

TUGAS AKHIR - KS 141501

KLASIFIKASI TEKS PERMINTAAN INFORMASI UNTUK APLIKASI ONLINE SHOP MENGGUNAKAN ALGORITMA SUPPORT VECTOR MACHINE (STUDI KASUS: BENTO SHOP)

DEA ANDIA RACHMAWATI NRP 5212 100 177

Dosen Pembimbing I Renny Pradina Kusumawardani, S.T., M.T

Dosen Pembimbing II Radityo Prasetianto.W, S.Kom, M.Kom

JURUSAN SISTEM INFORMASI Fakultas Teknologi Informasi Institut Teknologi Sepuluh Nopember Surabaya 2016

FINAL PROJECT - KS 141501

TEXT CLASSIFICATION OF INFORMATION REQUEST FOR ONLINE SHOP USING SUPPORT VECTOR MACHINE ALGORITHM (CASE STUDY: BENTO SHOP)

DEA ANDIA RACHMAWATI NRP 5212 100 177

Supervisor I Renny Pradina Kusumawardani, S.T., M.T

Supervisor II Radityo Prasetianto.W, S.Kom, M.Kom

INFORMATION SYSTEM DEPARTEMENT Faculty of Information Technology Institut Teknologi Sepuluh Nopember Surabaya 2016

LEMBAR PENGESAHAN

KLASIFIKASI TEKS PERMINTAAN
INFORMASI UNTUK APLIKASI ONLINE
SHOP MENGGUNAKAN ALGORITMA
SUPPORT VECTOR MACHINE (STUDI
KASUS: BENTO SHOP)

TUGAS AKHIR

Disusun untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Komputer pada Jurusan Sistem Informasi

Fakultas Teknologi Informasi Institut Teknologi Sepuluh Nopember

Oleh:

DEA ANDIA RACHMAWATI 5212 100 177

FERNOLOGI Surabaya, May 2016

KETUA

JURUSAN SISTEM INFORMASI

Dr. Ir. Aris Fjanyanto, M.Kom. NIP.19650310 199102 1 001

LEMBAR PERSETÚJUAN

KLASIFIKASI TEKS PERMINTAAN INFORMASI UNTUK APLIKASI ONLINE SHOP MENGGUNAKAN ALGORITMA SUPPORT VECTOR MACHINE (STUDI KASUS: BENTO SHOP)

TUGAS AKHIR

Disusun untuk Memenuhi Salah Satu Syarat
Memperoleh Gelar Sarjana Komputer
pada
Jurusan Sistem Informasi
Fakultas Teknologi Informasi
Institut Teknologi Sepuluh Nopember

DEA ANDIA RACHMAWATI 5212 100 177

Disetujui Tim Penguji: Tanggal Ujian : May 2016 Periode Wisuda: September 2016

Renny Pradina K, S.T., M.T (Pembimbing 1)

Radityo P.W, S.Kom. , M.Kom (Pembimbing 2)

Nur Aini R., S.kom, M.Sc.Eng (Pengui 1

Irmasari Hafidz, S.Kom, M.Sc (Pengaji 2)

KLASIFIKASI TEKS PERMINTAAN INFORMASI UNTUK APLIKASI ONLINE SHOP MENGGUNAKAN ALGORITMA SUPPORT VECTOR MACHINE

Nama Mahasiswa : Dea Andia Rachmawati

NRP : 5212 100 177

Jurusan : SISTEM INFORMASI FTIF-ITS
Dosen Pembimbing 1 : Renny Pradina K, S.T., M.T
Dosen Pembimbing 2 : Radityo P.W, S.Kom., M.Kom

ABSTRAK

Pemanfaatan teknologi dalam bidang perdagangan dan penjualan diantaranya E-Commerce semakin berkembang. Berdasarkan data statistik dari ICD (lembaga penelitian dan informasi Media Group Digital) diketahui bahwa dari tahun 2012 – 2015 pasar E-commerce di indonesia meningkat sebanyak 42%. Salah satu pemnfaatan E-Commerce adalah forbento.com. Forbento merupakan semi E-commerce yang menjual bento tools (alat-alat untuk membuar bento) melalui website dan menghubungi customer service dengan meggunakan aplikasi pengiriman pesan singkat blackberry messanger.

Pada penelitian sebelumnya yang dilakukan oleh Hudalizaman mengenai pengembangan aplikasi personal assistant untuk membantu mengetahui informasi produk menggunakan pengolahan bahasa alami berbasis python (2015) telah dibuat aplikasi untuk menangani pertanyaan mengenai informasi produk yang diberikan dalam bentuk bahasa alami.

Namun pada aplikasi tersebut, belum dapat membedakan query dan non query secara otomatis karena sistem hanya mampu membaca kata yang termasuk ke dalam kategori produk saja. Jika harus mencari satu persatu tentunya akan membutuhkan waktu yang lama. Oleh karena itu akan dilakukan klasifikasi teks sehingga dapat membedakan query (kata informasi produk) dan non query (non informasi produk) secara otomatis.

Metode yang digunakan dalam Tugas Akhir ini adalah Support Vector Machine. Pemilihan metode Support Vector Machine dalam klasifikasi teks ini dikarenakan metode Support Vector Machine (SVM) dapat memberikan solusi yang baik pada dataset yang besar dan meminimalisir terjadinya overfitting.

Tugas akhir ini menghasilkan model klasifikasi teks permintaan informasi yang memiliki nilai akurasi, presisi, recall dan F-Measure adalah 94.74%, 93.18%, 96.09%, dan 96.18%, sehingga hasil klasifikasi ini dapat dikategorikan baik. Dengan hasil ini diharapkan dapat membedakan teks query dan non query secara otomatis.

<u>Kata kunci</u>: E-Commerce, Forbento.com, Klasifikasi Teks, Informasi Produk, Support Vector Machine

TEXT CLASSIFICATION OF INFORMATION REQUEST FOR ONLINE SHOP USING SUPPORT VECTOR MACHINE ALGORITHM

Name : Dea Andia Rachmawati

NRP : 5212 100 177

Department : INFORMATION SYSTEM FTIF-ITS

Supervisor 1 : Renny Pradina K, S.T., M.T Supervisor 2 : Radityo P.W, S.Kom., M.Kom

ABSTRACT

The use of technology in the field of trade and the sale of such E-Commerce is growing. Based on statistics from the ICD (research institutes and information Media Group Digital) note that from the year 2012-2015 E-commerce market in Indonesia increased by 42%. one of the utilization of E-Commerce is forbento.com. Forbento is a semi E-commerce that selling bento tools (tools for making bento) through the website and contact the customer service by using short messaging applications blackberry messenger.

In a previous study conducted by Hudalizaman regarding personal assistant application development to help determine product information using natural language processing based on python (2015) has made an application to handle questions regarding the product information provided in the form of natural language.

But in the application, can not distinguish between queries and non-queries automatically because the system is only able to read words that fall into the category of products only. If you should find one by one, it will certainly take a long time. Therefore, it will be the classification of text that can distinguish queries (words of information products) and non query (non-information product) automatically.

The method used in this final project is a Support Vector Machine. The selection method of Support Vector Machine in text classification is because Support Vector Machine (SVM) method can provide a good solution on large datasets and minimize overfitting.

The final task is to produce a text classification model requests for information that have value accuracy, precision, recall and F-Measure is: 94.74%, 93.18%, 96.09%, and 96.18%, so the results of this classification can be considered good. These results are expected to help distinguish non-text query and query automatically.

Keywords: E-Commerce, Forbento.com, Klasifikasi Teks, Informasi Produk, Support Vector Machine

KATA PENGANTAR

Puji syukur penulis panjatkan atas kehadirat Tuhan Yang Maha Esa atas segala berkat dan rahmat-Nya lah penulis dapat menyelesaikan buku tugas akhir dengan judul "KLASIFIKASI TEKS PERMINTAAN INFORMASI UNTUK APLIKASI ONLINE SHOP MENGGUNAKAN ALGORITMA SUPPORT VECTOR MACHINE" yang merupakan salah satu syarat kelulusan pada Jurusan Sistem Informasi, Fakultas Teknologi Informasi, Institut Teknologi Sepuluh Nopember Surabaya.

Secara khusus penulis akan menyampaikan ucapan terima kasih yang sedalam-dalamnya kepada:

- Allah SWT yang telah memberi segala rahmat dan pencerahan untuk dapat menyelesaikan tugas belajar selama di Sistem Informasi ITS dan telah memberikan kemudahan serta kesehatan selama pengerjaan Tugas Akhir ini.
- 2. Kedua orang tua serta keluarga penulis yang selalu memberikan dukungan dan motivasi. Terima kasih atas doa dan dukungannya yang tiada henti.
- 3. Ibu Renny Pradina K, S.T., M.T dan Bapak Radityo P.W, S.Kom., M.Kom selaku dosen pembimbing yang telah meluangkan waktu dan pikiran di tengah kesibukan beliau untuk membimbing dan mengarahkan penulis dalam mengerjakan tugas akhir ini hingga selesai. Terima kasih atas waktu dan nasehatnya.
- 4. Ibu Nur Aini R.,S.kom, M.Sc.Eng dan Ibu Irmasari Hafidz, S.Kom, M.Sc selaku dosen penguji penulis yang selalu memberikan masukan yang meningkatkan kualitas dari Tugas Akhir ini.
- 5. Ibu Wiwik Anggraeni, S.Si., M.Kom selaku dosen wali penulis yang selalu memberikan motivasi dan saran selama penulis menempuh pendidikan S1.

- 6. Malik awab dan galih, yang sudah membantu penulis dan meyemangati penulis di masa masa sulit menjelang sidang.
- 7. Aditya Pramana yang selalu mendoakan, menyemangati penulis dan memberikan surprise yang tak terduga walaupun tidak bisa menemani penulis selama sidang berlangsung dan masa masa pengerjaan TA.
- 8. Para sahabat dekat yang selalu memberikan dukungan dan membantu penulis selama duduk dibangku perkuliahan sehingga bisa menyelesaikan Tugas Akhir ini (Widy, Nella, Desy, Janice, Danis, Piel).
- Teman-teman dari RDIB, ADDI dan Solaris (SI-2012) yang menjadi rekan seperjuangan penulis dalam Tugas Akhir dan membantu penulis selama kuliah di Sistem Informasi.
- 10. Seluruh dosen pengajar, staff, dan karyawan di Jurusan Sistem Informasi, FTIF ITS Surabaya yang telah memberikan ilmu dan bantuan kepada penulis selama ini.
- 11. Serta semua pihak yang telah membantu dalam pengerjaan Tugas Akhir ini yang belum mampu penulis sebutkan diatas.

Terima kasih atas segala bantuan, dukungan, serta doanya. Semoga Tuhan senantiasa memberkati dan membalas kebaikan-kebaikan yang telah diberikan kepada penulis.

Penulis pun menyadari bahwa Tugas Akhir ini masih belum sempurna dengan segala kekurangan di dalamnya. Oleh karena itu penulis memohon maaf atas segala kekurangan yang ada di dalam Tugas Akhir ini dan bersedia menerima kritik dan saran. Semoga Tugas Akhir ini dapat bermanfaat bagi seluruh pembaca.

Surabaya, Juli 2016

DAFTAR ISI

ABSTI	RAK	iii
ABSTI	RACT	v
KATA	PENGANTAR	vii
	AR ISI	
DAFT	AR GAMBAR	xiii
DAFT	AR TABEL	XV
	AR KODE	
BAB I	PENDAHULUAN	1
1.1	Latar Belakang	
1.2	Rumusan permasalahan	2
1.3	Batasan Permasalahan	
1.4	Tujuan	
1.5	Manfaat	
1.6	Relevansi	3
BAB II	TINJAUAN PUSTAKA	
2.1	Studi Sebelumnya	
2.2	Dasar Teori	
	2.1 Forbento.com	
2.	2.2 E-Commerce	11
2.	2.3 Klasifikasi Teks	
2.	2.4 Support Vector Machine	
2.	2.5 <i>Kernel</i>	
2.	2.6 Grid Search	
2.	2.7 Evaluasi Performa Klasifikasi	
BAB II	I METODE PENGERJAAN TUGAS AKHIR	
3.1	Penetapan Tujuan dan Studi Literatur	
3.2	Pengumpulan Data	
3.3	Tahap Praproses Teks	
3.4	Tahap Klasifikasi	
3.5	Evaluasi Hasil Uji	
3.6	Analisa Hasil dan Pembahasan	
3.7	Pembuatan Buku Tugas Akhir	

BAB IV PERANCANGAN	27
4.1 Pengumpulan dan pre-processing data	27
4.1.1 Pengumpulan data	
4.1.2 Pre-processing	
4.2 Pembuatan Model Support Vector Machine	
4.2.1 Menentukan Data Train dan Data Test	30
4.2.2 Membuat Dtm dan data frame	
4.2.3 Membuat label query dan non query untuk Data	
Train dan Data Test	31
4.2.4 Penggunaan metode grid search	
4.2.5 Membuat Model Klasifikasi SVM	
BAB V IMPLEMENTASI	
5.1 Implementasi Data	
5.2 Proses Klasifikasi	
5.2.1 Menginputkan Data	
5.2.2 Praproses Teks	
5.2.3 Menentukan Data Train dan Data Test	
5.2.4 Pembuatan DTM dan Data Frame	37
5.2.5 Membuat Label Query dan Non Query	
5.2.6 Klasifikasi menggunakan SVM	
5.2.7 Penggunaan Metode <i>Grid Search</i>	
5.2.8 Uji Model SVM	
5.3 Word Frequency Distribution	
BAB VI UJI COBA DAN ANALISIS HASIL	
6.1 Membuat Model Uji Coba	57
6.1.1 Uji Coba I	
6.1.2 Uji Coba III	
6.1.3 Uji Coba IV	
6.1.4Uji Coba V	
6.1.5 Uji Coba VI	
6.2 Hasil Uji Coba Model	
6.3 Uji Validasi	
6.4 Analisis Hasil Uji Coba Model	
6.4.1 Analisis Uji Validasi	
6.4.2 Analisis Perbandingan Uji Coba	
BAB VII KESIMPULAN DAN SARAN	87
7.1 Kesimpulan	

7.2 Saran	88
DAFTAR PUSTAKA	89
BIODATA PENULIS	93
LAMPIRAN A (SKENARIO UJI COBA)	1
UJI COBA I	1
UJI COBA II	2
UJI COBA III	3
UJI COBA IV	4
UJI COBA V	6
UJI COBA VI	7
LAMPIRAN B (PENGGUNAAN METODE	GRID
SEARCH)	1
Kernel Linear	
Kernel Linear 1	4
Kernel Radial 1	7
Kernel Radial	
LAMPIRAN C (DAFTAR STOPWORDS)	1

Halaman ini sengaja dikosongkan

DAFTAR GAMBAR

Gambar 2.1alur pemesanan melalui website	11
Gambar 2.2 gambar terbaik yang memisahkan Class -	-1 dan
Class +1 (Romi Satria Wahono, 2015)	15
Gambar 3.1 Diagram Alur Metodologi Penelitian	23
Gambar 4.1 Contoh Data Query dan Non Query	28
Gambar 4.2 Langkah pembuatan model Support	Vector
Machine	29
Gambar 4.3 Model Klasifikasi Support Vector Machine.	32
Gambar 5.1 Grafik statistik data	35
Gambar 5.2 Grafik Distribusi Frekuensi Kata corpus lam	ıa45
Gambar 5.3 Distribusi seluruh kata corpus lama	46
Gambar 5.4 Grafik Distribusi Frekuensi Kata corpus bar	u51
Gambar 5.5 Gambar distribusi seluruh kata corpus baru.	52
Gambar 6.1 Grafik KeUji Coba II	59
Gambar 6.2 Grafik Kernel Linear 1	60
Gambar 6.3 Grafik Kernel Radial 1	61
Gambar 6.4 Grafik Kernel Radial	62

Halaman ini sengaja dikosongkan

DAFTAR TABEL

Tabel 2.1 Tabel Perbandingan Studi Sebelumnya	7
Tabel 2.2 Contoh Case Folding	
Tabel 2.3 Contoh Tokenizing	
Tabel 2.4 Contoh Filtering	
Tabel 2.5 Fungsi Kernel pada SVM	16
Tabel 2.6 Confusion Matrix	
Tabel 4.1 Contoh data sebelum dan setelah pre-processing	
Tabel 5.1 Hasil statistik	
Tabel 5.2 Tabel hasil perubahan ke dalam huruf kecil	36
Tabel 5.3 Tabel hasil penghapusan angka dan tanda baca	
Tabel 5.4 Top 50 Word Frequency Distribution corpus lama	
Tabel 5.5 Pembakuan kata pada corpus	
Tabel 5.6 Top 50 Word Frequency Distribution corpus lama	48
Tabel 5.7 50 Kata Teratas pada corpus lama	
Tabel 5.8 50 Kata Teratas pada corpus baru	
Tabel 6.1 Skenario Uji Coba	
Tabel 6.2 Nilai akurasi berdasarkan parameter	
Tabel 6.3 Nilai Akurasi corpus lama	
Tabel 6.4 Nilai Akurasi corpus baru	
Tabel 6.5 Tabel akurasi hasil uji coba model	
Tabel 6.6 Tabel Hasil Uji Validasi Model	
Tabel 6.7 Tabel perhitungan presisi, recall, F-Measure masin	
masing kelas	.68
Tabel 6.8 Perbandingan akurasi model uji coba II dan VI	
Tabel 6.9 Confusion Matrix model II	
Tabel 6.10 Teks yang diprediksi salah pada kelas query	
Tabel 6.11 Teks yang diprediksi salah pada kelas non-query	
Tabel 6.12 Confusion Matrik model Uji Coba V	
Tabel 6.13 Teks yang diprediksikan salah pada kelas query.	
Tabel 6.14 Tabel perbandingan model lama dan baru	
Tabel 6.15 Teks yang diprediksi salah pada kelas non-query	
Tabel 6.16 Tabel perbandingan model lama dan baru	

Halaman ini sengaja dikosongkan

DAFTAR KODE

Kode 5.1 Input data pada R	34
Kode 5.2 Merubah ke dalam bentuk corpus	
Kode 5.3 Merubah ke dalam bentuk huruf kecil	36
Kode 5.4 Penghapusan angka dan tanda baca	36
Kode 5.5 Membagi data menjadi data train dan data test	37
Kode 5.6 Pembuatan dtm untuk data train dan data test	37
Kode 5.7 Pembuatan data frame	38
Kode 5.8 Pelabelan untuk data train dan data test	38
Kode 5.9 Klasifikasi dengan svm	39
Kode 5.10 Grid Search dengan kernel linear	39
Kode 5.11 Grid Search dengan Kernel Radial	40
Kode 5.12 Uji dan Mengukur model svm	41
Kode 5.13 50 Distribusi frekuensi kata	41
Kode 5.14 Remove Stopwords Bahasa Indonesia	44

Halaman ini sengaja dikosongkan

BAB I PENDAHULUAN

Bab pendahuluan ini menjelaskan latar belakang masalah, rumusan masalah, batasan masalah, tujuan dan pengerjaan tugas akhir.

1.1 Latar Belakang

Perkembangan teknologi dan informasi pada era globalisasi saat ini semakin meningkat. Salah satunya pada bidang perdangan dan penjualan. Pemanfaatan teknologi dalam bidang perdagangan dan penjualan diantaranya adalah *E-Commerce*. Berdasarkan data statistik dari ICD (lembaga penelitian dan informasi Media Group Digital) diketahui bahwa dari tahun 2012 – 2015 pasar *E-commerce* di indonesia meningkat sebanyak 42% [1].

Pesatnya pertumbuhan E-Commerce di Indonesia didukung dengan data dari Kementrian Komunikasi dan Informasi diketahui bahwa nilai transaksi E-commerce pada tahun 2013 mencapai angka Rp 130 triliun. Pencapain nilai transaksi yang tinggi tersebut berbanding lurus dengan jumlah pengguna internet di Indonesia yang mencapai angka 82 juta orang atau sekitar 30% dari total penduduk di Indonesia [1].

Dengan pesatnya perkembangan E-commerce tersebut membuat banyak orang yang mulai menggunakan E-commerce sebagai transaksi jual beli salah satunya adalah website forbento.com. Forbento merupakan semi E-commerce yang menjual bento tools (alat-alat untuk membuar bento) melalui website dan menghubungi *customer service* dengan meggunakan aplikasi pengiriman pesan singkat *blackberry messanger*.

Pada penelitian sebelumnya yang dilakukan oleh Hudalizaman mengenai pengembangan aplikasi *Personal Assistant* untuk membantu mengetahui informasi produk menggunakan pengolahan bahasa alami berbasis python

(2015) telah dibuat aplikasi untuk menangani pertanyaan mengenai informasi produk yang diberikan dalam bentuk bahasa alami.

Namun pada aplikasi tersebut, belum dapat membedakan query dan non query secara otomatis karena dalam sistem belum dilakukan klasifikasi sehingga hanya mampu membaca kata yang termasuk informasi produk. Jika pemilik harus mencari satu persatu teks yang termasuk ke dalam informasi produk tentunya akan membutuhkan waktu yang lama. Oleh karena itu akan dilakukan klasifikasi teks sehingga dapat membedakan query (kata yang menanyakan mengenai informasi produk) dan non query (kata yang tidak menanyakan mengenai informasi produk) secara otomatis.

Metode yang digunakan dalam Tugas Akhir ini adalah Support Vector Machine. Pemilihan metode Support Vector Machine dalam klasifikasi teks ini dikarenakan sym memiliki beberapa kelebihan yaitu, dapat memberikan solusi yang baik pada dataset yang besar dan meminimalisir terjadinya Overfitting merupakan kemampuan overfitting. klasifikasi untuk melakukan klasifikasi data dengan sangat baik namun sangat buruk dalam melakukan klasifikasi data yang baru dan belum pernah ada. Dengan kelebihan tersebut SVM merupakan metode sesuai vang mengklasifikasikan teks permintaan informasi produk [4]. Dengan dilakukannya klasifikasi teks diharapkan dapat membedakan query dan non query secara otomatis.

1.2 Rumusan permasalahan

Permasalahan yang dihadapi dalam penelitian ini antara lain adalah sebagai berikut:

- 1. Bagaimana cara melakukan praproses teks dan klasifikasi teks permintaan informasi produk?
- 2. Bagaimana hasil dan performa SVM dalam pengklasifikasian teks untuk permintaan informasi produk?

1.3 Batasan Permasalahan

Batasan dalam pengerjaan tugas akhir ini adalah:

- 1. Data yang digunakan berupa data *query* dan *non query* untuk klasifikasi permintaan informasi produk yang didapat dari website forbento.com.
- 2. Penelitian ini berfokus pada klasifikasi teks untuk permintaan informasi produk.
- 3. *Tools* yang digunakan adalah *package* e1071 pada program R- 3.2.2.
- 4. Output yang dihasilkan adalah model klasifikasi teks permintaan informasi produk.

1.4 Tujuan

Tujuan dari pengerjaan tugas akhir ini adalah:

- Melakukan praproses teks dan klasifikasi teks permintaan informasi produk dengan menggunakan SVM
- 2. Mengidentifikasi hasil dan performa SVM dalam klasifikasi teks permintaan informasi produk.

1.5 Manfaat

Manfaat dari pengerjaan tugas akhir ini adalah untuk membantu pemilik bisnis startup terutama mobile commerce untuk membedakan *query dan non query* secara otomatis sehingga tidak membutuhkan intervensi dari pemilik. Selain itu, tugas akhir ini bisa dijadikan sebagai masukan atau rujukan untuk penelitian-penelitian selanjutnya mengenai klasifikasi teks

1.6 Relevansi

Relevansi pengerjaan tugas akhir ini terhadap area sistem informasi berada pada area Akuisisi Data dan Diseminasi Informasi dengan topik *Text Mining*. Area ini sesuais dengan penerapan beberapa matakuliah dari laboratorium terkait

seperti, Penggalian Data dan Analitika Bisnis, Sistem Cerdas, dan Sistem Pendukung Keputusan.

BAB II TINJAUAN PUSTAKA

Bab ini berisi mengenai studi sebelumnya yang berhubungan dengan tugas akhir dan teori - teori yang berkaitan dengan permasalahan tugas akhir.

2.1 Studi Sebelumnya

Pada pengerjaan tugas akhir ini ada beberapa penelitian sebelumnya yang dijadikan acuan. Penelitian tersebut antara lain:

Pengembangan Aplikasi Personal Assistant Untuk Membantu Mengetahui Informasi Produk Menggunakan Pengolahan Bahasa Alami Berbasis Python oleh Hudalizaman (2015). Penelitian ini mengenai pembuatan aplikasi *Mobile Commerce* yang dapat menangani pertanyaan mengenai informasi produk yang diberikan dalam bentuk bahasa alami. Dibuatnya aplikasi ini karena pemilik merasa kesulitan dalam menangani permintaan informasi produk dari pelanggan. Hal ini terjadi karena selama ini setiap ada pembeli yang menanyakan mengenai informasi produk tertentu, penjual harus terlebih dahulu membuka toko online yang dimiliki, *login* sebagai pemilik, dan kemudian mengecek informasi produk yang dimiliki. Tentunya ini menyebabkan trasaksi jualbeli yang terjadi menjadi terhambat.

Cara kerja sistem adalah, chat dari pembeli yang menanyakan informasi produk, akan penjual masukkan ke dalam sistem, dan sistem akan secara otomatis memberikan balasan berupa informasi produk dalam bentuk email. Dalam menjawab pertanyaan mengenai produk, dilakukan klasifikasi bahasa alami dengan mengkategorisasikan kalimat pesan menjadi kalimat *query* (informasi produk) dan *non query* (*non* informasi produk). Kata yang termasuk ke dalam kata *non query* akan dihapuskan sehingga dalam sistem hanya akan terdapat kata yang termasuk ke dalam kata *query*.

Namun dalam aplikasi ini masih terdapat kekurangan yaitu, penjual harus mencari teks pelanggan yang menanyakan informasi produk. Hal ini terjadi karena teknis untuk mendapatkan jawaban informasi produk adalah dengan memasukkan chat pelanggan yang menanyakan informasi produk ke dalam sistem. Jika hanya sedikit pesan teks yang masuk, tentunya akan lebih mudah untuk mencari teks pelanggan yang menanyakan informasi produk, namun jika jumlah pesan teks yang masuk sangatlah banyak tentunya akan menyulitkan penjual jika harus mencari satu-persatu. Pencarian ini tentunya akan membutuhkan waktu yang lama dan dapat meghambat transaksi jual beli.

Dari hasil pembuatan aplikasi terdapat 3 uji coba skenario, yaitu skenario pertama untuk mengetahui performa aplikasi dalam menjawab pertanyaan pelanggan terkait produk yang diharapkan, skenario kedua untuk mengetahui performa ketika produk ada pada kalimat atau tidak, dan yang terakhir untuk mengetahui kecepatan sistem dalam menangani *request*. Hasil uji skenario pertama diketahui nilai *recall* adalah 81%, *accuracy* adalah 89% dan *precision* adalah 67%. Hasil uji skenario kedua diketahui nilai rata-rata dari *recall* adalah 64%, *accuracy* adalah 71.31% dan *precision* adalah 61%. Hasil uji kecepatan sistem diketahui bahwa dalam memproses setiap email yang masuk membutuhkan waktu 3.44 detik.

Indonesian News Classification Using Support Vector Machine oleh Dewi Y.Lilian, Agung Hardianto, M.Ridok (2011). Penelitian ini mengenai klasifikasi berita bahasa indonesia ke dalam 4 kategori yaitu, national, international, business and finance, dan sports menggunakan kernel Radial Basis Function (RBF). Penelitian ini mencari parameter C (Complexity) dan γ terbaik untuk menghasilkan akurasi SVM terbaik. Dari hasil penelitian didapat tingkat rata-rata akurasi SVM adalah 85%, dengan nilai C=110 dan gamma =1.

Klasifikasi Dokumen Berita Menggunakan Metode Support Vector Machine Dengan Kernel Radial Basis Function oleh Adyatma Bhaskara Hutomo (2014). Penelitian ini mengenai klasifikasi dokumen berita berbahasa inggris ke dalam 2 kelas yaitu kelas earn dan kelas —earn. Pada penelitian ini dilakukan pemilihan fitur chi untuk menentukan kata yang cocok untuk

dijadikan penciri dalam pembuatan model klasifikasi dan kemudian dilakukan pencarian parameter terbaik untuk kernel RBF, yaitu nilai C (Complexity) dan setelah itu dilakukan perbandingan pembobotan menggunakan metode tf(term frequency) dan tf-idf(term frequency – inverse document frequency). Dari hasil perbandingan didapat Hasil akurasi dengan menggunakan pembobotan tf-idf (term frequency – inverse document frequency) sebesar 92.97% sedangkan hasil akurasi dengan menggunakan pembobotan tf (term frequency) sebesar 93.21%.

Klasifikasi Kondisi Penderita Penyakit Hepatitis Dengan Menggunakan Metode Support Vector Machine oleh Lailil Muflikha, Achmad Ridok, Jendi Hardono (2013). Penelitian ini mencari nilai C (*Complexity*), yaitu parameter yang digunakan untuk mengukur tingkat akurasi klasifikasi dari metode SVM, dengan menggunakan 2 atribut yaitu klasifikasi 19 atribut dan 15 atribut. Hasil rata-rata akurasi menggunakan dataset Hepatitis dengan 19 atribut dengan nilai C = 30 adalah 82.08%. Hasil rata-rata akurasi menggunakan dataset Hepatitis dengan 15 atribut dengan nilai C = 40, 50, 60 adalah 84.93%.

Tabel 2.1 Tabel Perbandingan Studi Sebelumnya

Judul	Penulis	Tujuan	Hasil
			Penelitian
Pengembang	Hudalizam	Membuat	Hasil uji
an Aplikasi	an (2015)	aplikasi personal	skenario
Personal		assistant untuk	pertama
Assistant		menangani	diketahui
Untuk		pertanyaan	nilai <i>recall</i>
Membantu		mengenai	adalah 81%,
Mengetahui		informasi	accuracy
Informasi		produk yang	adalah 89%
Produk		dalam bentuk	dan
Menggunaka		bahasa alami.	precision
n			adalah 67%.

Judul	Penulis	Tujuan	Hasil
		3	Penelitian
Pengolahan			Hasil uji
Bahasa			skenario
Alami			kedua
Berbasis			diketahui
Python			nilai rata-
			rata dari
			recall
			adalah 64%
			, accuracy
			adalah
			71.31% dan
			precision
			adalah 61%.
			Hasil uji
			kecepatan
			sistem
			diketahui
			bahwa
			dalam
			memproses
			setiap email
			yang masuk
			membutuhk
			an waktu
7 1		3.5 11 :01 :	3.44 detik.
Indonesian	Dewi	Mengklasifikasi	Tingkat
News	Y.Lilian,	kan Artikel	rata-rata
Classificatio	Agung	Berita Berbahasa	akurasi
n Using	Hardianto,	Indonesia ke	dengan
Support	M.Ridok	dalam 4 kategori	menggunak
Vector	(2011)	menggunakan	an SVM
Machine		Support Vector	adalah 85%
		Machine dengan	dan Nilai
		kernel Radial	parameter
		Basis Function	terbaik yang

Judul	Penulis	Tuinon	Hasil
Judui	reliulis	Tujuan	Penelitian
		(DDE)	
		(RBF).	menghasilk
			an tingkat
			rata-rata
			akurasi
			tertinggi
			adalah C
			(Complexity
) = 110 dan
			gamma
			SVM = 1.
Klasifikasi	Adyatma	Pengklasifikasia	Hasil
Dokumen	Bhaskara	n Dokumen	akurasi
Berita	Hutomo	berita berbahasa	dengan
Menggunaka	(2014)	inggris	menggunak
n Metode		menggunakan	an
Support		metode kernel	pembobotan
Vector		radial basis	tf-idf (term
Machine		function,	frequency –
Dengan		menggunakan	inverse
Kernel		pemilihan fitur	document
Radial Basis		Chi, dan	frequency)
Function		membandingkan	sebesar
		<i>tf-idf, tf</i> sebagai	92.97%
		metode	sedangkan
		pembobotan.	hasil
			akurasi
			dengan
			menggunak
			an
			pembobotan
			tf (term
			frequency)
			sebesar
			93.21%
Klasifikasi	Lailil	Pengklasifikasia	Hasil rata-

Judul	Penulis	Tujuan	Hasil
			Penelitian
Kondisi	Muflikha,	n Penyakit	rata akurasi
Penderita	Achmad	Hepatitis dengan	menggunak
Penyakit	Ridok,	mencari nilai C	an dataset
Hepatitis	Jendi	(Complexity)	Hepatitis
Dengan	Hardono	terbaik yang	dengan 19
Menggunaka	(2013)	dibagi ke dalam	atribut
n Metode		2 atribut berbeda	dengan nilai
Support		yaitu, klasifikasi	C = 30
Vector		19 atribut dan	adalah
Machine		kalsifikasi 15	82.08%.
		atribut.	Hasil rata-
			rata akurasi
			menggunak
			an dataset
			Hepatitis
			dengan 15
			atribut
			dengan nilai
			C = 40, 50,
			60 adalah
			84.93%.

2.2 Dasar Teori

2.2.1 Forbento.com

Forbento didirikan sejak januari 2011 oleh Rahayu Fatmawati, yang merupakan perusahaan yang menjual bento tools, yaitu peralatan yang dapat mempermudah dalam membuat bekal dan buku cara membuat bento. Forbento tidak hanya menjual alat alat bento namun juga memberikan tips-tips mengenai cara pembuatan bento, penggunaan alat bento tools, dan tips dalam menjalankan bisnis catering bento.

2.2.2 E-Commerce

E-commerce adalah suatu cara berbelanja atau berdagang secara online yang memanfaatkan fasilitas internet dimana terdapat website yang menyediakan layanan get and deliver [2][3]. Forbento merupakan semi e-commerce yang melakukan transaksi jual beli dengan 2 cara, yaitu dengan pembelian langsung dari websitenya dan dengan menghubungi *customer service* menggunakan pesan singkat pada aplikasi *blackberry messanger*.

Alur kerja pemesanan melalui website :

Gambar 2.1alur pemesanan melalui website

Pada Tugas akhir ini data yang digunakan merupakan data yang didapatkan dari *customer service* berupa pesan teks singkat dan dari website forbento.com yang akan diolah untuk dilakukan klasifikasi

2.2.3 Klasifikasi Teks

Klasifikasi teks merupakan bagian penting dari text mining yang termasuk ke dalam pembelajaran jenis *supervised learning* [6]. Klasifikasi teks adalah sebuah proses untuk mengkategorisasikan sebuah teks sesuai dengan kategori yang telah ditentukan yang bertujuan untuk mempermudah dalam mengorganisir teks dalam jumlah besar [7].

Dalam text mining, klasifikasi mengacu kepada aktifitas menganalisis atau mempelajari himpunan dokumen teks untuk memperoleh suatu model atau fungsi yang dapat digunakan untuk mengelompokkan dokumen teks lain yang belum diketahui kelasnya ke dalam satu atau lebih kelas [6] [8]. Data yang digunakan dalam klasifikasi teks terdiri dari 2 data, yaitu data training dan data testing. Data training digunakan untuk membangun model atau fungsi sedangkan data testing digunakan untuk mengetahui keakuratan model atau fungsi yang akan dibangun pada data training. [6]

a) Praproses teks

Praproses teks merupakan tahap yang dilakukan sebelum melakukan proses pengelompokan dokumen. Pada tahap praproses ini dilakukan beberapa subproses agar dokumen dapat dipakai untuk melakukan proses pengelompokan. Tujuan dari praproses teks adalah untuk menyeragamkan bentuk kata dan mengurangi volume kosakata. Tahap ini terdiri dari: [7]

• Case Folding yaitu proses dalam mengubah semua huruf dalam teks menjadi huruf kecil. Karakter selain huruf akan dihilangkan.

_	
Teks Input	Teks Output
Di produk mba,	di produk mba
pilihannya ada	pilihannya ada
apa aja utk rice	apa aja utk rice
mold dan bento	mold dan bento
cutter?	cutter

Tabel 2.2 Contoh Case Folding

• *Tokenizing* yaitu sebuah proses untuk memisahkan setiap kata dalam suatu kalimat sehingga menghasilkan kumpulan kata-kata yang

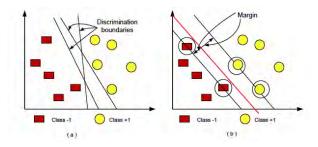
berdiri sendiri. Pemisahan kata dilakukan dengan cara menemukan spasi (space) antar kata.

Tabel 2.3 Contoh Tokenizing

Teks Input	Teks Output
di produk mba pilihannya ada apa aja utk rice mold dan bento cutter	di produk mba pilihannya ada apa aja utk rice mold dan bento cutter

• Filtering yaitu proses untuk mengambil kata penting dari hasil token. Dalam melakukan filtering dapat menggunakan stoplist atau wordlist (menyimpan kata penting). Stoplist / stopword adalah kata-kata yang tidak deskriptif yang dapat dibuang dalam pendekatan bag-ofwords. Contoh stopwords adalah "yang", "dan", "di", "dari" dan seterusnya. Dengan menggunakan daftar stoplist, maka setiap kata dalam koleksi akan dicocokkan dengan kata-kata

yang ada dalam *stoplist*. Apabila terdapat kata yang sama, maka kata itu akan dibuang dari koleksi.


Tabel 2.4 Contoh Filtering

Teks Input	Teks Output
Di produk	produk pilihannya
mba pilihannya	rice mold
ada apa	bento cutter
aja utk	
rice mold	
dan	
bento cutter	

2.2.4 Support Vector Machine

Support vector machine (SVM) dikembangkan oleh Boser, Guyon, Vapnik dan pertama kali dipresentasikan pada tahun 1992 di Annual Workshop on Computational Learning Theory [4]. Konsep SVM dapat dijelaskan secara sederhana sebagai usaha mencari hyperplane terbaik yang berfungsi sebagai pemisah dua buah class pada *input space*. Gambar 1.a memperlihatkan beberapa pattern yang merupakan

anggota dari dua buah class: +1 dan -1. Pattern yang tergabung pada *class* -1 disimbolkan dengan warna merah (kotak), sedangkan pattern pada *class* +1, disimbolkan dengan warna kuning (lingkaran). Problem klasifikasi dapat diterjemahkan dengan usaha menemukan garis (*hyperplane*) yang memisahkan antara kedua kelompok tersebut. Garis pemisah (*discrimination boundaries*) ditunjukkan pada Gambar 1.a merupakan salah satu alternatif garis pemisah yang memisahkan kedua *class* [4] [10] [11] [12].

Gambar 2.2 gambar terbaik yang memisahkan Class -1 dan Class +1 (Romi Satria Wahono, 2015)

Hyperplane pemisah terbaik antara kedua *class* dapat ditemukan dengan mengukur margin hyperplane tersebut dan mencari titik maksimalnya. Margin adalah jarak antara hyperplane tersebut dengan pattern terdekat dari masingmasing *class*. Pattern yang paling dekat ini disebut sebagai support vektor. Garis solid pada Gambar 1.b menunjukkan hyperplane yang terbaik, yaitu yang terletak tepat pada tengah-tengah kedua class, sedangkan titik merah dan kuning yang berada dalam lingkaran hitam adalah support vector. Usaha untuk mencari lokasi hyperplane ini merupakan inti dari proses pembelajaran pada support vector machine [4] [9] [10] [11].

2.2.5 Kernel

Beberapa metode dalam analisis data mining banyak menggunakan fungsi *linear*. Namun masalah dalam dunia nyata jarang yang bersifat *linear* kebanyakan bersifat non *linear*. Sehingga untuk mengatasinya dengan cara mentransformasikan data ke dalam dimensi ruang yang lebih tinggi. SVM dapat digunakan pada data non *linear* dengan menggunakan *Kernel Trick* [12].

Konsep dari *kernel trick* adalah memetakan data yang bersifat non-linear pada input space ke ruang vektor baru yang berdimensi lebih tinggi dimana kedua class dapat dipisahkan secara linear oleh sebuah *hyperplane*. *Kernel Trick* dirumuskan sebagai berikut : [12]

$$K(\overrightarrow{x_l}, \overrightarrow{x_l}) = \Phi(\overrightarrow{x_l}) \cdot \Phi(\overrightarrow{x_l})$$

Keterangan:

K = menunjukkan fungsi kernel

 \vec{x}_1 = menunjukkan vektor data latih

 $\vec{x_1}$ = menunjukkan vektor data uji

 Φ (.) = fungsi pemetaan dari ruang input ke ruang fitur.

Dalam SVM terdapat beberapa Fungsi *Kernel* yang biasa dipakai , yaitu : [12].

Tabel 2.5 Fungsi Kernel pada SVM

Kernel	Penjelasan
Linear	Rumus : $x^T x$, dengan x adalah <i>data</i>
	training.
	Ciri : [13]
	 Cocok untuk klasifikasi teks
	karena kebanyakan teks

Kernel	Penjelasan	
	terpisah secara linear	
	 Cocok digunakan jika jumlah 	
	fitur besar	
	Contoh menggunakan Dataset Iris:	
	Parameters: SVM-Type: C-classification SVM-Kernel: linear cost: 1 gamma: 0.25 Number of Support Vectors: 29	
Polynomial	Rumus : $(x^T x_i + 1)^p$, dengan	
	x dan x_i adalah pasangan dua data	
	training, p konstanta dengan nilai > 0	
	Ciri : [14]	
	■ Dapat memperluas fitur	
	tanpa meningkatkan biaya	
	komputasi	
	■ Tidak memberikan tingkat	
	akurasi yang tinggi dalam	
	training atau testing	
	Contoh menggunakan Dataset Iris:	

Kernel	Penjelasan	
	Parameters: SVM-Type: C-classification SVM-Kernel: polynomial cost: 1 degree: 3 gamma: 0.25 coef.0: 0 Number of Support Vectors: 54	
Radial Basis Function (RBF)		

Kernel	Penjelasan	
	Parameters: SVM-Type: C-classification SVM-Kernel: radial cost: 1 gamma: 0.25 Number of Support Vectors: 51	
Tangent	Rumus : $tanh(\beta x^T x_i + \beta_1)$, dimana	
Hyperbolic	$\beta, \beta_1 \in R$, dengan $x \operatorname{dan} x_i$ adalah	
(Sigmoid)	psangan dua data training	
	Ciri : [16]	
	 Kerja mirip dengan kernel RBF dalam parameter tertentu Sulit untuk menentukan parameter yang cocok untuk kernel ini 	
	Contoh menggunakan Dataset Iris:	
	Parameters: SVM-Type: C-classification SVM-Kernel: sigmoid cost: 1 gamma: 0.25 coef.0: 0 Number of Support Vectors: 54	

Berdasarkan tabel 2 maka metode kernel yang akan digunakan dalam Tugas Akhir ini adalah kernel *Linear* dan *Radial Basis Function* (RBF).

2.2.6 Grid Search

Grid Search merupakan salah satu algoritma yang sering digunakan untuk estimasi parameter. Prinsip kerja Grid Search adalah menentukan beberapa nilai pada rentang tertentu dan melakukan pencarian pada rentang tersebut sampai didapatkan hasil yang optimal. *Grid Search* bertujuan untuk membuat grid parameter dari setiap pasangan C, γ (cost dalam pembentukan model (tahap pelatihan / training), dan gamma merupakan parameter yang digunakan untuk kernel). Pasangan nilai parameter yang terbaik dapat diukur dengan menggunakan cross-validation. Cross-Validation adalah pengujian standar yang dilakukan untuk memprediksi error rate. Data training dibagi secara random ke dalam beberapa bagian dengan perbandingan yang sama kemudian error rate dihitung bagian demi bagian, selanjutnya hitung rata-rata seluruh error rate untuk mendapatkan error rate secara keseluruhan. Parameter yang sudah optimal dapat digunakan sebagai model SVM terbaik. [17] [18]

2.2.7 Evaluasi Performa Klasifikasi

Pengujian akan dilakukan pada hasil klasifikasi menggunakan SVM untuk mengetahui akurasi klasifikasi SVM terhadap suatu data uji. Pengukuran tersebut didapatkan dalam sebuah set *confusion matrix*. *Confusion matrix* merupakan sebuah tabel yang terdiri dari banyaknya baris data uji yang diprediksi benar dan tidak benar oleh model klasifikasi yang digunakan untuk menentukan kinerja model klasifikasi. [12] [19]

| Kelas Prediksi | Positif | Negatif |
| Observasi | Positif | TP | FN |

Negatif

Tabel 2.6 Confusion Matrix

Keterangan:

• *TP (True Positive)* adalah kelas yang diprediksi positif dan benar.

FP

TN

- TN (*True Negatif*) adalah kelas yang diprediksi negatif dan benar.
- FP (*False Positive*) adalah kelas yang diprediksi positif dan salah.
- FN (*False Negatif*) adalah kelas yang diprediksi negative dan salah.

Dari *confusion* tabel di atas kemudian dapat juga diukur tingkat akurasi, presisi, dan recall.

a) Presisi

Presisi digunakan untuk mengetahui banyaknya item yang dikategorikan ke dalam kategori yang seharusnya. Presisi dapat dihitung dengan menggunakan rumus berikut : [20]

$$Presisi = rac{True\ Positive}{True\ Positive + False\ Positive}$$

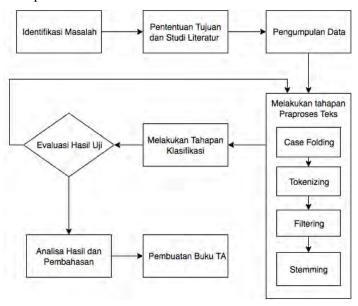
b) Recall

Recall digunakan untuk mengetahui banyaknya item yang diprediksikan benar. Recall dapat dihitung dengan menggunakan rumus berikut : [20]

$$Recall = \frac{True\ Positive}{True\ Positive + False\ Negative}$$

c) Akurasi

Akurasi dari klasifikasi digunakan untuk melihat kinerja secara keseluruhan. Akurasi dapat dihitung dengan menggunakan rumus berikut : [19]


$$Akurasi = \frac{TP + TN}{TP + TN + FP + FN}$$

Selain itu digunakan pengukuran menggunakan F-Measure. F-Measure merupakan pengukuran yang mengkombinasikan presisi dan recall yang digunakan untuk mengukur keberhasilan information retrieval. parameter untuk F-Measure dapat dihitung dengan menggunakan rumus berikut : [20]

$$F-Measure = \frac{2.Recall.Presisi}{Recall + Presisi}$$

BAB III METODE PENGERJAAN TUGAS AKHIR

Pada bab ini akan dijelaskan mengenai langkah-langkah sistematis yang dilakukan dalam tugas akhir agar terlaksana dengan terstruktur. Diagram alir metodologi tugas akhir dapat dilihat pada Gambar 3.1:

Gambar 3.1 Diagram Alur Metodologi Penelitian

3.1 Penetapan Tujuan dan Studi Literatur

Pada tahapan ini dilakukan penentuan tujuan, yaitu, menentukan tujuan dan batasan masalah dari penelitian tugas akhir serta mencari tinjauan pustaka mengenai konsep klasifikasi teks menggunakan metode *support vector machine* yang digunakan untuk menyelsaikan permasalahan pada tugas akhir ini.

3.2 Pengumpulan Data

Pada tahapan ini dilakukan pengumpulan data-data yang dibutuhkan untuk pengerjaan Tugas Akhir yang dilakukan. Data yang digunakan merupakan data *query* dan *non query* untuk permintaan informasi produk yang didapat dari website forbento.com. Data Query merupakan data Informasi Produk dan Data Non Query merupakan data Bukan Informasi Produk. Data informasi Produk merupakan data mengenai pertanyaan pelanggan terkait produk yang dijual sedangkan data yang bukan informasi produk merupakan data yang tidak menanyakan mengenai informasi produk. Data ini kemudian diolah sehingga dapat digunakan untuk proses klasifikasi teks. Contoh Data yang termasuk Data Informasi Produk dan Bukan Informasi Produk dapat dilihat pada Tabel 3.1.

Data Informasi Produk	Data Bukan Informasi	
	Produk	
Di produk mba,pilihannya	Eh murah ya	
ada apa aja utk rice mold		
dan bento cutter?		
Drawing food kpn ada	Wah good idea tuh	
mbak?		
Sis jual citakannya telur	Mb Ayusalam kenal	
puyu?	yaa	

Table 3.1 Contoh Data Informasi dan Bukan Informasi Produk

3.3 Tahap Praproses Teks

Dalam penelitian ini pengolahan bahasa dilakukan dengan praproses teks untuk menyeragamkan bentuk kata dan mengurangi volume kosakata. Tahap ini terdiri dari :

• Case Folding yaitu proses dalam mengubah semua huruf dalam teks menjadi huruf kecil. Karakter selain huruf akan dihilangkan.

- *Tokenizing* yaitu sebuah proses untuk memisahkan setiap kata dalam suatu kalimat sehingga menghasilkan kumpulan kata-kata yang berdiri sendiri.
- Filtering yaitu proses untuk mengambil kata penting dari hasil token. Dalam melakukan filtering dapat menggunakan stoplist atau wordlist (menyimpan kata penting). Stoplist / stopword adalah kata-kata yang tidak deskriptif yang dapat dibuang dalam pendekatan bag-ofwords

3.4 Tahap Klasifikasi

Pada tahap ini dilakukan klasifikasi pada permintaan informasi produk menggunakan metode Support Vector Machine (SVM) menggunakan tools R 3.2.2 dan library yang digunakan adalah e1071. Klasifikasi teks yang dilakukan akan dibagi menjadi 2 kategori yaitu, kategori *query* dan *non query* dengan hasil berupa model klasifikasi. Data yang digunakan dalam klasfikasi akan dibagi menjadi 2, yaitu data *training* dan data *testing* dengan perbandingan 70:30.

3.5 Evaluasi Hasil Uji

Pada tahap ini dilakukan evaluasi hasil uji untuk mengetahui performa SVM dalam melakukan klasifikasi. Untuk menghitung performa SVM dilihat dari akurasi, presisi, *recall* dan *F-measure*.

3.6 Analisa Hasil dan Pembahasan

Pada tahap ini dilakukan analisa dari Hasil Uji proses klasifikasi teks permintaan informasi produk yang telah dilakukan sebelumnya dan akan dibuat pembahasan mengenai hasil tersebut

3.7 Pembuatan Buku Tugas Akhir

Tahap ini merupakan tahap akhir dari penelitian. Pada tahap ini dilakukan dokumentasi untuk penulisan laporan tugas akhir. Hasil dari laporan tugas akhir berupa buku yang berisi keseluruhan proses yang dilakukan dalam penelitian ini. Tugas Akhir ini diharapkan bisa dijadikan sebagai rujukan penelitian berikutnya mengenai klasifikasi teks.

BAB IV PERANCANGAN

Bab ini menjelaskan tentang rancangan penelitian tugas akhir untuk membuat model klasifikasi. Bab ini berisikan proses pengumpulan data, pengolahan data, dan perancangan model.

4.1 Pengumpulan dan pre-processing data

Pada subab ini dilakukan pengumpulan dan pre-processing data. Pengumpulan data merupakan data yang digunakan untuk tugas akhir ini, dan pre-processing merupakan tahap yang dilakukan untuk mengolah data sebelum digunakan untuk pembuatan model menggunakan sym.

4.1.1 Pengumpulan data

Pengumpulan data yang digunakan pada tugas akhir ini bersumber dari Website Forbento.com. Data berupa data text pesan singkat dari aplikasi *blackberry messanger*. Oleh Hudalizaman (2011), data yang diambil berupa data percakapan yang dilakukan oleh pembeli sehingga didapatkan data dengan isi:

- msg_id
- file id
- text, dan
- numchars

Kemudian data tersebut diberi label untuk dikelompokkan menjadi kelompok query dan non query. Berdasarkan penjelasan di atas, maka didapat data dengan isi:

- msg id,
- file id,
- text,
- numchars,

label

Contoh hasil data yang didapatkan penulis dapat dilihat pada Gambar 4.1 :

msg_id	file_id	text	numchars	query
		Mau nanya hrg ring pancake telor hello kity brp ya	54	query
id201304041	209EA856.cs	Kalo rice mold hello kity 3 set brp ya say	42	query
id201304041	209EA856.cs	Kalo vegetable cutter kena brp say	34	query
id201212091	20D4C2F2.cs	Buku ibento edisi 2 bs pesan?	29	query
id201302031	20D4C2F2.cs	Ada contohnya bento sleeping bear?:). Thx	41	query
id201303111	20D4C2F2.cs	Sis Itu cetakan micky brp?	28	query
id201303111	20D4C2F2.cs	Punya cetakan apa Ig? Kyk jepretan mata,dll	43	query
id201303111	20D4C2F2.cs	Bisa tlg minta foto2 cetakan lain?	34	query
id201303121	20D4C2F2.cs	Cetakan nasi mksdnya	20	query
id201303121	20D4C2F2.cs	Klo cutter yg bentuk2 bunga ato bentuk laen ada?	48	query
id201303121	20D4C2F2.cs	Maapcoba sy mau liat cutter2	32	query
id201303131	20D4C2F2.cs	Sis, maapsy mau liat foto cutter2	37	query
id201303131	20D4C2F2.cs	Cutter bentuk bunga, tema garden gituh	38	query
id201303131	20D4C2F2.cs	Klo eadible pen ada?	20	query
id201303131	20D4C2F2.cs	Cutter varous char kyk gmn?	27	query
id201303131	20D4C2F2.cs	Yg tipe2 kyk flower?	20	query
id201302261	20F5CE60.cs	Ricemold isi 3+cutternya mba?	29	nonquery
id201303221	20F7B0AF.cs	selamat siang mbak	20	nonquery
id201303221	20F7B0AF.cs	ke salatiga jawa tengah	23	nonquery
id201303221	20F7B0AF.cs	Ongkir brapa mbak ke salatiga?	30	nonquery
id201303221	20F7B0AF.cs	Ok	2	nonquery
id201303221	20F7B0AF.cs	Sbntar saya pilih produknya :)	30	nonquery
id201303221	20F7B0AF.cs	Minta nomer ac bca ya :)	24	nonquery
id201303221	20F7B0AF.cs	Ohya pengiriman brapa hari ya mbak?	35	nonquery
id201303221	20F7B0AF.cs	ok2	5	nonquery
id201303221	20F7B0AF.cs	Ada diskon ndak mbak? Xixixiix	30	nonquery
id201303221	20F7B0AF.cs	Nanti kalo sdh transfer tak info ya mbak :)	43	nonquery
id201303221	20F7B0AF.cs	Xixixxixi	9	nonquery
id201303221	20F7B0AF.cs	ok2	3	nonquery
id201303221	20F7B0AF.cs	Ndak pa2 mbak :)	18	nonquery
id201303221	20F7B0AF.cs	Nanti saya info kalau sdh transfer ya.m		nonquery
id201303221	20F7B0AF.cs	Selamat malam Mbak		nonquery
id201303221	20F7B0AF.cs	Sudah saya kirim pembayaranya 45rbu ke rekenin	51	nonquery

Gambar 4.1 Contoh Data Query dan Non Query

Pada Tugas Akhir ini variabel yang akan digunakan adalah variabel *text* dan *label* dengan jumlah data sebanyak 9680 *dataset*.

4.1.2 Pre-processing

Setelah dilakukan pengumpulan data kemudian dilakukan praproses teks. Tahapan ini dilakukan untuk menyeragamkan

bentuk kata dan mengurangi volume kosakata agar dapat dipakai untuk melakukan proses pengelompokkan [7]. Praproses teks akan menggunakan aplikasi R Studio.

Dalam tahap praproses semua data teks akan diubah menjadi :

- Bentuk huruf kecil
- Dilakukan penghapusan angka
- Dan dilakukan penghapusan tanda baca

Contoh data sebelum di praproses dan setelah di praproses dapat dilihat pada Tabel 4.1:

Sebelum pre-processing	Setelah pre-processing	
Siskalo buku bonitanya itu	siskalo buku bonitanya itu po	
PO atau ready stock?	atau ready stock	
Bonita harga brp sis?	bonita harga brp sis	
Ibu sava bisa minta contoh	ibu saya bisa minta contoh	

bento box untuk wedding

Tabel 4.1 Contoh data sebelum dan setelah pre-processing

4.2 Pembuatan Model Support Vector Machine

bento box untuk wedding

Dalam pembuatan model support Vector Machine langkah yang dilakukan dapat dilihat pada Gambar 4.2 [21]

Gambar 4.2 Langkah pembuatan model Support Vector Machine

Berdasarkan Gambar 4.2 diketahui bahwa dalam pembuatan model *Support Vector Machine* terdapat 6 tahapan, yaitu:

- Menentukan Data Train dan Data Test
- Membuat dtm dan data frame
- Membuat label untuk data train dan data test
- Mencari nilai C terbaik untuk kernel liner dan mencari pasangan C dan γ terbaik untuk kernel radial (penggunaan metode *grid search*).
- Membuat model klasfikasi SVM

Untuk masing-masing penjelasan dari langkah di atas akan dijelaskan pada subab dibawah.

4 2 1 Menentukan Data Train dan Data Test

Dalam pengolahan data dibutuhkan dua set data, yaitu data *train* dan data *test*. Data *train* digunakan untuk membuat model klasifikasi, sedangkan data *test* digunakan untuk menguji akurasi model yang didapatkan [22]. Pada Tugas Akhir ini data dibagi menjadi data *train* dan data *test* dengan perbandingan 70 : 30.

4.2.2 Membuat Dtm dan data frame

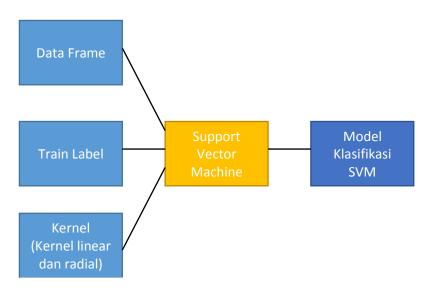
Data yang sudah dibagi ke dalam bentuk data train dan data test akan dirubah ke dalam bentuk document term matrix (dtm). Dtm merupakan sebuah matriks dokumen yang mewakili hubungan antara kata dan dokumen, di mana setiap baris merepresentasikan kata dan setiap kolom untuk dokumen. Pada dtm corpus dalam bentuk teks akan diubah matematik dianalisis menjadi obiek vang dapat menggunakan teknik kuantitatif. Contohnya, untuk mendapatkan frekuensi kata yang paling sering muncul dalam corpus. [23]

Kemudian untuk masing-masing dtm akan dirubah ke dalam bentuk data frame untuk bisa digunakan dalam klasifikasi menggunakan svm. Data frame digunakan untuk menyimpan data dalam bentuk tabel. data yang disimpan dalam data frame berupa data vektor, sehingga lebih mudah untuk mengatur data dan menerapkan fungsi ke pada data frame. Dalam Tugas Akhir ini, data frame akan digunakan sebagai variabel untuk pembuatan model svm. [24]

4.2.3 Membuat label query dan non query untuk Data Train dan Data Test

Pada tahapan ini data label yang ada pada data awal dibagi ke dalam 2 label, yaitu label *train* dan label *test*. Hal ini dilakukan karena pada data text yang merupakan variabel target yang akan diklasifikasikan membutuhkan variabel lain sebagai acuan untuk prediksi. jika tidak memasukkan variabel tersebut ke dalam algoritma svm, maka tidak akan ada acuan untuk memprediksikan data text tersebut. Dalam tugas akhir ini acuan yang digunakan untuk prediksi adalah variabel label. Oleh karena itu perlu untuk menyimpan variabel label dan membaginya menjadi *label train* dan *label test* [25]. Kemudian label yang sudah dibagi, akan digunakan sebagai variabel untuk pembuatan model klasifikasi menggunakan SVM.

4.2.4 Penggunaan metode grid search


Dalam mencari model svm dengan akurasi tertinggi digunakan metode *grid search* untuk mencari nilai gamma dan cost terbaik untuk kernel radial dan mencari nilai cost terbaik untuk kernel linear. Dengan menggunakan metode ini, akan dilakukan pencarian parameter (baik nilai cost maupun gamma) satu per satu untuk menemukan parameter terbaik yang menghasilkan akurasi tertinggi dalam bentuk tabel [18].

Dalam tugas akhir ini penggunaan metode *grid search* dilakukan secara manual dengan mengunakan software R untuk mencari akurasi tertinggi dengan paramter yang telah ditentukan dan menggunakan Excel untuk membuat tabel untuk masing masing kernel *linear* dan *radial*.

4.2.5 Membuat Model Klasifikasi SVM

Model klasifikasi svm akan menggunakan variabel data frame train, label train dan kernel radial serta linear. Dalam penggunaan algoritma svm dalam r, dibutuhkan variabel [21]:

- x, yaitu data matriks, atau vektor yang merupakan data frame train pada tugas akhir ini.
- y, yaitu vector respon dengan satu label untuk setiap baris atau komponen x. dalam klasifikasi dapat berupa faktor yang merupakan train label pada tugas akhir ini.
- Kernel digunakan untuk training dan memprediksi.
 Untuk masing masing kernel yang digunakan dapat
 dirubah parameternya sesuai dengan jenis kernelnya.
 Pada kernel linear paramater yang dirubah adalah
 nilai cost sedangkan untuk kernel radial parameter
 yang dirubah adalah nilai cost dan gamma.

Gambar 4.3 Model Klasifikasi Support Vector Machine

BAB V IMPLEMENTASI

Bab ini menjelaskan proses pelaksanaan penelitian, implementasi klasifikasi menggunakan metode support vector machine.

5.1 Implementasi Data

Dalam pembuatan model klasifikasi, data yang digunakan berjumlah 886 Data dari 9680 data. Data yang digunakan hanya berjumlah 886 data, karena dari 9680 data yang didapat, data untuk kelas query dan non query tidak seimbang sehingga terjadi *imbalance dataset*. Dari 9680 data, data yang berjumlah data query sebanyak 443 dan sisanya adalah data non query. Untuk mengatasi masalah *imbalance dataset* dapat dilakukan dengan metode *sampling*. Sampling dapat dicapai dengan 2 cara, yaitu dengan *under sampling the majority class*, *oversampling the minority class* atau *combining over and undersampling techniques*. Pada tugas akhir ini cara yang digunakan adalah *under sampling*. *Under sampling* merupakan metode untuk memecahkan masalah *imbalance datasest* dengan menghapus kelas yang dominan dalam data secara acak. Sehingga didapat jumlah data yang seimbang [26].

Oleh karena itu jumlah data query dan non query akan disamakan sehingga datanya seimbang. Sehingga data yang digunakan pada Tugas Akhir ini adalah 443 untuk masing masing kelas query dan non query dengan total data yang digunakan sebanyak 886 data.

Dari data dilakukan analisa statistik untuk mengetahui ratarata, nilai max, min, dan standar deviasi dengan menghitung jumlah per kata yang ada pada teks. Dari hasil statistik dapat dilihat pada Tabel 5.1

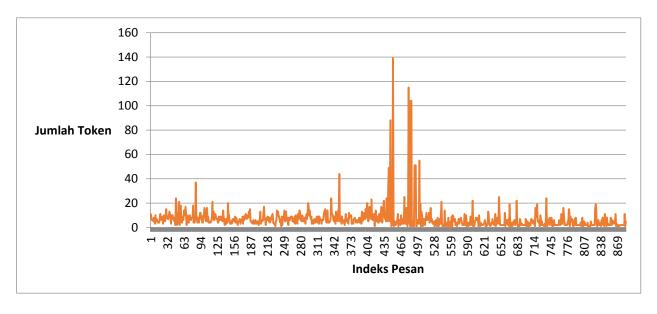
Tabel 5.1 Hasil statistik

Rata – rata	7,019209
Maximun	139
Minimum	0
Standar Deviasi	9,821637

Dari tabel 5.1 kata terpendek adalah 0. Nilai 0 dikarenakan pada teks terdapat emote seperti ":)" yang dalam text mining, akan dihapus saat dilakukan pembersihan *corpus*. Untuk melihat panjang dari masing-masing teks yang ada pada data dapat dilihat pada Gambar 5.1. Data tersebut nantinya akan dibagi menjadi dua yaitu *train set* dan *test set* dengan perbandingan 70:30.

5.2 Proses Klasifikasi

Dalam melakukan klasifikasi menggunakan aplikasi R Studio, data akan dikelompokkan menjadi dua kelompok yaitu kelompok query dan non query. Metode yang digunakan dalam melakukan klasifikasi adalah support vector machine (SVM). Berikut merupakan implementasi dari model klasifikasi yang telah dijelaskan pada bab sebelumnya.


5.2.1 Menginputkan Data

Untuk melakukan input data pada R, data harus dalam bentuk .csv agar bisa dibaca oleh aplikasi. Setelah dimasukkan data yang sesuai, maka hasilnya seperti pada Kode 5.1.

```
datafb <-
  read.csv("~/Documents/TA/datafb.csv")</pre>
```

Kode 5.1 Input data pada R

Sebelum melakukan proses berikutnya, data yang sudah diinputkan dirubah kedalam bentuk *corpus*. seperti pada Kode 5.2.

Gambar 5.1 Grafik statistik data

```
#clean text
corpus_coba <- Corpus(VectorSource(datafb$text))</pre>
```

Kode 5.2 Merubah ke dalam bentuk corpus

5.2.2 Praproses Teks

Untuk melakukan praproses teks, dibutuhkan **library tm**.

Seperti yang sudah dijelaskan dalam bab perancangan , pada praproses teks, teks akan diubah ke dalam huruf kecil seperti pada Kode 5.3.

```
cleanset <-
tm_map(corpus_coba, content_transformer(tolowe
r))</pre>
```

Kode 5.3 Merubah ke dalam bentuk huruf kecil.

Hasil dari data yang telah melalui proses ini dapat dilihat pada Tabel 5.2.

Tabel 5.2	Tabel hasil	neruhahan	ke dalam	huruf kecil

Teks Awal	Teks Setelah diubah ke dalam huruf kecil
Halosalam kenalaku mau	halosalam kenalaku mau
pesan yg cetakan telur rebu	pesan yg cetakan telur rebu

Setelah itu akan dilakukan penghapusan angka, dan tanda baca seperti pada Kode 5.4.

```
cleanset <- tm_map(cleanset, removeNumbers)
cleanset <- tm_map(cleanset, removePunctuation)
cleanset <- tm_map(cleanset, stripWhitespace)</pre>
```

Hasil dari data yang telah melalui proses ini dapat dilihat pada Tabel 5.3.

Tabel 5.3 Tabel hasil penghapusan angka dan tanda baca

Teks Awal	Teks Setelah dilakukan penghapusan angka dan tanda baca	
Halosalam kenalaku mau pesan yg cetakan telur rebu	halosalam kenalaku mau pesan yg cetakan telur rebu	

5.2.3 Menentukan Data Train dan Data Test

Setelah melalu tahap praproses teks, data yang sudah siap

```
#membagi data menjadi training dan testing, 70 :
   30
size_data <- floor (0.7*nrow(datafb))
#set randomization seed
set.seed(141321)
indices_train <- sample(seq_len(nrow(datafb)),
   size = size_data)
data_train <- cleanset [indices_train ]
data_test <- cleanset [-indices_train ]</pre>
```

Kode 5.5 Membagi data menjadi data train dan data test

olah kemudian dibagi menjadi *data train* dan *data test* dengan perbandingan 70:30, seperti pada Kode 5.5.

5.2.4 Pembuatan DTM dan Data Frame

Data yang sudah dibagi kemudian perlu dirubah ke dalam bentuk *document term matrix* untuk masing masing *data train* dan *data test*.

Untuk membuat dtm seperti pada Kode 5.6.

Kode 5.6 Pembuatan dtm untuk data train dan data test

Dalam pembuatan dtm, untuk menyamakan jumlah *terms* pada *data test* dan *data train*, maka dibuat *dictionary*. *Dictionary* yang dibuat berdasarkan kata yang paling sering muncul pada koleksi dokumen dalam *data train*. Kemudian untuk bisa masuk ke dalam klasifikasi menggunakan svm, dtm tersebut diubah ke dalam bentuk *data frame* seperti pada Kode 5.7.

```
train_df <-
  as.data.frame(data.matrix(train_dtm),
  stringsAsfactors = FALSE)
test_df <-
  as.data.frame(data.matrix(dtm_test),
  stringsAsfactors = FALSE)</pre>
```

Kode 5.7 Pembuatan data frame

5.2.5 Membuat Label Query dan Non Query

Pelabelan dilakukan untuk klasifikasi menggunakan svm pada aplikasi R Studio. Pelabelan dilakukan masing masing untuk *data train* dan *data test* seperti pada Kode 5.8.

```
train_label <- datafb$query [indices_train ]
test_label <- datafb$query [-indices_train ]</pre>
```

Kode 5.8 Pelabelan untuk data train dan data test

5.2.6 Klasifikasi menggunakan SVM

Dalam klasifikasi menggunakan svm dibutuhkan **library** e1071 pada aplikasi R. Untuk mencari model svm yang tepat dilakukan klasifikasi terhadap data train dan label train serta

ditambahkan dengan parameter kernel linear atau radial seperti pada Kode 5.9.

```
Library(e1071)
model <- svm (train_df, train_label, kernel
= "linear")
model <- svm (train_df, train_label, kernel
= "radial")</pre>
```

Kode 5.9 Klasifikasi dengan svm

5.2.7 Penggunaan Metode *Grid Search*

Dalam mencari akurasi yang terbaik menggunakan kernel linear dan radial, perlu dilakukan percobaan dalam merubah parameter kernel untuk radial dan linear. Untuk kernel linear parameter yang diubah adalah nilai *cost* seperti pada Kode 5.10.

```
for(C in seq(-14, -13.3, by=0.1))
{
    modelsvm1 <- svm (train_df, train_label,
    kernel = "linear", cost= 2^C)
    predicttrain1 <- predict(modelsvm1,
    train_df)
    table(predicttrain1, train_label)
    predicttest1 <- predict(modelsvm1, test_df)
    table(predicttest1, test_label)
    print(100*sum(predicttest1==test_label)/len
    gth(test_label))
}</pre>
```

Kode 5.10 Grid Search dengan kernel linear

Pada Kode 5.10, dilakukan pencarian nilai *cost* dengan rentang yang telah ditentukan. Kemudian outputan dari code di atas adalah hasil akurasi. Hasil akurasi dari nilai *cost* tersebut akan dibuat dalam bentuk tabel menggunakan excel. Kemudian untuk kernel *radial* parameter yang diubah adalah nilai *cost* dan *gamma* seperti pada Kode 5.11.

```
for(C in seq(-14, -13.3, by=0.1)){
  for(gamma in seq(0, -1, by=-0.5))
{
    modelsvm1 <- svm (train_df,
        train_label, kernel = "linear",
        gamma = 2^gamma, cost= 2^C)
        predicttrain1 <- predict(modelsvm1,
        train_df)
        table(predicttrain1, train_label)
        predicttest1 <- predict(modelsvm1,
        test_df)
        table(predicttest1, test_label)
        print(100*sum(predicttest1==test_label))
        el)/length(test_label))
    }
}</pre>
```

Kode 5.11 Grid Search dengan Kernel Radial

Pada Kode 5.11, dilakukan pencarian nilai *cost* dan nilai *gamma* dengan rentang yang telah ditentukan. Kemudian outputan dari code di atas adalah hasil akurasi. Hasil akurasi dari nilai cost dan gamma tersebut akan dibuat dalam bentuk table menggunakan excel. Dari hasil tabel tersebut akan dilihat nilai parameter yang menhasilkan akurasi tertinggi.

5.2.8 Uji Model SVM

Kemudian untuk melakukan uji model menggunakan data test dan untuk mengukur hasil ketepatan dari model dalam memprediksikan kelas, diukur dengan menggunakan

confusion matrix untuk mendapatkatkan nilai akurasi, presisi, recall dan F-Measure seperi pada Kode 5.12.

```
predict <- predict(model, test_df)
100*sum(predict==test_label)/length(test_label)
confusionMatrix(test_label, predict)</pre>
```

Kode 5.12 Uji dan Mengukur model svm

5.3 Word Frequency Distribution

Word frequency distribution dilakukan untuk mengetahui distribusi dari kemunculan kata yang ada pada corpus. Dalam mencari distribusi dari frekuensi kata, dibuat pencarian dari 50 kata dengan frekuensi tertinggi pada corpus. Untuk melihat 50 distribusi frekuensi kata seperti pada Kode 5.13.

```
dtm <- DocumentTermMatrix(cleanset)
freq <- findFreqTerms(dtm, lowfreq = 30)
freq <- colSums(as.matrix(dtm))
length(freq)
ord <- order(freq, decreasing = TRUE)
freq[head(ord)]
freq[tail(ord)]</pre>
```

Kode 5.13 50 Distribusi frekuensi kata

Dari Kode 5.13 didapat hasil kata yang paling sering muncul dalam *corpus* lama (corpus sebelum dilakukan pembakuan kata) dapat dilihat pada Tabel 5.4.

Tabel 5.4 Top 50 Word Frequency Distribution corpus lama

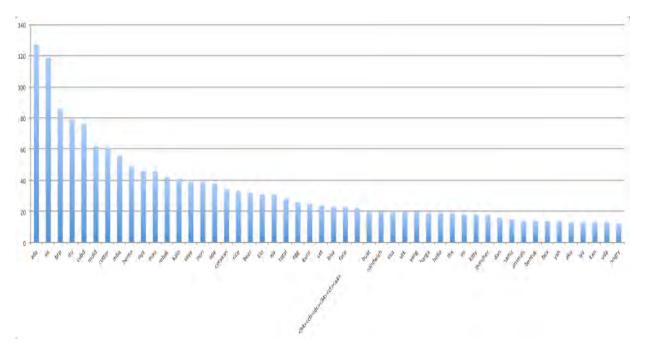
No	Voto	Frekuensi
INO	Kata	Kemunculan

No	Kata	Frekuensi Kemunculan
1	ada	127
2	sis	119
3	brp	86
4	itu	79
5	subd	76
6	mold	62
7	cutter	61
8	<mark>mba</mark>	56
9	bento	49
10	nya	46
11	<mark>mbak</mark>	42
12	<mark>kalo</mark>	41
13	saya	39
14	nori	39
15	apa	38
16	mau	46
17	cetakan	34
18	rice	33
19	bear	32
20	<mark>klo</mark>	31
21	aja	31
22	total	28
23	egg	26
24	kurir	25
25	set	24
26	bisa	23

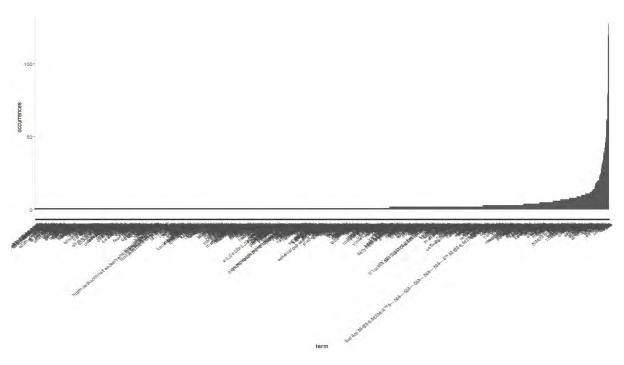
No	Kata	Frekuensi Kemunculan
27	face	23
28	<94> <cf><dc><94><cf><a4></a4></cf></dc></cf>	22
29	buat	20
30	sandwich	20
31	sisa	20
32	utk	20
33	yang	20
34	harga	19
35	hello	19
36	thx	19
37	ini	18
38	kitty	18
39	puncher	18
40	dan	16
41	sama	15
42	animals	14
43	bentuk	14
44	box	14
45	yah	14
46	aku	13
47	iya	13
48	kan	13
49	uda	13
50	angry	12

Dari Tabel 5.4 di atas diketahu terdapat kata yang mirip namun dengan penulisan yang berbeda, yaitu "kalo dan klo",

"mba" dan "mbak". Hasil dari grafik distribusi frekuensi kemunculan kata dengan frekuensi > 20 dapat dilihat pada Gambar 5.2. Untuk distribusi frekuensi seluruh kata pada corpus lama dapat dilihat pada Gambar 5.2. Dan untuk melihat seluruh distribusi kata pada *corpus* dapat dilihat pada Gambar 5.3.


Dari hasil word frequency distribution maka dilakukan pembakuan kata, sehingga kata-kata yang memiliki makna yang sama namun penulisan yang berbeda akan dihapus dan diganti dengan kata-kata yang baku sehingga hanya terdapat satu kata. Pada Tabel 5.5 dapat dilihat kata yang dibakukan pada corpus. Kemudian dari hasil pembakuan kata tersebut, didapat corpus baru (corpus yang telah dibakukan). Berikut meupakan 50 kata yang paling sering muncul pada corpus yang baru dapat dilihat pada Tabel 5.6.

Dari *corpus* yang baru tersebut akan dibandingkan dengan *corpus* yang sebelumnya, apakah dengan dibakukannya kata akan menambahkan akurasi atau tidak. Selain itu dikarenakan pada 50 kata teratas dalam corpus baru dan corpus lama terdapat kata-kata yang termasuk ke dalam kata hubung seperti yang, maka akan dilakukan percobaan untuk menghapus *stopwords*. *Stopwords* yang digunakan merupakan *stopwords* bahasa indonesia [27] . Untuk menghapus *stopwords* dapat menggunakan Kode 5.14.


```
stopwordID
    "http://raw.githubusercontent.com/nurandi/nurand
    i.net/master/data/stopwords-id.txt"
    cstopwordID <- readLines(stopwordID);
    cleanset <- tm_map(cleanset, removeWords, c(cstopwordID))</pre>
```

Kode 5.14 Remove Stopwords Bahasa Indonesia

Dari hasil penghapusan stopwords pada corpus lama, 50 kata teratas pada corpus tersebut menjadi seperti pada Tabel 5.7.

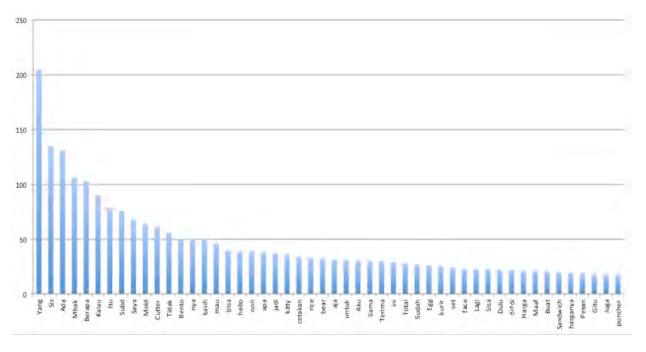
Gambar 5.2 Grafik Distribusi Frekuensi Kata corpus lama

Gambar 5.3 Distribusi seluruh kata *corpus* lama

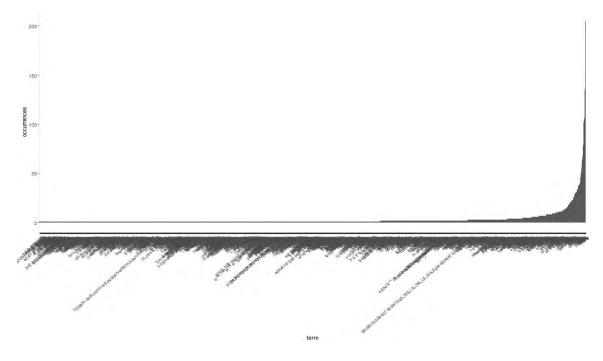
Tabel 5.5 Pembakuan kata pada corpus

Kata Baku	Kata dalam <i>Corpus</i>	
Kalau	Klo, kalo, kalau, kl, klu, kalauu	
Mbak	Mba, mbak, mbk, mb	
Aku	Aq, aku, ak	
Mold	Mold, mould, molds	
Hello kitty	HK, hellokitty, hkitty	
Atau	Ato, atau, or	
Ada	Ada, ad	
Ya	Y, ya, yaa	
Lagi	Lagi, lg	
Ini	Ini, ni	
Berapa	Brp, berapa, brpa, brapa	
Berapaan	brpan, brpaan, berapaan, brapaan	
Beberapa	Bbrp, beberapa	
Sis	Sis, sist, ssis, siss	
Untuk	Utk, untuk	
Juga	Juga, jg, jjg	
Punya	Punya, pny, pnyk	
Yang	Yg, yang	
Sama	Sama, ama, sma, sm	
Saya	Saya, sy, sya, ssy	
Minta	Minta, mnta	
Tidak	Enggk, gak, ga, nga, nda, tidak	
Maaf	Maaf, maap, sorry, sory	
Masih	Masih, msh	
Harga	Harga, hrg, hrga, hargag	
Bisa	Bisa, bs,	
Harganya	hrgnya, harganya,	
Lagi	Lagi, lg, laagi	
Terima	Terima kasih, thanks, thx, tengkyu, trims,	
kasih	tks, trmkash	
Tolong	Tlg, tlong	

Kata Baku	Kata dalam <i>Corpus</i>
Gambar	Gbr, gbrnya
Ada	Ada, ad
Terus	Trus, terus
Kayak	Kayak, kyk,
Pesan	Pesen, psn
Kemarin	Kmren, kmrn,
Nya	Nya, ny,
Gitu	Gitu, gituh, gt
Hari	Hari, hr
Jadi	Jadi, jd
Bisa	Bisa, bs, bsa
Pakai	Pake, pk, pke
Masuk	Masuk, msuk
Sudah	Uda, sudah, udah, sdh, dah, sdah, uuda
Tapi	Tapi, tp
Dulu	Dulu, dl
Minta	Minta, mnt
Terus	Terus, trs
Seperti	Seperti, sp
Dapat	Dpt
Ok	Ok, oke, k, okay
Transfer	transf, transfer, tt
Bayar	Bayar, byr , byar
Tadi	Tadi, td
Tanya	Tanya, tnya, tny


Tabel 5.6 Top 50 Word Frequency Distribution corpus lama

No	Kata	Frekuensi Kemunculan
1	Yang	205
2	Sis	135
3	Ada	131


No	Kata	Frekuensi Kemunculan
4	Mbak	106
5	Berapa	103
6	Kalau	90
7	Itu	79
8	Subd	76
9	Saya	68
10	Mold	64
11	Cutter	61
12	Tidak	56
13	Bento	50
14	nya	49
15	mau	46
16	bisa	40
17	hello	39
18	kasih	49
19	nori	39
20	apa	38
21	jadi	37
22	kitty	36
23	cetakan	34
24	rice	33
25	bear	32
26	aja	31
27	untuk	31
28	Aku	30
29	Sama	30

No	Kata	Frekuensi Kemunculan
30	Terima	30
31	ini	29
32	Total	28
33	Sudah	27
34	Egg	26
35	kurir	25
36	set	24
37	face	23
38	Lagi	23
39	Sisa	23
40	Dulu	22
41	óì†óì	22
42	Harga	21
43	Maaf	21
44	Buat	20
45	Sandwich	20
46	harganya	19
47	Pesan	19
48	Gitu	18
49	Juga	18
50	puncher	18

Untuk melihat grafik frekuensi kemunculan kata dari corpus yang baru dapat dilihat pada Error! Reference source not ound.2.

Gambar 5.4 Grafik Distribusi Frekuensi Kata corpus baru

Gambar 5.5 Gambar distribusi seluruh kata *corpus* baru

Tabel 5.7 50 Kata Teratas pada corpus lama

		Frekuensi
No	Kata	Kemunculan
1	sis	119
2	brp	86
3	subd	76
4	mold	62
5	cutter	61
6	mba	56
7	bento	49
8	nya	46
9	mbak	42
10	kalo	41
11	nori	39
12	cetakan	34
13	rice	33
14	bear	32
15	aja	31
16	klo	31
17	total	28
18	egg	26
19	kurir	25
20	set	24
21	face	23
22	îœ∢îœ	22
23	sandwich	20
24	sisa	20
25	utk	20

		Frekuensi	
No	Kata	Kemunculan	
26	harga		19
27	hello		19
28	thx		19
29	kitty		18
30	puncher		18
31	animals		14
32	bentuk		14
33	box		14
34	yah		14
35	iya		13
36	uda		13
37	angry		12
38	isi		12
39	pcs		12
40	ready		12
41	anak		11
42	ayahbunda		11
43	bayar		11
44	gitu		11
45	msh		11
46	pan		11
47	punya		11
48	rabbit		11
49	ricemold		11
50	sist		11

Sedangkan unuk 50 kata teratas pada corpus baru setelah dilakukan penghapusan stopwords seperti pada Tabel 5.7

Tabel 5.8 50 Kata Teratas pada corpus baru

		Frekuensi
No	Kata	Kemunculan
1	sis	134
2	mbak	115
3	subd	76
4	mold	64
5	cutter	62
6	nya	50
7	bento	49
8	kitty	42
9	hello	40
10	nori	39
11	cetakan	34
12	aja	33
13	bear	33
14	rice	32
15	terimakasih	29
16	total	29
17	untuk	27
18	egg	26
19	kurir	25
20	set	25
21	''ïü''ï	22
22	face	22
23	harga	22
24	sisa	22
25	jadi	21
26	sandwich	21
27	harganya	19

		Frekuensi
No	Kata	Kemunculan
28	gitu	18
29	hari	18
30	pesan	18
31	puncher	17
32	maaf	16
33	iya	15
34	animals	14
35	box	14
36	minta	14
37	uang	14
38	angry	13
39	bayar	13
40	bentuk	13
41	tolong	13
42	yah	13
43	‰\u008dbìååk	12
44	pcs	12
45	punya	12
46	ready	12
47	anak	11
48	ayahbunda	11
49	isi	11
50	pan	11

Dari hasil penghapusan stopwords akan dilakukan pencarian nilai akurasi apakah mengurangi atau menambah akurasi untuk masing-masing corpus lama dan baru.

BAB VI UJI COBA DAN ANALISIS HASIL

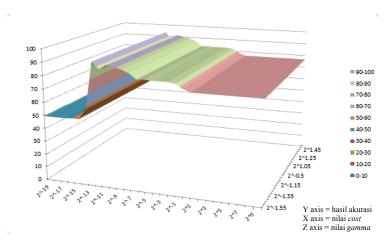
Bab ini berisikan hasil dan pembahasan setelah melakukan implementasi. Hasil yang akan dijelaskan adalah hasil uji coba model, pembahasan tentang hal yang menyebabkan hasil yang ada terjadi.

6.1 Membuat Model Uji Coba

Pada tahapan ini akan dibuat model uji coba pada *train* set dengan beberapa jenis model untuk bisa melakukan perbandingan dalam menentukan model terbaik yang akan digunakan untuk klasifikasi. Skenario uji coba dapat dilihat pada Tabel 6.1.

Tabel 6.1 Skenario Uji Coba

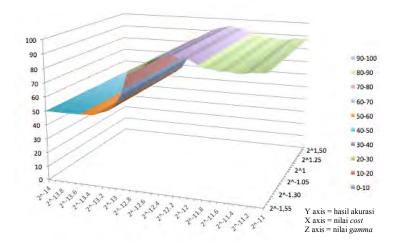
Uji Coba	Skenario	
I	Model dirancang menggunakan parameter <i>kernel linear</i> dengan nilai <i>cost</i> dari 2^-19 sampai dengan 2^10 dengan rentang 1.	
II	Model dirancang menggunakan parameter <i>kernel linear</i> dengan nilai <i>cost</i> dari 2^-14 sampai dengan 2^-11 dengan rentang 0.1	
III	Model dirancang menggunakan parameter <i>kernel radial</i> dengan nilai <i>gamma</i> dari 2^-19 sampai dengan 2^5 dengan rentang 1 dan dengan nilai <i>cost</i> dari 2^-1.55 sampai dengan 2^-1.05 dengan rentang -0.05, dan dari 2^-1 sampai dengan 2^1 dengan rentang 0.5, dan dari 2^1.05 sampai dengan 2^1.55 dengan rentang 0.05.	


Uji Coba	Skenario
IV	Model dirancang menggunakan parameter <i>kernel radial</i> dengan nilai <i>gamma</i> dari 2^-17 sampai dengan 2^-14 dengan rentang 0.1 dan nilai <i>cost</i> dari 2^1.00 sampai dengan 2^1.55 dengan rentang 0.01.
V	Model dirancang dengan melakukan pembakuan kata dari kata kata yang memiliki makna yang sama namun dengan penulisan kata yang berbeda. Banyaknya kata yang dibakukan dapat dilihat pada Tabel 11. Pada uji coba ini dibuatlah <i>corpus</i> baru yang didalamnya sudah terdapat kata yang di bakukan.
VI	Model dirancang dengan melakukan penghapusan stopwords berbahasa indonesia untuk corpus lama dan corpus baru.

6.1.1 Uji Coba I

Pada Uji Coba I, model dirancang dengan menggunakan parameter kernel linear dengan nilai cost 2^-19 sampai dengan 2^10 dengan rentang 1. Dengan menggunakan metode grid search dilakukan pencarian nilai cost akurasi tertinggi. Pada aplikasi R Studio, saat dilakukan pencarian nilai cost menggunakan kernel linear diketahui bahwa terdapat nilai gamma, walaupun dalam pembuatan model hanya memasukkan nilai cost. Akan tetapi setelah dilakukan percobaan dengan memasukkan nilai gamma, ternyata tidak berpengaruh terhadap model yang dibuat. Diagram diagram dari perancangan model dengan nilai cost yang telah ditentukan dapat dilihat pada Gambar 6.1.

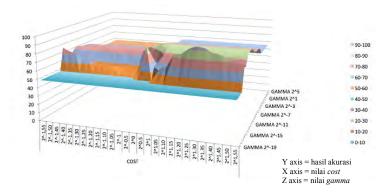
Pada Gambar 6.1 Y-axis menunjukkan hasil akurasi, X-axis menunjukkan nilai *cost* dan Z-axis menunjukkan nilai *gamma*. Dari Gambar 6.1 diketahui bahwa nilai *cost* untuk nilai yang negati dari rentang 2^-19 sampai dengan 2^-13


memiliki nilai akurasi yang kurang bagus, namun dari rentang 2^10 memiliki nilai akurasi yang lebih bagus.

Gambar 6.1 Grafik KeUji Coba II

Pada Uji Coba II, model dirancang dengan menggunakan parameter kernel linear dengan nilai *cost* mulai dari 2^-14 sampai dengan 2^-11 dengan rentang 0.1. Dengan menggunakan metode grid search dilakukan pencarian nilai *cost* yang menghasilkan nilai akurasi tertinggi. Diagram hasil perancangan model dengan nilai *cost* yang telah ditentukan dapat dilihat pada Gambar 6.2. Pada Gambar 6.2.

Dari Gambar 6.2 diketahui bahwa nilai *cost* untuk nilai yang negatif dari rentang 2^-14 sampai dengan 2^-12.9 memiliki nilai akurasi yang kurang bagus, namun dari rentang 2^12.8 sampai dengan 2^-11 memiliki nilai akurasi yang lebih bagus.

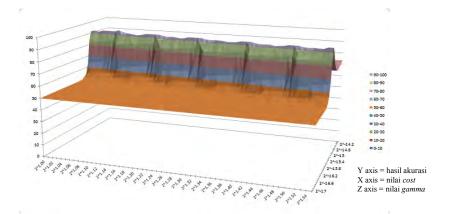

Gambar 6.2 Grafik Kernel Linear 1

6.1.2 Uji Coba III

Pada uji coba III, model dirancang dengan menggunakan parameter kernel radial dengan nilai *gamma* 2^-19 sampai dengan 2^5 dengan rentang 1 dan *cost* dengan nilai 2^-1.55 sampai dengan 2^-1.05 dengan rentang -0.05, dan 2^-1 sampai dengan 2^1 dengan rentang 0.5, dan 2^1.05 sampai dengan 2^1.55 dengan rentang 0.05. Dengan menggunakan metode *grid search* dilakukan pencarian pasangan *cost* dan gamma yang menghasilkan nilai akurasi tertinggi. Diagram hasil perancangan model dengan pasangan *cost* dan *gamma* yang telah ditentukan dapat dilihat pada Gambar 6.3.

Dari Gambar 6.3 diketahui bahwa nilai *cost* untuk nilai yang negatif memiliki akurasi kurang bagus dibandingkan dengan nilai *cost* yang positif. Selain itu nilai gamma untuk nilai yang positif memiliki akurasiyang kurang bagus dibandingkan dengan nilai gamma yang negatif. Dari uji coba model ini dihasilkan nilai akurasi yang bagus dengan

nilai gamma sebesar 2^-15 dengan nilai cost positif dari 2^1.10 sampai dengan 2^1.55.



Gambar 6.3 Grafik Kernel Radial 1

6.1.3 Uji Coba IV

Pada uji coba IV, model dirancang menggunakan parameter kernel radial dengan nilai gamma 2^-17 sampai dengan 2^-14 dengan rentang 0.1 dan nilai cost 2^1.00 sampai dengan 2^1.55 dengan rentang 0.01. Dengan menggunakan metode *grid search* dilakukan pencarian pasangan *cost* dan *gamma* yang menghasilkan nilai akurasi tertinggi. Diagram dari hasil perancangan model dengan pasangan *cost* dan *gamma* yang telah ditentukan dapat dilihat pada Gambar 6.4.

Dari Gambar 6.4 diketahui bahwa nilai *gamma* dengan rentang 2^-15.1 sampai dengan 2^-14.8 memiliki nilai akurasi yang lebih bagus. Nilai *cost* yang memiliki akurasi yang bagus didapat pada nilai 2^1.03 sampai dengan 2^1.06, 2^1.14 sampai dengan 2^1.17, 2^1.24 sampai dengan 2^1.27 dan 2^1.36 sampai dengan 2^1.38

Gambar 6.4 Grafik Kernel Radial

6.1.4 Uji Coba V

Pada uji coba V dilakukan pembakuan kata dari kata kata yang memiliki makna yang sama namun dengan penulisan kata yang berbeda. Banyaknya kata yang dibakukan dapat dilihat pada Tabel 11. Pada uji coba ini dibuatlah *corpus* baru yang didalamnya sudah terdapat kata yang di bakukan. Kemudian hasil dari uji coba ini, akan dibandingkan dengan corpus sebelumnya apakah menambah akurasi atau mengurangi akurasi. Dari hasil uji coba ini diketahui bahwa pembakuan kata tidak menambahkan akurasi namun mengurangi hasil akurasi.

6.1.5 Uji Coba VI

Pada uji coba VI dilakukan penghapusan *stopwords* bahasa indonesia untuk masing-masing corpus lama dan *corpus* baru. Dari hasil uji coba ini juga dilakukan analisis *corpus* dengan mencari 50 kata teratas dari masing-masing *corpus*. Hasil uji coba menunjukkan bahwa dengan dilakukan penghapusan *stopwords* bahasa indonesia cenderung menurunkan nilai akurasi, dan

parameter terbaik dengan akurasi tertinggi adalah k*ernel linear* dengan nilai cost 2^12.

6.2 Hasil Uji Coba Model

Dari hasil uji coba model diketahui bahwa:

- pada uji coba I nilai akurasi sebesar 93.23% didapat dengan nilai nilai *cost* 2^-12.
- Pada uji coba II nilai akurasi sebesar 94.74% didapat dengan nilai *cost* 2^-12.2.
- Pada uji coba III nilai akurasi sebesar 92.48% didapat dengan nilai cost 2¹.25 dan nilai gamma 2¹-15.
- Pada uji coba IV nilai akurasi sebesar 92.86% didapat dengan pasangan nilai *gamma* 2^-14.8 dan *cost* 2^1.03 sampai dengan 2^1.06, nilai *gamma* 2^-14.9 dan *cost* 2^1.14 sampai dengan 2^1.17, nilai *gamma* 2^-15 dan *cost* 2^1.24 sampai dengan 2^1.27, nilai *gamma* 2^-15.1 dan *cost* 2^1.36 sampai dengan 2^1.38.
- Pada uji coba V, diketahui bahwa nilai akurasi berdasarkan parameter kernel radial dan linear dapat dilihat pada Tabel 6.2.

Tabel 6.2 Nilai akurasi berdasarkan parameter

Parameter	Hasil Akurasi
Kernel linear dengan nilai cost 2^- 12	90.60 %
Kernel linear dengan nilai cost 2^- 12.2	92.48%
Kernel radial dengan nilai cost 2^1.25 dan gamma 2^-15	90.60%
Kernel radial dengan nilai cost 2^1.03 dan gamma 2^-14.8	87.21%

Dari hasil uji coba V, diketahui nilai akurasi tertinggi adalah dengan menggunakan kernel linear dengan nilai *cost* 2^-12.2.

 Pada uji coba VI, diketahui nilai akurasi berdasarkan parameter kernel radial dan linear untuk corpus lama dapat dilihat pada Tabel 6.3

Tabel 6.3 Nilai Akurasi corpus lama

Parameter	Hasil Akurasi
Kernel linear dengan nilai cost 2^-12	91.72 %
Kernel linear dengan nilai cost 2^-12.2	86.09%
Kernel radial dengan nilai cost 2^1.25 dan gamma 2^-15	83.83%
Kernel radial dengan nilai cost 2^1.03 dan gamma 2^-14.8	83.83%

Sedangkan nilai akurasi untuk corpus baru dapat dilihat pada Tabel 6.4.

Tabel 6.4 Nilai Akurasi corpus baru

Parameter	Hasil Akurasi	
Kernel linear dengan nilai cost 2^-12	90.97%	
Kernel linear dengan nilai cost 2^-12.2	88.72%	
Kernel radial dengan nilai cost 2^1.25 dan gamma 2^-15	81.57%	
Kernel radial dengan nilai cost 2^1.03 dan gamma 2^-14.8	81.57%	

Dari hasil uji coba VI, diketahui bahwa untuk corpus yang lama nilai akurasi tertinggi adalah 91.72% mengunakan kernel linear dengan nilai cost adalah 2^-12. Sedangkan untuk corpus yang baru nilai akurasi tertinngi adalah 90.97% menggunakan kernel linear dengan nilai cost adalah 2^-12.

Kemudian dari hasil uji coba untuk masing masing model akan dibandingkan untuk menentukan model terbaik yang akan digunakan untuk klasifikasi. Pada Tabel 6.5 dapat dilihat hasil akurasi untuk masing masing model uji coba dengan skenario yang berbeda.

Model Uji Coba	Hasil Akurasi
Uji Coba 1	93.23%
Uji Coba II	94.74%
Uji Coba III	92.48%
Uji Coba IV	92.86%
Uji Coba V	92.48%
Corpus Lama	91.72%
Corpus Baru	90.97%

Tabel 6.5 Tabel akurasi hasil uji coba model

Dari Tabel 6.5 diketahui bahwa nilai model uji coba II memiliki nilai akurasi tertinggi sehingga menjadi model yang terbaik yang akan digunakan untuk klasifikasi.

6.3 Uji Validasi

Uji Validasi dilakukan untuk mengevaluasi model klasifikasi. Evaluasi dari model klasifikasi diukur berdasarkan perhitungan akurasi, presisi, *recall* dan *F-Measure*. Akurasi merupakan kinerja model dalam mengklasifikasikan teks,

presisi merupakan keakuratan model, recall merupakan sensitivitas model, dan F-Measure merupakan kemampuan model dalam menggali informasi teks.

Pada bagian ini akan ditampilkan hasil uji validasi model dengan metode SVM, penghapusan beberapa kata, dan penggunaan *grid search* untuk mencari nilai parameter gamma dan cost terbaik untuk kernel linear maupun radial. Hasil uji validasi model dapat dilihat pada Tabel 6.6.

Tabel 6.6 Tabel Hasil Uji Validasi Model

Skenario	Akurasi	Presisi	Recall	F- Measure
Uji Coba I	93.23%	89.39%	96.72%	93.52%
Uji Coba II	94.74%	93.18%	96.09%	96.18%
Uji Coba III	92.86%	94.70%	91.24%	92.93%
Uji Coba IV	92.48%	95.45%	90%	92.64%
Uji Coba V	92.48%	88.64%	95.90%	92.12%
Corpus Lama	91.72%	91.67%	91.67%	91.67%
Corpus Baru	90.97%	92.42%	89.71%	91.04%

Berdasarkan Tabel 6.6 diketahui bahwa hasil akurasi tertinggi adalah Uji Coba II. Dari enam percobaan, pada percobaan I – IV tidak dilakukan penghapusan kata pada *corpus*. Sedangkan pada percobaan V dilakukan pembakuan kata pada *corpus* dan pada percobaan VI dilakukan penghapusan *stopwords*. Jadi dapat dikatakan bahwa dengan dilakukannya pembakuan kata akan mengurangi akurasi. Sedangkan kebalikannya akurasi yang didapatkan lebih tinggi. Selain itu dengan penghapusan *stopwords* pada masing-masing corpus akan mengurangi akurasi.

6.4 Analisis Hasil Uji Coba Model

6.4.1 Analisis Uji Validasi

Hasil uji validasi terhadap model klasifikasi dengan menggunakan metode Support Vector Machine (SVM) mencakup perhitungan akurasi, presisi, *recall*, dan *F-Measure*. Dari hasil uji validasi model diketahui bahwa model klasifikasi terbaik adalah model uji coba II yang memiliki akurasi di atas 90%. Dari hasil uji diketahui bahwa nilai akurasi model adalah sebesar 94.74%, presisi adalah 93.18%, *recall* adalah 96.09% dan *F-Measure* adalah 96.18%

Berdasarkan hasil uji validasi maka hasil evaluasi dari uji coba model diketahui bahwa nilai akurasi adalah 94.74%. Dengan nilai akurasi tersebut maka dapat dikatakan bahwa dengan kinerja model klasifikasi sudah bagus. Nilai presisi dari hasil evaluasi model adalah 93.18%. Dengan nilai presisi tersebut dapat dikatakan bahwa model bagus dalam mengkategorikan teks ke dalam kelas yang seharusnya, sehingga dengan kata lain keakuratan model adalah baik. Nilai *recall* dari hasil evaluasi model adalah 96.09%. Dengan nilai recall tersebut dapat dikatakan bahwa model sudah bagus dalam memprediksikan teks dengan benar, sehingga dengan kata lain model memiliki sensitivitas yang baik. Nilai *F-Measure* dari hasil evaluasi model adalah 96.18%. dengan nilai *F-Measure* tersebut dapat dikatakan bahwa model klasifikasi dapat menggali informasi teks dengan baik.

Namun dengan akurasi yang baik, belum menunjukkan performa model yang baik. Hal ini dikarenakan dalam perhitungan akurasi, jika distribusi kelas tidak merata maka hasil perhitungan akurasi bisa didapat dari saja memprediksikan kelas dominan sehingga vang menghasilkan nilai akurasi yang tinggi namun menghasilkan presisi dan recall yang rendah untuk kelas yang lain.

Oleh karena itu untuk mengukur performa dari setiap kelas yang ada pada *dataset* maka akan dilakukan perhitungan

presisi, *recall*, dan *F-Measure* dari masing-masing kelas. Hasil perhitungan presisi, *recall*, dan *F-Measure* dari masing-masing kelas dapat dilihat pada Tabel 6.7.

Tabel 6.7 Tabel perhitungan presisi, recall, F-Measure masing-masing kelas

Kelas	Presisi	Recall	F-Measure
Query	93.18%	96.09%	96.18%
Non-Query	96.27%	93.48%	94.85%

Berdasarkan Tabel 6.7 diketahui bahwa berdasarkan tiga parameter (presisi, *recall* dan *F-Measure*) menghasilkan nilai di atas 80% untuk kelas query dan non query. Hal ini menunjukkan bahwa performa model cukup baik dalam dalam mengklasifikasikan kelas query dan non query.

Dari hasil akurasi model maupun presisi, *recall*, dan *F-Measure* dari masing – masing kelas, dapat dikatakan bahwa hasil yang didapatkan dan performa *Support Vector Machine* (SVM) dalam mengklasifikasin teks permintaan informasi adalah baik.

6.4.2 Analisis Perbandingan Uji Coba

Berdasarkan hasil uji coba VI dengan melakukan pembakuan kata dibandingkan dengan uji coba II yang menggunakan data awal tanpa dilakukan pembakuan kata. Hasil perbandingan akurasi dapat dilihat pada Tabel 6.8

Tabel 6.8 Perbandingan akurasi model uji coba II dan VI

Model Uji Coba	Akurasi	Presisi	Recall	F-Measure
II	94.74%	93.18%	96.09%	96.18%
VI	92.48%	88.64%	95.90%	92.12%

Berdasarkan hasil akurasi di atas, maka diketahui nilai akurasi tertinggi didapat dari model uji coba II dengan nilai

94.74%. Untuk mengetahui masing-masing kelas yang diprediksikan benar dapat dilihat pada Tabel 6.9

Tabel 6.9 Confusion Matrix model II

Predict test	Test label		
Fredict test	Non query	query	
Non query	129	9	
Query	5	123	

Pada uji coba II diketahui teks pada kelas non query yang diprediksikan benar sebanyak 129 dan diprediksikan salah sebanyak 5. Sedangkan teks pada kelas query yang diprediksikan benar sebanyak 123 dan diprediksikan salah sebanyak 9. Dalam uji coba ini, kata yang diprediksikan salah pada kelas query dapat dilihat pada Tabel 6.10

Tabel 6.10 Teks yang diprediksi salah pada kelas query

No	Teks	Kelas pada model	Kelas pada data asli
19	maaf, mbak saya sudah nemu di Bdg, tidak jadi pesan jadinya maaf, mbak saya sudaha nemu di Bdg, tidak jadi pesan jadinya	Non-query	Query
27	Mbak kalau pmbelanjaan brktnya disc berapa ya?	Non-query	Query
51	Semua ukurannya xxl?	Non-query	Query
84	Nanti <e5><bb>k<ec><dc> <95><a3><c7><89>< cf><e4><cc><d9><cc< th=""><th>Non-query</th><th>Query</th></cc<></d9></cc></e4></c7></a3></dc></ec></bb></e5>	Non-query	Query

No	Teks	Kelas pada	Kelas
		model	pada data
			asli
	> <d9><89><aa><8f><</aa></d9>		
	95> <a3><c7><e5><a8< th=""><th></th><th></th></a8<></e5></c7></a3>		
	> barang		
	Y <e5><bb><eb><a8></a8></eb></bb></e5>		
	g		
	<e5><bb>k<ec><dc></dc></ec></bb></e5>		
	ambil sis		
204	yang nori pounch apa	Non-query	Query
	<89> <db>_<89><db></db></db>		
	<dc><94>_<a5>G<ed< th=""><th></th><th></th></ed<></a5></dc>		
	>_ <ed><a8><ed><c9></c9></ed></a8></ed>		
	<ed>_<ea><c1><cc><</cc></c1></ea></ed>		
	b4>_ <bc><ed>_<ed><</ed></ed></bc>		
	a8> <ed><c9><ed>_<e< th=""><th></th><th></th></e<></ed></c9></ed>		
	a> <c1><94>_<a5></a5></c1>		
	kurang sis?		
226	mbak bear n rabbitku +	Non-query	Query
	rm segitiga dikirim		
	senin ya		
227	Punchernya kali ini	Non-query	Query
	bisa lbh murah dikit		
	soalnya naik kapal		
231	Dv-ds-fw 1 ya	Non-query	Query
246	Cp-tr-bk sis	Non-query	Query

Berdasarkan Tabel 6.10, diketahui bahwa kesalahan dalam klasifikasi bukanlah kesalahan model dalam mengklasifikasikan namun, karena terdapat teks yang seharusnya termasuk ke dalam kelas non-query namun diberi label query, seperti pada no 19, 27, 51, 84, 227, 231, dan 246. Sedangkan kata yang diprediksikan salah pada kelas non query dapat dilihat pada Tabel 6.11.

Tabel 6.11 Teks yang diprediksi salah pada kelas non-query

No	Teks	Kelas pada	Kelas pada
		model	data asli
468	Sama yg flower	Query	Non-query
	, ,		1 3
485	Ayo ketemu	Query	Non-query
	komunitas		
	AYAHBUNDA		
	bersama NUTRILON		
	SOYA untuk anak		
	anak Di seminar		
	'ATASI ALERGI ,		
	BEBAS		
	BERKREASI'		
	Minggu - 8 Juli 2012		
	Pk. 09.30 - 13.00		
	WIB Di Ballroom 1		
	dan 2 Hotel Sheraton		
	Surabaya Jl. Embong		
	Malang Surabaya		
	Bersama : Dr. Anang		
	Hendaryanto SpA		
	(K) Dokter spesialis		
	anak Disertai demo		
	masak - Chef Haryo		
	Pramoe Moderator -		
	Sari Nila Harga tiket		
	: 75000 (dapat lunch		
	dan paket cantik dari		
	Ayahbunda) Dress		
	code: touch of gold		
	50 peserta pertama		
	yang datang sebelum		
	pk. 09.30 akan		
	mendapatkan		
	bingkisan menarik.		

	Tiglest Day		
	Ticket Box :		
	ANGELINA - 0856		
	312 7797 Pin BB:		
	20EB14C0 Pesan		
	tiket sekarang,		
	sebelum kehabisan :)		
	- bantuin forward ya		
	ke teman teman ,		
	sapa tau ada yang		
	berminat datang -		
486	Ayo ketemu komunitas	Query	Non-query
	AYAHBUNDA		
	bersama NUTRILON		
	SOYA untuk anak		
	anak Di seminar		
	'ATASI ALERGI ,		
	BEBAS BERKREASI		
	Minggu - 8 Juli 2012		
	Pk. 09.30 - 13.00 WIB		
	Di Ballroom 1 dan 2		
	Hotel Sheraton		
	Surabaya Jl. Embong		
	Malang Surabaya		
	Bersama : Dr. Anang		
	Hendaryanto SpA (K)		
	Dokter spesialis anak		
	Disertai demo masak -		
	Chef Haryo Pramoe		
	Moderator - Sari Nila		
	Harga tiket: 75000		
	(dapat lunch dan paket		
	cantik dari		
	Ayahbunda) Dress		
	code: touch of gold 50		
	peserta pertama yang		
	1 2 2		
	09.30 akan		

	mendapatkan bingkisan menarik. Ticket Box : ANGELINA - 0856 312 7797 Pin BB : 20EB14C0 Pesan tiket sekarang , sebelum kehabisan :) - bantuin forward ya ke teman		
	teman , sapa tau ada yang berminat datang -		
524	Mba puncher face yg murmer <80> <c9><ec><d4>< 82>_ <81><e4><ae><8d><8d><8d><8c<<a><ae><ae><ae><ae><ae><ae><ae><ae><ae></ae></ae></ae></ae></ae></ae></ae></ae></ae></ae></e4></d4></ec></c9>	Query	Non-query
569	Kirimnya brp paket?	Query	Non-query

Pada Tabel 6.11 diketahui bahwa terdapat teks yang termasuk ke dalam kelas query namun diberi label non query seperti pada nomor 468 dan 524. Sedangkan untuk nomor 485, 486 dan 569 merupakan teks yang termasuk ke dalam kelas non query namun diprediksi kelas query.

Untuk uji coba V diketahui bahwa nilai akurasi adalah 92.48%. akurasi yang dihasilkan lebih rendah daripada uji coba II. Untuk mengetahui masing-masing kelas yang diprediksikan benar dapat dilihat pada Tabel 6.12.

Tabel 6.12 Confusion Matrik model Uji Coba V

Predict test	Test label		
riedict test	Non query	query	
Non query	129	15	
Query	5	117	

Pada uji coba V diketahui teks pada kelas non query yang diprediksikan benar sebanyak 129 dan diprediksikan salah sebanyak 5. Sedangkan teks pada kelas query yang diprediksikan benar sebanyak 117 dan diprediksikan salah sebanyak 15. Dalam uji coba ini, kata yang diprediksikan salah pada kelas query dapat dilihat pada Tabel 6.13

Tabel 6.13 Teks yang diprediksikan salah pada kelas query

No	Teks	Kelas pada model	Kelas pada data asli
19	maaf, mbak saya sudah nemu di Bdg, tidak jadi pesan jadinya maaf, mbak saya sudaha nemu di Bdg, tidak jadi pesan jadinya	Non- query	Query
27	Mbak kalau pmbelanjaan brktnya disc berapa ya?	Non- query	Query
51	Semua ukurannya xxl?	Non- query	Query
56	maaf sis, saya kurang suka. kalau puncher yang kosong saya inden bisa?	Non- query	Query
67	Dv-ds-fw 1 ya	Non- query	Query

84 Nanti ◆ k ◆ k ◆ Non-query	data asli Query
QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ	Query
44444444	
barang Y�r�g	
♦♦ k ♦♦ ambil	
Sis 135 herana hari itu lesnya Non-	0
o o rapa nari na rosinya 1 von	Query
mbak query	
199 Pancake ring Non-	Query
chicken,fish,rabbit query	
dan love	
226 mbak bear n rabbitku Non-	Query
+ rm segitiga dikirim query	
senin ya	
227 Punchernya kali ini Non-	Query
bisa lbh murah dikit query	
soalnya naik kapal	
231 Dv-ds-fw 1 ya Non-	Query
query	
246 Cp-tr-bk sis Non-	Query
query	
272 Cetakan norinya bkn Non-	Query
30rb mbak:D query	
343 Eh di pp saya Non-	Query
ricemold kepala query	
bunny sama bear	
358 Nori juga ��期 Non-	Query
a��� di forbento query	
? • • •	

Berdasarkan pada Tabel 6.13, diketahui bahwa kesalahan dalam klasifikasi bukanlah kesalahan model dalam mengklasifikasikan namun, karena terdapat teks yang

seharusnya termasuk ke dalam kelas non-query namun diberi label query, seperti pada no 19, 27, 51, 67, 84, 231, 246. Tetapi untuk nomor 56, 135, 199, 226, 227, 272, 343, dan 358 merupakan kelas query yang diprediksi non query. Untuk mengetahui kata yang menyebabkan model salah memprediksi maka pada Tabel 6.14 dilakukan perbandingan perubahan kata dari model lama yang diprediksi benar dan diprediksi salah pada model baru. Dari Tabel 6.14 dapat dilihat bahwa hasil pembakuan kata ternvata membuat model memprediksikan kata sehingga banyaknya teks yang diprediksi salah pada model baru lebih banyak dari pada model lama. Untuk teks yang diprediksikan salah pada kelas non query dapat dilihat pada Tabel 6.15.

Berdasarkan pada Tabel 6.15, diketahui bahwa kesalahan dalam klasifikasi bukanlah kesalahan model dalam mengklasifikasikan namun, karena terdapat teks seharusnya termasuk ke dalam kelas non-query namun diberi label query, seperti pada no 468 dan 524. Untuk nomor 485, 486, dan 569 merupakan kelas non-query yang diprediksi kelas query. Untuk mengetahui kata yang menyebabkan model salah memprediksi maka pada Tabel 6.16 dilakukan perbandingan perubahan kata dari model lama dan model baru.

Tabel 6.14 Tabel perbandingan model lama dan baru

Tel	Teks		Label		
Sebelum	Sesudah	Pada Data	Prediksi	Prediksi	Analisis
dibakukan	dibakukan	yang	tanpa	dengan	Anansis
		seharusnya	pembakuan	pembakuan	
Sorry sis, saya	maaf sis, saya	Query	Query	Non-Query	Dengan dilakukan
kurang suka.	kurang suka.				perubahan pada kata
Kalo puncher	kalau puncher				'sorry' dirubah menjadi
yg kosong saya	yang kosong				'maaf', kata 'yg'
inden bisa?	saya inden				dirubah menjadi 'yang'
	bisa?				membuat model salah
					memprediksi kelas
					menjadi kelas non query
Brp hari itu	berapa hari itu	Query	Query	Non-Query	Dengan dilakukan
lesnya mba	lesnya mbak				perubahan pada kata
					'brp' dirubah menjadi
					'berapa' membuat
					model salah
					memprediksi kelas
					menjadi kelas non query

Cetakan norinya	Cetakan	Query	Query	Non-Query	Dengan dilakukan
bkn 30rb	norinya bkn				perubahan pada kata
mbk:D	30rb mbak:D				'mbk' dirubah menjadi
					'mbak' membuat model
					salah memprediksi
					kelas menjadi kelas non
					query
Eh di pp saya	Eh di pp saya	Query	Query	Non-Query	Dengan dilakukan
ricemold kepala	ricemold				perubahan pada Kata
bunny ma bear	kepala bunny				'ma' dirubah menjadi
	sama bear				'sama' membuat model
					salah memprediksi
					kelas menjadi kelas non
					query

Tabel 6.15 Teks yang diprediksi salah pada kelas non-query

No	Teks	Kelas pada model	Kelas pada data asli
468	Sama yang flower	Query	Non-query
485	Ayo ketemu komunitas AYAHBUNDA bersama NUTRILON SOYA untuk anak anak Di seminar 'ATASI ALERGI , BEBAS BERKREASI' Minggu - 8 Juli 2012 Pk. 09.30 - 13.00 WIB Di Ballroom 1 dan 2 Hotel Sheraton Surabaya Jl. Embong Malang Surabaya Bersama : Dr. Anang Hendaryanto SpA (K) Dokter spesialis anak Disertai demo masak - Chef Haryo Pramoe Moderator - Sari Nila Harga tiket : 75000 (dapat lunch dan paket cantik dari Ayahbunda) Dress code : touch of gold 50 peserta pertama yang datang sebelum pk. 09.30 akan mendapatkan	Query	Non-query

No	Teks	Kelas pada	Kelas pada
	1 . 1	model	data asli
	bingkisan menarik.		
	Ticket Box:		
	ANGELINA - 0856		
	312 7797 Pin BB:		
	20EB14C0 Pesan		
	tiket sekarang,		
	sebelum kehabisan :)		
	- bantuin forward ya		
	ke teman teman,		
	sapa tau ada yang		
	berminat datang -		
486	Ayo ketemu komunitas	Query	Non-query
	AYAHBUNDA		
	bersama NUTRILON		
	SOYA untuk anak		
	anak Di seminar		
	'ATASI ALERGI ,		
	BEBAS BERKREASI'		
	Minggu - 8 Juli 2012		
	Pk. 09.30 - 13.00 WIB		
	Di Ballroom 1 dan 2		
	Hotel Sherat on		
	Surabaya Jl. Embong		
	Malang Surabaya		
	Bersama : Dr. Anang		
	Hendaryanto SpA (K)		
	Dokter spesialis anak		
	Disertai demo masak -		
	Chef Haryo Pramoe		
	Moderator - Sari Nila		
	Harga tiket: 75000		
	(dapat lunch dan paket		
	cantik dari		
	Ayahbunda) Dress		
	code: touch of gold 50		

No	Teks	Kelas pada model	Kelas pada data asli
	peserta pertama yang datang sebelum pk. 09.30 akan mendapatkan bingkisan menarik. Ticket Box: ANGELINA - 0856 312 7797 Pin BB: 20EB14C0 Pesan tiket sekarang, sebelum kehabisan:) - bantuin forward ya ke teman teman, sapa tau ada yang berminat datang -		
524	Mbak puncher face yang murmer <80> <c9><ec><d4>< 82>_ <81><e4><ae><8d>< 8d><</ae></e4></d4></ec></c9>	Query	Non-query
569	Kirimnya berapa paket?	Query	Non-query

Tabel 6.16 Tabel perbandingan model lama dan baru

No	Model lama	Model baru	Perubahan
468	Sama yg	Sama yang flower	Kata 'yg'
	flower		dirubah
			menjadi
40.5	1 .		'yang'
485	Ayo ketemu	Ayo ketemu	Tidak
	komunitas	komunitas	dilakukan perubahan
	AYAHBUND	AYAHBUNDA	perubahan
	A bersama	bersama	
	NUTRILON	NUTRILON	
	SOYA untuk		
	anak anak Di		
	seminar	'ATASI ALERGI ,	
	'ATASI	BEBAS	
	ALERGI ,	BERKREASI'	
	BEBAS	Minggu - 8 Juli	
	BERKREASI'	2012 Pk. 09.30 -	
	Minggu - 8	13.00 WIB Di	
	Juli 2012 Pk.	Ballroom 1 dan 2	
	09.30 - 13.00	Hotel Sheraton	
	WIB Di	Surabaya Jl.	
	Ballroom 1	Embong Malang	
	dan 2 Hotel	Surabaya Bersama :	
	Sheraton	Dr. Anang	
	Surabaya Jl.	Hendaryanto SpA	
	Embong	(K) Dokter	
	Malang	spesialis anak	
	Surabaya	Disertai demo	
	Bersama : Dr.	masak - Chef	
	Anang	Haryo Pramoe	
	Hendaryanto	Moderator - Sari	
	SpA (K)	Nila Harga tiket :	
	Dokter	75000 (dapat lunch	
	spesialis anak	dan paket cantik	
	Disertai demo	dari Ayahbunda)	

No	Model lama	Model baru	Perubahan
	masak - Chef	Dress code: touch	
	Haryo Pramoe	of gold 50 peserta	
	Moderator -	pertama yang	
	Sari Nila	datang sebelum pk.	
	Harga tiket :	09.30 akan	
	75000 (dapat	mendapatkan	
	lunch dan	bingkisan menarik.	
	paket cantik	Ticket Box :	
	dari	ANGELINA - 0856	
	Ayahbunda)	312 7797 Pin BB:	
	Dress code :	20EB14C0 Pesan	
	touch of gold	tiket sekarang ,	
	50 peserta	sebelum kehabisan	
	pertama yang	:) - bantuin forward	
	datang	ya ke teman teman,	
	sebelum pk.	sapa tau ada yang	
	09.30 akan	berminat datang -	
	mendapatkan		
	bingkisan		
	menarik.		
	Ticket Box:		
	ANGELINA -		
	0856 312 7797		
	Pin BB :		
	20EB14C0		
	Pesan tiket		
	sekarang ,		
	sebelum		
	kehabisan :) -		
	bantuin		
	forward ya ke		
	teman teman,		
	sapa tau ada		
	yang berminat		
486	datang -	Axio Irotomi	Tidak
400	Ayo ketemu	Ayo ketemu	1 IUak

No	Model lama	Model baru	Perubahan
	komunitas	komunitas	dilakukan
	AYAHBUND	AYAHBUNDA	perubahan
	A bersama	bersama	
	NUTRILON	NUTRILON	
	SOYA untuk	SOYA untuk anak	
	anak anak Di	anak Di seminar	
	seminar	'ATASI ALERGI ,	
	'ATASI	BEBAS	
	ALERGI ,	BERKREASI'	
	BEBAS	Minggu - 8 Juli	
	BERKREASI'	2012 Pk. 09.30 -	
	Minggu - 8	13.00 WIB Di	
	Juli 2012 Pk.	Ballroom 1 dan 2	
	09.30 - 13.00	Hotel Sheraton	
	WIB Di	Surabaya Jl.	
	Ballroom 1	Embong Malang	
	dan 2 Hotel	Surabaya Bersama:	
	Sheraton	Dr. Anang	
	Surabaya Jl.	Hendaryanto SpA	
	Embong	(K) Dokter	
	Malang	spesialis anak	
	Surabaya	Disertai demo	
	Bersama : Dr.	masak - Chef	
	Anang	Haryo Pramoe	
	Hendaryanto	Moderator - Sari	
	SpA (K)	Nila Harga tiket :	
	Dokter	75000 (dapat lunch	
	spesialis anak	dan paket cantik	
	Disertai demo	dari Ayahbunda)	
	masak - Chef	Dress code: touch	
	Haryo Pramoe	of gold 50 peserta	
	Moderator -	pertama yang	
	Sari Nila	datang sebelum pk.	
	Harga tiket :	09.30 akan	
	75000 (dapat	mendapatkan	
	lunch dan	bingkisan menarik.	

No	Model lama	Model baru	Perubahan
	paket cantik	Ticket Box :	
	dari	ANGELINA - 0856	
	Ayahbunda)	312 7797 Pin BB:	
	Dress code :	20EB14C0 Pesan	
	touch of gold	tiket sekarang ,	
	50 peserta	sebelum kehabisan	
	pertama yang	:) - bantuin forward	
	datang	ya ke teman teman ,	
	sebelum pk.	sapa tau ada yang	
	09.30 akan	berminat datang -	
	mendapatkan		
	bingkisan		
	menarik.		
	Ticket Box:		
	ANGELINA -		
	0856 312 7797		
	Pin BB :		
	20EB14C0		
	Pesan tiket		
	sekarang ,		
	sebelum		
	kehabisan :) -		
	bantuin		
	forward ya ke		
	teman teman,		
	sapa tau ada		
	yang berminat		
524	datang -	M 1 1 C	Kata 'mba'
524	Mba puncher	Mbak puncher face	Kata mba dirubah
	face yg	yang murmer <80> <c9><ec><d4< td=""><td>menjadi</td></d4<></ec></c9>	menjadi
	murmer <80> <c9><ec< td=""><td><80><c9><ec><d4><82></d4></ec></c9></td><td>'mbak'dan</td></ec<></c9>	<80> <c9><ec><d4><82></d4></ec></c9>	'mbak'dan
	> <d4><82></d4>	<81> <e4><ae><8d</ae></e4>	kata 'yg'
	<81> <e4><ae< td=""><td>><ae><8d><e5><b< td=""><td>dirubah</td></b<></e5></ae></td></ae<></e4>	> <ae><8d><e5><b< td=""><td>dirubah</td></b<></e5></ae>	dirubah
	><8d> <ae><8</ae>	b><80> <fc>?:D</fc>	menjadi
	d> <e5><bb><</bb></e5>	0- \00- \10- ; .D	'yang'
	u- \cu-		

No	Model lama	Model baru		Perubahan	
	80> <fc>?:D</fc>				
569	Kirimnya brp paket?	Kirimnya paket?	berapa	Kata dirubah menjadi 'berapa'	'brp'

Berdasarkan Tabel 6.16 diketahui bahwa dengan dilakukan pembakuan kata, tidak mempengaruhi model dalam memprediksi kelas. Hal ini terlihat dari jumlah teks yang diprediksi salah pada model lama dan baru adalah sama. Dari hasil perbandingan teks yang termasuk ke dalam kelas query dan non-query maka dapat disimpulkan bahwa hasil pembakuan yang dilakukan tidak mempengaruhi nilai akurasi secara signifikan dan cenderung menurunkan nilai akurasi. Hal ini bisa terjadi karena pada svm, semakin banyak fitur akan semakin baik, sedangkan dengan dilakukannya pembakuan kata jumlah fitur semakin sedikit sehingga memungkinkan terjadinya penurunan nilai akurasi.

BAB VII KESIMPULAN DAN SARAN

Pada bab ini dibahas mengenai kesimpulan dari semua proses yang telah dilakukan dan saran yang dapat diberikan untuk pengembangan yang lebih baik.

7.1 Kesimpulan

Berdasarkan hasil penelitian pada tugas akhir ini, maka didapatkan kesimpulan sebagai berikut :

- 1. Klasifikasi teks permintaan informasi produk menggunakan *Support Vector Machine* menghasilkan akurasi klasifikasi terbaik dengan menggunakan model skenario Uji Coba II yang menggunakan kernel linear dengan parameter *cost* sebesar 2^-12.2.
- 2. Dari hasil klasifikasi yang dilakukan diketahui bahwa penggunaan *kernel linear* lebih bagus dalam mengklasifikasikan teks dibandingkan dengan penggunaan *kernel radial*.
- 3. Nilai Akurasi, presisi, *recall*, dan *F-Measure* dari hasil klasifikasi yang digunakan adalah sebesar 94.74%, 93.18%, 96.09%, dan 96.18%. Berdasarkan nilai tersebut dapat dikatakan bahwa model yang dibuat baik dalam mengklasifikasikan teks permintaan informasi produk.
- 4. Pembakuan kata pada *corpus* tidak memberikan dampak yang signifikan terhadap akurasi dan cenderung menurunkan nilai akurasi.
- Dengan dilakukan penghapusan menggunakan stopwords tidak memberikan dampak yang signifikan terhadap akurasi dan cenderung menurunkan nilai akurasi

7.2 Saran

Berdasarkan hasil penelitian pada tugas akhir ini, maka saran untuk penelitian selanjutnya adalah sebagai berikut :

- 1. Data yang digunakan bisa ditambahkan jumlahnya, agar data yang diproses menjadi lebih banyak sehingga bisa membuat model yang hasilnya lebih akurat.
- 2. Dalam pengaplikasian metode *grid search* untuk mencari akurasi model masih dilakukan secara manual, kedepannya dapat menggunakan *tools* lain yang bisa membuat proses pencarian menjadi lebih cepat dan optimal.
- 3. Dilakukan penambahan jenis *fitur* seperti *stemming* untuk meningkatkan akurasi.

DAFTAR PUSTAKA

- [1] Wyndo Mitra. (2016) StartupBisnis. [Online]. http://startupbisnis.com/data-statistik-mengenaipertumbuhan-pangsa-pasar-e-commerce-diindonesia-saat-ini/
- [2] Budi Santoso, Fajar Kurnia Dessyanto Boedi P, "Aplikasi Mobile Commerce Penjualan Buku (Studi Kasus Pada Penerbit PRO-U Media Yogyakarta," UPN "Veteran" Yogyakarta, Yogyakarta, 2010.
- [3] J.Simarmata, "Aplikasi Mobile Commerce Menggunakan PHP dan MySQL," Yogyakarta, 2006.
- [4] Romi Satria Wahono dan Abdul Syukur Abdul Razak Naufal, "Penerapan Bootstrapping untuk Ketidakseimbangan Kelas dan Weighted Information Gain untuk Feature Selection pada Algoritma Support Vector Machine untuk Prediksi Loyalitas Pelanggan ," Journal of Intelligent Systems , vol. 1 , December 2015.
- [5] Rizki Muliono, "Sidimpuan), Perancangan Web E-Commerce Jual Beli Batu Cincin Dengan Allgoritma Apriori (Studi Kasus Toko Batu Akik Murah Padang," Pelita Informatika Budi Darma, vol. VII, no. 3, Agustus 2014.
- [6] Agustinus Bimo Gumelar Cahyo Darujati, "Pemanfaatan Teknik Supervised Untuk Klasifikasi Teks Bahasa Indonesia," Jurnal Link, vol. 16, no. 2, February 2012.
- [7] Indah Fitri Astuti, Awang Harsa Kridalaksana Agus Setiawan, "Klasifikasi Dan Pencarian Buku

- Referensi Akademik Menggunakan Metode Naive Bayes Classifier Studi Kasus: Perpustakaan Daerah Provinsi Kalimantan Timur," Jurnal Informatika Mulawarman, vol. 10, Februari 2015.
- [8] Acmad Nrhadi, "Klasifikasi Konten Berita Digital Bahasa Indonesia Menggunakan Support Vector Machines (SVM) Berbasis Particle Swarm Optimization (PSO)," Jurnal Bianglala Informatika, vol. 3, no. 2, September 2015.
- [9] Achmad Ridhok, Jendi Hardono Lailil Muflikha, "Klasifikasi Kondisi Penderita Penyakit Hepatitis Dengan Menggunakan Metode Support Vector Machine (SVM)," Universitas Brawijaya, 2013.
- [10] Hendri Murfi Djati Kerami, "Kajian Kemampuan Generalisasi Support Vector Machine Dalam Pengenalan Jenis Spice Sites Pada Barisan Dna ," Makara Sains, vol. 8, pp. 89-95, December 2004.
- [11] Aguang Hardianto, M.Ridok Dewi Y.Liliana, "Indonesian News Classification using Support Vector Machine," World Academy of Science, Enfineering and Technology, vol. 5, September 2011.
- [12] Mira Kania Sabariah, ST.,MT., Alfian Akbar Gozali, ST.,MT. Elly Susilowati, "Implementasi Metode Support Vector Machine Untuk Melakukan Klasifikasi Kemacetan Lalu Lintas Pada Twitter," Teknik Informatika, Universitas Telkom, Bandung,...
- [13] Chih-Chung Chang, and Chih-Jen Lin Chih-Wei Hsu, "A Practical Guide to Support Vector Classification," National Taiwan University, Taiwan, 2003.
- [14] Cho-Jui Hsieh, Kai-Wei Chang, Michael Ringgaard,

- Chih-Jen Lin Yin-Wen Chang, "Training and Testing Low-degree Polynomial Data Mappings via Linear SVM," Journal of Machine Learning Research 11, vol. 11, 2010.
- [15] Adyatma Bhaskara Hutomo, "Klasifikasi Dokumen Berita Menggunakan Metode Support Vector Machine Dengan Kernel Radial Baasis Function," Departemen Ilmu Komputer, Institut Pertanian Bogor, Bogor, 2014.
- [16] Hsuan-Tien Lin and Chih-Jen Lin, "A Study on Sigmoid Kernels for SVM and the Training of non-PSD Kernels by SMO-type Methods," Department of Computer Science and Information Engineering, National Taiwan University, Taipei, 2003.
- [17] INNA SABILY KARIMA, "Optimasi Parameter Pada Support Vector Machine Untuk Klasifikasi Fragmen Metagenome Menggunakan Algoritme Genetika," Program Studi Ilmu Komputer, Institut Pertanian Bogor, Bogor, 2014.
- [18] Alan Prahutama, Tiani Wahyu Utami Hasbi Yasin, "Prediksi Harga Saham Menggunakan Support Vector Regression Dengan Algoritma Grid Search," Media Statistika, vol. 7, pp. 29 - 35, June 2014.
- [19] Chin Wei Hsu, "A Practical Guide to Support Vector Classification," Computer Science, National Taiwan University, Taiwan, 2010.
- [20] C.Watters, M.Shepherd A.Basu, "Support Vector Machine for Text Categorization," in Hawai International Conference on System Sciences, Canada, 2002.

- [21] David Meyer. (2015, August) Package 'e1071'. [Online]. https://cran.r-project.org/web/packages/e1071/e1071.pdf
- [22] Stephen Turner. (2015, February) Split a Data Frame into Testing and Training Sets in R. [Online]. http://www.gettinggeneticsdone.com/2011/02/split-data-frame-into-testing-and.html
- [23] Ingo Feinerer. (2015, July) Introduction to the tm Package Text Mining in R. [Online]. https://cran.r-project.org/web/packages/tm/vignettes/tm.pdf
- [24] Matt Dowle Garrett Grolemund. (2015, June) 15 Easy Solutions To Your Data Frame Problems In R.[Online].https://www.datacamp.com/community/ /tutorials/15-easy-solutions-data-frame-problems-r
- [25] Garrett Grolemund Matt Dowle. (2015, Maret) Machine Learning in R for beginners. [Online]. https://www.datacamp.com/community/tutorials/machine-learning-in-
- [26] Ms. Snehlata S. Dongre, Dr. Latesh Malik Mr.Rushi Longadge, "Class Imbalance Problem in Data Mining: Review," *International Journal of Computer Science and Network*, vol. 2, no. 1, February 2013
- [27] Nurandi. (2013) github. [Online]. https://raw.githubusercontent.com/nurandi/nurandi.net/master/data/stopwords-id.txt

BIODATA PENULIS

Penulis lahir di Jakarta, 25 Juni 1994, dengan nama lengkap Dea Andia Rachmawati. Penulis merupakan anak kedua dari 2 bersaudara.

Riwavat pendidikan penulis yaitu ΤK Al-Azhar Jakapermai, SD Al-Azhar Jakapermai, SMP Labschool Jakarta, dan SMA Negeri 81 akhirnya penulis Jakarta, dan masuk menjadi mahasiswa Sistem Informasi angkatan 2012 melalui jalur SNMPTN dengan

5212100177.

Selama kuliah penulis bergabung dalam organisasi kemahasiswaan, yaitu Himpunan Mahasiswa Sistem Informasi ITS dan Badan Eksekutif Mahasiswa ITS. Pada organisasi tersebut penulis mengikuti berbagai kegiatan dan menjadi Staff PSDM di BEM selama 1 tahun.

Di Jurusan Sistem Informasi penulis penulis juga menjadi asisten dan mengambil bidang minat Akuisisi Data dan Diseminasi Informasi. Penulis dapat dihubungi melalui email deaandiaa49@gmail.com.