Implementasi Algoritma Regressive- Regressive Particle Swarm Optimization Pada Inversi Vertical Electrical Sounding Untuk Mencitrakan Bawah Permukaan Tanggul ‘Lusi’

Firdaus, Nanang (2016) Implementasi Algoritma Regressive- Regressive Particle Swarm Optimization Pada Inversi Vertical Electrical Sounding Untuk Mencitrakan Bawah Permukaan Tanggul ‘Lusi’. Undergraduate thesis, Institut Teknologi Sepuluh Nopember Surabaya.

[img]
Preview
Text
1111100048-Undergraduate_Thesis.pdf - Published Version

Download (2MB) | Preview

Abstract

Analisa data geolistrik mampu mendeskripsikan nilai resistivitas bawah permukaan. Nilai resistivitas ini dapat digunakan untuk mengidentifikasi kejadian fisis di tanggul LUSI melalui pengukuran dan inversi data Vertical Electrical Sounding (VES). Namun demikian, data pengukuran sering kali terkontaminasi noise. Noise pada data akan meningkatkan ketidakpastian solusi model proses inversi. Efek noise pada pengukuran dapat diminimalisir dengan menerapkan metode inversi yang robust terhadap noise, dalam hal ini digunakan algoritma inversi berbasis regressive-regressive Particle Swarm Optmization (RR-PSO). Algoritma RR-PSO diimplementasikan pada data VES di tanggul P.76-P.77, P.79-82 dan P.83-P.84. Hasil inversi data VES lapangan ini menunjukkan nilai resistivitas yang menurun dengan bertambahnya kedalaman. Pada ketiga tanggul yang telah diukur terlihat bahwa keseluruhan tanggul cukup stabil, namun ada beberapa titik tanggul yang mulai tersaturasi air atau terkena rembesan yang bisa mengakibatkan tanggul mengalami collapse (runtuh) dan jebol ============================================================================================================Analysis of geoelectric data is able to determine subsurface resistivity values. This resistivity values can be used to identify physical occurrences in the LUSI embankment through field measurements and the data inversion of Vertical Electrical Sounding (VES). However, the measurement data is often contaminated with noise which will increase the uncertainty of model solutions inversion process. The effect of noise on the measurement can be minimized by robust inversion method, in this case used regressive-regressive Particle Swarm optmization (RR-PSO). RR-PSO algorithm is implemented on the VES data which is measured in the LUSI embankment P.76-P.77, P.79-82 and P.83-P.84. The inversion resultan Shaw that the resistivity values is decreased with increasing depth. The som subsurface resistivity alto demonstrates that overall embankment fairly stable, but there are some points of embankment saturated by water or exposed to water seepage that could lead to collapse and broken embankment

Item Type: Thesis (Undergraduate)
Additional Information: RSFi 628.114 Fir i
Uncontrolled Keywords: Vertical Electrical Sounding (VES), inversi, RRPSO, tanggul LUSI, rembesan
Subjects: G Geography. Anthropology. Recreation > GB Physical geography > GB1197.7 Groundwater flow. Reservoirs
Divisions: Faculty of Mathematics and Science > Physics > 45201-(S1) Undergraduate Thesis
Depositing User: EKO BUDI RAHARJO
Date Deposited: 31 Mar 2020 07:28
Last Modified: 31 Mar 2020 07:28
URI: http://repository.its.ac.id/id/eprint/75626

Actions (login required)

View Item View Item