki nilai mendekati 0 deg/m pada setiap sudut.

4.2.2 SSP kondisi 83% muatan

Rangkuman nilai maksimum RAO pada struktur SSP kondisi 83% muatan dapat dilihat pada Tabel 4.5 berikut.

Moda gerak	Heading					
Widda gelak	0°	45°	90°	135°	180°	
Surge (m/m)	0.843	0.596	0.000	0.596	0.843	
Sway (m/m)	0.000	0.596	0.843	0.596	0.000	
Heave (m/m)	3.769	3.769	3.769	3.769	3.769	
Roll (deg/m)	0.000	0.963	1.209	0.963	0.000	
Pitch (deg/m)	1.209	0.963	0.000	0.963	1.209	
Yaw (deg/m)	0.026	0.024	0.028	0.030	0.026	

Tabel 4.5 Nilai maksimum RAO SSP kondisi 83% muatan

Karakteristik SSP pada muatan 83% dapat dilihat pada gambar 4.11 sampai dengan 4.16.

Gambar 4.11 RAO surge pada SSP muatan 83%

Gambar 4.12 RAO sway pada SSP muatan 83%

Nilai amplitudo tertinggi pada moda gerak *surge* dan *sway* adalah sebesar 0.843 m/m masing-masing pada arah pembebanan 0° dan 180° untuk *surge* dan 90° pada *sway*. Nilai ini hanya berbeda sedikit dengan nilai yang terjadi pada saat kondisi SSP berada dalam kondisi 100% muatan. Sebanding dengan selisih nilai tersebut, amplitudo yang terjadi pada arah pembebanan 45° dan 135° bernilai sebesar 0.596 m/m. RAO tetap bernilai 0 m/m pada sudut 90° untuk gerak *surge* serta 0° dan 180° untuk gerak *sway*.

Gambar 4.13 RAO *heave* pada SSP muatan 83%

Amplitudo RAO gerak *heave* terjadi sama rata pada setiap arah pembebanan yakni sebesar 3.77 m/m.

Pada moda gerak *roll* dan *pitch* amplitudo tertinggi yang terjadi bernilai 1.209 deg/m pada sudut 90° untuk moda gerak *roll* serta sudut 0° dan 180° untuk moda gerak *pitch*. Pada sudut 45° dan 135°, keduanya memiliki nilai amplitudo sebesar 0.9625 deg/m. RAO memiliki nilai 0 deg/m pada sudut 90° untuk moda gerak *roll* serta sudut 0° dan 180° untuk moda gerak *pitch*.

Gambar 4.14 RAO roll pada SSP muatan 83%

Gambar 4.15 RAO pitch pada SSP muatan 83%

Gambar 4.16 RAO yaw pada SSP muatan 83%

Nilai RAO pada moda gerak *yaw*, karakteristik gerak memiliki nilai mendekati 0 deg/m pada setiap sudut.

4.2.3 SSP kondisi 75% muatan

Rangkuman nilai maksimum RAO pada struktur SSP kondisi 75% muatan dapat dilihat pada Tabel 4.6 berikut.

	Heading					
Moda gerak	0°	45°	90°	135°	180°	
Surge (m/m)	0.843	0.644	0.000	0.644	0.843	
Sway (m/m)	0.000	0.644	0.843	0.644	0.000	
Heave (m/m)	3.820	3.820	3.820	3.820	3.820	
Roll (deg/m)	0.000	0.898	1.098	0.898	0.000	
Pitch (deg/m)	1.098	0.898	0.000	0.898	1.098	
Yaw (deg/m)	0.026	0.024	0.028	0.030	0.026	

Tabel 4.6 Nilai maksimum RAO SSP kondisi 75% muatan

Karakteristik SSP pada muatan 75% dapat dilihat pada gambar 4.17 sampai dengan 4.22.

Gambar 4.17 RAO surge pada SSP muatan 75%

Gambar 4.18 RAO sway pada SSP muatan 75%

Nilai amplitudo tertinggi pada moda gerak *surge* dan *sway* pada kondisi SSP 75% muatan sebesar 0.844 m/m masing-masing pada arah pembebanan 0° dan 180° untuk *surge* dan 90° pada *sway*. Amplitudo yang terjadi pada arah pembebanan 45° dan 135° bernilai sebesar 0.597 m/m. RAO tetap bernilai 0 m/m pada sudut 90° untuk gerak *surge* serta 0° dan 180° untuk gerak *sway*.

Gambar 4.19 RAO heave pada SSP muatan 75%

Amplitudo RAO gerak *heave* terjadi sama rata pada setiap arah pembebanan yakni sebesar 3.82 m/m.

Pada moda gerak *roll* dan *pitch* amplitudo tertinggi yang terjadi bernilai 1.098 deg/m pada sudut 90° untuk moda gerak *roll* serta sudut 0° dan 180° untuk moda gerak *pitch*. Pada sudut 45° dan 135°, keduanya memiliki nilai amplitudo sebesar 0.898 deg/m. RAO memiliki nilai 0 deg/m pada sudut 90° untuk moda gerak *roll* serta sudut 0° dan 180° untuk moda gerak *pitch*.

Gambar 4.20 RAO roll pada SSP muatan 75%

Gambar 4.21 RAO pitch pada SSP muatan 75%

Gambar 4.22 RAO yaw pada SSP muatan 75%

Nilai RAO pada moda gerak *yaw*, karakteristik gerak memiliki nilai mendekati 0 deg/m pada setiap sudut.

4.3 KARAKTERISTIK GERAK STRUKTUR *SHUTTLE TANKER* PADA KONDISI TERAPUNG BEBAS

Karakteristik *Shuttle Tanker* ditinjau dalam tiga kondisi muatan mengacu kepada skenario analisis secara keseluruhan. Tiga kondisi tersebut meliputi *Shuttle Tanker* 90% muatan, *Shuttle Tanker* 60% muatan, dan *Shuttle Tanker* 10% muatan.

4.3.1 Shuttle Tanker kondisi 90% muatan

Rangkuman nilai maksimum RAO pada struktur *Shuttle Tanker* kondisi 90% muatan dapat dilihat pada Tabel 4.7 berikut.

Moda gerak	Heading					
wioda gerak	0°	45°	90°	135°	180°	
Surge (m/m)	7.080	5.141	0.074	5.141	7.080	
Sway (m/m)	0.000	5.141	7.456	5.141	0.000	
Heave (m/m)	0.956	0.979	1.244	0.979	0.956	
Roll (deg/m)	0.000	1.071	11.694	1.177	0.000	
Pitch (deg/m)	1.127	1.333	0.490	1.179	1.061	
Yaw (deg/m)	0.000	1.363	0.085	1.363	0.000	

Tabel 4.7 Nilai maksimum RAO Shuttle Tanker kondisi 90% muatan

Karakteristik *Shuttle Tanker* pada muatan 90% dapat dilihat pada gambar 4.23 sampai dengan 4.28.

Gambar 4.23 RAO surge pada Shuttle Tanker muatan 90%

Karakteristik gerak *Shuttle Tanker* amatlah berbeda dengan karakteristik gerak FPSO berlambung silinder Sevan. Dalam kondisi pembebanan 90% muatan, nilai RAO tertinggi dalam moda gerak *surge* terjadi pada arah pembebanan 0° dan 180° dengan nilai sebesar 7.08 m/m. Dilanjutkan dengan nilai RAO sebesar 5.141 m/m pada arah pembebanan 45° dan 135°. RAO bernilai 0 m/m pada arah pembebanan 90°.

Gambar 4.24 RAO sway pada Shuttle Tanker muatan 90%

Pada moda gerak *sway*, amplitudo terbesar bernilai 7.456 m/m arah pembebanan 90°. Pada sudut 45° dan 135° amplitudo gerakan terjadi masing-masing sebesar 5.141 m/m. RAO bernilai 0 m/m pada arah pembebanan 0° dan 180°.

Gambar 4.25 RAO heave pada Shuttle Tanker muatan 90%

Karakteristik gerak *heave* pada *Shuttle Tanker* kondisi 90% muatan memliki nilai terbesar pada arah pembebanan 90° dengan nilai 1.244 m/m. Nilai RAO terbesar untuk sudut 45° dan 135° masing-masing bernilai 0.979 m/m. Pada sudut 0° dan 180°, nilai tertinggi RAO masing-masing sebesar 0.956 m/m.

Gambar 4.26 RAO roll pada Shuttle Tanker muatan 90%

Nilai RAO terbesar pada moda gerak *roll* terletak pada arah pembebanan 90° dengan nilai 11.694 deg/m, dilanjutkan dengan arah pembebanan 45° dan 135° masing-masing bernilai 1.177 deg/m. Nilai RAO sebesar 0 deg/m terjadi pada arah pembebanan 0° dan 180°.

Gambar 4.27 RAO pitch pada Shuttle Tanker muatan 90%

Pada gerak *pitch*, nilai RAO tertinggi terjadi sebesar 1.333 deg/m pada arah pembebanan 45° dilanjutkan dengan 1.179 deg/m pada arah pembebanan 135°. Nilai RAO yakni 1.126 deg/m dan 1.061 deg/m terjadi pada arah pembebanan 0° dan 180°. Sedangkan nilai puncak RAO yang relatif kecil dibandinkan arah pembebanan lain dimiliki oleh arah pembebanan 90° yakni sebesar 0.49 deg/m.

Gambar 4.28 RAO yaw pada Shuttle Tanker muatan 90%

Moda gerak *yaw* memiliki nilai RAO tertinggi sebesar 1.363 deg/m pada arah pembebanan 135° dan 45°. Pada arah pembebanan 90° nilai RAO tertinggi terjadi sebesar 0.085 deg/m. Pada arah pembebanan 0° dan 180°, RAO bernilai 0 deg/m.

4.3.2 Shuttle Tanker kondisi 60% muatan

Rangkuman nilai maksimum RAO pada struktur *Shuttle Tanker* kondisi 60% muatan dapat dilihat pada Tabel 4.8 berikut.

Moda gerak	Heading					
Widda gelak	0°	45°	90°	135°	180°	
Surge (m/m)	7.082	5.143	0.076	5.143	7.082	
Sway (m/m)	0.000	5.145	7.460	5.145	0.000	
Heave (m/m)	0.957	0.980	1.245	0.980	0.957	
Roll (deg/m)	0.000	1.072	11.695	1.178	0.000	
Pitch (deg/m)	1.126	1.333	0.489	1.178	1.061	
Yaw (deg/m)	0.000	1.361	0.083	1.361	0.000	

Tabel 4.8 Nilai maksimum RAO Shuttle Tanker kondisi 60% muatan

Karakteristik *Shuttle Tanker* pada muatan 60% dapat dilihat pada gambar 4.29 sampai dengan 4.34.

Dalam kondisi pembebanan 60% muatan, nilai RAO tertinggi dalam moda gerak *surge* terjadi pada arah pembebanan 0° dan 180° dengan nilai sebesar 7.082 m/m. Dilanjutkan dengan nilai RAO

sebesar 5.143 m/m pada arah pembebanan 45° dan 135°. RAO bernilai 0 m/m pada arah pembebanan 90°.

Gambar 4.29 RAO surge pada Shuttle Tanker muatan 60%

Gambar 4.30 RAO sway pada Shuttle Tanker muatan 60%

Pada moda gerak *sway*, amplitudo terbesar bernilai 7.46 m/m arah pembebanan 90°. Pada sudut 45° dan 135° amplitudo gerakan terjadi masing-masing sebesar 5.145 m/m dan 0.64 m/m. RAO bernilai 0 m/m pada arah pembebanan 0° dan 180°.

Karakteristik gerak *heave* pada *Shuttle Tanker* kondisi 90% muatan memliki nilai terbesar pada arah pembebanan 90° dengan nilai 1.245 m/m. Niali RAO terbesar untuk sudut 45° dan 135° masing-masing bernilai 0.98 m/m. Pada sudut 0° dan 180°, nilai tertinggi RAO sebesar 0.957 m/m.

Gambar 4.31 RAO heave pada Shuttle Tanker muatan 60%

Gambar 4.32 RAO roll pada Shuttle Tanker muatan 60%

Nilai RAO terbesar pada moda gerak *roll* terletak pada arah pembebanan 90° dengan nilai 11.695 deg/m, dilanjutkan dengan arah pembebanan 45° dan 135° masing-masing bernilai 1.072 deg/m dan 1.178 deg/m. Nilai RAO sebesar 0 deg/m terjadi pada arah pembebanan 0° dan 180°.

Pada gerak *pitch*, nilai RAO tertinggi terjadi sebesar 1.333 deg/m pada arah pembebanan 45° dilanjutkan dengan 1.178 deg/m pada arah pembebanan 135°. Nilai RAO yakni 1.126 deg/m dan 1.061 deg/m terjadi pada arah pembebanan 0° dan 180°. Sedangkan nilai puncak RAO yang relatif kecil dibandinkan arah pembebanan lain dimiliki oleh arah pembebanan 90° yakni sebesar 0.489 deg/m.

Gambar 4.33 RAO pitch pada Shuttle Tanker muatan 60%

Gambar 4.34 RAO yaw pada Shuttle Tanker muatan 60%

Moda gerak *yaw* memiliki nilai RAO tertinggi sebesar 1.361 deg/m pada arah pembebanan 135° dan 45°. Pada arah pembebanan 90° nilai RAO tertinggi terjadi sebesar 0.083 deg/m. Pada arah pembebanan 0° dan 180°, RAO bernilai 0 deg/m.

4.3.3 Shuttle Tanker kondisi 10% muatan

Rangkuman nilai maksimum RAO pada struktur *Shuttle Tanker* kondisi 10% muatan dapat dilihat pada Tabel 4.9 berikut.

	1						
Moda gerak	Heading						
Widda gerak	0°	45°	90°	135°	180°		
Surge (m/m)	7.122	5.158	0.035	5.158	7.122		
Sway (m/m)	0.000	5.150	7.461	5.150	0.000		
Heave (m/m)	0.958	0.984	1.548	0.984	0.958		
Roll (deg/m)	0.000	1.562	10.098	1.634	0.000		
Pitch (deg/m)	1.103	1.203	0.254	1.137	1.071		
Yaw (deg/m)	0.000	1.268	0.052	1.268	0.000		

Tabel 4.9 Nilai maksimum RAO Shuttle Tanker kondisi 10% muatan

Karakteristik *Shuttle Tanker* pada muatan 10% dapat dilihat pada gambar 4.35 sampai dengan 4.40 berikut

Gambar 4.35 RAO surge pada Shuttle Tanker muatan 10%

Dalam kondisi pembebanan 10% muatan, nilai RAO tertinggi dalam moda gerak *surge* terjadi pada arah pembebanan 0° dan 180° dengan nilai sebesar 7.122 m/m. Dilanjutkan dengan nilai RAO sebesar 5.158 m/m pada arah pembebanan 45° dan 135°. RAO bernilai 0.035 m/m pada arah pembebanan 90°.

Pada moda gerak *sway*, amplitudo terbesar bernilai 7.461 m/m arah pembebanan 90°. Pada sudut 45° dan 135° amplitudo gerakan terjadi masing-masing sebesar 5.150 m/m. RAO bernilai 0 m/m pada arah pembebanan 0° dan 180°.

Gambar 4.36 RAO sway pada Shuttle Tanker muatan 10%

Gambar 4.37 RAO heave pada Shuttle Tanker muatan 10%

Gambar 4.38 RAO roll pada Shuttle Tanker muatan 10%

Karakteristik gerak *heave* pada *Shuttle Tanker* kondisi 90% muatan memliki nilai terbesar pada arah pembebanan 90° dengan
nilai 1.548 m/m. Nilai RAO terbesar untuk sudut 45° dan 135° masing-masing bernilai 0.984 m/m dan 1.01 m/m. Pada sudut 0° dan 180°, nilai tertinggi RAO sebesar 0.958 m/m.

Nilai RAO terbesar pada moda gerak *roll* terletak pada arah pembebanan 90° dengan nilai 10.098 deg/m, dilanjutkan dengan arah pembebanan 45° dan 135° masing-masing bernilai 1.562 deg/m dan 1.634 deg/m. Nilai RAO sebesar 0 deg/m terjadi pada arah pembebanan 0° dan 180°.

Gambar 4.39 RAO pitch pada Shuttle Tanker muatan 10%

Pada gerak *pitch*, nilai RAO tertinggi terjadi sebesar 1.203 deg/m pada arah pembebanan 45° dilanjutkan dengan 1.137 deg/m pada arah pembebanan 135°. Nilai RAO yakni 1.103 deg/m dan 1.071 deg/m terjadi pada arah pembebanan 0° dan 180°. Sedangkan nilai puncak RAO yang relatif kecil dibandinkan arah pembebanan lain dimiliki oleh arah pembebanan 90° yakni sebesar 0.254 deg/m.

Moda gerak *yaw* memiliki nilai RAO tertinggi sebesar 1.268 deg/m pada arah pembebanan 135°. Nilai tertinggi pada arah pembebanan 45° sebesar 0.052 deg/m. Pada arah pembebanan 90° nilai RAO tertinggi terjadi sebesar 0.01 deg/m. Pada arah pembebanan 0° dan 180°, RAO bernilai 0 deg/m.

Gambar 4.40 RAO *yaw* pada *Shuttle Tanker* muatan 10%

4.4 PERHITUNGAN GELOMBANG DALAM KURUN WAKTU TERTENTU

Dalam melakukan analisis untuk mendapatkan hasil simulasi interaksi FPSO berlambung silinder Sevan dengan *Shuttle Tanker*, terlebih dahulu data lingkungan setempat, dalam hal ini Blok Masela, diolah untuk mendapatkan hasil intensitas gelombang signifikan dalam kurun waktu tertentu. Kurun waktu tersebut adalah kurun waktu yang memungkinkan terjadinya gelombang akibat badai yang perlu diperhitungkan dalam perancangan.

		Hs (m)				Tatal	
		0.1 - 1	1.1 - 2	2.1 - 3	3.1 - 4	4.1 - 5	Total
	0.1 - 2	0	0	0	0	0	0
	2.1 - 4	0.58	0	0	0	0	0.58
	4.1 - 6	9.51	4.43	0	0	0	13.94
	6.1 - 8	5.12	6.9	4.74	0.03	0	16.79
$T_{\mathbf{n}}(\mathbf{s})$	8.1 - 10	8.2	3.5	5.6	0.78	0.04	18.12
1 p (s)	10.1 - 12	10.8	20.8	0.15	0.01	0.01	31.77
	12.1 - 14	9.3	2.68	0.02	0	0	12
	14.1 - 16	2.93	2.46	0.04	0	0	5.43
	16.1 - 18	0.42	0.77	0.03	0	0	1.22
	18.1 - 20	0.05	0.096	0	0	0	0.146
Total		46.91	41.636	10.58	0.82	0.05	100.0
Ku	ımulatif	46.9	88.5	99.1	99.9	100.0	

Tabel 4.10 Data sebaran gelombang Blok Masela

(sumber : FUGRO, 2012)

Untuk mengantisipasi ketidaktentuan dalam pengukuran gelombang, maka dalam perhitungan disarankan jumlah persentase gelombang dari tabel ditambah 0.5. Antisipasi tersebut dilakukan untuk mengantisipasi persentase kejadian gelombang signifikan di atas 5 m. Analisis ini menggunakan prosedur analisis kurun waktu panjang dalam memprediksi tinggi gelombang signifikan yang dibantu dengan penyelesaian grafis. Perhitungan komponen peluang kumulatif untuk kurun waktu panjang dapat dilihat pada Tabel 4.11.

Hs	P(Hs)	ln (Hs - a)	$\ln [\ln \{1/1 - P(H_s)\}]$
1	0.467	0	-0.464
2	0.881	0.693147	0.756
3	0.986	1.098612	1.457
4	0.994	1.386294	1.649
5	0.995	1.609438	1.667

Tabel 4.11 Tabulasi perhitungan komponen peluang kumulatif

Keterangan Tabel 4.5 adalah sebagai berikut

- Nilai Hs pada kolom 1 didapat dari nilai terbesar pada setiap interval Hs.
- Nilai P(Hs) pada kolom 2 didapat dari hasil pembagian kumulatif pada Tabel 3 untuk setiap interval dengan 100.5. Nilai 100.5 didapatkan dari penjumlahan dari 100% dengan 0.5% sebagai akibat dari tidak dicantumkannya interval Hs > 5 m.
- Nilai x pada kolom 3 didapat dari persamaan x = ln(Hs a).
 Variabel a merupakan acuan batas bawah tinggi gelombang sebesar 0 m.
- Nilai y pada kolom 4 didapat dari persamaan $y = \ln \left[\ln \left\{ \frac{1}{1 P(Hs)} \right\} \right]$.

Hasil perhitungan pada tabel 4.4 tersebut kemudian diplot dalam sebuah diagram dengan nilai pada kolom 3 sebagai absis dan nilai pada kolom 4 sebagai ordinat. Lebih lanjut, dari grafik, seperti yang terlihat pada gambar 4.41, dilakukan analisis regresi untuk mendapatkan persamaan dari *trendline* yang digunakan sebagai panduan untuk menyelesaikan analisis prediksi tinggi gelombang dalam kurun waktu tertentu. Berdasarkan gambar 4.41 dapat diambil simpulan bahwa

persamaan regresi yang diperkirakan sesuai dengan sebaran data gelombang perairan Blok Masela adalah y = 1.3899x - 0.317

Gambar 4.41 Grafik korelasi antara tinggi gelombang dan distribusi kumulatif

Perhitungan prediksi tinggi gelombang signifikan dalam kurun waktu dapat dilihat pada Tabel 4.12.

Kurun Waktu (tahun)	Py(H _s)	ln [ln{1/1-Py(Hs)}]	ln (Hs - a)	Hs (m)
1	0.9996575	2.076855563	1.7236	5.6
10	0.9999658	2.330387401	1.9061	6.7
100	0.9999966	2.53246662	2.0516	7.8
1000	0.9999997	2.700494675	2.1726	8.8

Tabel 4.12 Tabulasi perhitungan kurun waktu panjang

Keterangan tabel 4.6 adalah sebagai berikut

- Nilai kurun waktu pada kolom 1 adalah kurun waktu yang akan dianalisis.
- Nilai Py(Hs) pada kolom 2 didapat dari persamaan 1 ³/_{kurun waktu x 365 x 24}. Py(Hs) di sini merupakan peluang terjadinya badai dalam kurun waktu tertentu. Adapun 3 merupakan durasi badai yakni 3 jam.
- Nilai y pada kolom 3 adalah hasil persamaan $y = \ln \left[\ln \left\{ \frac{1}{1 Py(Hs)} \right\} \right]$.
- Nilai x pada kolom 4 adalah hasil persamaan regresi dengan y merupakan nilai pada kolom 3.
- Nilai Hs pada kolom 5 adalah hasil dari persamaan $Hs = e^x$

Prediksi tinggi gelombang signifikan yang diperoleh dari analisis ini nantinya akan dipaai dalam analisis respon struktur pada gelombang acak. Analisis kondisi operasi didasarkan pada gelombang 1 tahunan sedangkan analisis kondisi *survival* didasarkan pada gelombang 100 tahunan.

Dari hasil analisis dapat disimpulkan bahwa, didapatkan nilai 5.6 m untuk tinggi gelombang signifikan 1 tahunan; 6.7 m untuk tinggi gelombang signifikan 10 tahunan; 7.8 m untuk tinggi gelombang signifikan 100 tahunan, dan 8.8 m untuk tinggi gelombang signifikan 1000 tahunan.

4.5 ANALISIS RESPON GERAK DAN *TENSION* TALI TAMBAT SSP PADA KONDISI TERTAMBAT *STAND ALONE*

4.5.1 Skenario analisis dan konfigurasi SSP dalam kondisi tertambat *stand alone*

Kondisi tertambat *stand* alone dalam bagian ini memiliki pengertian yakni kondisi SSP yang tertambat tunggal dengan menjalankan fungsinya sebagai FPSO tanpa ada objek lain di dekatnya dan tanpa ada aktivitas *offloading* sama sekali. Analisis ini dilakukan pada dua kondisi muatan yakni ketika SSP berada dalam kondisi muatan penuh dan kondisi ketika muatan SSP minimum. Muatam minimum yang dimaksud adalah kapasitas hidrokarbon minyak yang masih tersisa pasca melakukan transfer ke *Shuttle Tanker*. Analisis dilakukan dalam tiga arah pembebanan yakni 0°, 90°, dan 45° dengan variasi nilai tinggi gelombang signifikan sesuai dengan periode ulang hasil perhitungan pada bab sebelumnya untuk melihat perilaku struktur dalam rentang tinggi gelombang 1 tahunan hingga 100 tahunan.

Dalam pengoperasiannya, SSP ditambat pada 12 *mooring* yang terkonfigurasi menyebar (*spread mooring*) dan terbagi menjadi 3 titik dengan masing-masing titik terdiri dari 4 *mooring lines*. Berikut ini adalah gambaran konfigurasi serta skenario lengkap analisis SSP tertambat.

Tabel 4.13	Skenario	kasus	SSP	tertambat
------------	----------	-------	-----	-----------

Nomor	Muatan FPSO Sevan	Heading (°)	Hs (m)
1			4
2			5
3		0	6
4			7
5			8
6	100%		4
7			5
8		45	6
9			7
10			8
11			4
12			5
13		90	6
14			7
15			8
16			4
17			5
18		0	6
19			7
20			8
21			4
22			5
23	75%	45	6
24			7
25			8
26			4
27			5
28		90	6
29			7
30			8

4.5.2 Analisis respon gerak SSP tertambat kondisi 100% muatan

Berikut ini tabulasi nilai respon gerak signifikan dari struktur SSP untuk tiap-tiap kasus yang dianalisis

Tabel 4.14 Tabulasi respon gerak signifikan dari SSP kondisi muatan 100%

Heading (°)	Moda gerak	Nilai signifikan				
	Widda gerak	Hs 5 m	Hs 6 m	Hs 7 m	Hs 8 m	
	Surge (m)	1.794	2.856	3.736	4.717	
	Sway (m)	0.114	0.150	0.198	0.258	
0	Heave (m)	0.262	0.316	0.370	0.425	
0	Roll (deg)	0.065	0.067	0.081	0.095	
	Pitch (deg)	1.961	2.364	2.770	3.180	
	Yaw (deg)	0.084	0.099	0.116	0.134	
	Surge (m)	1.252	1.786	2.419	3.141	
	Sway (m)	1.832	2.479	3.212	4.027	
45	Heave (m)	0.261	0.314	0.368	0.422	
45	Roll (deg)	1.433	1.727	2.023	2.322	
	Pitch (deg)	1.397	1.550	1.816	2.085	
	Yaw (deg)	0.182	0.232	0.261	0.290	
	Surge (m)	0.060	0.070	0.080	0.090	
	Sway (m)	2.609	3.509	4.509	5.598	
00	Heave (m)	0.270	0.318	0.373	0.429	
20	Roll (deg)	2.340	2.454	2.878	3.307	
	Pitch (deg)	0.397	0.553	0.625	0.695	
	Yaw (deg)	0.145	0.151	0.182	0.217	

Gambar 4.43 Respon signifikan *surge* pada SSP tertambat 100% muatan

Respon gerak *surge* meningkat seiring dengan bertambahnya tinggi gelombang signifikan. Gambar 4.43 menunjukkan bahwa respon gerak *surge* memiliki nilai terbesar pada arah pembebanan 0° dan nilai terkecil pada arah pembebanan 90°.

Gambar 4.44 Respon signifikan *sway* pada SSP tertambat 100% muatan

Sama halnya dengan respon gerak *surge*, respon gerak *sway* meningkat seiring dengan bertambahnya tinggi gelombang signifikan. Gambar 4.44 menunjukkan bahwa respon gerak *sway* memiliki nilai terbesar pada arah pembebanan 90° dan nilai terkecil pada arah pembebanan 0°.

Gambar 4.45 Respon signifikan *heave* pada SSP tertambat 100% muatan

Nilai respon gerak *heave* cenderung sama untuk setiap arah pembebanan. Hal ini dikarenakan bentuk dasar silinder pada SSP sehingga respon gerak translasi sumbu Z ini bernilai sama bila dikenai gaya dari segala arah.

Gambar 4.46 Respon signifikan *roll* pada SSP tertambat 100% muatan

Arah pembebanan 90° terbukti memberi pengaruh terbesar pada SSP dalam melakukan gerak rotasional sumbu X. Gambar 4.46 menunjukkan bahwa nilai respon gerak *roll* terbesar terjadi pada arah pembebanan 90° sedangkan respon gerak *roll* terkecil terjadi pada arah pembebanan 0°.

Gambar 4.47 Respon signifikan *pitch* pada SSP tertambat 100% muatan

Berkebalikan dengan respon gerak *roll*, respon gerak *pitch* terbesar terjadi pada arah pembebanan 0° dan respin gerak *pitch* terkecil terjadi pada arah pembebanan 90°. Nilai yang dihasilkan antara respon gerak *roll* dan *pitch* relatif sama dikarenakan bentuk silinder yang menjadi bentuk dasar SSP.

Respon gerak *yaw* memiliki kecenderungan bernilai 0 pada setiap arah pembebanan sesuai dengan karakteristik geraknya. Lagipula, dalam kondisi tertambat, respon gerak *yaw* akan lebih terbatas jika dibandingkan saat SSP berada dalam kondisi terapung bebas.

Gambar 4.48 Respon signifikan yaw pada SSP tertambat 100% muatan

4.5.3 Analisis *tension* sistem tambat pada SSP tertambat kondisi 100% muatan

Dalam melakukan penelitian terhadap objek bangunan apung tertambat, analisis mengenai besarnya nilai gaya tarik yang terjadi pada sistem tambat sangat diperlukan untuk mengetahui kemampuan sistem tambat tersebut bekerja. Besarnya nilai *tension* pada sistem tambat sangat dipengaruhi oleh respon gerak struktur. Terdapat 12 buah tali tambat yang menghubungkan struktur SSP ke dasar laut, berikut tabulasi nilai *tension* signifikan dari setiap tali tambat pada SSP kondisi 100% muatan.

Gambar 4.49 Time history gaya tarik mooring line

Gaya tarik luaran dari hasil analisis yang terlihat seperti pada Gambar 4.49 diolah untuk didapatkan nilai signifikannya. Rangkuman nilai signifikan untuk setiap *tension mooring line* dapat dilihat pada Tabel 4.15

Heading	Line	Nilai signifikan (kN)					
(°)		Hs 5 m	Hs 6 m	Hs 7 m	Hs 8 m		
	1	4347.296	4395.790	4455.672	4527.812		
	2	4831.345	4878.315	4936.641	5007.321		
	3	4593.248	4632.891	4681.916	4741.462		
	4	4595.286	4633.496	4680.712	4738.030		
	5	4224.708	4250.831	4272.659	4290.404		
0	6	4267.834	4293.436	4315.061	4332.869		
0	7	4489.305	4513.656	4535.571	4555.301		
	8	4016.167	4039.253	4060.677	4080.539		
	9	6112.440	6120.954	6137.787	6162.330		
	10	2706.002	2713.230	2726.893	2747.061		
	11	2717.592	2728.333	2746.879	2773.169		
	12	6132.054	6146.461	6170.612	6203.861		
	1	4218.333	4232.924	4250.716	4272.033		
	2	4696.928	4709.401	4724.583	4742.886		
	3	4432.808	4437.457	4443.029	4449.737		
	4	4433.255	4436.490	4440.393	4445.146		
	5	4162.199	4185.171	4209.035	4232.432		
15	6	4205.356	4228.422	4252.169	4275.154		
45	7	4434.114	4457.211	4480.517	4503.208		
	8	3966.688	3987.403	4008.845	4030.336		
	9	6364.077	6505.012	6570.063	6654.106		
	10	2913.384	3026.102	3084.236	3153.752		
	11	2938.942	3053.259	3113.462	3164.637		
	12	6408.737	6551.811	6619.245	6705.880		
	1	4053.164	4075.256	4090.868	4109.274		
	2	4514.257	4539.901	4558.570	4579.509		
	3	4245.880	4267.068	4296.202	4328.189		
	4	4243.525	4265.326	4296.175	4329.981		
	5	4205.816	4227.671	4248.134	4285.923		
00	6	4253.704	4274.832	4294.555	4331.279		
90	7	4525.174	4541.706	4557.037	4583.723		
	8	4060.917	4075.644	4089.285	4113.009		
	9	4302.946	4358.365	4425.862	4506.058		
	10	2871.577	2920.343	2978.559	3047.300		
	11	2870.497	2919.271	2977.487	3046.225		
	12	4301.141	4356.545	4424.010	4504.179		

Tabel 4.15 Tabulasi tension signifikan dari SSP kondisi muatan

100%

Nilai pada setiap *line* berbeda satu sama lain tergantung pada arah pembebanan dan besarnya nilai respon gerak struktur. Pada arah pembebanan 0°, nilai *tension* terbesar terdapat pada kelompok *line* 1 sampai 4, dan kelompok *line* 9 sampai 12. Respon gerak *surge* menyebabakan SSP bergerak secara translasi terhadapa sumbu X dan rotasi terhadap sumbu Y sehingga beban tarik yang diterima kelompok *line* 1 sampai 4 dan kelompok *line* 8 sampai 12 lebih besar.

Pada arah pembebanan 45°, sama halnya dengan arah pembebanan 0°, nilai *tension* terbesar dialami oleh kelompok *line* 1 sampai 4 dan kelompok *line* 9 sampai 12. Sedangkan pada arah pembebanan 90°, *tension* terbesar dialami oleh kelompok *line* 1 sampai 4 dan kelompok *line* 5 sampai 8.

Berikut ini tren dari nilai *tension* yang terjadi pada salah satu *line* yang menanggung gaya tarik terbesar yakni *line* 12.

Gambar 4.50 *Tension* pada *line* 12 pada setiap tinggi gelombang signifikan pada SSP tertambat 100% muatan

Nilai *tension* tersebut kemudian dicek dengan menggunakan kriteria *safety factor* untuk mengetahui apakah struktur SSP dapat beroperasi dengan aman pada rentang periode ulang yang dianalisis.

Heading 0°							
	5	6	7	8			
Tension	6132.05	6146.46	6170.61	6203.86			
SF	2.34	2.33	2.32	2.31			
	Heading 45°						
	5	6	7	8			
Tension	6408.74	6551.81	6619.25	6705.88			
SF	2.24	2.19	2.17	2.14			
		Heading 90°					
	5 6 7 8						
Tension	4525.17	4541.71	4558.57	4583.72			
SF	3.17	3.16	3.14	3.13			

Tabel 4.16 Nilai safety factor dari tension signifikan pada struktur

SSP tertambat dengan kondisi muatan 100%

Pengecekan nilai *safety factor* yang dilakukan mengacu kepada nilai *tension* terbesar yang terjadi pada setiap arah pembebanan dan setiap tinggi gelombang signifikan yang terjadi. Tabel 4.10 menunjukkan semua *tension* yang terjadi dalam rentang periode ulang mulai dari 1 tahunan hingga 100 tahunan masuk dalam batas aman yakni > 1.67 sesuai dengan kriteria yang tercantum pada API RP 2SK. Hal ini berarti struktur SSP dalam kondisi 100% muatan dapat beroperasi dengan aman di wilayah Blok Masela.

4.5.4 Analisis respon gerak SSP tertambat kondisi 75% muatan

Berikut ini tabulasi nilai respon gerak signifikan dari struktur SSP pada setiap skenario kasus

Tabel 4.17 Tabulasi respon gerak signifikan dari SSP kondisi muatan

Heading (°)	Moda gerak	Nilai signifikan				
freading ()	widda gerak	Hs 5 m	Hs 6 m	Hs 7 m	Hs 8 m	
	Surge (m)	2.292	3.215	4.265	5.434	
	Sway (m)	0.132	0.172	0.220	0.276	
0	Heave (m)	0.544	0.668	0.766	0.868	
0	Roll (deg)	0.236	0.283	0.335	0.396	
	Pitch (deg)	3.939	4.775	5.616	6.460	
	Yaw (deg)	0.121	0.139	0.158	0.178	

Heading (°)	Moda gerak	Nilai signifikan				
ficading ()	Widda gerak	Hs 5 m	Hs 6 m	Hs 7 m	Hs 8 m	
	Surge (m)	1.275	1.796	2.425	3.146	
	Sway (m)	2.114	2.808	3.556	4.364	
45	Heave (m)	0.574	0.666	0.762	0.861	
45	Roll (deg)	2.963	3.665	4.387	5.118	
	Pitch (deg)	2.557	3.080	3.598	4.112	
	Yaw (deg)	0.290	0.345	0.410	0.467	
	Surge (m)	0.090	0.110	0.170	0.220	
	Sway (m)	3.131	3.752	4.748	5.827	
00	Heave (m)	0.590	0.687	0.787	0.891	
90	Roll (deg)	4.146	5.107	6.082	7.057	
	Pitch (deg)	0.793	0.949	1.021	1.091	
	Yaw (deg)	0.203	0.258	0.296	0.362	

Tabel 4.17 Tabulasi respon gerak signifikan dari SSP kondisi muatan 75% (lanjutan)

Gambar 4.51 Respon signifikan *surge* pada SSP tertambat 75% muatan

Respon gerak *surge* meningkat seiring dengan bertambahnya tinggi gelombang signifikan. Gambar 4.51 menunjukkan bahwa respon gerak *surge* memiliki nilai terbesar pada arah pembebanan 0° dan nilai terkecil pada arah pembebanan 90°.

Sama halnya dengan respon gerak *surge*, respon gerak *sway* meningkat seiring dengan bertambahnya tinggi gelombang signifikan. Gambar 4.52 menunjukkan bahwa respon gerak *sway* memiliki nilai terbesar pada arah pembebanan 90° dan nilai terkecil pada arah pembebanan 0°.

Gambar 4.53 Respon signifikan *heave* pada SSP tertambat 75% muatan

Nilai respon gerak *heave* cenderung sama untuk setiap arah pembebanan. Hal ini dikarenakan bentuk dasar silinder pada SSP sehingga respon gerak translasi sumbu Z ini bernilai sama bila dikenai gaya dari segala arah.

muatan muatan

Arah pembebanan 90° terbukti memberi pengaruh terbesar pada SSP dalam melakukan gerak rotasional sumbu X. Gambar 4.54 menunjukkan bahwa nilai respon gerak *roll* terbesar terjadi pada arah pembebanan 90° sedangkan respon gerak *roll* terkecil terjadi pada arah pembebanan 0°.

Gambar 4.55 Respon signifikan *pitch* pada SSP tertambat 75% muatan

Berkebalikan dengan respon gerak *roll*, respon gerak *pitch* terbesar terjadi pada arah pembebanan 0° dan respin gerak *pitch* terkecil terjadi pada arah pembebanan 90°. Nilai yang dihasilkan antara respon gerak *roll* dan *pitch* relatif sama dikarenakan bentuk silinder yang menjadi bentuk dasar SSP.

Respon gerak *yaw* memiliki kecenderungan bernilai 0 pada setiap arah pembebanan sesuai dengan karakteristik geraknya. Lagipula, dalam kondisi tertambat, respon gerak *yaw* akan lebih terbatas jika dibandingkan saat SSP berada dalam kondisi terapung bebas.

4.5.3 Analisis *tension* sistem tambat pada SSP tertambat kondisi 75% muatan

Berikut tabulasi nilai *tension* signifikan dari setiap tali tambat pada SSP kondisi 75% muatan.

Heading	Line	Nilai signifikan (kN)				
(°)		Hs 5 m	Hs 6 m	Hs 7 m	Hs 8 m	
	1	4590.987	4637.822	4693.342	4758.073	
	2	5074.197	5119.933	5174.051	5237.123	
	3	4831.656	4871.659	4918.827	4973.530	
	4	4832.158	4870.500	4915.648	4967.999	
	5	4407.613	4425.770	4444.098	4462.067	
0	6	4448.236	4465.874	4484.032	4502.089	
0	7	4637.788	4657.317	4677.661	4698.176	
	8	4163.781	4180.067	4197.680	4215.805	
	9	6386.526	6453.480	6553.544	6654.197	
	10	2955.782	3009.071	3086.863	3166.004	
	11	2979.866	3038.141	3118.710	3200.192	
	12	6429.858	6507.414	6611.240	6713.283	

Tabel 4.18 Tabulasi tension signifikan dari SSP kondisi muatan 75%

Heading	Lina	Nilai signifikan (kN)					
(°)	Line	Hs 5 m	Hs 6 m	Hs 7 m	Hs 8 m		
	1	4446.436	4463.809	4483.796	4506.730		
	2	4921.464	4936.552	4954.199	4974.530		
	3	4661.992	4666.681	4672.312	4679.005		
	4	4661.241	4664.495	4668.507	4673.400		
	5	4270.535	4291.299	4322.655	4423.178		
45	6	4322.411	4342.400	4372.643	4671.807		
45	7	4140.351	4154.608	4172.171	4561.859		
	8	4503.208	4596.412	4613.501	4635.140		
	9	6364.077	6683.217	6767.765	6832.259		
	10	3113.350	3184.235	3252.704	3307.400		
	11	3209.147	3281.005	3340.265	3599.475		
	12	6599.475	6725.910	6815.501	6887.670		
	1	4254.299	4274.992	4297.781	4476.306		
	2	4717.644	4742.352	4769.504	4954.167		
	3	4424.689	4456.831	4499.011	4692.510		
	4	4420.240	4453.828	4498.169	4694.263		
	5	4521.340	4537.409	4553.709	4570.048		
00	6	4567.515	4584.284	4601.210	4618.005		
90	7	4840.796	4853.090	4864.942	4876.095		
	8	4370.843	4381.025	4390.943	4400.578		
	9	4573.912	4639.474	4716.370	4805.124		
	10	3125.387	3187.666	3260.660	3344.130		
	11	3124.274	3186.557	3259.572	3343.054		
	12	4571.944	4637.510	4714.410	4803.165		

Tabel 4.18 Tabulasi tension signifikan dari SSP kondisi muatan 75%

(lanjutan)

Sama halnya dengan nilai pada setiap SSP kondidi 100% muatan, nilai *line* berbeda satu sama lain tergantung pada arah pembebanan dan besarnya nilai respon gerak struktur. Namun secara umum, nilai *tension* yang terjadi pada kondisi SSP 75% muatan lebih besar jika dibandingkan dengan nilai *tension* pada kondisi SSP 100% muatan. Pada arah pembebanan 0°, nilai *tension* terbesar terdapat pada kelompok *line* 1 sampai 4, dan kelompok *line* 9 sampai 12. Respon gerak *surge* menyebabakan SSP bergerak secara translasi terhadapa sumbu X dan rotasi terhadap sumbu Y sehingga beban tarik yang diterima kelompok *line* 1 sampai 4 dan kelompok *line* 8 sampai 12 lebih besar.

Pada arah pembebanan 45°, sama halnya dengan arah pembebanan 0°, nilai *tension* terbesar dialami oleh kelompok *line* 1 sampai 4 dan kelompok *line* 9 sampai 12. Sedangkan pada arah

pembebanan 90°, *tension* terbesar dialami oleh kelompok *line* 1 sampai 4 dan kelompok *line* 5 sampai 8.

Berikut ini tren dari nilai tension yang terjadi pada salah satu line

yang menanggung gaya tarik terbesar yakni *line* 12.

Gambar 4.57 *Tension* pada *line* 12 pada setiap tinggi gelombang signifikan pada SSP tertambat 75% muatan

Nilai *safety factor* pada sistem tambat pada struktur SSP kondisi 75% muatan dapat dilihat pada Tabel 4.19.

Tabel 4.19 Nilai safety factor dari tension signifikan pada struktur

Heading 0°						
	5	6	7	8		
Tension	6429.86	6429.86	6429.86	6429.86		
SF	2.23	2.23	2.23	2.23		
		Heading 45°				
	5	6	7	8		
Tension	6599.47	6599.47	6599.47	6599.47		
SF	2.17	2.17	2.17	2.17		
		Heading 90°				
	5	6	7	8		
Tension	4840.80	4840.80	4840.80	4840.80		
SF	2.96	2.96	2.96	2.96		

SSP tertambat dengan kondisi muatan 75%

Pengecekan nilai *safety factor* yang dilakukan mengacu kepada nilai *tension* terbesar yang terjadi pada setiap arah pembebanan dan setiap tinggi gelombang signifikan yang terjadi. Tabel 4.19 menunjukkan semua *tension* yang terjadi dalam rentang periode ulang mulai dari 1 tahunan hingga 100 tahunan masuk dalam batas aman yakni > 1.67 sesuai dengan kriteria yang tercantum pada API RP 2SK. Hal ini berarti struktur SSP dalam kondisi 75% muatan dapat beroperasi dengan aman di wilayah Blok Masela.

4.6 ANALISIS RESPON GERAK DAN *TENSION* TALI TAMBAT SSP DAN *SHUTTLE TANKER* PADA KONDISI *SIDE BY SIDE OFFLOADING*

4.6.1 Skenario analisis dan konfigurasi side by side offloading

Skenario lengkap kasus yang dianalisis dalam bagian ini mengacu kepada tiga macam kondisi pemuatan yang terjadi pada saat *side by side offloading* dilakukan baik yang terjadi pada SSP maupun pada *Shuttle Tanker*. Kondisi *side by side offloading* dianalisis dalam tiga arah pembebanan yakni 0°, 90°, dan 45°. Variasi tinggi gelombang signifikan mengacu kepada data sebaran gelombang dilakukan pula untuk melihat batasan sampai sejauh mana operasi *side by side offloading* dapat dilakukan mengingat bentuk geometri antara SSP dan *Shuttle Tanker* yang tidak lazim atau boleh dikatakan pengoperasiannya belum banyak dilakukan.

Nilai respon gerak kedua struktur didapatkan dari grafik *time history* hasil perhitungan dari pemodelan. Nilai hasil olahan grafik *timr history* yang dianalisis meliputi nilai signifikan dan nilai maksimum. Nilai signifikan digunakan untuk melihat tren respon gerak pada setiap kondisi muatan, arah pembebanan, maupun tinggi gelombang signifikan. Sedangkan nilai maksimum digunakan untuk melihat kondisi kritis *side by side offloading* yang terjadi. Kondisi kritis tersebut digunakan untuk menentukan batas aman aktivitas *side by side offloading* dapat dilakukan.

Dalam analisis *side by side offloading*, nilai respon gerak kedua struktur yang ditinjau sebatas pada moda gerak *sway*, *heave*, dan *roll*. Ketiga gerak ini saling berhubungan satu sama lain dan memberiiefek paling signifikan dalam interaksi antara SSP dengan *Shuttle Tanker*.

Berikut ini skenario lengkap analisis side by side offloading.

Nomor	Muatan FPSO Sevan	Muatan Shuttle Tanker	Heading (°)	Hs (m)
1				2
2			0	3
3			0	4
4				5
5				2
6	1000/	100/	15	3
7	100% muatan	10% muatan	45	4
8				5
9				2
10			00	3
11			90	4
12				5
13				2
14			0	3
15			0	4
16				5
17			45	2
18	920/	60% muatan		3
19	83% muatan			4
20				5
21			90	2
22				3
23				4
24				5
25				2
26			0	3
27			0	4
28				5
29				2
30	750/	000/	45	3
31	/ 5% muatan	90% muatan	43	4
32				5
33				2
34			00	3
35	1		90	4
36				5

Tabel 4.20 Skenario kasus side by side offloading

Dalam konfigurasi *side by side offloading* antara FPSO berlambung silinder Sevan dengan *Shuttle Tanker*. terdapat empat tali tambat kapal dan tiga buah *fender* yang dipasang untuk mendukung operasi *side by side offloading*. Pemilihan *fender* dilakukan untuk mengetahui apakah *fender* yang digunakan mampu meredam benturan antara dua objek akibat beban lingkungan. Prosedur pemilihan *fender* dilakukan berdasarkan OCIMF *Ship to Ship Transfer – Consideration Applicable to Reverse Lightering*.

Diperlukan adanya perhitungan *equivalent displacement* coefficient terlebih dahulu dengan persamaan berikut

$$C = \frac{Safety \ Factor \ x \ Displacement \ objek \ 1 \ x \ Displacement \ objek \ 2}{Displacement \ objek \ 1+Displacement \ objek \ 2}$$
(4.1)

Dari hasil perhitungan dengan nominal *safety factor* sebesar 2, didapatkan nilai *equivalent displacement coefficient* sebesar 39576.26 ton, maka, *fender* yang dianjurkan untuk digunakan memiliki kategori ketentuan sebagai berikut

Tabel 4.21 Penentuan dimensi fender

Equivalent displacement coefficient (ton)	Kecepatan relatif (m/s)	Berthing energy (ton m)	Ukuran <i>fender</i> (diam x panjang)
50000	0.2	4.8	3.3 m x 6.5 m

Gambar 4.58 Konfigurasi *side by side offloading* antara SSP dengan *Shuttle Tanker* tampak atas

Dalam pengoperasian aktivitas *side by side offloading*, diperlukan pula sistem tambat yang menjadi penghubung antara struktur SSP dengan *Shuttle Tanker*. Terdapat empat buah tali tambat yang berfungsi sebagai penghubung antara struktur SSP dengan *Shuttle Tanker*.

4.6.2 Analisis respon gerak pada skenario side by side offloading kondisi 1

Nilai respon gerak pada skenario *side by side offloading* didapatkan dengan mengolah grafik *time history* respon gerak selama tiga jam. Grafik time *history* menampilkan informasi mengenai kondisi dan posisi kedua struktur yang saling berinteraksi pada suatu fungsi waktu.

Gambar 4.59 Grafik *time history* gerak *sway* SSP (a) dan *Shuttle Tanker* (b) kondisi 1 dengan arah pembebanan 0° dan Hs 2 m

Gambar 4.60 Grafik *time history double amplitude heave* SSP dan *Shuttle Tanker* kondisi 1 dengan arah pembebanan 0° dan Hs 2 m

Gambar 4.61 Grafik *time history double amplitude roll* SSP dan *Shuttle Tanker* kondisi 1 dengan arah pembebanan 0° dan Hs 2 m

Pada beberapa waktu tertentu, baik SSP dan *Shuttle Tanker* berada pada satu fase yakni keduanya bergerak pada arah yang sama. Namun, dikarenakan, bentuk dasar keduanya yang berbeda, di beberapa waktu tertentu juga, gerak SSP dan *Shuttle Tanker* menjadi berbeda fase. Dalam hal ini keduanya bergerak ke arah yang berlawanan. Perbedaan bentuk dasar struktur yang terjadi antara SSP dengan *Shuttle Tanker* menyebabkan periode gerak yang terjadi pada kedua struktur tersebut berbeda. Perbedaan ini dapat dianalisis dengan melihat kondisi respon gerak struktur pada suatu waktu.

Nilai-nilai pada grafik *time history* diolah untuk mengetahui respon gerak signifikan dan respon gerak maksimum. Respon gerak signifikan digunakan untuk melihat tren respon gerak yang terjadi pada setiap skenario *side by side offloading*. Sedangkan nilai

maksimum digunakan untuk melihat kondisi kritis kedua struktur. Kondisi kritis tersebut digunakan untuk mengecek batas aman pengoperasian *side by side offloading*. Berikut ini tabulasi nilai respon gerak struktur pada skenario *side by side offloading* kondisi 1.

offloading kondisi 1							
Heading (°)	Moda gerak	Nilai signifikan					
	Wioda gerak	2	3	4	5		
0	Surge (m)	1.210	1.820	2.430	3.050		
	Sway (m)	0.116	0.174	0.232	0.290		
	Heave (m)	0.109	0.162	0.213	0.264		
	Roll (deg)	0.026	0.039	0.052	0.053		
	Pitch (deg)	0.559	0.838	1.117	1.286		

0.155

0.913

0.421

0.150

0.265

0.345

0.499

0.300

0.579

0.101

1.306

0.050

0.058

0.307

1.328

0.645

0.246

0.397

0.517

0.748

0.390

0.823

0.146

1.546

0.206

0.087

0.606

1.852

0.881

0.336

0.529

0.689

0.998

0.410

1.073

0.193

1.860

0.278

0.116

0.929

2.366

1.077

0.427

0.661

0.861

1.247

0.510

1.440

0.241

2.034

0.348

0.124

Yaw (deg)

Surge (m)

Sway (m)

Heave (m)

Roll (deg)

Pitch (deg)

Yaw (deg)

Surge (m)

Sway (m)

Heave (m)

Roll (deg)

Pitch (deg)

Yaw (deg)

45

90

Tabel 4.22 Respon gerak signifikan SSP pada kondisi *side by side* offloading kondisi 1

Tabel 4.23 Respon gerak signifikan Shuttle Tanker pada kondisi side

by side offloading kondisi 1

Heading (°)	Moda gerak	Nilai signifikan				
		2	3	4	5	
	Surge (m)	0.245	0.368	0.491	0.615	
	Sway (m)	0.332	0.616	0.821	1.027	
0	Heave (m)	0.948	1.422	1.895	2.369	
0	Roll (deg)	0.306	0.458	0.611	0.764	
	Pitch (deg)	0.615	0.922	1.229	1.536	
	Yaw (deg)	0.818	2.315	2.671	2.995	

Heading (°)	Mada garak	Nilai signifikan				
	woda gerak	2	3	4	5	
	Surge (m)	0.175	0.264	0.352	0.442	
	Sway (m)	0.532	0.798	1.063	1.329	
45	Heave (m)	1.130	1.696	2.261	2.826	
43	Roll (deg)	0.602	0.902	1.203	1.504	
	Pitch (deg)	0.477	0.716	0.955	1.193	
	Yaw (deg)	2.245	2.682	3.059	3.535	
	Surge (m)	0.070	0.071	0.094	0.118	
	Sway (m)	0.785	1.177	1.569	1.961	
90	Heave (m)	0.548	1.031	1.375	1.719	
90	Roll (deg)	1.240	1.861	2.481	3.101	
	Pitch (deg)	0.277	0.359	0.479	0.598	
	Yaw (deg)	0.674	1.593	1.761	1.933	

Tabel 4.23 Respon gerak signifikan *Shuttle Tanker* pada kondisi *side* by side offloading kondisi 1 (lanjutan)

Kondisi perbandingan respon gerak struktur SSP dan *Shuttle Tanker* pada setiap moda gerak dapat dilihat pada gambar 4.62 sampai 4.67

Gambar 4.62 Respon gerak *surge* SSP (a) dan *Shuttle Tanker* (b) pada kondisi *side by side offloading* kondisi 1

Gambar 4.63 Respon gerak *sway* SSP (a) dan *Shuttle Tanker* (b) pada kondisi *side by side offloading* kondisi 1

Respon gerak *surge* yang terjadi antara SSP dengan *Shuttle Tanker* memiliki tren yang sama pada kenaikan tinggi gelombang signifikan. Pada sistem *side by side offloading* dalam kondisi 1 ini, arah pembebanan 0° memberikan pengaruh yang paling besar terhadap respon gerak *surge*. Sama halnya dengan respon gerak *sway* pada kedua objek meningkat seiring dengan meningkatnya tinggi gelombang signifikan. Gerakan *sway* terbesar terjadi pada arah pembebanan 90°.

Gambar 4.64 Respon gerak *heave* SSP (a) dan *Shuttle Tanker* (b) pada kondisi *side by side offloading* kondisi 1

Respon gerak *heave* terbesar pada sistem *side by side offloading* kondisi 1 diakibatkan oleh arah pembebanan 45°. Sedangkan respon gerak *heave* terrendah diakibatkan oleh arah pembebanan 90°.

Gambar 4.65 Respon gerak *roll* SSP (a) dan *Shuttle Tanker* (b) pada kondisi *side by side offloading* kondisi 1

Gambar 4.66 Respon gerak *pitch* SSP (a) dan *Shuttle Tanker* (b) pada kondisi *side by side offloading* kondisi 1

Sebanding dengan respon gerak *sway*, arah pembebanan 90° membawa dampak yang besar pada respon gerak *roll* dan arah pembebanan 0° menghasilkan respon gerak yang kecil. Begitu pula dengan nilai respon gerak *pitch*, karakteristik grafik yang terjadi pada respon gerak *pitch* serupa dengan karakteristik respon gerak *surge*. Nilai *pitch* terbesar terletak pada arah pembebanan 0° sedangkan nilai terkecil terletak pada arah pembebanan 90°.

Gambar 4.67 Respon gerak *yaw* SSP (a) dan *Shuttle Tanker* (b) pada kondisi *side by side offloading* kondisi 1

Nilai respon gerak *yaw* pada SSP cenderung lebih kecil dibandingkan respon gerak pada *Shuttle Tanker*. Hal ini disebabkan karena *Shuttle Tanker* memiliki luas penampang terhadap arah pembebanan lebih panjang dan lebih lebar dibanding SSP yang memiliki bentuk dasar silinder. Nilai respon gerak *yaw* terbesar terjadi pada arah pembebanan 45°.

4.6.3 Analisis respon gerak pada skenario side by side offloading kondisi 2 Secara umum, respon gerak yang terjadi pada operasi side by side offloading kondisi 2 memilik karakteristik tren yang sama dengan kondisi 1. Namun, besarnya nilai respon gerak pada kedua objek jelas berbeda. Pada kondisi 2, respon gerak SSP bertambah seiring dengan berkurangnya muatan hidrokarbon minyak. Sedangkan nilai respon gerak *Shuttle Tanker* berkurang dikarenakan pertambahan muatan yang ditransfer dari SSP. Analisis dan pembahasan respon gerak pada kondisi 2 tidak lagi dijelaskan seperti pada kondisi 1 tetapi nilai hasil tabulasi respon gerak signifikan dan grafik dapat dilihat sebagai berikut.

Heading (°)	Mode gerak	Nilai signifikan				
	Widda gelak	2	3	4	5	
	Surge (m)	2.151	2.654	2.943	3.178	
	Sway (m)	0.081	0.178	0.326	0.521	
0	Heave (m)	0.285	0.369	0.443	0.506	
0	Roll (deg)	0.199	0.470	0.808	1.188	
	Pitch (deg)	0.970	1.536	2.075	2.575	
	Yaw (deg)	0.462	0.895	1.313	1.785	
	Surge (m)	0.967	1.835	2.279	2.460	
	Sway (m)	0.547	0.661	0.903	1.194	
45	Heave (m)	0.286	0.376	0.451	0.515	
45	Roll (deg)	0.838	1.386	1.899	2.377	
	Pitch (deg)	0.647	1.042	1.519	2.001	
	Yaw (deg)	1.950	2.174	2.499	2.887	
	Surge (m)	0.518	0.581	0.645	0.855	
	Sway (m)	0.778	1.306	1.634	1.901	
90	Heave (m)	0.272	0.340	0.398	0.459	
90	Roll (deg)	1.118	1.767	2.483	3.115	
	Pitch (deg)	0.080	0.209	0.380	0.595	
	Yaw (deg)	0.026	0.092	0.126	0.155	

Tabel 4.24 Respon gerak signifikan SSP pada kondisi *side by side* offloading kondisi 2

Tabel 4.25 Respon gerak signifikan *Shuttle Tanker* pada kondisi *side by side offloading* kondisi 2

Heading (°)	Moda gerak	Nilai signifikan				
		2	3	4	5	
	Surge (m)	0.232	0.348	0.466	0.585	
	Sway (m)	0.094	0.174	0.232	0.289	
0	Heave (m)	0.782	1.173	1.564	1.955	
0	Roll (deg)	0.065	0.097	0.129	0.162	
	Pitch (deg)	0.579	0.869	1.159	1.449	
	Yaw (deg)	0.262	1.290	1.721	2.128	

Heading (°)	Mada garak	Nilai signifikan				
	wioda gerak	2	3	4	5	
	Surge (m)	0.137	0.206	0.275	0.344	
	Sway (m)	0.150	0.225	0.300	0.375	
45	Heave (m)	1.004	1.506	2.008	2.510	
43	Roll (deg)	0.270	0.406	0.541	0.676	
	Pitch (deg)	0.475	0.712	0.950	1.187	
	Yaw (deg)	1.950	2.174	2.499	2.887	
	Surge (m)	0.047	0.058	0.078	0.098	
	Sway (m)	0.221	0.332	0.442	0.553	
00	Heave (m)	0.487	0.792	1.056	1.320	
90	Roll (deg)	1.238	1.857	2.476	3.095	
	Pitch (deg)	0.199	0.298	0.397	0.497	
	Yaw (deg)	0.262	0.895	1.313	1.685	

Tabel 4.25 Respon gerak signifikan *Shuttle Tanker* pada kondisi *side by side offloading* kondisi 2 (lanjutan)

Kondisi perbandingan respon gerak struktur SSP dan *Shuttle Tanker* pada setiap moda gerak dapat dilihat pada gambar 4.68 sampai 4.73

Gambar 4.68 Respon gerak *surge* SSP (a) dan *Shuttle Tanker* (b) pada kondisi *side by side offloading* kondisi 2

Gambar 4.69 Respon gerak *sway* SSP (a) dan *Shuttle Tanker* (b) pada kondisi *side by side offloading* kondisi 2

Gambar 4.71 Respon gerak *roll* SSP (a) dan *Shuttle Tanker* (b) pada kondisi *side by side offloading* kondisi 2

Gambar 4.72 Respon gerak *pitch* SSP (a) dan *Shuttle Tanker* (b) pada kondisi *side by side offloading* kondisi 2

Gambar 4.73 Respon gerak *yaw* SSP (a) dan *Shuttle Tanker* (b) pada kondisi *side by side offloading* kondisi 2

4.6.4 Analisis respon gerak pada skenario s*ide by side offloading* kondisi 3 Sama dengan analisis pada kondisi 2, analisis dan pembahasan respon gerak pada kondisi 3 tidak lagi dijelaskan seperti pada kondisi 1 tetapi nilai hasil tabulasi respon gerak signifikan dan grafik dapat dilihat sebagai berikut.

Heading (°)	Moda gerak	Nilai signifikan				
	Widda gerak	2	3	4	5	
	Surge (m)	2.207	2.688	3.047	3.451	
	Sway (m)	0.188	0.417	0.674	0.958	
0	Heave (m)	0.608	0.911	1.215	1.519	
0	Roll (deg)	0.257	0.490	0.859	1.378	
	Pitch (deg)	1.079	1.556	2.130	2.721	
	Yaw (deg)	0.600	1.190	1.721	2.128	
	Surge (m)	0.990	1.500	2.100	2.510	
	Sway (m)	0.587	0.672	1.031	1.480	
45	Heave (m)	0.764	0.996	1.328	1.640	
45	Roll (deg)	0.880	1.853	2.470	3.088	
	Pitch (deg)	0.680	1.091	1.562	2.067	
	Yaw (deg)	2.245	2.682	3.119	3.535	
	Surge (m)	0.799	0.887	0.896	0.956	
	Sway (m)	0.987	1.549	1.857	2.210	
90	Heave (m)	0.453	0.680	0.907	1.133	
90	Roll (deg)	1.480	2.077	2.717	3.524	
	Pitch (deg)	0.139	0.218	0.391	0.648	
	Yaw (deg)	0.040	0.129	0.158	0.183	

Tabel 4.26 Respon gerak signifikan SSP pada kondisi *side by side* offloading kondisi 3

Tabel 4.27 Respon gerak signifikan *Shuttle Tanker* pada kondisi *side* by side offloading kondisi 3

Heading (°)	Mada aarali	Nilai signifikan				
	wioda gerak	2	3	4	5	
	Surge (m)	0.121	0.182	0.243	0.305	
	Sway (m)	0.028	0.042	0.056	0.070	
0	Heave (m)	0.608	0.911	1.215	1.519	
0	Roll (deg)	0.026	0.039	0.052	0.065	
	Pitch (deg)	0.559	0.838	1.117	1.397	
	Yaw (deg)	0.055	0.310	0.638	0.929	

Heading (°)	Moda gerak	Nilai signifikan			
		2	3	4	5
45	Surge (m)	0.099	0.150	0.200	0.251
	Sway (m)	0.112	0.168	0.223	0.279
	Heave (m)	0.964	1.446	1.928	2.410
	Roll (deg)	0.265	0.397	0.529	0.661
	Pitch (deg)	0.345	0.517	0.689	0.861
	Yaw (deg)	0.499	0.748	0.998	1.247
90	Surge (m)	0.039	0.030	0.041	0.051
	Sway (m)	0.141	0.211	0.282	0.352
	Heave (m)	0.453	0.680	0.907	1.133
	Roll (deg)	0.880	1.853	2.470	3.088
	Pitch (deg)	0.139	0.209	0.278	0.348
	Yaw (deg)	0.038	0.087	0.116	0.145

Tabel 4.27 Respon gerak signifikan *Shuttle Tanker* pada kondisi *side by side offloading* kondisi 3 (lanjutan)

Kondisi perbandingan respon gerak struktur SSP dan *Shuttle Tanker* pada setiap moda gerak dapat dilihat pada gambar 4.74 sampai 4.79

Gambar 4.74 Respon gerak *surge* SSP (a) dan *Shuttle Tanker* (b) pada kondisi *side by side offloading* kondisi 3

Gambar 4.75 Respon gerak *sway* SSP (a) dan *Shuttle Tanker* (b) pada kondisi *side by side offloading* kondisi 3

Gambar 4.77 Respon gerak *roll* SSP (a) dan *Shuttle Tanker* (b) pada kondisi *side by side offloading* kondisi 3

Gambar 4.78 Respon gerak *pitch* SSP (a) dan *Shuttle Tanker* (b) pada kondisi *side by side offloading* kondisi 3

Gambar 4.79 Respon gerak *yaw* SSP (a) dan *Shuttle Tanker* (b) pada kondisi *side by side offloading* kondisi 3

4.6.5 Analisis kondisi kritis untuk setiap kasus berdasarkan respon gerak

Berdasarkan hasil analisis dari setiap kasus yang sudah dilakukan, didapatkan gambaran mengenai posisi kedua objek ketika proses *side by side offloading* berlangsung. Kondisi kritis dalam analisis ini mengacu kepada gabungan gerak *sway*, *heave*, dan *roll* pada respon gerak maksimum. Ketiga gerakan tersebut menjadi moda gerak penentu sistem *side by side offloading* dalam berjalan dengan aman atau tidak. Hasil yang sudah diperoleh tersebut memudahkan penarikan simpulan mengenai sampai pada batas kondisi berapakah operasi *side by side offloading* berada dalam batas aman dilakukan. Berikut ini rangkuman mengenai kondisi kritis pada

setiap kasus yang bisa menjadi representasi dari aman atau tidaknya operasi *side by side offloading* untuk dilakukan.

KONDISI 1							
		Nilai maksimum (m)					
Heading	Moda gerak	Hs 2	Hs 3	Hs 4	Hs 5		
8		meter	meter	meter	meter		
	SSP sway	0.701	0.758	0.816	0.874		
	SSP heave	0.312	0.450	0.676	0.910		
0	SSP roll	0.213	0.470	0.808	1.188		
0	Shuttle Tanker sway	-0.883	-0.897	-0.911	-0.925		
	Shuttle Tanker heave	1.900	2.242	3.653	5.062		
	Shuttle Tanker roll	-0.988	-5.125	-6.776	-8.303		
45	SSP sway	0.922	1.041	1.290	1.556		
	SSP heave	0.773	0.942	1.195	1.591		
	SSP roll	0.859	1.288	1.718	2.147		
	Shuttle Tanker sway	-1.240	-1.296	-1.352	-1.527		
	Shuttle Tanker heave	1.560	3.342	5.125	5.909		
	Shuttle Tanker roll	-2.963	-5.173	-8.782	-11.947		
	SSP sway	1.053	1.243	1.494	1.861		
	SSP heave	0.277	0.414	0.523	0.714		
00	SSP roll	2.828	4.835	6.266	8.194		
90	Shuttle Tanker sway	-1.650	-1.720	-1.787	-2.179		
	Shuttle Tanker heave	0.829	1.031	2.532	3.662		
	Shuttle Tanker roll	-4.716	-6.766	-9.276	-12.628		

Tabel 4.28 Rangkuman kondisi kritis *side by side offloading* berdasarkan respon gerak pada kondisi 1

Tabel 4.29 Rangkuman kondisi kritis side	e by	side	offloading
--	------	------	------------

KONDISI 2							
		Nilai maksimum (m)					
Heading	Moda gerak	Hs 2	Hs 3	Hs 4	Hs 5		
		meter	meter	meter	meter		
	SSP sway	0.721	0.797	0.945	1.140		
	SSP heave	0.603	0.823	1.127	1.298		
0	SSP roll	0.963	1.445	1.927	2.408		
0	Shuttle Tanker sway	-0.332	-0.616	-0.821	-1.027		
	Shuttle Tanker heave	0.782	1.508	2.678	3.849		
	Shuttle Tanker roll	-0.963	-2.344	-4.487	-6.691		
-	SSP sway	0.934	1.124	1.361	1.582		
	SSP heave	0.797	1.216	1.793	1.860		
45	SSP roll	0.908	1.386	1.899	2.377		
45	Shuttle Tanker sway	-0.730	-0.996	-1.262	-1.407		
	Shuttle Tanker heave	1.103	2.389	3.848	5.305		
	Shuttle Tanker roll	-2.284	-3.915	-5.346	-7.484		
	SSP sway	1.120	1.648	1.975	2.243		
	SSP heave	0.595	0.799	1.002	1.200		
0.0	SSP roll	2.963	5.772	7.696	9.620		
90	Shuttle Tanker sway	-1.003	-1.395	-1.776	-1.832		
	Shuttle Tanker heave	0.548	0.792	1.408	2.259		
	Shuttle Tanker roll	-4.135	-6.203	-8.620	-12.537		

berdasarkan respon gerak pada kondisi 2

KONDISI 3							
		Nilai maksimum (m)					
Heading	Moda gerak	Hs 2	Hs 3	Hs 4	Hs 5		
		meter	meter	meter	meter		
	SSP sway	-0.748	-0.977	-1.234	-1.518		
	SSP heave	0.667	1.104	1.558	1.757		
0	SSP roll	-0.963	-1.445	-1.927	-2.408		
0	Shuttle Tanker sway	0.360	0.440	0.498	0.556		
	Shuttle Tanker heave	0.608	1.179	2.201	3.248		
	Shuttle Tanker roll	0.891	2.195	4.323	5.542		
	SSP sway	-0.956	-1.048	-1.399	-1.849		
	SSP heave	0.902	1.239	1.637	1.905		
15	SSP roll	-2.058	-3.342	-4.116	-5.145		
45	Shuttle Tanker sway	0.940	1.015	1.090	1.165		
	Shuttle Tanker heave	1.004	1.446	2.240	3.301		
	Shuttle Tanker roll	1.908	3.803	5.258	7.274		
	SSP sway	-1.224	-1.787	-2.094	-2.447		
	SSP heave	0.667	0.937	1.292	1.554		
00	SSP roll	-3.947	-5.921	-7.895	-9.868		
90	Shuttle Tanker sway	1.220	1.331	1.441	1.552		
	Shuttle Tanker heave	0.453	0.680	1.002	1.751		
	Shuttle Tanker roll	1.857	3.158	8.271	10.339		

Tabel 4.30 Rangkuman kondisi kritis side by side offloading

berdasarkan respon gerak pada kondisi 3

Peninjauan kondisi kritis pada setiap kasus berfungsi untuk mendapatkan informasi mengenai kemungkinan tubrukan yang terjadi antar struktur. Berikut ini adalah rangkuman ilustrasi dari kondisi kritis berdasarkan Tabel 4.28 sampai Tabel 4.30

Tabel 4.31 Ilustrasi kondisi kritis pada setiap kasus berdasarkan

respon gerak

	Kasus			
Kondisi	Heading	Hs	Ilustrasi	Keterangan
	(°)	(m)		
1	0	2		Operable
1	0	3		Operable

	Kasus			
Kondisi	Heading	Hs	Ilustrasi	Keterangan
Ronaisi	(°)	(m)		
1	0	4		Shut down
1	0	5		Shut down
1	45	2		Operable
1	45	3	- <u>}-</u>	Operable
1	45	4	<u>}</u>	Shut down
1	45	5	- <u></u>	Shut down
1	90	2		Operable
1	90	3		Operable

Tabel 4.31 Rangkuman ilustrasi kondisi kritis pada setiap kasus berdasarkan respon gerak (lanjutan)

	Kasus			
	Heading	Hs	Ilustrasi	Keterangan
Kondisi	(°)	(m)		
1	90	4		Shut down
1	90	5		Shut down
2	0	2		Operable
2	0	3		Operable
2	0	4		Operable
2	0	5		Shut down
2	45	2		Operable
2	45	3		Operable

Tabel 4.31 Rangkuman ilustrasi kondisi kritis pada setiap kasus berdasarkan respon gerak (lanjutan)

	Kasus			
Kandiai	Heading	Hs	Ilustrasi	Keterangan
Kondisi	(°)	(m)		
2	45	4		Operable
2	45	5		Shut down
2	90	2		Operable
2	90	3		Operable
2	90	4		Operable
2	90	5		Shut down
3	0	2		Operable
3	0	3	5-6-	Shut down

Tabel 4.31 Rangkuman ilustrasi kondisi kritis pada setiap kasus berdasarkan respon gerak (lanjutan)

	Kasus			
YZ 1	Heading	Hs	Ilustrasi	Keterangan
Kondisi	(°)	(m)		
3	0	4		Shut down
3	0	5	5-6-	Shut down
3	45	2		Operable
3	45	3	5-6-	Shut down
3	45	4	5-6-	Shut down
3	45	5	5-6-	Shut down
3	90	2	5-6-	Operable
3	90	3	5-6-	Shut down

Tabel 4.31 Rangkuman ilustrasi kondisi kritis pada setiap kasus berdasarkan respon gerak (lanjutan)

Kasus Ilustrasi Heading Hs Keterangan Kondisi (m) (°) 3 90 4 Shut down 90 5 3 Shut down

Tabel 4.31 Rangkuman ilustrasi kondisi kritis pada setiap kasus berdasarkan respon gerak (lanjutan)

Berdasarkan hasil rangkuman ilustrasi, maka dapat dijelaskan bahwa,

- Operasi *side by side offloading* kondisi 1, baik dari arah pembebanan 0°, 45°, maupun 90° hanya mampu dilakukan pada maksimal tinggi gelombang signifikan 3 m.
- Operasi *side by side offloading* kondisi 2, baik dari arah pembebanan 0°, 45°, maupun 90° hanya mampu dilakukan pada maksimal tinggi gelombang signifikan 4 m.
- Operasi *side by side offloading* kondisi 3, baik dari arah pembebanan 0°, 45°, maupun 90° hanya mampu dilakukan pada maksimal tinggi gelombang signifikan 2 m.

Maka, di antara ketiga skenario kondisi tersebut, operasi *side by side* yang paling aman adalah ketika kondisi 2 yakni ketika SSP berada pada kondisi 83% muatan dan *Shuttle Tanker* berada pada kondisi 60% muatan. Hal ini terjadi karena pada kondisi tersebut, sarat air masing-masing objek memungkinkan objek tersebut untuk bisa lebih bebas melakukan moda gerak. Sedangkan pada kondisi 3, sarat air yang dimiliki *Shuttle Tanker* tinggi, sehingga lebih banyak bagian yang tercelup dan membuat posisi lambung *Shuttle Tanker* berdekatan dengan *outer skirt* struktur SSP. Sehingga, dalam respon pergerakannya besar terutama pada moda gerak *heave* dan *roll*, lambung *Shuttle Tanker* bertubrukan dengan *outer skirt* SSP.

4.6.6 Analisis *tension* tali tambat pada aktivitas *side by side offloading*.

Dalam pengoperasian *side by side offloading*, terdapat 12 tali tambat dan 4 tali tambat kapal yang harus dianalisis. Analisis dilakukan dengan mengolah hasil *time history* selama 3 jam untuk mendapatkan nilai signifikan pada setiap tali untuk setiap skenario analisis. Berikut ini rangkuman nilai *tension* tali tambat untuk setiap kasus.

 Tabel 4.32 Tension mooring lines pada skenario side by side
 offloading kondisi 1

Heading (°) 0	Line	Nilai signifikan (kN)					
	Line	Hs 2 m	Hs 3 m	Hs 4 m	Hs 5 m		
	1	4207.970	4224.995	4242.768	4262.266		
	2	4690.820	4706.429	4722.284	4739.485		
	3	4443.602	4456.035	4467.480	4478.526		
	4	4447.219	4458.856	4469.024	4478.476		
0	5	4221.103	4252.856	4252.856	4269.898		
	6	4236.153	4260.026	4291.495	4308.385		
	7	4274.965	4456.566	4488.994	4507.854		
	8	3983.688	4010.600	4028.234	4471.531		
	9	6003.397	6007.503	6011.096	6014.319		
	10	2633.222	2636.090	2637.384	2995.477		
	11	2634.722	2667.398	2677.773	2684.393		
	12	6065.627	6073.147	6082.125	6092.477		
	1	3930.3619	3935.9091	3940.4584	3960.4552		
	2	4059.1886	4081.3074	4082.1534	4131.438		
	3	4111.1122	4131.8207	4132.9368	4179.6237		
	4	4179.8396	4180.033	4203.276	4203.4806		
	5	4317.371	4321.4049	4324.5373	4370.8076		
15	6	4323.3216	4327.0013	4331.5675	4373.5381		
45	7	4382.453	4393.9573	4397.3431	4424.2342		
	8	4641.2006	4643.0911	4660.9622	4673.8644		
	9	6190.304	6221.573	6259.462	6304.450		
	10	2778.203	2807.001	2841.907	2882.895		
	11	2802.026	2837.977	2881.413	2932.588		
	12	6226.887	6268.590	6319.594	6380.796		

Nilai signifikan (kN) Heading (°) Line Hs 4 m Hs 5 m Hs 2 m Hs 3 m 1 4049.732 4064.483 4078.197 4090.479 2 4558.749 4513.261 4529.753 4545.054 3 4243.401 4264.589 4284.373 4302.171 4 4242.768 4264.568 4284.966 4303.374 5 4204.542 4226.397 4246.861 4265.309

Tabel 4.32 Tension mooring lines pada skenario side by side

00	6	4252.507	4273.635	4293.358	4311.180
90	7	4523.988	4540.520	4555.851	4569.630
	8	4060.257	4074.984	4088.625	4100.869
	9	4230.592	4308.993	4385.835	4473.894
	10	2800.739	2866.038	2930.191	3001.775
	11	2800.620	2866.836	2931.091	3002.129
	12	4230.096	4309.697	4386.958	4474.000

offloading kondisi 1 (lanjutan)

Heading (9)	Line	Nilai signifikan (kN)				
Heading (°)		Hs 2 m	Hs 3 m	Hs 4 m	Hs 5 m	
	1	4356.882	4387.176	4413.850	4434.724	
	2	4839.412	4868.156	4892.883	4911.442	
	3	4599.350	4618.878	4633.666	4638.673	
	4	4603.090	4621.686	4632.136	4635.311	
	5	4319.128	4337.846	4378.102	4411.600	
0	6	4368.028	4385.675	4424.537	4455.465	
	7	4585.872	4612.592	4643.547	4677.101	
	8	4112.043	4136.322	4164.769	4195.053	
	9	6225.054	6227.600	6230.180	6232.634	
	10	2829.617	2831.036	2831.284	2831.758	
	11	2844.921	2865.446	2884.719	2893.110	
	12	6274.991	6301.414	6312.370	6323.792	
	1	4247.255	4260.556	4262.749	4298.787	
	2	4719.415	4728.541	4772.030	4786.262	
	3	4409.290	4411.181	4437.787	4494.749	
	4	4374.822	4402.996	4403.543	4433.181	
	5	4226.635	4246.162	4279.988	4317.131	
45	6	4278.086	4296.344	4329.587	4364.456	
45	7	4562.797	4578.090	4601.170	4616.686	
	8	4104.720	4117.499	4136.841	4147.300	
	9	6442.873	6483.010	6530.127	6584.596	
	10	2999.460	3054.850	3100.268	3153.067	
	11	3015.718	3092.077	3146.538	3209.808	
	12	6483.049	6544.337	6606.431	6678.696	

offloading kondisi 2

Heading (°)	Line	Nilai signifikan (kN)				
		Hs 2 m	Hs 3 m	Hs 4 m	Hs 5 m	
90	1	4169.277	4198.077	4223.130	4237.484	
	2	4632.620	4665.628	4696.433	4715.985	
	3	4342.170	4382.819	4429.162	4462.692	
	4	4338.161	4380.231	4428.940	4464.508	
	5	4297.922	4325.782	4373.910	4415.953	
	6	4349.155	4375.769	4422.521	4463.360	
	7	4642.675	4656.817	4688.194	4716.164	
	8	4178.687	4189.592	4214.980	4237.823	
	9	4377.239	4462.578	4572.516	4660.640	
	10	2937.035	3006.734	3090.283	3157.835	
	11	2936.932	3007.694	3091.815	3157.502	
	12	4377.170	4464.306	4574.939	4659.281	

Tabel 4.33 Tension mooring lines pada skenario side by side

offloading	kondisi 2	(lanjutan)

Tabel 4.34 Tension mooring lines pada skenario side by side

Useding (0)	Lina	Nilai signifikan (kN)					
Heading (°)	Line	Hs 2 m	Hs 3 m	Hs 4 m	Hs 5 m		
	1	4472.803	4476.306	4482.673	4489.767		
	2	4937.525	4952.567	4954.167	4964.105		
	3	4641.946	4663.556	4686.980	4692.510		
	4	4642.084	4660.145	4686.392	4694.263		
	5	4324.701	4352.200	4381.240	4425.487		
0	6	4368.378	4395.780	4424.927	4471.155		
0	7	4615.192	4618.400	4646.245	4688.043		
	8	4151.387	4152.829	4174.194	4210.947		
	9	6249.294	6265.111	6288.165	6322.329		
	10	2832.280	2843.637	2863.944	2893.121		
	11	2871.168	2877.443	2892.290	2927.793		
	12	6294.032	6302.499	6335.011	6379.137		
	1	4382.851	4386.262	4396.896	4402.037		
	2	4709.117	4847.383	4860.107	4867.250		
	3	4534.460	4536.684	4547.918	4583.266		
	4	4493.261	4527.227	4527.925	4542.691		
	5	4357.320	4377.758	4399.500	4421.734		
45	6	4399.058	4420.022	4442.212	4464.926		
40	7	4626.996	4648.865	4671.398	4694.171		
	8	4158.332	4177.583	4197.710	4218.101		
	9	6455.078	6589.472	6673.166	6713.808		
	10	3016.508	3101.632	3166.567	3199.667		
	11	3046.409	3117.105	3182.766	3219.059		
	12	6491.765	6614.308	6698.521	6744.632		

offloading kondisi 3

Heading (°)	Line	Nilai signifikan (kN)				
		Hs 2 m	Hs 3 m	Hs 4 m	Hs 5 m	
	1	4260.442	4270.541	4280.347	4289.869	
90	2	4730.226	4742.471	4754.291	4765.412	
	3	4458.082	4474.697	4491.447	4508.066	
	4	4459.965	4476.291	4492.948	4509.682	
	5	4469.605	4488.526	4525.487	4532.515	
	6	4521.815	4539.935	4571.155	4582.677	
	7	4788.043	4812.942	4820.591	4849.325	
	8	4310.947	4349.677	4354.028	4377.967	
	9	4386.526	4586.978	4689.695	4766.821	
	10	2955.782	3112.308	3190.766	3252.527	
	11	2979.866	3113.776	3193.027	3254.379	
	12	4429.858	4590.330	4693,985	4769.308	

Tabel 4.34 Tension mooring lines pada skenario side by side

Untuk mempermudah, analisis terhadap tension pada setiap

offloading kondisi 3 (lanjutan)

diwakili oleh satu line saja yakni line dengan tension skenario terbesar. Berikut ini grafik tension untuk setiap skenario

Gambar 4.80 *Tension line* 12 pada skenario *side by side offloading* kondisi 1 (a), kondisi 2 (b), dan kondisi 3 (c)

Besarnya nilai gaya tarik pada setiap tali berbeda satu sama lain tergantung pada beban yang mengenainya. Gambar 4.76 menunjukkan grafik nilai *tension* pada salah satu *line* yakni *line* 12. Baik pada kondisi 1, kondisi 2, maupun kondisi 3, nilai *tension* tertinggi terjadi pada arah pembebanan gelombang 45° sebesar 6380.796 kN untuk kondisi 1, 6678.696 kN, dan 6744.32 kN. *Tension* mengalami kenaikan secara berturut-turut pada kondisi 1, 2, dan 3. Hal ini terjadi akibat berkurangnya muatan hidrokarbon pada SSP yang menyebabkan semakin bertambahnya respon gerak pada struktur.

Selanjutnya, analisis *tension* juga perlu dilakukan terhadap tali tambat kapal yang menghubungkan SSP dengan *Shuttle Tanker*. Konfigurasi tali tambat dapat dilihat pada gambar 4.81

Gambar 4.81 Konfigurasi tali tambat kapal

Besarnya nilai gaya tarik yang terjadi untuk setiap skenario dapat dilihat pada Tabel 4.35

			KONDIGI 1					
KONDISET Uasding Nilsi signifikan (kN)								
Heading	Line	11.0	11.5					
(*)	1	Hs 2 m	Hs 3 m	Hs 4 m	Hs 5 m			
	1	102.80	126.50	141.08	180.95			
0	2	324.60	353.53	426.28	559.04			
	3	102.60	125.99	140.45	179.67			
	4	323.20	351.58	423.75	555.83			
	1	131.35	155.12	168.92	217.02			
45	2	311.07	400.77	495.91	587.92			
	3	131.09	155.11	180.44	216.40			
	4	311.03	400.43	495.14	586.57			
	1	574.60	612.31	760.17	880.83			
00	2	580.20	900.19	1020.63	1020.98			
90	3	573.65 610.75		750.38	880.18			
	4	580.10	890.60	1020.06	1020.07			
			KONDISI 2					
Heading	ling . Nilai signifikan (kN)							
(°)	Line	Hs 2 m	Hs 3 m	Hs 4 m	Hs 5 m			
0	1	140.24	167.03	190.95	219.93			
	2	326.82	425.24	517.59	605.49			
	3	139.84	166.54	192.53	219.03			
	4	326.75	424.63	516.38	603.59			
45	1	167.24	183.51	225.10	305.38			
	2	455.97	557.96	747.94	931.01			
	3	165.98	181.70	223.07	303.11			
	4	454.06	555.36	744.91	927.59			
	1	700.71	910.36	1210.81	1510.77			
0.0	2	619.28	959.11	1260.13	1360.39			
90	3	700.63	900.82	1210.01	1500.71			
	4	618.04	958.27	1250.18	1350.33			
			KONDISI 3					
Heading			Nilai signif	ikan (kN)				
(°)	Line	Hs 2 m	Hs 3 m	Hs 4 m	Hs 5 m			
	1	174.60	186.29	193.16	235.88			
	2	619.28	743.26	820.79	906.16			
0	3	173.65	184.73	186.66	233.32			
	4	618.04	740.96	817 55	902.19			
	1	164 37	177.12	203.95	255.97			
	2	449.00	528.33	645.89	805.58			
45	3	163 54	175.77	202.36	253 73			
		105.54	525.50	642.35	801.37			
	1	641.00	820.15	1111 05	1500 1/			
	2	600 97	1020.13	15/0 10	16/0.95			
90	2	640.92	011 60	1340.19	1400.20			
	3	040.83	δ11.0δ 1010.49	1110.18	1490.30			
	4	690.67	1010.48	1530.17	1630.78			

Tabel 4.35 Tension tali tambat kapal pada aktivitas side by side

offloading

Sama halnya dengan analisis *tension* pada *mooring line*, analisis terhadap *tension* tali tambat kapal pada setiap skenario diwakili oleh satu *line* saja yakni *line* dengan *tension* terbesar. Berikut ini grafik *tension* untuk setiap skenario.

Gambar 4.82 *Tension* tali tambat kapal 1 pada skenario *side by side offloading* kondisi 1 (a), kondisi 2 (b), dan kondisi 3 (c)

Grafik pada gambar 4.82 menunjukkan nilai terbesar tali tambat kapal terjadi pada arah pembebanan 90°. Hal ini terjadi karena tali tambat kapal difungsikan untuk menahan respon struktur *sway* dan *roll* untuk agar posisi SSP dan *Shuttle Tanker* dapat berada dalam batas aman. Nilai *tension* meningkat berturut-turut dari kondisi 1, lalu kondisi 2, dan kondisi 3 dikarenakan bertambahnya *displacement* pada *Shuttle Tanker* akibat muatan hidrokarbon minyak hasil transfer dari SSP.

4.6.7 Analisis kondisi kritis untuk setiap kasus berdasarkan tension

Setelah menganalisis besarnya *tension* yang terjadi baik pada *mooring line* maupun pada tali tambat kapal, diperlukan adanya pengecekan untuk mengetahui apakah sistem tambat berada dalam batas aman. Pengecekan *safety factor* mengacu kepada nilai *tension* terbesar pada setiap skenario.

Berikut ini hasil rangkuman dari *tension* yang didapat dari keseluruhan pengolahan kasus. Nilai *safety factor* yang harus dipenuhi agar operasi dikatakan aman pada *mooring* untuk kondisi *intact* adalah > 1.67 sedangkan nilai *safety factor* untuk tali tambat kapal dengan material dasar sintetis adalah > 2.

Tabel 4.36 Rangkuman kondisi kritis pada setiap kasus berdasarkan *tension mooring line*

Kondisi	Heading (°)	Hs (m)	Tension mooring (kN)	MBL mooring (kN)	Safety Factor mooring line
1	0	2	6065.63	14336.00	2.36
1	0	3	6073.15	14336.00	2.36
1	0	4	6082.12	14336.00	2.36
1	0	5	6092.48	14336.00	2.35
1	45	2	6226.89	14336.00	2.30
1	45	3	6268.59	14336.00	2.29
1	45	4	6319.59	14336.00	2.27
1	45	5	6380.80	14336.00	2.25
1	90	2	4523.99	14336.00	3.17
1	90	3	4540.52	14336.00	3.16
1	90	4	4555.85	14336.00	3.15
1	90	5	4569.63	14336.00	3.14
2	0	2	6274.99	14336.00	2.28
2	0	3	6301.41	14336.00	2.28

Kondisi	Heading (°)	Hs (m)	Tension mooring (kN)	MBL mooring (kN)	Safety Factor mooring line
2	0	4	6312.37	14336.00	2.27
2	0	5	6323.79	14336.00	2.27
2	45	2	6483.05	14336.00	2.21
2	45	3	6544.34	14336.00	2.19
2	45	4	6606.43	14336.00	2.17
2	45	5	6678.70	14336.00	2.15
2	90	2	4642.67	14336.00	3.09
2	90	3	4665.63	14336.00	3.07
2	90	4	4696.43	14336.00	3.05
2	90	5	4716.16	14336.00	3.04
3	0	2	6294.03	14336.00	2.28
3	0	3	6302.50	14336.00	2.27
3	0	4	6335.01	14336.00	2.26
3	0	5	6379.14	14336.00	2.25
3	45	2	6491.76	14336.00	2.21
3	45	3	6614.31	14336.00	2.17
3	45	4	6698.52	14336.00	2.14
3	45	5	6744.63	14336.00	2.13
3	90	2	4788.04	14336.00	2.99
3	90	3	4812.94	14336.00	2.98
3	90	4	4820.59	14336.00	2.97
3	90	5	4849.32	14336.00	2.96

Tabel 4.36 Rangkuman kondisi kritis pada setiap kasus

UCIUasaikan lension mooring line (lanjulan	berdasarkan	tension	mooring	line (lanjutan
--	-------------	---------	---------	--------	----------

Tabel 4.37 Rangkuman kondisi kritis pada setiap kasus

berdasarkan tension tali tambat kapal

Kondisi	Heading (°)	Hs (m)	Tension tali tambat kapal (kN)	MBL tali tambat (kN)	<i>Safety</i> <i>Factor</i> tali tambat	Keterangan
1	0	2	324.60	1538.46	4.74	Operable
1	0	3	353.53	1538.46	4.35	Operable
1	0	4	426.28	1538.46	3.61	Operable
1	0	5	559.04	1538.46	2.75	Operable
1	45	2	311.07	1538.46	4.95	Operable
1	45	3	400.77	1538.46	3.84	Operable
1	45	4	495.91	1538.46	3.10	Operable
1	45	5	587.92	1538.46	2.62	Operable
1	90	2	580.20	1538.46	2.65	Operable
1	90	3	900.19	1538.46	1.71	Shut down
1	90	4	1020.63	1538.46	1.51	Shut down
1	90	5	1020.98	1538.46	1.51	Shut down
2	0	2	326.82	1538.46	4.71	Operable

Tabel 4.37 Rangkuman kondisi kritis pada setiap kasus

Kondisi	Heading (°)	Hs (m)	<i>Tension</i> tali tambat kapal (kN)	MBL tali tambat (kN)	<i>Safety</i> <i>Factor</i> tali tambat	Keterangan
2	45	3	557.96	1538.46	2.76	Operable
2	45	4	747.94	1538.46	2.06	Operable
2	45	5	931.01	1538.46	1.65	Shut down
2	90	2	700.71	1538.46	2.20	Operable
2	90	3	959.11	1538.46	1.60	Shut down
2	90	4	1260.13	1538.46	1.22	Shut down
2	90	5	1510.77	1538.46	1.02	Shut down
3	0	2	619.28	1538.46	2.48	Operable
3	0	3	743.26	1538.46	2.07	Operable
3	0	4	820.79	1538.46	1.87	Shut down
3	0	5	906.16	1538.46	1.70	Shut down
3	45	2	449.00	1538.46	3.43	Operable
3	45	3	528.33	1538.46	2.91	Operable
3	45	4	645.89	1538.46	2.38	Operable
3	45	5	805.58	1538.46	1.91	Shut down
3	90	2	690.87	1538.46	2.23	Operable
3	90	3	1020.28	1538.46	1.51	Shut down
3	90	4	1540.19	1538.46	1.00	Shut down
3	90	5	1640.85	1538.46	0.94	Shut down

berdasarkan tension tali tambat kapal (lanjutan)

4.7 ANALISIS OPERABILITAS SSP DI PERAIRAN BLOK MASELA

Nilai operabilitas dalam penelitian ini terbagi menjadi dua yakni kemampuan SSP beroperasi secara tunggal dan kemampuan SSP melakukan aktivitas *side by side offloading* dengan *shuttle tanker*.

Analisis pada jenis operabilitas ketika pengoperasian tunggal mengarah kepada keadaan lingkungan yang ditunjukkan dengan nilai pada periode ulang, dalam hal ini tinggi gelombang signifikan. Berdasarkan hasil pembahasan pada bagian sebelumnya, SSP dengan konfigurasi tali tambat sedemikian dinyatakan mampu beroperasi sampai pada batas rentang gelombang periode ulang 100 tahunan. Hal ini dibuktikan dengan nilai *safety factor* yang tidak kurang dari syarat batas yang telah ditetapkan.

Dalam penelitian ini, operabilitas lebih dititkberatkan pada kemampuan SSP melakukan aktivitas *side by side offloading* dengan *shuttle tanker*. Operabilitas diasumsikan hanya dipengaruhi oleh faktor cuaca yakni kondisi lingkungan di lokasi setempat. Dua aspek yang sangat berpengaruh dalam analisis operabilitas fase ini adalah posisi kedua struktur, dalam artian mengalami tubrukan atau tidak, dan kemampuan tali tambat baik *mooring lines* maupun tali tambat kapal dalam menahan beban akibat respon gerak yang terjadi. Dari hasil rangkuman tiap kondisi kritis untuk setiap kasus yang dianalis, maka dapat ditentukan nilai operabilitasnya sebagai berikut.

Kondisi	Heading (°)	Hs (m)	Respon gerak Tension		Hasil akhir	
1	0	2	Operable	Operable Operable		
1	0	3	Operable	Operable Operable		
1	0	4	Shut down Operable		Shut down	
1	0	5	Shut down	Operable	Shut down	
1	45	2	Operable	Operable	Operable	
1	45	3	Shut down	Operable	Shut down	
1	45	4	Shut down	Operable	Shut down	
1	45	5	Shut down	Operable	Shut down	
1	90	2	Operable	Operable	Operable	
1	90	3	Operable	Shut down	Shut down	
1	90	4	Shut down	Shut down	Shut down	
1	90	5	Shut down	Shut down	Shut down	
2	0	2	Operable	Operable	Operable	
2	0	3	Operable	Operable	Operable	
2	0	4	Shut down	Operable	Shut down	
2	0	5	Shut down	Operable	Shut down	
2	45	2	Operable	Operable	Operable	
2	45	3	Shut down	Operable	Shut down	
2	45	4	Shut down	Operable	Shut down	
2	45	5	Shut down	Shut down	Shut down	
2	90	2	Operable	Operable	Operable	
2	90	3	Operable	Shut down	Shut down	
2	90	4	Shut down	Shut down	Shut down	
2	90	5	Shut down	Shut down	Shut down	
3	0	2	Operable	Operable	Operable	
3	0	3	Shut down	Operable	Shut down	
3	0	4	Shut down	Shut down	Shut down	
3	0	5	Shut down	Shut down	Shut down	
3	45	2	Operable	Operable	Operable	
3	45	3	Shut down	Operable	Shut down	
3	45	4	Shut down	Operable	Shut down	
3	45	5	Shut down	Shut down	Shut down	
3	90	2	Operable	Operable	Operable	
3	90	3	Shut down	Shut down	Shut down	
3	90	4	Shut down	Shut down	Shut down	
3	90	5	Shut down	Shut down	Shut down	

Tabel 4.38 Kondisi akhir keseluruhan side by side offloading

Dari olahan yang sudah dilakukan tersebut, maka dapat diketahui bahwa proses *side by side offloading* berada dalam kondisi aman sampai pada batas tinggi gelombang signifikan 2 m. Lebih lanjut, kondisi batas tersebut kemudian dikorelasikan dengan kondisi lingkungan setempat yakni data sebaran gelombang.

		Hs (m)					
		0.1 - 1	1.1 - 2	2.1 - 3	3.1 - 4	4.1 - 5	Total
Tp (s)	0.1 - 2	0	0	0	0	0	0
	2.1 - 4	0.58	0	0	0	0	0.58
	4.1 - 6	9.51	4.43	0	0	0	13.94
	6.1 - 8	5.12	6.9	4.74	0.03	0	16.79
	8.1 - 10	8.2	3.5	5.6	0.78	0.04	18.12
	10.1 - 12	10.8	20.8	0.15	0.01	0.01	31.77
	12.1 - 14	9.3	2.68	0.02	0	0	12
	14.1 - 16	2.93	2.46	0.04	0	0	5.43
	16.1 - 18	0.42	0.77	0.03	0	0	1.22
	18.1 - 20	0.05	0.096	0	0	0	0.146
Total		46.91	41.636	10.58	0.82	0.05	100.0
Kumulatif		46.9	88.5	99.1	99.9	100.0	

Tabel 4.39 Korelasi kondisi batas dengan data sebaran gelombang Blok

Tabel berwarna merah menunjukkan kondisi sudah melampaui syarat batas sehingga tidak mungkin lagi dilakukan operasi sedangkan tabel berwarna hijau merupakan daerah aman dilakukannya operasi *side by side offloading*. Berdasarkan persamaan operabilitas yang sudah dijelaskan di bagian sebelumnya yakni persamaan (2.19), nilai operabilitas SSP dalam melakukan *side by side offloading* dengan *Shuttle Tanker* berkapasitas 35000 DWT adalah 88.55%.

(halaman ini sengaja dikosongkan)

BAB V PENUTUP

5.1 SIMPULAN

Dari hasil analisis yang telah dilakukan terhadap interaksi hidrodinamis antara SSP dengan *Shuttle Tanker*, maka dapat disimpulkan bahwa

- Pada kondisi tertambat dan beroperasi tunggal dengan dikenai beban lingkungan operasi, FPSO berlambung silinder Sevan mengalami respon gerak terbesar pada kondisi muatan 75% pada arah pembebanan 0° untuk gerak surge dan pitch, arah pembebanan 45° untuk gerak heave dan yaw, serta arah pembebanan 90° untuk gerak sway dan roll. Tension yang terjadi pada mooring line berada pada rentang nilai 2000 hingga 7000 kN rentang nilai safety factor 2 hingga 3.
- 2. Pada kondisi operasi side by side offloading, analisis lingkungan divariasikan sesuai dengan data sebaran gelombang. Tren kenaikan nilai tension dan ekskursi berbanding lurus dengan kenaikan nilai tinggi gelombang signifikan. Dari tiga macam arah pembebanan yang dilakukan, arah 0° berpengaruh pada respon gerak *surge* dan *pitch*, arah pembebanan 45° untuk gerak *heave* dan *yaw*, serta arah pembebanan 90° untuk gerak sway dan roll. Tension yang terjadi pada mooring line berada pada rentang nilai 2000 hingga 7000 kN. Tension yang terjadi pada tali tambat kapal berada pada rentang nilai 200 hingga 1500 kN dengan rentang nilai safety factor 0 hingga 3. Peluang terjadinya tubrukan yang terjadi antara SSP dengan Shuttle Tanker terbesar terletak pada analisis kondisi 3 yakni ketika muatan FPSO 75% dan muatan Shuttle Tanker 90%. Kondisi yang riskan tubrukan tersebut terjadi dikarenakan adanya outer skirt pada bagian bawah FPSO yang berdekatan dengan lambung kapal akibat perubahan sarat air kedua struktur ketika offloading terjadi.
- Analisis operabilitas yang dilakukan terhadap SSP di perairan Blok Masela terdiri dari dua bagian yakni analisis operabilitas ketika SSP beroperasi tunggal tanpa adanya aktivitas offloading dan analisis ketika

SSP melakukan *side by side offloading* dengan *Shuttle Tanker* berkapasitas 35000 DWT. Diasumsikan operabilitas dalam penelitian kali ini hanya dipengaruhi oleh faktor lingkungan daerah lokasi. Analisis operabilitas operasi tunggal menghasilkan nilai operabilitas 100% dalam rentang kondisi lingkungan 1 tahunan sampai 100 tahunan. Sedangkan analisis operabilitas dari *side by side offloading* menghasilkan nilai 88.55% dengan batasan bahwa operasi *side by side offloading* antara SSP dengan *Shuttle Tanker* berkapasitas 35000 DWT hanya bisa dilakukan sampai pada tinggi gelombang signifikan 2 m.

5.2 SARAN

Kekurangsempurnaan penelitian ini masih ditemukan lantaran masih banyak hal-hal yang disederhanakan dan diabaikan, maka, untuk meningkatkan bahasan dalam penelitian selanjutnya, berikut ini beberapa saran yang dapat disampaikan

- 1. Diperlukan adanya analisis SSP mengikutsertakan pengaruh riser.
- 2. Analisis gaya yang terjadi pada *fender* perlu dilakukan.
- 3. Analisis *side by side offloading* dengan mempertimbangkan *standing wave.*
- 4. Analisis komparasi *offloading* dengan menggunakan dua metode lainnya yakni *tandem offloading* dan *offset side by side offloading*.
- 5. Analisis variasi jarak pada offloading berkonfigurasi offset side by side.

DAFTAR PUSTAKA

- ABS MODU. 2012. *Rules for Building and Classing*. American Bureau of Shipping.
- Afriana, R. 2011. Coupled Dynamic Analysis of Cylindrical FPSO, Moorings, and Riser Based on Numerical Simulation. Master Thesis of Department of Offshore Technology, Faculty of Science and Technology. Stavanger : University of Stavanger.
- Aghnia, M. Z. 2013. Analisis Operabilitas FSRU akibat Beban Lingkungan Berbasis Ranah Waktu. Tugas Akhir Jurusan Teknik Kelautan. Surabaya : Institut Teknologi Sepuluh Nopember.
- API RP 2SK 3rd edition. 2005. *Design and Analysis of Stationkeeping Systems for Floating Structures*. American Petroleum Institute.
- Barras, C. B. 2004. *Ship Design and Performance for Masters and Mates*. Elsevier Butterworth-Heinemann.
- Bhattacharyya, R. 1972. *Dynamics of Marine Vehicles*. New York : John Wileys and Sons.
- Bungawardani. 2007. Analisis Perilaku Dinamis FPSO dengan Sistem External Turret Mooring. Tugas Akhir Jurusan Teknik Kelautan. Surabaya : Institut Teknologi Sepuluh Nopember.
- BV. 2015. HydroSTAR v7.25 for Experts User Manual. Paris : Bureau Veritas.
- BV. 2014. Ariane7 User Manual. Paris : Bureau Veritas.
- Chakrabarti, S. K. 1987. *Hydrodynamics of Offshore Structure*. Boston : Computational Mechanics Publication Southampton.
- Chen, X. 2011. *Offshore Hydrodynamics and Applications*. The IES Journal Part A: Civil & Structural Engineering . Paris.
- Dianiswara, A. 2013. Kajian Operabilitas FSRU saat Siklus Offloading dengan Skema Side by Side akibat Pengaruh Cuaca. Tesis Program Magister Jurusan Teknik Kelautan. Surabaya : Institut Teknologi Sepuluh Nopember.
- Djatmiko, E B. 2012. Perilaku dan Operabilitas Bangunan Laut di Atas Gelombang Acak. Surabaya : ITS Press.

DNV OS E301. 2004. Position Mooring. Det Norske Veritas.

- Faltinsen, O. M. 1990. *Sea Loads on Ships and Offshore Structure*. Cambridge : Cambridge University Press.
- Fugro. 2012. Abadi Gas Field Development Metocean Criteria for Masela Field.
- Journée, J. M. J., et al. 2001. *Offshore Hydromechanics*. Delft : Delft University of Technology.
- Koo, B. J. dan M. H. Kim. 2006. Global Analysis of FPSO and Shuttle Tankers during Side by Side Offloading. Minerals Management Service under the MMS/OTRC Cooperative Research Agreement, 1435-01-99-CA 31003, Task Order 73604, MMS Project Number and OTC Industry Consortium. Texas.
- Kupras, L. K. 1976. Optimisation Method and Parametric Design in Precontracted Ship Design. International Shipbuilding Progress.
- Li, X, et al. 2006. Research on Motion Response of Soft Yoke Mooring FPSO System. Proceedings of the Sixteenth International Offshore and Polar Engineering Conference. San Francisco.
- Liu, Y. dan Miao Guoping. 1998. *Theory of Motion of Ships on Waves*. Shanghai : Shanghai Jiao Tong University Press.
- Mahdarreza A. 2010. Analisis Perilaku Floating LNG pada Variasi Metocean terhadap Externeal Turret Mooring System berbasis Simulasi Time Domain. Tugas Akhir Jurusan Teknik Kelautan. Surabaya : Institut Teknologi Sepuluh Nopember.
- Major, F. 2013. Benefits of a Cylindrically Shaped Floater for an FPSO Application in Cyclone Exposed Environments. Perth : INSTOK Deep Water Conference.
- OCIMF. 1994. Prediction of Wind and Current Loads on VLCCs, 2nd Edition. Oil Companies International Marine Forum.
- OCIMF. 1997. *Mooring Equipment Guidelines 2nd Edition*. Oil Companies International Marine Forum.
- Outlook for Energy. 2013. A view to 2040 < www.exxonmobil.com >

- Perwitasari, R. N. 2010. Hydrodynamics Interaction and Mooring Analysis for Offloading between FPSO and LNG Shuttle Tanker. Master Thesis of Department of Marine Technology. Trondheim : Norwegian University of Science and Technology.
- Portella, et al. 2001. Deepwater Mooring Systems Design and Analysis. PROJEMAR. Brazil.
- Prasiwi, Rizki Amalia. 2014. Analisis Perilaku FPSO (Floating Production Storage and Offloading) terhadap Internal Turret Mooring System Berbasis Simulasi Time Domain. Tugas Akhir Jurusan Teknik Kelautan. Surabaya : Institut Teknologi Sepuluh Nopember.
- Sevan Marine. 2011. Western Isles Development Project (WIDP) FPSO FEED Study - Mooring Analysis Report. 54850-SMA-J-RA-0010.
- Soetomo, J. 2010. *Hidrodinamika II*. Kumpulan Materi Kuliah Jurusan Teknik Kelautan. Surabaya : Institut Teknologi Sepuluh Nopember.
- Syvertsen, K. 2011. The SSP : A New Class of Hull for the Oil Industry. Trondheim.
- Tanker Shipping. 2014. *Tenacity Reflects a Determined Approach to Efficiency*. Tanker Shipping and Trade <<u>www.tankershipping.com</u>>
- The Yokohama Rubber Co. Ltd. 2006. *Yokohama Floating Fenders Pneumatic 50* & 60. Tokyo.
- Thurston, S. P. and T. R. Bard. 2003. *Brazil's Evolving Deepwater Risk Reward Profile*. Proceedings of 2003 Offshore Technology Conference, OTC 15052.
- Vryhof. 2000. Anchor Manual. Amsterdam : Vryhof Anchor.
- Wichers, J. E.W. 1988. Wave-current Interaction Effects on Moored Tankers in High Seas. Offshore Technology Conference Paper No. OTC5631. Houston.
- Wibowo, Y. A. 2014. Analisis Pengaruh Variasi Jarak Horizontal antara FSRU dan LNGC saat Side by Side Offloading Terhadap Perilaku Gerak Kapal dan Gaya Tarik Coupling Line. Tugas Akhir Jurusan Teknik Kelautan. Surabaya : Institut Teknologi Sepuluh Nopember.

BIODATA PENULIS

Maria Putri Rosari, merupakan mahasiswa Program Sarjana Jurusan Teknik Kelautan, Fakultas Teknologi Kelautan, Institut Teknologi Sepuluh Nopember, Surabaya. Lahir di Surabaya, 19 September 1994 dan menyelesaikan pendidikan Sekolah Menengah Atas pada tahun 2012 di SMA PL Santo Yosef, Surakarta. Pada tahun 2016, penulis menyelesaikan Tugas Akhir sebagai syarat memperoleh gelar Sarjana Teknik (S.T.) di Jurusan Teknik Kelautan, Fakultas Teknologi Kelautan, ITS. Sebagai mahasiswa, penulis aktif terlibat dalam kegiatan-kegiatan organisasi mahasiswa seperti Himpunan Mahasiswa Teknik Kelautan

dan Badan Eksekutif Mahasiswa. Penulis juga sering terlibat aktif dalam kegiatan-kegiatan sosial dalam bidang pendidikan seperti ITS Mengajar. Dalam menyelesaikan studinya, penulis juga sering dilibatkan dalam beberapa proyek rekayasa terkait bidang keilmuan Teknik Kelautan, meliputi proyek *risk assessment and integrity check* pada struktut Total E&P Indonesie, HCML *offshore jacket load out*, dan penelitian Kapal Perintis Ditjen Hubla. Penulis pernah menjalani magang kerja di PT ZEE Indonesia dan menguasai beberapa program terkait dengan bidang teknologi rekayasa lepas pantai, antara lain Bentley SACS, Bentley MOSES, Bentley Maxsurf, Orcina Orcaflex, BV HydroSTAR, dan BV Ariane.