

BACHELOR THESIS ME-141502

TECHNICAL AND ECONOMICAL OVERVIEW OF HOMOGENIZER INSTALATION ON PT. PERTAMINA TANKER SHIP'S FUEL SYSTEM

MUHAMMAD LUTFI PRAGOLA PUTRA NRP. 4212101032

Supervisors : Semin, S.T., M.T., Ph.D. Dr. I Made Ariana, S.T., M.T.

DOUBLE DEGREE PROGRAM OF MARINE ENGINEERING DEPARTMENT FACULTY OF MARINE TECHNOLOGY INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2016

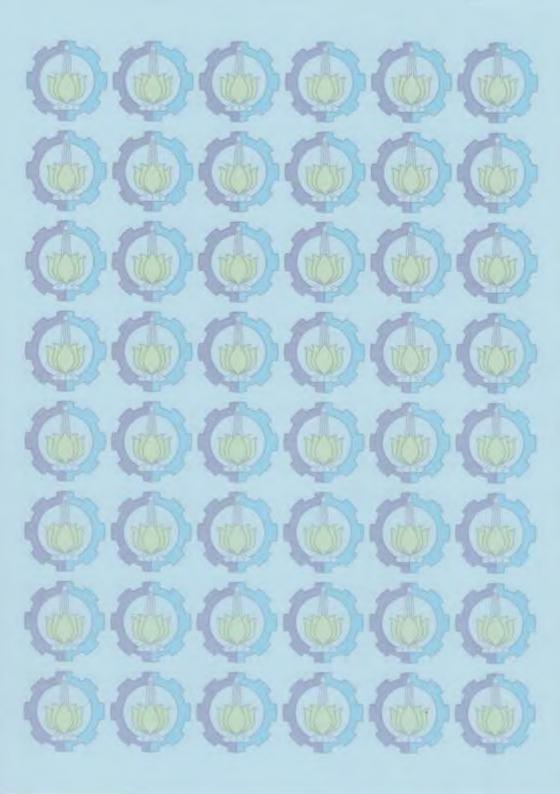
BACHELOR THESIS ME-141502

TECHNICAL AND ECONOMICAL OVERVIEW OF HOMOGENIZER INSTALATION ON PT. PERTAMINA TANKER SHIP'S FUEL SYSTEM

MUHAMMAD LUTFI PRAGOLA PUTRA NRP. 4212101032

Supervisors : Semin, S.T., M.T., Ph.D. Dr. I Made Ariana, S.T., M.T.

DOUBLE DEGREE PROGRAM OF MARINE ENGINEERING DEPARTMENT FACULTY OF MARINE TECHNOLOGY INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2016


TUGAS AKHIR ME-141502

TINJAUAN TEKNIS DAN EKONOMIS PEMASANGAN HOMOGENIZER PADA SISTEM BAHAN BAKAR KAPAL TANKER PT. PERTAMINA

MUHAMMAD LUTFI PRAGOLA PUTRA NRP. 4212101032

Dosen pembimbing : Semin, S.T., M.T., Ph.D. Dr. I Made Ariana, S.T., M.T.

PROGRAM DOUBLE DEGREE JURUSAN TEKNIK SISTEM PERKAPALAN FAKULTAS TEKNOLOGI KEMARITIMAN INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2016

APPROVAL SHEET

TECHNICAL AND ECONOMICAL OVERVIEW OF HOMOGENIZER INSTALATION ON PT. PERTAMINA TANKER SHIP'S FUEL SYSTEM

BACHELOR THESIS

Proposed to fulfill One of Requiremens Acquired Bachelor Engineering in Marine Power Plant Field Study Double Degree Program of Marine Engineering Department Faculty of Marine Technology Institut Teknologi Sepuluh Nopember

> Proposed by : Muhammad Lutfi Pragola Putra NRP : 4212101032

Approved by Supervisors :

- Semin, S.T., M.T., Ph.D. NIP : 1971 0110 1997 02 1001
- Dr. I Made Ariana, S.T., M.T. NIP : 1971 0610 1995 12 1001

SURABAYA JULY, 2016

APPROVAL SHEET

TECHNICAL AND ECONOMICAL OVERVIEW OF HOMOGENIZER INSTALATION ON PT. PERTAMINA TANKER SHIP'S FUEL SYSTEM

BACHELOR THESIS

Proposed to Fulfill One of Requiremens Acquired Bachelor Engineering in Marine Power Plant Field Study Double Degree Program of Marine Engineering Department Faculty of Marine Technology Institut Teknologi Sepuluh Nopember

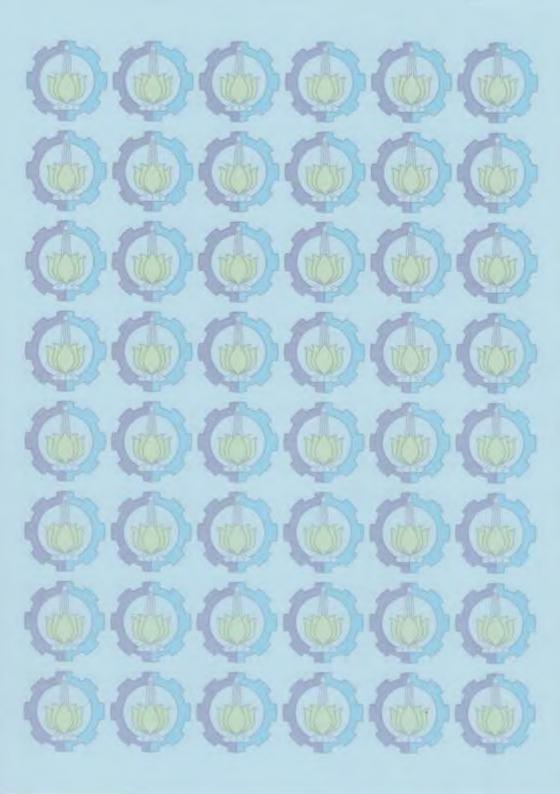
> Proposed by : Muhammad Lutfi Pragola Putra NRP : 4212101032

Approved by Head Department Marine Engineering

Dr. Eng. Muhammad Badrus Zaman, ST. MT. 1972 0830 2000 03 1001

APPROVAL SHEET

TECHNICAL AND ECONOMICAL OVERVIEW OF HOMOGENIZER INSTALATION ON PT. PERTAMINA TANKER SHIP'S FUEL SYSTEM


BACHELOR THESIS

Proposed to Fulfill One of Requiremens Acquired Bachelor Engineering in Marine Power Plant Field Study Double Degree Program of Marine Engineering Department Faculty of Marine Technology Institut Teknologi Sepuluh Nopember

> Proposed by : Muhammad Lutfi Pragola Putra NRP : 4212101032

Approved by Representative Hochscule Wismar in Indonesia

Dr. -Ing Wolfgang Busse

TECHNICAL AND ECONOMICAL OVERVIEW OF HOMOGENIZER INSTALATION ON PT. PERTAMINA TANKER SHIP'S FUEL SYSTEM

Name : Muhammad Lutfi Pragola Putra

NRP : 4212101032

Supervisors :

- 1. Semin, S.T., M.T., Ph.D.
- 2. Dr. I Made Ariana, S.T., M.T.

Abstract

HFO has become one of fuel choice for engine on board because it has a relatively cheaper price compared to HSD and MDO. However, unlike HSD which is can be used directly, HFO must have system of preparation before it flowed into ship's engine. HFO system generally includes storage tanks, transfer pumps, settling tanks, separators, service tank, booster pump.

Because of more advanced refining process, HFO has changes in terms of quality and quantity. HFO currently has a higher concentration of asphalt content and also experiencing a change in fuel properties, such as viscosity and density. This low quality fuel may lead to several complication on main engine and fuel treatment system components. To reduce the impact, fuel can be homogenized by process called Homogenization process.

Homogenization process becomes important for fuel especially HFO. By performing homogenization of fuel, fuel waste can be reduced, quality of combustion can be better, and also able to provide a positive influence for the reduction of emissions and a reduction in NOx levels. Homogenization process is done with a tool called a homogenizer. In this bachelor thesis, author intends to study the effect of homogenizer instalation on PT. Pertamina tanker's fuel system. Research will study fuel oil cost difference between PT. Pertamina tankers MT. Pangkalan Brandan which equipped with homogenizer and MT. Palusipat which are not equipped with homogenizer. Research is be done by comparing FOC two similiar ships and calculate it's fuel benefit reduction cost.

Due to fuel oil price fluctuation, fuel oil price will be simulated with five different scenario which are decrease 2,93% annually, decrease 1,47% annually, constant price, increase 6,7% annually, and increase 13,41% annually. Through ecomonic calculation, the result for homogenizer instalation are effect on reducing fuel oil consumption cost whithin 10 years. Fuel oil consumption cost reduction are ; \$47.462,1 with fuel oil price decrease 2,93% annually, \$52.615,9 with fuel oil price decrease 2,93% annually, \$52.615,9 with fuel oil price decrease 1,47% annually, \$58.185,0 with constant fuel oil price, \$89.928,0 with fuel oil price increase 6,7% annually, and \$134.975,1 with fuel oil price increase 13,41% annually. Payback period will be obtained within 4 years after operation.

Key words : Fuel conversion, fuel cost reduction, homogenizer, ship fuel system.

TINJAUAN TEKNIS DAN EKONOMIS PEMASANGAN HOMOGENIZER PADA SISTEM BAHAN BAKAR KAPAL TANKER PT. PERTAMINA

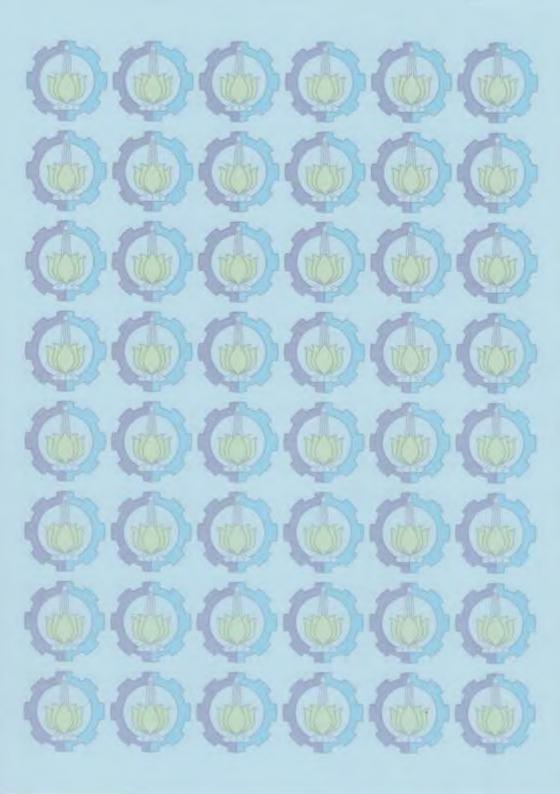
- Nama : Muhammad Lutfi Pragola Putra
- NRP : 4212101032

Dosen Pembimbing :

- 1. Semin, S.T., M.T., Ph.D.
- 2. Dr. I Made Ariana, S.T., M.T.

Abstrak

HFO menjadi salah satu pilihan bahan bakar untuk mesin kapal karena harganya yang relatif lebih murah dibandingkan dengan HSD dan MDO. Namun demikian, tidak seperti HSD yang dapat digunakan secara langsung, HFO harus harus menjalani perlakuan pada sistem bahan bakar sebelum memasuki mesin. Sistem perlakuan HFO diantaranya meliputi *storage tanks, transfer pumps, settling tanks, separators, service tank,* dan *booster pump.*


Dikarenakan semakin berkembangnya proses penyulingan minyak, HFO telah berubah baik secara kualitas maupun kuantitas. HFO saat ini selain memiliki kosentrasi aspal yang lebih tinggi, juga telah mengalami perubahan *properties*, seperti viskositas dan densitas. Penurunan kualitas bahan bakar ini dapat menyebabkan timbulnya komplikasi masalah baik pada mesin induk maupun pada komponenkomponen sistem pengolahan bahan bakar. Untuk mengurangi efek tersebut, bahan bakar dapat dihomogenkan melalui proses yang dinamakan homogenisasi.

Proses homogenisasi menjadi hal yang krusial khususnya untuk bahan bakar HFO. Melalui proses homogenisasi, *sludge* bahan bakar dapat berkurang, kualitas pembakaran menjadi lebih baik, dan berpengaruh positif terhadap berkurangnya emisi gas buang dan berkurangnya NOx. Proses homogenisasi dilakukan oleh alat yang dinamakan homogenizer.

Pada tugas akhir ini, penulis akan meneliti pengaruh pemasangan homogenizer pada sistem bahan bakar kapal tanker PT. Pertamina. Penelitian dilakukan dengan membandingkan perbedaan biaya konsumsi bahan bakar antara kapal tanker milik PT. Pertamina yang telah dilengkapi dengan homogenizer, MT. Pangkalan Brandan, dengan tanker PT. Pertamina yang belum terpasang homogenizer. Penelitian dilakukan dengan membandingkan FOC dua kapal dengan dimensi yang hampir sama dan menghitung keuntungan dari penurunan biaya bahan bakar.

Dikarenakan fluktuasi harga bahan bakar, maka harga bahan bakar akan disimulasikan memalui lima skenario harga yang berbeda yaitu, menurun 2,93% pertahun. menurun 1.47% pertahun, harga konstan. meningkat 6,7% pertahun, dan meningkat 13,41% pertahun. Melalui kalkulasi ekonomis, hasil dari pemasangan homogenizer selama sepuluh tahun memberikan efek pada pengurangan biaya konsumsi bahan bakar sebesar; \$47.462,1 dengan skenario harga bahan bakar menurun 2,93% pertahun, \$52.615,9 dengan skenario harga bahan bakar menurun 1,47% pertahun, \$58.185,0 dengan skenario harga bahan bakar konstan, \$89.928,0 dengan skenario harga bahan bakar meningkat 6,7% pertahun, dan \$134.975,1 dengan skenario harga bahan bakar meningkat 13,41% pertahun. Payback period secara keseluruhan pada kelima skenario harga akan tercapai pada periode empat tahun setelah masa operasional.

Kata kunci : Konversi bahan bakar, pengurangan biaya bahan bakar, homogenizer, sistem bahan bakar kapal.

TABLE OF CONTENTS

TABLE	E OF CO	NTENTS	xiii		
LIST OF FIGURExv					
LIST O	LIST OF TABLExvii				
CHAPT	FER I IN	TRODUCTION 1			
1.1	Backgro	ound	1		
1.2	Stateme	nt Of Problems	1		
1.3	Research Limitation2		2		
1.4	Research Objectives2				
1.5 Research Benefits2					
CHAPTER II STUDY LITERATURE					
		enizer			
		METHODOLOGY			
		tion Stage			
		thering and Processing Stage			
	Data Ar	alysis and Conclusion	13		
	TER IV C	DBSERVATION RESULT AND DAT	ΓA		
ANAL	FER IV (SYS	DBSERVATION RESULT AND DAT	ГА 15		
ANAL	TER IV (SYS Observa	DBSERVATION RESULT AND DAT	FA 15 15		
ANAL	TER IV C SYS Observa 4.1.1.	DBSERVATION RESULT AND DAT ntion Data Result Ship object	TA 15 15 15		
ANAL	TER IV (SYS Observa 4.1.1. 4.1.2.	DBSERVATION RESULT AND DAT ntion Data Result Ship object Ship main data	TA 15 15 15 16		
ANAL	TER IV 0 SYS Observa 4.1.1. 4.1.2. 4.1.3.	DBSERVATION RESULT AND DAT ntion Data Result Ship object Ship main data Main engine	TA 15 15 16 16		
ANAL	TER IV C SYS Observa 4.1.1. 4.1.2. 4.1.3. 4.1.4.	DBSERVATION RESULT AND DAT ation Data Result Ship object Ship main data Main engine Ship generator	TA 15 15 16 16 16		
ANAL	TER IV C SYS Observa 4.1.1. 4.1.2. 4.1.3. 4.1.4. 4.1.5.	DBSERVATION RESULT AND DAT ation Data Result Ship object Ship main data Main engine Ship generator Ship Speed	TA 15 15 16 16 16 16		
ANAL	TER IV C SYS Observa 4.1.1. 4.1.2. 4.1.3. 4.1.4. 4.1.5. 4.1.6.	DBSERVATION RESULT AND DAT ation Data Result Ship object Ship main data Main engine Ship generator Ship Speed Homogenizer Data	FA 15 15 16 16 16 16 16 17		
ANAL	TER IV C SYS Observa 4.1.1. 4.1.2. 4.1.3. 4.1.4. 4.1.5. 4.1.6. 4.1.7.	DBSERVATION RESULT AND DAT tion Data Result Ship object Ship main data Main engine Ship generator Ship Speed Homogenizer Data Instalation Diagram	FA 15 15 16 16 16 16 17 18		
ANALI 4.1.	TER IV C SYS Observa 4.1.1. 4.1.2. 4.1.3. 4.1.4. 4.1.5. 4.1.6. 4.1.7. 4.1.8.	DBSERVATION RESULT AND DAT ation Data Result	FA 15 16 16 16 16 16 17 18 19		
ANALI 4.1. 4.2.	TER IV C SYS Observa 4.1.1. 4.1.2. 4.1.3. 4.1.4. 4.1.5. 4.1.6. 4.1.7. 4.1.8. Technic	DBSERVATION RESULT AND DAT tion Data Result	FA 15 16 16 16 16 16 17 18 19 20		
ANALI 4.1. 4.2.	TER IV C SYS Observa 4.1.1. 4.1.2. 4.1.3. 4.1.4. 4.1.5. 4.1.6. 4.1.7. 4.1.8. Technic Engine	DBSERVATION RESULT AND DAT tion Data Result	FA 15 15 16 16 16 16 16 17 18 19 20 21		
ANALI 4.1. 4.2.	TER IV C SYS Observa 4.1.1. 4.1.2. 4.1.3. 4.1.4. 4.1.5. 4.1.6. 4.1.7. 4.1.8. Technic Engine 1 4.3.1.	DBSERVATION RESULT AND DAT tion Data Result	FA 15 16 16 16 16 16 17 18 19 20 21 22		
ANALI 4.1. 4.2. 4.3.	TER IV C SYS Observa 4.1.1. 4.1.2. 4.1.3. 4.1.4. 4.1.5. 4.1.6. 4.1.7. 4.1.8. Technic Engine I 4.3.1. 4.3.2.	DBSERVATION RESULT AND DAT tion Data Result	FA 15 16 16 16 16 16 17 18 19 20 21 22 24		

4.5. Fuel Oil Price Prediction	28	
4.6. Economical Analisys		
4.6.1. Initial Ivestment		
4.6.2. Operational Cost		
4.6.3. Fuel Oil Saving Cost Calculation		
4.7. Pay Back Period	35	
4.8. IRR	42	
CHAPTER V CONCLUSION AND		
SUGGESTION	51	
5.1. Conclusion	51	
5.2. Suggestion	51	
CHAPTER VI REFERENCES		

LIST OF FIGURES

CHAPTER I

-

CHAPTER II

Figure 2.1 Homogenization process	.5
Figure 2.2 Oil destilation process	.6
Figure 2.3 Microscopic photo of homogenization result	
Figure 2.4 Part of homogenizer	.9

CHAPTER III

-

CHAPTER IV

5
7
8
9
9
1
9

CHAPTER V

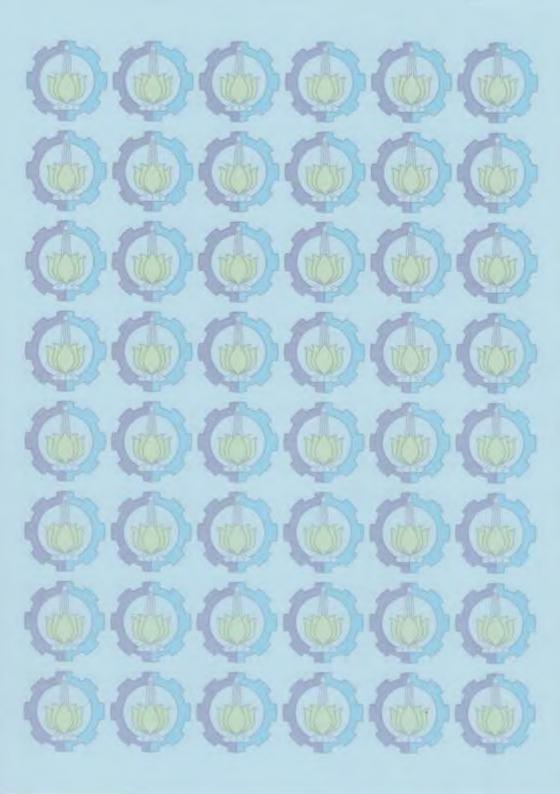
-

-

CHAPTER VI

LIST OF TABLES

CHAPTER I


_

CHAPTER II

CHAPTER III

CHAPTER IV
Table 4.1 Engine log MT. Palusipat
Table 4.2 Engine log MT. Pangkalan Brandan
Table 4.3 Fuel oil consumption MT. Pangkalan Brandan. 27
Table 4.4 Engine power
Table 4.5 Fuel oil consumption MT. Palusipat converted to
MT. Pangkalan Brandan28
Table 4.6 Fuel oil price prediction
Table 4.7 Initial investment
Table 4.8 Electricity fuel oil consumtion31
Table 4.9 Electricity fuel oil cost
Table 4.10 Fuel oil consumption cost MT. Pangkalan
Brandan33
Table 4.11 Fuel oil consumption cost MT. Palusipat
converted to MT. Pangkalan Brandan34
Table 4.12 Payback period scenario pessimistic 136
Table 4.13 Payback period scenario pessimistic 237
Table 4.14 Payback period scenario constant price38
Table 4.15 Payback period scenario optimistic 139
Table 4.16 Payback period scenario optimistic 240
Table 4.17 Payback period scenario pessimistic 144
Table 4.18 Payback period scenario pessimistic 245
Table 4.19 Payback period scenario constant price46
Table 4.20 Payback period scenario optimistic 147
Table 4.21 Payback period scenario optimistic 248

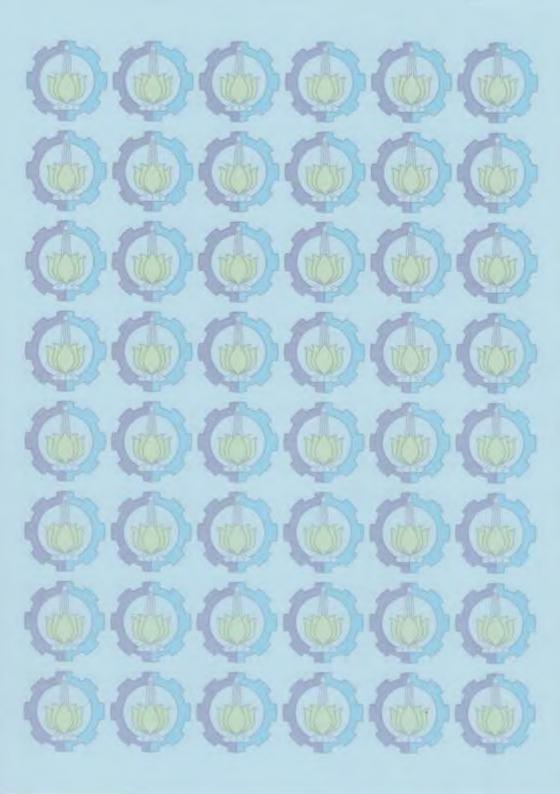
CHAPTER V -CHAPTER VI -

PREFACE

Praise to Allah SWT, for his blessing, mercy and compasion to author, so this bacelor thesis can be finished on time. Bachelor thesis with title "Technical and Economical Overview of Homogenizer Instalation on PT. Pertamina Tanker Ship's Fuel System" are propossed to fulfill requirement of graduation from Marine Engineering Department, Faculty of Marine Technology, Institut Teknologi Sepuluh Nopember Surabaya.

Author hope that, this thesis can be usefull to add insight and knowledge about fuel cost saving, especially using homogenizer. Author realized that this bachelor thesis are still far from perfection. Because of that, author hope that the reader will give suggestion, critics, and opinion to the author in the future.

During the process of this bachelor thesis, author get a lot of support and assistance from various parties, so that on this occasion the author would like to thank :


- 1. My father and mother (Mr. Suprihono and Mrs. Ernawati) for attention, moral and material support that relentlessly always given. Also sisters (Prabawati Nur Safitri and Khoirul Annisa) which always give support.
- 2. Semin, S.T., M.T., Ph.D. and Dr. I Made Ariana, S.T., M.T. as the supervisors who was willing to give time to share knowledge and willing to guide author to finish this bachelor thesis. Thank you for the motivation that always given to the author.

- 3. Ir. Dwi Priyanta, MSE and Dr. Ing. Wolfgang Busse for motivated and give the author advice, answer, and solution during finishing this bachelor thesis.
- 4. All lecturer and employes of Marine Engineering Department for the knowledge that has been told to author during study in ITS.
- 5. All friend in Marine Power Plant Laboratory, BISMACK 12, DD 12 Class and etc. for discussion, advice, assitance, and share of knowledge that very helpfull to author to finish this bachelor thesis.
- 6. Mr. Mardianto, Mr. R. Joza Emerald and all members of Engineering Division PT. PAL Indonesia, also Mr. Sutrisno and all members of Logistic Division PT. PAL Indonesia, for all data, knowledge, information and insight that have been given to author to finish this bachelor thesis.
- 7. Mr. Yunus from Technical Fleet III PT. Pertamina (Perkapalan), Mr. Jefri from HR Department PT. Pertamina (Perkapalan), and Mr. Erwin Sihombing from NSPC Department PT. Pertamina (Perkapalan), for all assitance, knowledge, and information that have been given to author to finish this bachelor thesis.
- 8. Mr. Rahadian Lingga and all NaSDEC patners for all assitance, knowledge, and insight that have been given to author to finish this bachelor thesis.
- 9. CV. Alpha Omega for discussion, information ,and data, especially about homogenizer, that very help author to finish this bachelor thesis.

- 10. Mr. Ryota Sugimoto, Technical Management Division, Daihatsu Diesel Mfg. Co., Ltd. Japan, for information and data that have been given to author to finish this bachelor thesis.
- 11. All parties that can not be mentioned one by one, thanks for the assitance that have been given to author over the time.

Hopefully this bachelor thesis can be useful and easy to understand for anyone who read it. Authors also want to apologize if there are some errors and mistake, and authors are looking foward for criticism and constructive suggestions for improvement in the future.

Surabaya, Juli 2016

CHAPTER I INTRODUCTION

CHAPTER I INTRODUCTION

1.1 Background

As we now in recent time, HFO become one of choice of fuel for the engine on board, because it has a relatively cheaper price compared to HSD (diesel) and MDO. However, unlike the HSD which is can be used directly, HFO must have a system of preparation before it flowed into the ship's engine. HFO system generally includes storage tanks, transfer pumps, settling tanks, separators, service tank, booster pump. The system has been provided by the onboard system.

Because the more advanced refining process, HFO has changes in terms of quality and quantity. HFO currently has a higher concentration of asphalt content and also experiencing a change in the fuel properties, such as viscosity and density.

Homogenization process becomes important for fuel especially HFO. By performing the homogenization of fuel, fuel waste can be reduced, the quality of combustion can be better, and also able to provide a positive influence for the reduction of emissions and a reduction in NOx levels.

Homogenization process is done with a tool called a homogenizer. The expected result is not only to reduce waste and emissions of ships, but also to save fuel consumption on ships.

1.2 Statement Of Problems

Based on the above description some statement of problems are formulated, which is :

- a) What are the technical matters required for the installation of fuel homogenizer system on a tanker ship PT. Pertamina ?
- b) How long for the ship company to gain payback time for using a homogenizer in PT. Pertamina tanker ship fuel System?

1.3 Research Limitation

Research limitation on this bachelor thesis are :

- a) Research using technical analysis to gahter information and data from PT. Pertamina as ship owner, PT. PAL Indonesia as ship builder, NaSDEC as consultant and CV. Alpha Omega as homogenizer distributor
- b) Homogenizer cost comparison does not include the cost of maintenance during the operational.

1.4 Research Objectives

The research objective of this bachelor thesis are below :

- a) To know the important equpiments that are technically required for the installation of fuel homogenizer system in PT. Pertamina's tanker,
- b) To know the economic value which will be obtained by PT. Pertamina if the fuel system on the tanker is equipped with a homogenizer.

1.5 Research Benefits

From the research that will be conducted, it is expected to provide benefits to various parties. The benefits include:

a) To provide knowledge about the addition homogenizer components that could potentially save fuel on ships in Indonesia,

- b) Provide knowledge of technical matters required in the installation of fuel homogenizer system PT. Pertamina's tanker,
- c) Can provide recommendations for the PT. Pertamina and other shipping companies about the advantages of using a homogenizer from the economic review,
- d) Can determine the cost reduction in fuel consumption after using a homogenizer vessels in the short, medium and long term.

CHAPTER II STUDY LITERATURE

CHAPTER II STUDY LITERATURE

2.1. Theory

The process of homogenization can be explained by the picture below. Rotor and stator of homogenizer will smooth the HFO which flowed through. Content of the asphalt on the HFO is micronized to approximately 5 μ m and homogeneously mixed. Asphalt content when is not homogenized may result on amount of waste formation (slude) and and may lead to incomplete combustion.

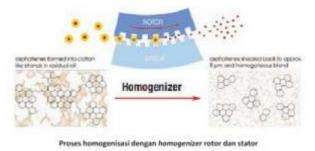


Figure 0.1 Homogenization process

2.1.1 The decreasing of fuel quality in the oil market

Fifty years ago, the use of fuel residues such as HFO different from now. First HFO still have a better quality (still high hydrogen content) and the concentrations of tar and other impurity content is low. This is because the first distillation process is simple, so fuel residue generated approximately 50 percent of the crude oil that entered the distillery. But with the development of refining technologies that become more advanced, now fuel residues generated only about 16 percent of the crude oil that is included in the distillery. The residual fuel has a low hydrogen content and high asphalt content. Thus, the use of fuel residues on the current becomes more complicated and must pass a process of preparation before can be used.

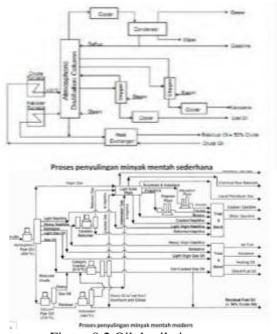


Figure 0.2 Oil destilation process

This Modern Distillation Process influence fuel quality The effect include:

- a) The content of hydrogen on fuel is lower
- b) Increasing concentrations of sulfur, vanadium, sodium and other metals contained naturally in crude oil
- c) Increased density which is make more complicate for the process of separation of water content and impurities

- d) Increased content of asphalt
- e) Increased fuel waste due to the higher content of asphalt

2.1.2 The effect of fuel droplet size in the combustion process

The quality of fuel combustion and the formation of deposits, is closely related to the size of the fuel droplets which are sprayed into the combustion chamber. Ideally, the small droplet size will produce more complete combustion, because more surface area of fuel droplets. With a more complete combustion of the deposit produced less and less.

Homogenizer functioned so that fuel can be blended up to 5 μ m. Usually in HFO, the droplet size of aspalt can reach 120 μ m, this big size can cause some inefficiency.

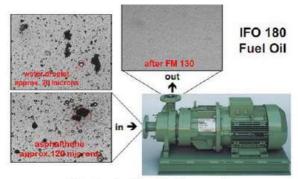


Foto mikroskopik hasil dari *homogenizer* Figure 0.3 Microscopic photo of homogenization result

2.2. Homogenizer

2.2.1 Parts and Working Principle of Homogenizer

Homogenizer work based on the working principles of mechanical shear force and style of ultrasonic waves (ultrasonic force). Inside there is a kind of serration conical homogenizer conical generate hydrodynamic force, consisting of shear, friction, and acceleration of style with high frequency. High content of asphalt molecules, the existence of cat-fines (catalyst, usually aluminum and silicon compounds, used in the fuel production processes), water content, etc. in-the homogenized into fuel (in this case HFO) up to a maximum particle size of 5 μ m

In brief, homogenizer is composed of two main components:

1. Stator

Stator part have serration inward arranged in a circle. Part stator is the stationary part

2. Motor

The motor part is the part that has serrations arranged in a circular directional exit deal with serrations stator. This section is attached to the motor rotor that is always moving (rotating)

The motor and the stator is designed in such a way so as to accelerate the flow of fuel fluid so passing through a homogenizer.

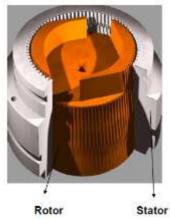


Figure 0.4 Part of homogenizer

While the stator is not moving, constantly rotating part of the motor with 1750 rpm, making mechanical contact between the particles with a homogenizer asphalt, asphalt or with other particles. Homogenizer in asphalt particles get hydrodynamic power, the force of friction and shear, particle acceleration due to the power transmitted on particles, and high-frequency ultrasonic waves.

When the asphalt particles have passed through the homogenizer, the resulting particles become finer (3-5 microns). This causes the particle size of the particles of asphalt can be mixed perfectly with the fluid fuel. Mixing these particles have an effect on the reduction of oil sludge formed.

2.2.2 Homogenizer Instalation Benefit

The use of homogenizer bring the operational usefulness of the ship. Some positive gains obtained are as follows:

1. More effective fuel use

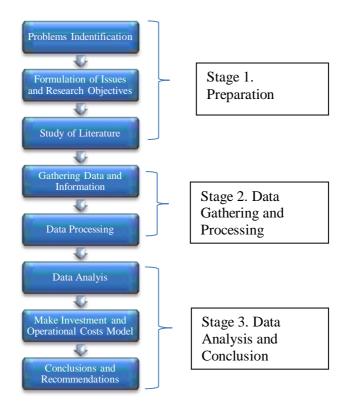
Without the use of homogenizer lot of wasted asphalt particles. These particles are wasted due to the relatively large size (120 microns or more) so it can not pass through the filter and purifier. Asphalt particles (C57H26) basically could potentially be a fuel if the size is smaller. Here homogenizer role. With the use of homogenizer particles wasted asphalt can be minimized so that the use of fuel becomes more effective

2. Reduces the formation of fuel oil sludge (up 80%)

Sludge formed by the particles are relatively large. With the homogenizer, the particles will be reduced in size (5 microns or smaller) that can be mixed with fuel without fear can form sludge. With the reduction in sludge that is formed, it also reduced the cost allocated to the treatment, storage, and disposal of sludge itself.

3. Improving the quality of combustion

The existence of a relatively large asphalt particles which can escape at any time of the filter and purifier, can cause combustion in the combustion chamber becomes less than perfect. Relatively large particle size does not allow for atomized by the injector. Carburetion failure can cause the asphalt particles do not burn completely. This can cause problems such as power generated is less, the formation of depressions in the piston crown and others.


4. Reduce air emissions (NOx) and reduce engine maintenance costs

With the formation of the fuel particles is more homogeneous, the combustion occurs in the combustion chamber can be more perfect. Incomplete combustion can damage the piston and also produce air emissions. In addition to the increasingly size of the fuel particles, the systems which the fuel pass through would be more durable. This certainly can reduce maintenance costs to be incurred.

CHAPTER III METHODOLOGY

CHAPTER III METHODOLOGY

This bachelor thesis will be conducted by make technical and economical overview of homogenizer instalation on PT. Pertamina tanker ship's fuel system. The method of the study will provide easier way to analys the problem which will be solved. Schematicly, research methodology are shown below :

Research methodology which will be conducted are devided become three major group, which is preparation stage, data gathering and processing, and data analysis and conclusion.

3.1. Preparation Stage

3.1.1 Problem identification

Problem identification is preliminary step in this research. The problem which will be analized have to be clearly identified. The problem which will be the topic of the research is technical and economical overview of homogenizer instalation on PT. Pertamina tanker ship's fuel system.

3.1.2 Formulation of issues and research objectives

After problem identification, the next step are formulation of Issue and research objective. Formulation of issues is the main problem which will be solved. Reseach objective is to know the important things that are technically required for the installation of fuel homogenizer system in PT. Pertamina's tanker and to know the economic value which will be obtained by PT. Pertamina if the fuel system on the tanker is equipped with a homogenizer.

3.1.3 Study of literature

Study of literature will be conducted to gain theories which is related to the problem solving process. Study of literature study working principle of homogenizer, homogenizer performance, homogenizer parts, homogenezation result process, and benefit of homogenization process.

3.2.1 Gathering data and information

Required data which will be used in research will be obmitted from literature study from PT. Pertamina, PT. PAL Indonesia, and Homogenizer maker. Additional resources will be collected from books, literature, brochure, or paper which will be gathered from internet.

3.2.2 Data processing

Data and information which have already be gathered then will be processed with overview method, which is technical and economical overview.

3.3. Data Analysis and Conclusion

3.3.1 Data analysis

From the previous data processing, then data will be analized more deeper.

3.3.2 Make investment and operational costs model

After data analysis, all data then will be presented in model. This model consist of Investment model and Operational Cost model. Data modelling will make review and conclusion activity become more easier and simple to understand.

3.3.3 Conclusion and recomendations

After data modelling, the conclution can be made, which is also final summary from research result which can answer problems from the research.

"This page intentionally left blank"

CHAPTER IV OBSERVATION RESULT AND DATA ANALYSYS

CHAPTER IV OBSERVATION RESULT AND DATA ANALISYS

4.1. Observation Data Result

4.1.1. Ship object

Figure 0.1 MT. Pangkalan Brandan

Name	:	MT. Pangkalan
Brandan		
IMO Number	:	9601675
Builder	:	PT PAL
Indonesia (Persero)		
Owner	:	PT. Pertamina
Technical management	:	Fleet III
Delivery	:	12 Nov 2014
Cargo	:	Product Oil/White
Oil		

4.1.2. Ship main data

Length Overall	:	157,20 m
Breadth Mould	:	27,70 m
Depth Mould	:	12,00 m
Deadweight	:	17.500,00 ton
Cargo Hold Capacity	:	24.725,00 m ³
Class	:	NK Class

4.1.3. Main engine

Туре	:	MAN B & W
6S35MC-7		
Manufacturer	:	STX
Fuel	:	Heavy Fuel Oil
(viscosity 700 cst)		
Out-put	:	4.504 kW at 173
RPM (MCR)		

4.1.4. Ship generator

Туре	:	6DK20e
Manufacturer	:	Daihatsu
Quantity	:	3 unit
Engine Output	:	1040 kW
Generator Output	:	990 kW
Fuel Oil	:	MDO

4.1.5. Ship Speed

Service speed	:	13, 6 knots
Maximum Speed	:	127.0 RPM
Over Speed	:	131.1 RPM
Fuel Consumption	:	30.0 ton/day
(Design Prediction)		

4.1.6. Homogenizer Data

Figure 4.2 Homogenizer			
Brand	:	S.I.T	
Туре	:	CD92TM	
Mycronizer MD 85-M-N	MD/SR-	IL	
Apllication	:	Sludge Reduction	
– In Line			
Serial No	:	12-1605	
Year	:	2012	
Customer	:	PT. PAL	
Indonesia (Persero)			
Plant	:	HN 272	
Operating Media	:	HFO & MDO	
Operation Temperaturre	:	100oC	
Min. Temperature	:	70oC fot HFO,	
40oC for MDO			
Max. Temperatue	:	150oC	
Capacity Max.	:	1,5 m3/h (IFO	
700/50oC)			
Operation Pressure	:	6 kg/cm2	

Power Consumption Power Source 50/60 Hz	:	4,0/4,5 kW 400/440 V –
Plant Dimension		:
Lenght	:	900 mm
Height	:	540 mm
Width	:	620 mm

4.1.7. Instalation Diagram

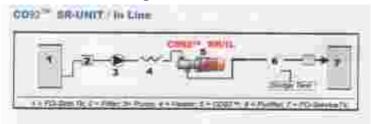


Figure 4.3 Instalation diagram - SIT Opration Manual

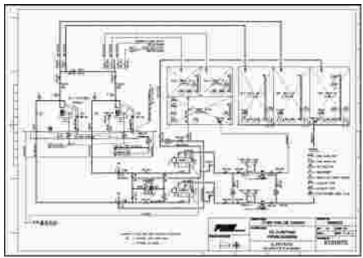


Figure 4.4 Homogenizer in MT. Pangkalan Brandan fuel system drawing

4.1.8. Sister Ship Data

Figure 4.5 MT. Palusipat

Name IMO Number	:	MT. Palu Sipat 9106651
Length Overall	:	160,00 m

LBP Breadth Depth Draught Speed Service Main Engine kW		154,00 m 26,80 m 11,50 m 6.9m 13,00 knots S35MC7 / 4959
Complement Gross Tonnage Deadweight	: :	37 person 13964 17.500 ton
Year Delivery Home port Class society	: : :	2000 Jakarta BKI - LR

4.2. Technical Overview

Based on data observation, below are the equipment which are necessary to install within homogenizer in MT. Pangkalan Brandan fuel systems :

a.	Electric Motor		
	Brand	:	Hansa
	Power	:	4,0/4,5 kW
	Voltage	:	400/440
	Frequency	:	50/60 Hz
	RPM	:	2950/3490
b.	Pressure Transmitter		
	Quantity	:	2
	Туре	:	Electronic type/
	Fuel In – Out		
	Range Pressure	:	$0 - 25,0 \text{ kg/cm}^2$
c.	Thermometre(s)		-
	Quantity	:	2
	Туре	:	Electronic type/
	Fuel In – Out		

	Range Temp.	:	$0 - 150^{\circ}C$
d.	Inlet Flange		
	DN/PN	:	32/16
e.	Outlet Flange		
	DN/PN	:	32/16
f.	Switchboard		
	Operating Voltage	:	3 x 400/ 440 V/
	PE/ 50/60 Hz		
	Current Consuptior	n:	Max. 21.5 A
	Max. Fuse	:	40 A
	Control Voltage	:	230 V/ 50 Hz
	Regulation	:	VDE and VBG4/
	IP 55		
	Dimension	:	600 x 380 x 210
	mm		
	Final Paintig	:	RAL 7035
g.	Coating		
0	Туре	:	Primer
h.	Final Painting		
	Marine Paint	:	Marine Paint,
	RAL 6019		
i.	Drip Pan		
	Туре	:	SR-Steel St 37,
			Square pipings 50
			x 50 x 2,6 mm
			<i>·</i>

4.3. Engine Room Log Book

Engine room log book is a track record of all ship machinery parameters, performance, maintenance, and malfunctions. The recorded values and information are used as a reference, to compare and record data that can be used for a lot of purpose.

In PT. Pertamina, engine room log book have to be delivered every month by ship crews to head office management. In this research, engine room log book is used to examine the effect of homogenizer instalation to fuel oil consumption cost in real operational conditon. Two engine room log book from two ship with similiar dimension and same type of engine will be compared. Complete engine room log book are attached in appendix.

4.3.1. Engine log MT. Palusipat

Built by PT. PAL Indonesia in late 1997, MT. Palusipat is equipped with MAN B&W 7S35MC 4959kW main engine. MT. Palusipat duty is to deliver product oil from refinery to distribution terminals from Port Tanjung Wangi to Port Cilacap, Port Padang, Port Tanjung Priok, back to Port Cilacap again and finally headed to Port Makasar. This trip take time about 1 month in average.

It's have been known that MT. Palusipat is not equipped with homogenizer in fuel system instalation. For that reason, fuel oil consumption cost of MT. Palusipat will become a sample for ship fuel oil consumption cost whithout homogenizer.

Below are presented engine log MT. Palusipat in sailing periode at month of February 2016 :

	PALUSIPAT						
Date	Under Way	Propelling	RPM	Speed	FO - IFO 380		
1		2,2					
2		0,8			0,05		
2 3 4	23,8	0,2	139	8,5	12,375		
4	16,1	1,1	140	10,5	9,056		
5-7							
6							
7							
8		2,2					
9	2	1,9	109	9,5	0,687		
10	24		141	8,5	13,5		
11	24		138	9,25	12,525		
12	24		134	10,75	13,225		
13	7,8	3,2	135		4,3		
14	14,9	2,2	142	11,5	6,7		
15	24		141	12	13,475		
16	11,8	2,6	138	11	6,187		
17							
18							
19		1			1,125		
20		2,3					
21							
22	11	1,3	114	10,2	6,709		
23	16,6	1,8	138	11,5	9,64		
24	4	3,6	141		2,145		
25	17,4				0,648		
26	2,8	2,1	114	10	12,021		
27	24		137	11,2	11,579		
28	23		137	11	6,322		
29	14,7	2,1					
	267,5	30,6			144,543		

Table 4.1 Engine log MT. Palusipat

From table above it's can be obtained that in a month trip, MT. Palusipat consume 144,543 MT of HFO 380. From 29 days sailing, 23 days are main engine working hours, which means in 6 days main engine are not active, that's why there is no IFO consumption in day 5, 6, 7, 17, 18, and 21. At this inactive days, ship is berthing in current port to loading or unloading product oil.

Engine working hours are consist of underway and propelling. Propelling is a stage of ship when the ship are going to the port, or going to leave the port, at this stage main engine still running at normal condition, that's why the rpm in engine log still indicate the same rpm with Underway condition. Meanwhile, underway it's stage when the ship are sailing in the high sea. In table above, total main engine working hours of MT. Palusipat are 298,1 hours.

At some days like date 1, 8, 20, and 29, the ship is still in propelling stage, but there is no IFO 380 fuel oil consumption record. This happens because main engine only consumme MDO for initial starting fuel before use IFO 380.

4.3.2. Engine log MT. Pangkalan Brandan

Built by PT. PAL Indonesia in 2011, MT. Pangkalan Brandan is equipped with MAN B&W 6S35MC 4504 kW main engine. MT. Pangkalan Brandan duty is to deliver product oil from refinery to distribution terminals from Port Merak to Port in Surabaya, Port in Banyuwangi, Tanjung Manggis, Port Kotabaru, and back to Port Merak. This trip take time about 1 month in average.

It's have been known that MT. Pangkalan Brandan is equipped with homogenizer in fuel system instalation. For that reason, fuel oil consumption cost of MT. Pangkalan Brandanwill become a sample for ship fuel oil consumption cost whithout homogenizer. Below are presented engine log MT. Pangkalan Brandan in sailing periode at month of January 2016 :

|--|

	PA	ANGKALAN	BRAN	DAN	
Date	Under Way	Propelling	RPM	Speed	FO - IFO 600
1	5	0,9	158	13,1	3,765
2-4					
5		1,5			
6					
7	4,5	5,7	160	12,4	3,264
8	24		160	13,4	18,945
9	3,8	1,3	160	13,6	2,851
10					
11		3,2 3			
12		3			
13		3,4			
14		3,2			
15	11,8	1,1	160	13,3	9,284
16					
17		2			
18	3,7	2	159	13,5	2,217
19	3,8	3,5	160	13,5	3,393
20	24		159	12,8	18,617
21	1,5	1,8			1,107
22		1,6			
23	14	1,8	155	12,8	9,788
24	25		156	12,5	19,065
25	17,4	1	156	12,3	12,949
26-30					
31		6,3			
	138,5	43,3			105,245

From table above it's can be obtained that in a month trip, MT. Pangkalan Brandan consume 105,245 MT of HFO 600. From 31 days sailing, 20 days are main engine working hours, which means in 11 days main engine are not active, that's why there is no IFO consumption in day 1, 2, 3, 4, 6 10, 16, 26, 27, 28, 29, and 30. At this inactive days, ship is berthing in current port to loading or unloading product oil. In table above, it's also been known that total main engine working hours of MT. Pangkalan Brandan are 181,8 hours.

At some days like date 5, 11, 12, 13, 14, 17 and 22, the ship is still in propelling stage, but there is no IFO 380 fuel oil consumption record. This happens because main engine only consumme MDO for initial starting fuel before use IFO 600.

4.4. Fuel Oil Consumption Comparison

To compare fuel oil consumption from MT. Pangkalan Brandan and MT. Palusipat, it's required to find fuel oil consumption record when both ship are sailing at the same similiar speed. For this purpose, sample date are taken from date 25 in MT. Pangkalan Brandan engine log and date 15 in MT. Palusipat engine log.

Operational SFOC than can be calculated by devided total FOC in date 15 with engine power multiply by total main engine working hour in date 15. Annual, monthly, daily, and hourly FOC of main engine than can be calculated according information from main engine log.

Sample Date -	Formula Formula 600)							
25	FOC/h = Total FOC/Engine BHP/Total Hour	0,0001 5625	Ton/K wH					
	FOC MT. Pangkalan Brandan (MT)							
Hour FOC	SFOC Pangkalan Brandan x 4504 kW	0,7037 5	MT					
Daily FOC	SFOC Pangkalan Brandan x 4504 kW x 11,5 Hour	8,0931 25	MT					
Monthly FOC	SFOC Pangkalan Brandan x 4504 kW x 11,5 Hour x 12 Day	97,117 5	MT					
Annualy FOC	SFOC Pangkalan Brandan x 4504 kW x 11,5 Hour x 12 Day x 12 Month	1165,4 1	MT					

Table 4.3 Fuel oil consumption MT. Pangkalan Brandan

From table above, it shows that FOC fot MT. Pangkalan Brandan is 1165,41 MT. Same calculation also apllied to MT. Palusipat. But, since MT.Palusipat have one cylinder less than MT. Pangkalan Brandan main engine, instead multiply SFOC MT. Palusipat with engine power MT. Palusipat itself, it's have to multiplied to engine power of MT. Pangkalan Brandan.

Table 4.4 Engine power

Main Engine Power Pangkalan Brandan	4504 Kw
Main Engine Power Palu Sipat	4959 kW

By doing this conversion calculation, converted FOC of MT. Palusipat than can be used to assumption FOC for MT. Pangkalan Brandan whithout homogenizer instalation.

Table 4.5 Fuel oil consumption MT. Palusipat converted to
MT. Pangkalan Brandan

Sample Date -	Formula	SFOC Palusipat (IFO 380)		
15	FOC/h = Total FOC/Engine BHP/Total Hour	0,000113 22	Ton/k wH	
FOC MT	F. Palusipat Converted to FOC MT. Pangkal	an Brandan ((MT)	
Hour FOC	SFOC Palusipat x 4504 kW	0,509943 20	MT	
Daily FOC	SFOC Palusipat x 4504 kW x 11,5 Hour	5,864346 81	MT	
Monthly FOC	SFOC Palusipat x 4504 kW x 11,5 Hour x 12 Day	70,37216 173	MT	
Annualy FOC	SFOC Palusipat x 4504 kW x 11,5 Hour x 12 Day x 12 Month	844,4659 4071	MT	

4.5. Fuel Oil Price Prediction

Since fuel oil price have expierienced fluxtuation in past decade, it's necessary to make prediction scenario for oil price, whether the future price will be icrease or decrease. Fuel oil price prediction are predicted for the next 10 years oil price. Below are five scenario of fuel oil price prediction for the next 10 years :

Tour	ieuon ior uie n	U/A	t IO years.
a.	Scenario 1		
	Pessimistic 1	:	-2,93% annualy (decrease)
b.	Scenario 2		
	Pessimistic 2	:	-1,47% annualy (decrease)
c.	Scenario 3		
	Constant	:	0% annualy (constant)
d.	Scenario 4		
	Optimistic 1	:	6,7% annualy (increase)
	-		

e. Scenario 5 Optimistic 2 : 13,41% annualy (increase)

	FUEL OIL PRICE PREDICTION (USD/MT)														
Year		Pessimistic	1		Pessimistic	2		Constant Pr	ice		Optimistic	1		Optimistic 2	2
i cai	MDO	IFO 380	IFO 600	MDO	IFO 380	IFO 600	MDO	IFO 380	IFO 600	MDO	IFO 380	IFO 600	MDO	IFO 380	IFO 600
0	345,00	232,00	160,00	345,00	232,00	160,00	345,00	232,00	160,00	345,00	232,00	160,00	345,00	232,00	160,00
1	334,89	225,20	155,31	339,94	228,60	157,66	345,00	232,00	160,00	368,12	247,55	170,72	391,25	263,10	181,45
2	325,07	218,60	150,76	334,96	225,25	155,34	345,00	232,00	160,00	392,80	264,14	182,17	443,70	298,37	205,77
3	315,54	212,19	146,34	330,05	221,95	153,07	345,00	232,00	160,00	419,13	281,85	194,38	503,17	338,37	233,36
4	306,30	205,97	142,05	325,22	218,70	150,82	345,00	232,00	160,00	447,22	300,74	207,41	570,62	383,72	264,64
5	297,32	199,94	137,89	320,45	215,49	148,61	345,00	232,00	160,00	477,19	320,89	221,31	647,12	435,16	300,11
6	288,60	194,08	133,85	315,75	212,33	146,44	345,00	232,00	160,00	509,18	342,40	236,14	733,87	493,50	340,34
7	280,14	188,39	129,92	311,13	209,22	144,29	345,00	232,00	160,00	543,31	365,35	251,97	832,24	559,65	385,97
8	271,93	182,87	126,11	306,57	206,15	142,18	345,00	232,00	160,00	579,72	389,84	268,86	943,80	634,67	437,71
9	263,96	177,51	122,42	302,07	203,13	140,09	345,00	232,00	160,00	618,58	415,97	286,88	1070,32	719,75	496,38
10	256,23	172,30	118,83	297,65	200,16	138,04	345,00	232,00	160,00	660,04	443,85	306,10	1213,80	816,24	562,92
Annual Price Decrease	8,9	6,0	4,1	4,7	3,2	2,2	0,0	0,0	0,0	-31,5	-21,2	-14,6	-86,9	-58,4	-40,3
%	2,93	2,93	2,93	1,47	1,47	1,47	0,00	0,00	0,00	-6,70	-6,70	-6,70	-13,41	-13,41	-13,41

Table 4.6 Fuel oil price prediction

4.6. Economical Analisys

4.6.1. Initial Ivestment

Total initial investment are gained from purchase order PT. PAL Indonesia to S.I.T. Homogenizer GmbH. Complete purchase order document can be found in attachment. This table below shows the summary of the purchase order.

Table 4.7 Initial investment

No	Item	Total Price
1	Homogenizer Part	
2	Electric Motor	
3	Pressure Transmitter	
4	Thermometre(s)	
5	Inlet Flange	28,000 USD
6	Outlet Flange	28,000 USD
7	Switchboard	
8	Coating	
9	Final Painting	
10	Drip Pan	

4.6.2. Operational Cost

Operational cost consist of electricity cost. As stated in homogenizer operational guide, the instalation of homogenizer will add 4.5 kW to ship electricity load. It's also known from 6DK20e Daihatsu Generator's shop trial records, that generator fuel consumption at full load is 214.4 g/kWh.

Below are the prediction of homogenizer fuel oil consumtion a year :

30

Table 4.8 Electricity fuel oil consumtion

No	Electricity Fuel Oil Consumption						
1	Homogenizer Load	4,5	kW				
2	Generator FO consumption	214,4	g/kWh				
3	MDO consumption per hour	964,80	g				
4	MDO consumption per day	11,10	kg				
5	MDO consumption per month	133,14	kg				
6	MDO consumption per year	1,60	Ton				

Below are the prediction of homogenizer electricity fuel oil cost up to 10 years with five different MDO price scenario :

Table 4.9 Electricity fuel oil cost

	Electricity Fuel Oil Cost (USD/Year)										
Year	Pessimist 1	Pessimist 2	Constant Price	Optimist 1	Optimist 2						
I Cal	MDO	MDO	MDO	MDO	MDO						
0	\$552,0	\$552,0	\$552,0	\$552,0	\$552,0						
1	\$535,8	\$543,9	\$552,0	\$589,0	\$626,0						
2	\$520,1	\$535,9	\$552,0	\$628,5	\$709,9						
3	\$504,9	\$528,1	\$552,0	\$670,6	\$805,1						
4	\$490,1	\$520,3	\$552,0	\$715,5	\$913,0						
5	\$475,7	\$512,7	\$552,0	\$763,5	\$1.035,4						
6	\$461,8	\$505,2	\$552,0	\$814,7	\$1.174,2						
7	\$448,2	\$497,8	\$552,0	\$869,3	\$1.331,6						
8	\$435,1	\$490,5	\$552,0	\$927,6	\$1.510,1						
9	\$422,3	\$483,3	\$552,0	\$989,7	\$1.712,5						
10	\$410,0	\$476,2	\$552,0	\$1.056,1	\$1.942,1						

4.6.3. Fuel Oil Saving Cost Calculation

In order to calculate fuel oil saving cost, it's necessary to calulate fuel oil consumption cost MT. Pangkalan Brandan and MT. Palusipat. Fuel oil consumption cost MT. Pangkalan Brandan can be calculated by multiply IFO 600 price at respective year to MT. Pangkalan Brandan annual fuel oil consumption, meanwhile assumed fuel oil consumption cost for MT. Pangkalan Brandan whithout homogenizer can be calculated by multiply IFO 380 price at respective year to MT. Palusipat annual fuel oil consumption which already have been converted.

This table below shows the calcluation result for MT. Pangkalan Brandan fuel oil consumption cost and assummed MT. Pangkalan Brandan fuel oil consumption cost whithout homogenizer for 10 years with 5 different fuel oil price scenario.

FUEL	FUEL OIL CONSUMPTION COST MT. PANGKALAN BRANDAN (USD/YEAR)										
Year	Pessimistic 1	Pessimistic 2	Constant Price	Optimistic 1	Optimistic 2						
	IFO 380	IFO 380	IFO 380	IFO 380	IFO 380						
0	186465,60	186465,60	186465,60	186465,60	186465,60						
1	181000,24	183732,91	186465,60	198963,62	211461,63						
2	175695,07	181040,27	186465,60	212299,34	239808,42						
3	170545,39	178387,09	186465,60	226528,90	271955,15						
4	165546,65	175772,79	186465,60	241712,20	308411,20						
5	160694,43	173196,80	186465,60	257913,18	349754,24						
6	155984,43	170658,57	186465,60	275200,04	396639,39						
7	151412,48	168157,53	186465,60	293645,57	449809,58						
8	146974,53	165693,15	186465,60	313327,43	510107,32						
9	142666,67	163264,88	186465,60	334328,48	578488,07						
10	138485,06	160872,20	186465,60	356737,15	656035,38						

Table 4.10 Fuel oil consumption cost MT. Pangkalan Brandan

FO CONSUMPTION COST MT.PALUSIPAT CONVERTED TO MT. PANGKALAN BRANDAN (USD/MT)										
Year	Pessimistic 1	Pessimistic 2	Constant Price	Optimistic 1	Optimistic 2					
I Cul	IFO 380	IFO 380	IFO 380	IFO 380	IFO 380					
0	195916,10	195916,10	195916,10	195916,10	195916,10					
1	190173,74	193044,91	195916,10	209047,55	222178,98					
2	184599,69	190215,80	195916,10	223059,15	251962,45					
3	179189,02	187428,15	195916,10	238009,89	285738,45					
4	173936,93	184681,35	195916,10	253962,72	324042,18					
5	168838,79	181974,81	195916,10	270984,80	367480,58					
6	163890,07	179307,93	195916,10	289147,80	416741,98					
7	159086,41	176680,14	195916,10	308528,19	472606,95					
8	154423,54	174090,85	195916,10	329207,57	535960,71					
9	149897,34	171539,52	195916,10	351273,00	607807,16					
10	145503,80	169025,57	195916,10	374817,39	689284,74					

Table 4.11 Fuel oil consumption cost MT. Palusipat converted to MT. Pangkalan Brandan

Fuel oil saving cost then can be calculate by subtract fuel oil consumption cost of IFO 380 fuel to fuel oil consumption cost of IFO 600. Fuel oil saving cost then used to calculate payback period.

4.7. Pay Back Period

Payback period is the length of time required to recover the cost of an investment. The payback period of a given investment or project is an important determinant of whether to undertake the position or project, as longer payback periods are typically not desirable for investment positions.

Before calculate pay back periode, first it's necessary to calculate cost saving benefit from homogenizer usage. Cost saving benefit is gained from fuel consumption cost of system that haven't install homogenizer, minus fuel consumption cost of system that already install homogenizer.

Net revenue than can be calculated by folowing formula :

Net Revenue = Cost Saving Benefit-(Initial Investment+Operational Cost+Depresiation)

(4-1)

Payback period than can be traced by observing in which year the accumulative net revenue has reach equilibrium with initial investment, operational cost, and depresiation. Below are calculation result table and graph of payback period for homogenizer instalation in MT. Pangkalan Brandan fuel systems in five different scenario :

	Payback Period Pessimistic 1							
Year	Initial Investment	Cost Saving Benefit	Cost Saving Benefit Accumulative	Operational Cost	Operational Cost Accumulative	Depresiation	Summary	%
0	\$28.000,0	\$0,0	\$0,0	\$0,0	\$0,0	\$0,0	-\$28.000,0	-100,00%
1	\$0,0	\$9.450,5	\$9.450,5	\$535,8	\$535,8	\$2.800,0	-\$21.885,3	-78,16%
2	\$0,0	\$9.173,5	\$18.624,0	\$520,1	\$1.055,9	\$2.800,0	-\$13.231,9	-47,26%
3	\$0,0	\$8.904,6	\$27.528,6	\$504,9	\$1.560,8	\$2.800,0	-\$4.832,2	-17,26%
4	\$0,0	\$8.643,6	\$36.172,2	\$490,1	\$2.050,9	\$2.800,0	\$3.321,4	11,86%
5	\$0,0	\$8.390,3	\$44.562,5	\$475,7	\$2.526,6	\$2.800,0	\$11.235,9	40,13%
6	\$0,0	\$8.144,4	\$52.706,9	\$461,8	\$2.988,4	\$2.800,0	\$18.918,5	67,57%
7	\$0,0	\$7.905,6	\$60.612,5	\$448,2	\$3.436,6	\$2.800,0	\$26.375,9	94,20%
8	\$0,0	\$7.673,9	\$68.286,5	\$435,1	\$3.871,7	\$2.800,0	\$33.614,8	120,05%
9	\$0,0	\$7.449,0	\$75.735,5	\$422,3	\$4.294,0	\$2.800,0	\$40.641,4	145,15%
10	\$0,0	\$7.230,7	\$82.966,1	\$410,0	\$4.704,0	\$2.800,0	\$47.462,1	169,51%

Table 4.12 Payback period scenario pessimistic 1

			d Pessimistic 2					
Year	Initial Investment	Cost Saving Benefit	Cost Saving Benefit Accumulative	Operational Cost	Operational Cost Accumulative	Depresiation	Summary	%
0	\$28.000,0	\$0,0	\$0,0	\$0,0	\$0,0	\$0,0	-\$28.000,0	-100,00%
1	\$0,0	\$9.450,5	\$9.450,5	\$543,9	\$543,9	\$2.800,0	-\$21.893,4	-78,19%
2	\$0,0	\$9.312,0	\$18.762,5	\$535,9	\$1.079,8	\$2.800,0	-\$13.117,4	-46,85%
3	\$0,0	\$9.175,5	\$27.938,0	\$528,1	\$1.607,9	\$2.800,0	-\$4.469,9	-15,96%
4	\$0,0	\$9.041,1	\$36.979,1	\$520,3	\$2.128,3	\$2.800,0	\$4.050,8	14,47%
5	\$0,0	\$8.908,6	\$45.887,7	\$512,7	\$2.641,0	\$2.800,0	\$12.446,7	44,45%
6	\$0,0	\$8.778,0	\$54.665,7	\$505,2	\$3.146,2	\$2.800,0	\$20.719,5	74,00%
7	\$0,0	\$8.649,4	\$63.315,0	\$497,8	\$3.644,0	\$2.800,0	\$28.871,0	103,11%
8	\$0,0	\$8.522,6	\$71.837,6	\$490,5	\$4.134,5	\$2.800,0	\$36.903,1	131,80%
9	\$0,0	\$8.397,7	\$80.235,3	\$483,3	\$4.617,8	\$2.800,0	\$44.817,5	160,06%
10	\$0,0	\$8.274,6	\$88.510,0	\$476,2	\$5.094,1	\$2.800,0	\$52.615,9	187,91%

Table 4.13 Payback period scenario pessimistic 2

	Payback Period Constant Price									
Year	Initial Investment	Cost Saving Benefit	Cost Saving Benefit Accumulative	Operational Cost	Operational Cost Accumulative	Depresiation	Summary	%		
0	\$28.000,0	\$0,0	\$0,0	\$0,0	\$0,0	\$0,0	-\$28.000,0	-100,00%		
1	\$0,0	\$9.450,5	\$9.450,5	\$552,0	\$552,0	\$2.800,0	-\$21.901,5	-78,22%		
2	\$0,0	\$9.450,5	\$18.901,0	\$552,0	\$1.104,0	\$2.800,0	-\$13.003,0	-46,44%		
3	\$0,0	\$9.450,5	\$28.351,5	\$552,0	\$1.656,0	\$2.800,0	-\$4.104,5	-14,66%		
4	\$0,0	\$9.450,5	\$37.802,0	\$552,0	\$2.208,0	\$2.800,0	\$4.794,0	17,12%		
5	\$0,0	\$9.450,5	\$47.252,5	\$552,0	\$2.760,0	\$2.800,0	\$13.692,5	48,90%		
6	\$0,0	\$9.450,5	\$56.703,0	\$552,0	\$3.312,0	\$2.800,0	\$22.591,0	80,68%		
7	\$0,0	\$9.450,5	\$66.153,5	\$552,0	\$3.864,0	\$2.800,0	\$31.489,5	112,46%		
8	\$0,0	\$9.450,5	\$75.604,0	\$552,0	\$4.416,0	\$2.800,0	\$40.388,0	144,24%		
9	\$0,0	\$9.450,5	\$85.054,5	\$552,0	\$4.968,0	\$2.800,0	\$49.286,5	176,02%		
10	\$0,0	\$9.450,5	\$94.505,0	\$552,0	\$5.520,0	\$2.800,0	\$58.185,0	207,80%		

Table 4.14 Payback period scenario constant price

		Payback Period Optimistic 1									
Year	Initial Investment	Cost Saving Benefit	Cost Saving Benefit Accumulative	Operational Cost	Operational Cost Accumulative	Depresiation	Summary	%			
0	\$28.000,0	\$0,0	\$0,0	\$0,0	\$0,0	\$0,0	-\$28.000,0	-100,00%			
1	\$0,0	\$9.450,5	\$9.450,5	\$589,0	\$589,0	\$2.800,0	-\$21.938,5	-78,35%			
2	\$0,0	\$10.083,9	\$19.534,4	\$628,5	\$1.217,5	\$2.800,0	-\$12.483,1	-44,58%			
3	\$0,0	\$10.759,8	\$30.294,2	\$670,6	\$1.888,1	\$2.800,0	-\$2.393,8	-8,55%			
4	\$0,0	\$11.481,0	\$41.775,2	\$715,5	\$2.603,6	\$2.800,0	\$8.371,6	29,90%			
5	\$0,0	\$12.250,5	\$54.025,8	\$763,5	\$3.367,1	\$2.800,0	\$19.858,6	70,92%			
6	\$0,0	\$13.071,6	\$67.097,4	\$814,7	\$4.181,8	\$2.800,0	\$32.115,6	114,70%			
7	\$0,0	\$13.947,8	\$81.045,1	\$869,3	\$5.051,1	\$2.800,0	\$45.194,0	161,41%			
8	\$0,0	\$14.882,6	\$95.927,8	\$927,6	\$5.978,7	\$2.800,0	\$59.149,1	211,25%			
9	\$0,0	\$15.880,1	\$111.807,9	\$989,7	\$6.968,4	\$2.800,0	\$74.039,5	264,43%			
10	\$0,0	\$16.944,5	\$128.752,4	\$1.056,1	\$8.024,4	\$2.800,0	\$89.928,0	321,17%			

Table 4.15 Payback period scenario optimistic 1

				Payback Perio	d Optimistic 2			
Year	Initial Investment	Cost Saving Benefit	Cost Saving Benefit Accumulative	Operational Cost	Operational Cost Accumulative	Depresiation	Summary	%
0	\$28.000,0	\$0,0	\$0,0	\$0,0	\$0,0	\$0,0	-\$28.000,0	-100,00%
1	\$0,0	\$9.450,5	\$9.450,5	\$626,0	\$626,0	\$2.800,0	-\$21.975,5	-78,48%
2	\$0,0	\$10.717,4	\$20.167,9	\$709,9	\$1.335,9	\$2.800,0	-\$11.968,1	-42,74%
3	\$0,0	\$12.154,0	\$32.321,9	\$805,1	\$2.141,0	\$2.800,0	-\$619,1	-2,21%
4	\$0,0	\$13.783,3	\$46.105,2	\$913,0	\$3.054,0	\$2.800,0	\$12.251,2	43,75%
5	\$0,0	\$15.631,0	\$61.736,2	\$1.035,4	\$4.089,4	\$2.800,0	\$26.846,8	95,88%
6	\$0,0	\$17.726,3	\$79.462,5	\$1.174,2	\$5.263,6	\$2.800,0	\$43.398,9	155,00%
7	\$0,0	\$20.102,6	\$99.565,1	\$1.331,6	\$6.595,1	\$2.800,0	\$62.169,9	222,04%
8	\$0,0	\$22.797,4	\$122.362,4	\$1.510,1	\$8.105,2	\$2.800,0	\$83.457,2	298,06%
9	\$0,0	\$25.853,4	\$148.215,8	\$1.712,5	\$9.817,7	\$2.800,0	\$107.598,1	384,28%
10	\$0,0	\$29.319,1	\$177.534,9	\$1.942,1	\$11.759,8	\$2.800,0	\$134.975,1	482,05%

Table 4.16 Payback period scenario optimistic 2

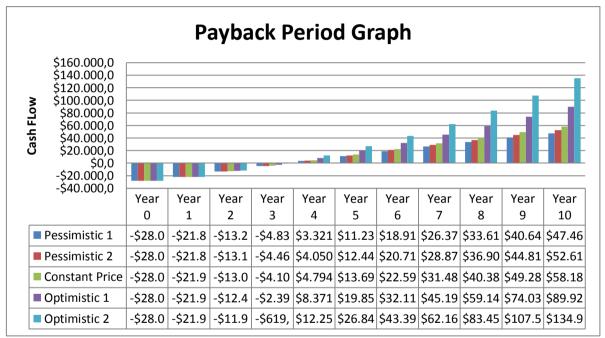


Figure 4.6 Payback period graph

From tables and graph above, it can be known that payback period occur in year 4 in all scenario. Furthermore, for 10 years life time of homogenizer operation, PT. Pertamina will gain fuel saving benefit value from installing homogenizer. Various fuel saving value which gained by MT. Pangkalan Brandan based five different scenarion are as follows :

a)	Scenario Pessimistic 1	:	\$47.462,1
	in 10 years operation		
b)	Scenario Pessimistic 2	:	\$52.615,9
	in 10 years operation		
c)	Scenario Constant Price	:	\$58.185,0
	in 10 years operation		
d)	Scenario Optimistic 1	:	\$89.928,0
	in 10 years operation		
e)	Scenario Optimistic 2	:	\$134.975,1
	in 10 years operation		

4.8. IRR

Internal rate of return (IRR) is the interest rate at which the net present value of all the cash flows (both positive and negative) from a project or investment equal zero.

Internal rate of return is used to evaluate the attractiveness of a project or investment. If the IRR of a new project exceeds a company's required rate of return, that project is desirable. If IRR falls below the required rate of return, the project should be rejected.

The formula for IRR is:

$$0 = P0 + P1/(1+IRR) + P2/(1+IRR)2 + P3/(1+IRR)3 + \dots + Pn/(1+IRR)n$$
(4-2)

Where P0, P1, \ldots Pn equals the cash flows in periods 1, 2, \ldots n, respectively; and IRR equals the project's internal rate of return.

Calculation of IRR can be done by interpolation. Assumption are taken in IRR calculation by determine the life operation of homogenizer are 10 years. By determine NPV is 0 in year 10, IRR value than can be obtained. The following formula can be use to find IRR value :

IRR = Lower Discount Rate + [NPV at Lower rate * (Higher Rate - Lower Rate) / (NPV at Lower Rate - NPV at Higher Rate)]

(4-3)

Below are calculation result table and graph of IRR for homogenizer instalation in MT. Pangkalan Brandan fuel systems for 10 years life time operation in five different scenario :

	· ·	-				Pessimis	tio 1				
			Preser	nt Value				P	Present Valu	e	
Year	Net Cashflow	5%	10%	15%	20%	30%	5%	10%	15%	20%	30%
0	-\$28.000	1,000	1,000	1,000	1,000	1,000	-\$28.000	-\$28.000	-\$28.000	-\$28.000	-\$28.000
1	-\$21.885	0,952	0,909	0,870	0,833	0,769	-\$20.843	-\$19.896	-\$19.031	-\$18.238	-\$16.835
2	-\$13.232	0,907	0,826	0,756	0,694	0,592	-\$12.002	-\$10.935	-\$10.005	-\$9.189	-\$7.830
3	-\$4.832	0,864	0,751	0,658	0,579	0,455	-\$4.174	-\$3.630	-\$3.177	-\$2.796	-\$2.199
4	\$3.321	0,823	0,683	0,572	0,482	0,350	\$2.732	\$2.269	\$1.899	\$1.602	\$1.163
5	\$11.236	0,784	0,621	0,497	0,402	0,269	\$8.804	\$6.977	\$5.586	\$4.515	\$3.026
6	\$18.919	0,746	0,564	0,432	0,335	0,207	\$14.117	\$10.679	\$8.179	\$6.336	\$3.919
7	\$26.376	0,711	0,513	0,376	0,279	0,159	\$18.745	\$13.535	\$9.916	\$7.361	\$4.203
8	\$33.615	0,677	0,467	0,327	0,233	0,123	\$22.752	\$15.682	\$10.989	\$7.818	\$4.121
9	\$40.641	0,645	0,424	0,284	0,194	0,094	\$26.198	\$17.236	\$11.553	\$7.877	\$3.832
10	\$47.462	0,614	0,386	0,247	0,162	0,073	\$29.138	\$18.299	\$11.732	\$7.665	\$3.443
IRR			15%				\$57.466	\$22.214	-\$360	-\$15.049	-\$31.156

Table 4.17 Payback period scenario pessimistic 1

		1		1	Pe	ssimistic	2				
			Preser	nt Value				P	resent Valu	ie	
Year	Net Cashflow	5%	10%	15%	20%	30%	5%	10%	15%	20%	30%
0	-\$28.000	1,000	1,000	1,000	1,000	1,000	-\$28.000	-\$28.000	-\$28.000	-\$28.000	-\$28.000
1	-\$21.893	0,952	0,909	0,870	0,833	0,769	-\$20.851	-\$19.903	-\$19.038	-\$18.245	-\$16.841
2	-\$13.117	0,907	0,826	0,756	0,694	0,592	-\$11.898	-\$10.841	-\$9.919	-\$9.109	-\$7.762
3	-\$4.470	0,864	0,751	0,658	0,579	0,455	-\$3.861	-\$3.358	-\$2.939	-\$2.587	-\$2.035
4	\$4.051	0,823	0,683	0,572	0,482	0,350	\$3.333	\$2.767	\$2.316	\$1.954	\$1.418
5	\$12.447	0,784	0,621	0,497	0,402	0,269	\$9.752	\$7.728	\$6.188	\$5.002	\$3.352
6	\$20.719	0,746	0,564	0,432	0,335	0,207	\$15.461	\$11.696	\$8.958	\$6.939	\$4.293
7	\$28.871	0,711	0,513	0,376	0,279	0,159	\$20.518	\$14.815	\$10.854	\$8.057	\$4.601
8	\$36.903	0,677	0,467	0,327	0,233	0,123	\$24.977	\$17.216	\$12.064	\$8.582	\$4.524
9	\$44.817	0,645	0,424	0,284	0,194	0,094	\$28.890	\$19.007	\$12.740	\$8.686	\$4.226
10	\$52.616	0,614	0,386	0,247	0,162	0,073	\$32.302	\$20.286	\$13.006	\$8.498	\$3.817
IRR			17%				\$70.623	\$31.412	\$6.230	-\$10.223	-\$28.406

Table 4.18 Payback period scenario pessimistic 2

		1			Ċ	onstant l	Price				
			Presen	t Value				P	resent Valu	e	
Year	Net Cashflow	5%	10%	15%	20%	30%	5%	10%	15%	20%	30%
0	-\$28.000	1,000	1,000	1,000	1,000	1,000	-\$28.000	-\$28.000	-\$28.000	-\$28.000	-\$28.000
1	-\$21.902	0,952	0,909	0,870	0,833	0,769	-\$20.859	-\$19.910	-\$19.045	-\$18.251	-\$16.847
2	-\$13.003	0,907	0,826	0,756	0,694	0,592	-\$11.794	-\$10.746	-\$9.832	-\$9.030	-\$7.694
3	-\$4.105	0,864	0,751	0,658	0,579	0,455	-\$3.546	-\$3.084	-\$2.699	-\$2.375	-\$1.868
4	\$4.794	0,823	0,683	0,572	0,482	0,350	\$3.944	\$3.274	\$2.741	\$2.312	\$1.679
5	\$13.692	0,784	0,621	0,497	0,402	0,269	\$10.728	\$8.502	\$6.808	\$5.503	\$3.688
6	\$22.591	0,746	0,564	0,432	0,335	0,207	\$16.858	\$12.752	\$9.767	\$7.566	\$4.680
7	\$31.489	0,711	0,513	0,376	0,279	0,159	\$22.379	\$16.159	\$11.838	\$8.788	\$5.018
8	\$40.388	0,677	0,467	0,327	0,233	0,123	\$27.336	\$18.841	\$13.203	\$9.393	\$4.951
9	\$49.286	0,645	0,424	0,284	0,194	0,094	\$31.771	\$20.902	\$14.010	\$9.552	\$4.648
10	\$58.185	0,614	0,386	0,247	0,162	0,073	\$35.721	\$22.433	\$14.382	\$9.397	\$4.221
IRR			18%				\$84.538	\$41.123	\$13.173	-\$5.146	-\$25.525

Table 4.19 Payback period scenario constant price

	·			-		Optimist	ic 1				
			Presen	t Value				P	resent Value	e	
Year	Net Cashflow	5%	10%	15%	20%	30%	5%	10%	15%	20%	30%
0	-\$28.000	1,000	1,000	1,000	1,000	1,000	-\$28.000	-\$28.000	-\$28.000	-\$28.000	-\$28.000
1	-\$21.939	0,952	0,909	0,870	0,833	0,769	-\$20.894	-\$19.944	-\$19.077	-\$18.282	-\$16.876
2	-\$12.483	0,907	0,826	0,756	0,694	0,592	-\$11.322	-\$10.317	-\$9.439	-\$8.669	-\$7.386
3	-\$2.394	0,864	0,751	0,658	0,579	0,455	-\$2.068	-\$1.799	-\$1.574	-\$1.385	-\$1.090
4	\$8.372	0,823	0,683	0,572	0,482	0,350	\$6.887	\$5.718	\$4.786	\$4.037	\$2.931
5	\$19.859	0,784	0,621	0,497	0,402	0,269	\$15.560	\$12.331	\$9.873	\$7.981	\$5.349
6	\$32.116	0,746	0,564	0,432	0,335	0,207	\$23.965	\$18.128	\$13.884	\$10.755	\$6.654
7	\$45.194	0,711	0,513	0,376	0,279	0,159	\$32.119	\$23.192	\$16.990	\$12.613	\$7.202
8	\$59.149	0,677	0,467	0,327	0,233	0,123	\$40.034	\$27.593	\$19.336	\$13.756	\$7.251
9	\$74.040	0,645	0,424	0,284	0,194	0,094	\$47.727	\$31.400	\$21.047	\$14.349	\$6.982
10	\$89.928	0,614	0,386	0,247	0,162	0,073	\$55.208	\$34.671	\$22.229	\$14.524	\$6.523
IRR			26%				\$159.216	\$92.974	\$50.056	\$21.679	-\$10.460

Table 4.20 Payback period scenario optimistic 1

		_		_		Optimis	tic 2				
X 7			Presen	ıt Value	Factor			P.	resent Value	5	
Year	Net Cashflow	5%	10%	15%	20%	30%	5%	10%	15%	20%	30%
0	-\$28.000	1,000	1,000	1,000	1,000	1,000	-\$28.000	-\$28.000	-\$28.000	-\$28.000	-\$28.000
1	-\$21.975	0,952	0,909	0,870	0,833	0,769	-\$20.929	-\$19.978	-\$19.109	-\$18.313	-\$16.904
2	-\$11.968	0,907	0,826	0,756	0,694	0,592	-\$10.855	-\$9.891	-\$9.050	-\$8.311	-\$7.082
3	-\$619	0,864	0,751	0,658	0,579	0,455	-\$535	-\$465	-\$407	-\$358	-\$282
4	\$12.251	0,823	0,683	0,572	0,482	0,350	\$10.079	\$8.368	\$7.005	\$5.908	\$4.289
5	\$26.847	0,784	0,621	0,497	0,402	0,269	\$21.035	\$16.670	\$13.348	\$10.789	\$7.231
6	\$43.399	0,746	0,564	0,432	0,335	0,207	\$32.385	\$24.498	\$18.763	\$14.534	\$8.991
7	\$62.170	0,711	0,513	0,376	0,279	0,159	\$44.183	\$31.903	\$23.372	\$17.350	\$9.908
8	\$83.457	0,677	0,467	0,327	0,233	0,123	\$56.487	\$38.933	\$27.282	\$19.409	\$10.231
9	\$107.598	0,645	0,424	0,284	0,194	0,094	\$69.359	\$45.632	\$30.586	\$20.853	\$10.146
10	\$134.975	0,614	0,386	0,247	0,162	0,073	\$82.863	\$52.039	\$33.364	\$21.799	\$9.791
IRR			33%				\$256.072	\$159.708	\$97.153	\$55.662	\$8.320

Table 4.21 Payback period scenario optimistic 2

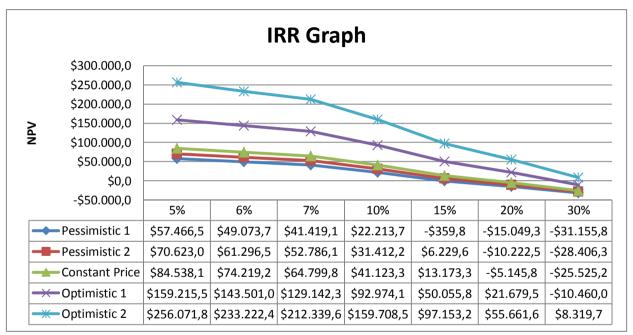


Figure 4.7 IRR graph

Based on table and graph above, we can see that IRR result are :

a.	Scenario Pessimistic 1	:	IRR 15%
b.	Scenario Pessimistic 2	:	IRR 17%
c.	Scenario Constant Price	:	IRR 18%
d.	Scenario Optimistic 1	:	IRR 26%
e.	Scenario Optimistic 2	:	IRR 33%

It can be seen that more high the oil price rise, more high the IRR value will result.

ATTACHMENT - 1 MT. PANGKALAN BRANDAN

BIRO KLASIFIKASI INDONESIA

SERTIFIKAT KLASIFIKASI MESIN

CERTIFICATE OF CLASSIFICATION FOR MACHINERY

019609 No

No. Register : 20382 No. IMO PANGKALAN BRANDAN Dual Class

Dengan ini diterangkan bahwa instalasi mesin KAPAL TANGKI MINYAK, BAJA This is to certify that the undermentioned machineries of above named

tersebut di atas telah disurvey dalam rangka SURVEY PENERIMAAN KELAS ship has been surveyed for

SURABAYA 18.03.2015 di pada tanggal at on

oleh Survevor by Surveyors

: 9601675

KI - NK

Biro Klasifikasi Indonesia, sesuai dengan ketentuan-ketentuan Peraturan Biro Klasifikasi Indonesia to the Biro Klasifikasi Indonesia, in compliance with the requirements of the Rules of Biro Klasifikasi Indonesia

1.	MESIN UTAMA (Jumlah, merek dan tipe Main Engine (Number, license and type) 1 (satu) buah Mesin Diesel St		INE MAN, 6S35-MC7, 4 Tak Kerja Tunggal	
	Tenaga efektif 6040 HP Effective power Dibangun di KOREA Built at	oleh by	pada putaran 173 ar STX ENGINE CO,.LTD Pada in	Rpm <i>rpm</i> 2012
	Nomor mesin SB6S3-11685 No.			
2.	MESIN BANTU (Jumlah, merek, tipe dan Auxiliary Engine (Number, license, type of 3 (tiga) buah DAIHATSU, 6 DK	ind powe	r) , 3 x 965 НР	

Dibangun di	JAPAN	oleh	DAIHATSU	DIESEL	MFG.	CO.,	LTD.	Pada	2012
Built at		by						in	

Instalasi mesin tersebut akan didaftar dalam Register dengan karakter kelas The machineries will be entered in the Register with the character

≝ SM

dan dinyatakan berlaku sampai Survey Pembaruan Kelas pada tanggal and will remain valid until Class Renewal Survey on

17 MARET 2020

dengan syarat bahwa survey yang ditentukan dalam Peraturan BKI untuk dapat mempertahankan kelas dipenuhi provided that survey as required by the BKI Rules for maintenance of the class are fulfilled, 18 MARET 2015 Survey terakhir Poros baling-baling : Període survey 5 (lima) Tahun Last survey Propeller shaft : Periodicity of survey

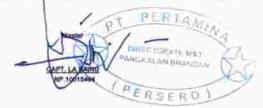
Dikeluarkan di Jakarta, tanggal

14 AGUSTUS 2015

Issued at Jakarta, on

BIRO KLASIFIKASI INDONESIA

Direktur Klasifikasi Classification Director


054134

ē., .

PT. PERTAMINA (PERSERO) SHIPPING - MARKETING & TRADING DIRECTORATE MT.PANGKALAN BRANDAN (YHPH) ENGINE LOG PERIODE JANUARI 2016

-		-			r	-		1	PR	ESSU	REIN	lips 1	-		_	TE		ATURE		7 61	and a	-		12310						_		_							
									100	T I	1	1	-	T	1	1	-	T _s	T			19	б, I					1											
1	μ,	AGE	WAY	,NG		0	30	ě,		CODLING	a on.	AR	5	LTCW	ROOM		EXHAUST GAS	UACKET COCK		1000			TURBO CHAR	,	0 8 00 0	ONSUMPTK	×	LO CONSUMPTION				R	UN HOU	15					
ENE	AT POALT	ANCHORAGE	UNDER WA	NUTBADBETTIN	NdW	SPEED	DISTAN	FUEL PACK	FUEL OIL	HTCM JACKET O	LUBRICATING	SCAV ENG.	SEA WATER	FRESH WATER	분	HOH	NON	W/OUT	F.W INDUT	LD, IN / DUT		and a	Wdb		e.	A76	т.о.н	MEDRANC	MEDRIPAL	SALIT	TURBO LUB	TURALIK	ac UB	TURALIK	IKASRI RO	MEDITRAN	CAR	GC DIL I	Nier
										1												1	- ł	FO	00	DO	00	307	1070	415	68	52	100	-	220	58	1	1 5	11
1		18,1	5.0	0.0	158	15,1	65.5	î –		-			AND	HOR	AGE A	T TAN	JUNG I	SENOW	a	_	_		-t	5,765	0,476	2.056	0,480							-					
2	_	24.0											INC	HOR	NGE A	TTAN	JUNKS	SENCIA	ai.	_	_					1,920	0,480	-			-	-		-	-	-	-		
3		24.0					-	-	_				PAG	HOR	ACIE A	T TAN	A MAG	EEKONA	3	_		-	-1	-		1,920	0,480				-	-	-	t	-				
4		24.0			1		-	$t \rightarrow t$	-	_		-	ANE	HOR	AGE A	TTAN	JUNG	SERIONO	6			-				1,020	0.480	1				+	-	t			t		<u>+</u>
6	7:2	10.2		14.6				t			1	OAD.	HG CA	ROO	AT .E	TTY P	ERTAN	ANA TJ	SEKON	¢.	-		-1		0.083	2,100	0,485	1							-		1-	<u> </u>	
8	24.0					-		t	_		_							ANA TJ		-		-	-		1 June	5,930	0,480	-			-	+	-		-		<u> </u>		<u>+</u>
7	13,8		4.5	5.7	100	12.4	55.0	0.0	2.4	Line	2.2	_	1111	1.1.1.1.1.1		_		64/2		10.0	and see	1 30	1144	3,264	10.491	2.104	0,480	200	30	20	<u>+</u>	-	+	+	-		<u> </u>		+ - 1
8			24.0		160	13,4	321.6	0.0		-	-	-	+	-	-				5 44(3	-		20		13.945	0,001	1,920	0,480		90			-		-	-	-	-		
8	-	18.9	3.8	15	160	13.0	093	-	1.13	1.5*	1.0		-	-	-	-		LANGA		ol en	- 1 H	1 49		2,651	0.234	-	and the second second	-									<u> </u>		+
do		24,0	0.9	1.1	11000	10.0	100.0	+		_	_							LANG A	1		_		-	6.446 i	0.571	2.104	D.480 D.480		30								-	<u>+</u>	<u>+</u>
11	1.0	18.9		5.2				⊢		1 mile	-			_		_	_	ENA GO		eri erezi i			-+		- 14Z4 /	1.920				-		-			-		1.1		
	14.5	8.0		3,0	-		-	+	_	1000	a second	-		-				LANCIA		ensor	BATA	-	-+		2,344	2,432	0,480					-	-	-	-	-	8,4	+	<u> </u>
12	10.0	10.0	-			-		+	_	Deter	-			20171				ANA GO	- C	Ci etc a f	GRV8	-	-+		3,273	2,000	0,480		190	_	-	-	-			-	-	<u> </u>	
	20.0	10.0	<u> </u>	5,4	-			+				A. 12.21.71			1100.011	11.1.1.1.1.1		ENA GO				-	-		1,270	3,120	0.480			-		-	-		-		- 19.3		
14	- 30 H		125 ar	3.2	100	44.41	1716	1	1.47	-	A			-		_	_	_	-				-	1.014	1,849	3,640	0,480	-	30		-	-		<u> </u>	-				
15	110	11.1	11,0-	1.2	300	14,4	171,5	5,0	7.4	1 3.0	1.22	1.0	30		-			BATT	فسنصف كالتراج	e 1 400	42 11	1 31	1000	9,264	0.689	2,101	5,480		90	-	-	-		-	-	-		+	
110	24.0			-		-		-	_			_		1.1	1000	ILL LAC		WAND				-	-			1.920	0,483	h			-	-		<u> </u>	-	-	L		<u> </u>
.17	2.9	19.1		2.0		1.0.0		⊢			Philip	and the local of	_	_	_	_	_	WANG				_	-+		0.358	2,400	0,480	-	-			-		-	-	-		63	
12	18.8	-	3.7	2.0		11,7	78,0	-		-	-			_				TAMIN				_	-	2,217	0.371	2.368	0,475			-				L	L	1			2.2
19	15,7	-	0,8	8,5	100	13.5	112,0		1	1.53	-	-	-	-		-		ALSHIN				1		2,393	1,010	3,237	6,480			-	-	-				-	-	<u> </u>	0,8
20	-		24,0		159	12,6	307/2	8,0	1.7.4	1.0	2.2	23		_	_	_	_	84/7		8 484	42 (1)	20	N859	10,017		1,9280	0.480	-	120			-	-		-	-	-	<u>+</u>	
-21	1.1.47.81	20.7	15	1.0			<u> </u>	⊢		_	William .	ALL MARK	_	_				LI AREA		-	-	_	-	1.107	1.139	2.144	0.480		30		-		-	-	-	-			
22	10.6	11,6	1	10	-			-	1	1	-	-					- growth	TAMINA		-			-		0.253	3,000	0,480	L						1		-	10.0		
23	8,2		14,0	1,8	and the second	12.8	179,2			3,5		2,3		-	_		9 384		_	8 484		217	_	9,785	0,765	2,400	0,463	230	90				1	-		-			-
24			25,0				300,0	-		3,6		-	<u> </u>	-	_	_		_	_	-	_	-	7153	19.005		1.920	0,490	L	190.			-	_	-	_	_			
25	-	1.6	17.4	1.0	158	12.3	213,2	8,4	7,4	3.0	22	2,3		_	-	_	0 380			8 4194	42 112	20	加质	12,049	0.658	2.080	0.480		140	-	-	-		-	-	-	-		
26		24,0		-				⊢							-		10/10/07	MONES					_			5,820	0,483	L			-								1
27		24.0			-		-					_	_	_		_		EEKZWX	_			_	_	-		1.630	0,480										-		
28		24,0							ANCHORAGE AT TANJUNG BERONG										1.020	0,489																			
29		24,0								ANCHORAGE AT TANJUNG SERCING								i i		1,9720	0,480						1												
00		24.0						1		ANCHORAGE AT TANJUNG SEKONG									1.020	0.480									1 1										
31	10.8	7.1		0.5							A	T-ONO	SIDE	AT JE	EJAX B	ERTA	ARINA 3	MULAN	IG GERL	M					1033	2.728	0.480												
	1 August Au	les l	196.6	4	li i	1		1				-											1	105 245	16.562	69:225	14,870	dia.	1.00	1		17	1.				37.7	63	8
			-	-	-		<u> </u>	-		_		_				_					_								in the second se			_	-		-			And the second second	41

Print Col In The

UNTUNG SIDODAD NP.10016073

PT. PERTAMINA (PERSERO) SHIPPING - MARKETING & TRADING DIRECTORATE

MT.PANGKALAN BRANDAN

ABSTRACT LOG PERIODE : JANUARI 2016

	DEPAR	TURE (FUL	LAWAY)	AR	RIVAL (ST	BY)			ANCH		PROP		TRUE		T.O.H	M	Æ	A/E
VOY	PORT	MONTH	DATE	HOUR &	PORT	MONTH	DATE	HOUR&	PORT	ORAG E	UNDE RWAY	ELLIN G	RPM		SPEED	DO	FO	00	DO
	MERAK		7	07.30							9.5	8,1	159.9	126,4	13.3	3,360	7.029	1.050	14,000
	in Libert				SURABAYA	1	9	15.48	47.4	87		11.2	Strene.			0,960	21,796	0.731	4,024
-	SURABAVA	1	14	12.00							11.8	3.2	160	156,9	13,3	2,400		8.637	13,398
-				100	BANYUWANGI	1	15	23,48	21,7	54,2		5,1			1946	0,480	9,264	0,689	2.101
	BANYUWANGI	1	18	08.18					-		7,0	2.0	159	95,2	13,6	1,430	2.217	0.729	6,688
					TJ MANGGIS	1	19	16.18	15,7			2.1				0,480	3,393	1,010	3,232
	TJ MANGGIS	1	19	11:30							26,0	1,4	159	335,4	12,9	0,480	18,617		1,920
					KOTA BARU	1	21	13.30	19,0	32,3		3,3				0,480	1,107	1,139	2,144
	KOTA BARU	1	23	22.00							57,4	1.8	156	717,5	12.5	0,960	9,788	1.026	5,400
					MERAK	1	26	05.24	10,6	129,6		7,3				3,840	32,034	1,571	16,326
-																			
											-								
											-			-					
											-			-					
_										-									
					τo	T	A L									14,870	105.245	16,582	69,235

Chief Engineer UNTUNG SIDODADI NP.10016073

YEAR :	2014		PROJECT NAME	PROJEC	T NO.
			PRODUCT OIL TANKER 17,500 LTDW PANGKALAN BRANDAN		M000272
	DATE	APPROVAL		OWNED	
DRAWN BY	-	· -	DRAWING / DOCUMENT NAME :	OWNER	: PERTAMINA
		,		CLASS	: NK
DESIGNED BY	24/12	to	FO. PURIFYING	DESIGNE	R : PT. PAL
CHECKED BY	30/12.	P.	PIPING DIAGRAM	GROUP	: M&O
APPROVED BY	21 T2	tin		SCALE	÷ -
ALL RIGHT				SIZE	: A4, A3
PROPERTIES	OF PT PAL	INDONESIA		SHEET	1 OF 5
PROJECTION	SYMBO	L		DRW/ DC	CUMENT NO.
](\bigcirc			5131013

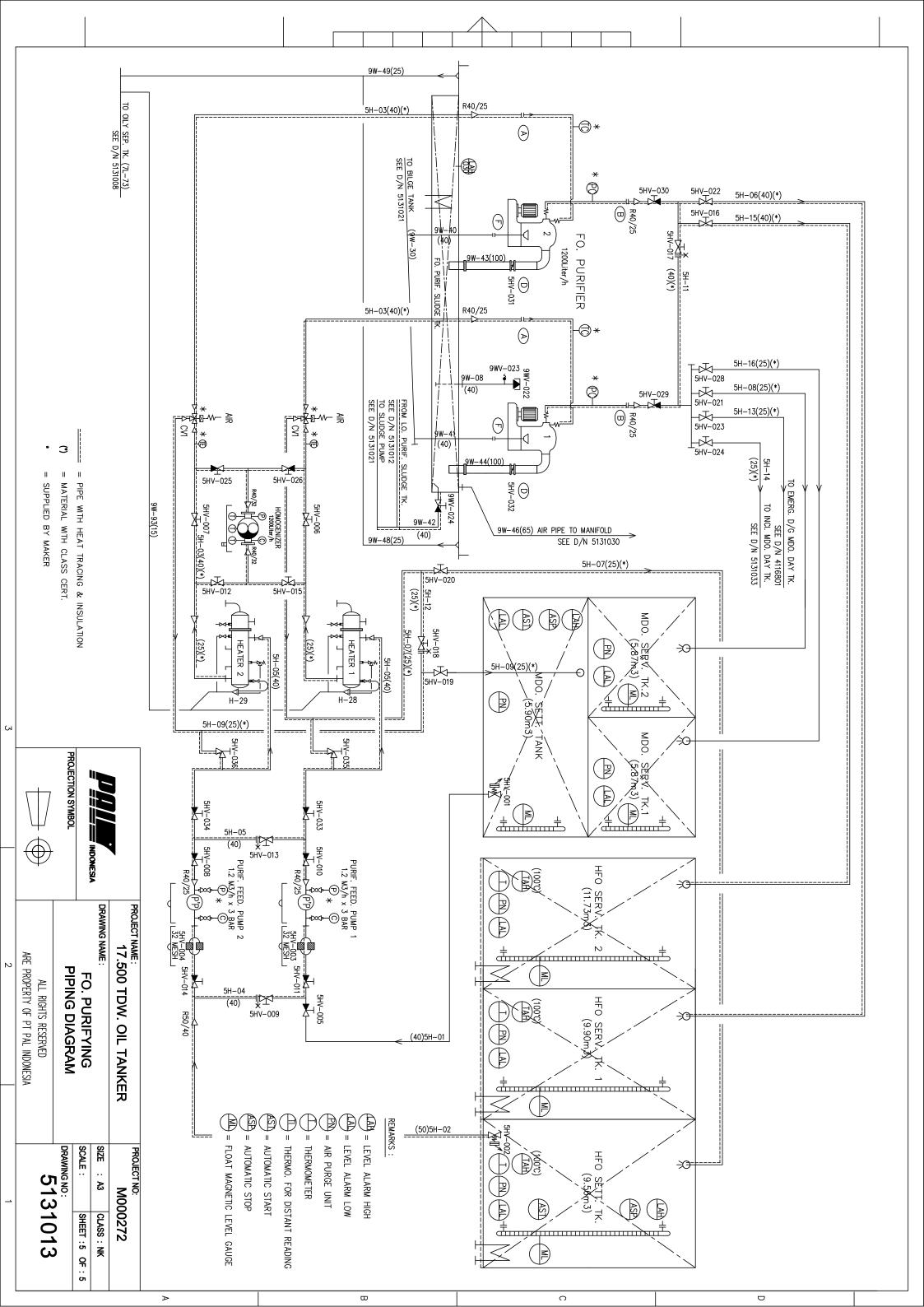
SYMBOL MARK

SYMBOL	NAME	SYMBOL	NAME
Image: A marked black	STOP VALVE		
	STOP VALVE (SCREW END)	 	CAP TYPE SOUNDING HEAD
	HOSE VALVE	A	SELF CLOSING COCK TYPE SOUNDING HEAD
	SCREW DOWN STOP AND CHECK VALVE	\bigcap	AIR VENT PIPE
	TREE WAY VALVE	Ŵ	AIR VENT PIPE HEAD (WITHOUT WIRE NET)
	SAFETY VALVE	Ĩ.	AIR VENT PIPE HEAD (WITH WIRE NET)
\bowtie	PRESS. REDUCING VALVE	0-111111111111111111111111111111111111	GLASS LEVEL GAUGE FLAT TYPE C/W SELF CLOSING V/V
\bowtie	GATE (SLUICE) VALVE	<u>Cumun</u>	MAGNETIC LEVEL GAUGE TYPE
	BUTTERFLY VALVE	o	
X	EMRG. SHUT-OFF VALVE (AIR OPERATED)		FLOAT LEVEL GAUGE (ROD TYPE)
K	DIAGPHRAGMA TYPE T WITH JACK CONTROL VALVE HANDLE		FLOAT LEVEL GAUGE (INNER FLOAT TYPE)
S S	SOLENOID VALVE		FLOAT LEVEL GAUGE (OUTTER FLOAT TYPE)
(W)	WAX TYPE TEMP. CONTROL VALVE	U	LEVEL INDICATOR
(H)	HYDROULIC OPER. VALVE VALVE	P	PRESS. GAUGE C COMPOUND GAUGE
	FLOAT CHECK VALVE TLAP CHECK VALVE	(T)	THERMOMETER
	FOOT VALVE SELF CLOSING DRAIN	F	FLOW METER
	SWING CHECK VALVE	PS	PRESS. TS TEMPERATURE LS LEVEL SWITCH
4004	SCREW ENDED COCK	\otimes	TRANSMITTER
	FLANGE ENDED COCK	- <u>* * *</u>	CAPILLARY TUBE
	FLANGE TYPE 3 WAY COCK ⊕ T TYPE ⊕ L TYPE	Fvvv-I	FLEXIBLE TUBE
k ™			ELECTRIC CABLE
M	LOCKED VALVE		CONTROL AIR PIPE
	Y TYPE STRAINER	FS	FLOW SWITCH MS MICRO LIMIT SWITCH
	OIL TRAY WITH DRAIN PLUG (ABT. 160)	PI	PRESS. INDICATOR
	SIMPLEX STRAINER	M	MOTOR ELECT.
	DUPLEX STRAINER		AIR HORN
	MUD BOX		ELECT. HEATER WITH TANK
	ROSE BOX	(P'P)	PUMP (ATTACHED MACHINE)
	STEAM OR AIR TRAP	XA	GENERAL ABNORMAL ALARM
Ō	HAND PUMP	PC	
Ð	CYL. SIGHT GLASS 🗍 FLAT SIGHT GLASS	TC	TEMPERATURE CONTROL
H ا	TEE PIECE (FLANGE END)		LEVEL CONTROL
	TEE PIECE (SCREW END)	ESD	EMERG. SHUT DOWN
ЧĿ	SPECTACLE FLANGE × NORMAL OPEN × NORMAL CLOSE	AST	AUTOMATIC START
Ϋ́	HOPPER - BLIND FLANGE - BLIND PLATE	ASP	AUTOMATIC STOP
H	PENETRATION PIECE	LAL	LEVEL ALARM LOW (LAH) LEVEL ALARM HIGH
I()I	EXPANSION JOINT	TAL	TEMP. ALARM LOW TAH TEMP. ALARM HIGH

TABLE OF MATERIAL (PIPE, JOINT AND VALVE) FO. PURIFYING PIPING DIAGRAM

	Pipe Size	Pip	e	Flange, sleeve	V a l	v e	Press.	ess. Design	esign Press. Te		Design	Pipe Tı	eatment										
S y s t e m	(mm)	Material	Thick.	or coupling	Body	Disk & Seat	Standard	Press.	Before Install	After Install	Temp.	Inside	Outside										
All Valves Attaced to FO. Tanks Except DB.	Above 40A	_	_	_	Cast Steel	SUS or Bronze	5K		_		45°C	-	_										
Tk.	40A&Below				Bronze	Bronze																	
HFO. Purifying Suct.	Above 40A	- STPG 370–S	SCH	Slip on Flange or Sleeve	Cast Iron	SUS or Bronze	5K	3Bar	1,5x	1,5x	70°C	WH	_										
(5H)	40A&Below		40	welded	Bronze	Bronze			3Bar	3Bar		** 11											
MDO. Purifying Suct.	Above 40A	- STPG 370–S	SCH	Slip on Flange or Sleeve	Cast Iron	SUS or Bronze	5K	3Bar	1,5x 3Bar	1,5x 3 Bar	40°C	WH	-										
(5H)	40A&Below		40	40 welded	Bronze	Bronze																	
HFO. Purifying Disc. (5H) With Class	Above 40A	- STPG 370–S	STPG 370-S	STPG 370–S	STPG 370–S	STPG 370–S	STPG 370–S	STPG 370–S	STPG 370-S	STPG 370–S	STPG 370–S	STPG 370–S	SCH	Slip on Flange or Sleeve	Cast Steel	SUS or Bronze	5K	3Bar	1,5x	1,5x 3	90°C	WH	_
Certificate (*)	40A&Below		40	welded	Bronze	Bronze			3Bar	Bar													
MDO. Purifying Disc. (5H) With Class	Above 40A	STPG 370–S	SCH	Slip on Flange or Sleeve	Cast Iron	SUS or Bronze	5K	3Bar	1,5x	1,5x 3	45°C	WH	-										
Certificate (*)	40A&Below	5110 570 5	40	welded	Bronze	Bronze		JDu	3Bar	Bar	15 0												
Air vent (9W)	ALL	STPG 370–E	SCH 40	Sleeve welded or Slip On Flange	-	-	5К	-	-	-	45°C	GZ	GZ										
Sludge line (9W)	Above 40A	SGP-E 125A & Above,		Sleeve welded	Cast Iron	SUS or Bronze	5 V			Leak		XX/I I											
	40A&Below	SGP-B 100A & Below	-	or Slip On Flange	Bronze	Bronze	5K	-	-	Test	60°C	WH	-										
ALL - Class Approved type	Below 15A	С 1220 - Т	-	Brass union with bite joint	Bronze Screwed	-	30K	-	-	Leak Test	45°C	-	-										

NOTE : 1. WH= Pickling


GZ= Galvanizing

STEEL PIPE SCHEDULE

NOM DIAM		OUTS DIA. (THICKNESS (MM)					
(MM)	(IN)	STEEL PIPE	GRE 2000M	S G P	STPG. 370 SCH. 40	STPG. 370 SCH. 80	ROLLING STEEL PLATE	STPL 39S	GRE 2000M
6	1/8	10.5							
8	1⁄4	13.8		2.3	2.2	3.0			
10	3/8	17.3		2.3	2.3	3.2			
15	1⁄2	21.7		2.8	2.8	3.7		2.8	
20	3⁄4	27.2		2.8	2.9	3.9			
25	1	34.0	27	3.2	3.4	4.5			3.8
32	1 1⁄4	42.7		3.5	3.6	4.9			
40	1 1/2	48.6	42	3.5	3.7	5.1			3.8
50	2	60.5	53	3.8	3.9	5.5			4.1
65	2 1/2	76.3		4.2	5.2	7.0			
80	3	89.1	82	4.2	5.5	7.6			4.1
100	4	114.3	105	4.5	6.0	8.6			5.2
125	5	139.8		4.5	6.6	9.5			
150	6	165.2	159	5.0	7.1	11.0			5.4
200	8	216.3	209	5.8	8.2	12.7			7.0
250	10	267.4	263	6.6	9.3	15.1			8.6
300	12	318.5	314	6.9	10.3	17.4	4.5		10.2
350	14	355.6	359	7.9	11.1	19.0	4.5		11.6
400	16	406.4	407	7.9	12.7	21.4	4.5		
450	18	457.2					4.5		
500	20	508.8	505	7.9	15.1		6.0		16.0
550	22	558.8					6.0		
600	26	609.6					6.0		
650	28	660.4					6.0		
700	28	711.2					6.0		
750	30	762.0					6.0		

SEAMLESS COPPER PIPE SCHEDULE

	INAL IETER (IN)	OUTSIDE DIAMETER (MM)	(MM)		Note : DIAMETER OF CUT PIPE SHOWS OUTSIDE DIAMETER
	(11)				OUTSIDE DIAMETER
4	-	6	1.0	1.2	
6	1/8	8	1.0	1.4	
0	1/0	10	1.2	1.6	
8	1⁄4	12	1.2	1.6	
10	3/8	15	1.2	1.6	
15	1⁄2	20	1.6	2.0	
20	3/4	25	1.8	2.3	
25	1	30	1.8	2.5	
32	1 1⁄4	35	2.3	2.5	
40	1 1/2	45	2.3	3.0	

ATTA<mark>CHM</mark>ENT - 2 MT. PALUSIPAT

SHIP PARTICULAR

: INDONESIA

: PERTAMINA

: OIL TANKER

: JAKARTA

YHKS:

:160 M

:154 M :26.80 M

:11.50 M

:07.00 M

:07.50 M

:13.00 KNOTS

: 17,500 TON

: 13.964 TON

: 4.658 TON

: MT.PALU SIPAT / P-1025

NAME OF SHIP NATIONALITY PORT OF REGISTRY OWNER CALL SIGN KIND OF SHIP LOA (Length Over All) LPP (Length Between Perpendiculars) **BREADTH MOULDED** DEPTH MOULDED DESIGN DRAFT SCANTLING DRAFT SERVIVE SPEED DWT GROSS TONNAGE (GRT) NETTONAGE (NT)

MAIN ENGINE TYPE BHP RPM

MAKER

1 1

: DE 7 S 35 MC : 6650 : 170 : MITSHUBISHI INDUSTRY LTD JAPAN

BUILDERS KEEL LAID LAUNCHING DELIVERY REGISTER CLASS : PT PAL INDONESIA (SURABAYA) : SEPTEMBER 12 TH, 1997 : JULY 15 TH, 1999 : MARCH 24 TH, 2000 : LLOYD REGISTER & BKI

IMO NO TANDA SELAR : 9106651 : 13.964 NO.2033 / Ba

FREE BOARD & DEADWEIGHT TABLE

LOAD LINE	GRID(Letter)	FREE B(mm)	DRAFT	DISPL	DWT (mt)
SUMMER	(S)	4.515	7.016	24.052	17.945
TROPICAL	(T)	4.369	7.162	-	· ·
TROPICAL FRESH WATER	(TD)	4.208	7.323	-	-
FRESH W	(D)	4.354	7.177		
WINTER	(1)	4.661	6.870		TATISIPAT
WINILAX				M.T.P	REL 02:08

INTERTANKO'S STANDARD TANKER CHARTERING QUESTIONNAIRE 88 (Q88)

Version	3
---------	---

1.	VESSEL DESCRIPTION			10101011		
			20 1	1 2015		
1.1	Date updated: Vessel's name:		28 Jul 2015 PALUSIPAT			
1.2						
1.3 1.4	IMO number:		9106651 N/A			
	Vessel's previous name(s) and date(s) of change:					
1.5	Date delivered:			4, 2000		
1.6	Builder (where built):					
1.7	Flag:			NESIA		
1.8	Port of Registry:			ARTA		
1.9	Call sign:			IKS		
1.10	Vessel's satcom phone number:			3908485		
	Vessel's fax number:			/A		
	Vessel's telex number:			/A		
	Vessel's email address:		· ·	connect.com		
1.11	Type of vessel:			anker		
1.12	Type of hull:		Doub	le hull		
	ification					
1.13	Classification society:			KI		
1.14	Class notation:			NKER ESP"SM		
1.15	If Classification society changed, name of previous socie	ety:		/A		
1.16	If Classification society changed, date of change:		N	I/A		
1.17	IMO type, if applicable:		N	I/A		
1.18	Does the vessel have ice class? If yes, state what level:		NO			
1.19	Date / place of last dry-dock:		Belawan	13 May 2015		
1.20	Date next dry dock due			2017		
1.21	Date of last special survey / next survey due:		13 May 2015	May 2020		
1.22	Date of last annual survey:		May 13 2015			
1.23	If ship has Condition Assessment Program (CAP), what rating:	is the latest overall	N/A			
1.24	Does the vessel have a statement of compliance issued of the Condition Assessment Scheme (CAS): If yes, what		N/A			
Dimer	isions					
1.25	Length Over All (LOA):		160.00	Meters		
1.26	Length Between Perpendiculars (LBP):		154.59 Meters			
1.27	Extreme breadth (Beam):		26.80 Meters			
1.28	Molded depth:		11.50 Meters			
1.29	Keel to Masthead (KTM) / KTM in collapsed condition (if	applicable):	43.1 Meters	N/A		
1.30	Bow to Center Manifold (BCM) / Stern to Center Manifol	d (SCM):	76.5 Meters	51 Meters		
1.31	Distance bridge front to center of manifold:	. ,	51 M	leters		
1.32	Parallel body distances:	Lightship	Normal Ballast	Summer Dwt		
	Forward to mid-point manifold:	48 Meters	50 Meters	Meters		
	Aft to mid-point manifold:	46.25 Meters	48.25 Meters	Meters		
	Parallel body length:	92.5 Meters	97.5 Meters	Meters		
1.33	FWA at summer draft / TPC immersion at summer draft:		Millimeters	MetricTons		
1.34	What is the max height of mast above waterline (air draf		Full Mast	Collapsed Mast		
	Lightship:	41.23 Meters	N/A			
	Normal ballast:		36.23 Meters	N/A		
	At loaded summer deadweight:		36.11 Meters	N/A		
Tonna				1		
1.35	Net Tonnage:		145	17 T		
1.36	Gross Tonnage / Reduced Gross Tonnage (if applicable).	13964 T			
		· · ·		Ν / Δ		
1.37	Suez Canal Tonnage - Gross (SCGT) / Net (SCNT):	N / A	N / A			

1.38	Panama Canal Net Tonnage (PC	CNT):		N	I/A		
Load	ine Information						
1.39	Loadline	Freeboard	Draft	Deadweight	Displacement		
	Summer:	4.515 Meters	6.985 Meters	17945 MT	MT		
	Winter:	4.661 Meters	6.839 Meters	17482 MT	MT		
	Tropical:	4.369 Meters	7.131 Meters	18518 MT	MT		
	Lightship:	9.63 Meters	1.87 Meters		MT		
	Normal Ballast Condition:	6.5 Meters	5 Meters	10212 MT	MT		
1.40	Does vessel have multiple SDW	T?		N	I/A		
1.41	If yes, what is the maximum ass	igned deadweight?		N	I/A		
Owne	ership and Operation						
1.42	Registered owner - Full style:			PT. PERTAMINA (PERSERO) JI. Medan Merdeka Timur No. I A Jakarta Pusat.			
1.43	Technical operator - Full style:	PT.i JI.Yos Sudar	ping – Marketing Direc PERTAMINA (PERSE rso No.32-34, Tanjung 14320 – Indonesia Phone : +62 21 430108	RO) Priok Jakarta			
1.44	Commercial operator - Full style	PT.i JI.Yos Sudar	ping – Marketing Direc PERTAMINA (PERSE rso No.32-34, Tanjung 14320 – Indonesia Phone : +62 21 430108	RO) Priok Jakarta			
1.45	Disponent owner - Full style:	PT.i JI.Yos Sudar	ping – Marketing Direc PERTAMINA (PERSE rso No.32-34, Tanjung 14320 – Indonesia Phone : +62 21 430108	RO) Priok Jakarta			

2.	CERTIFICATION	Issued	Last Annual or Intermediate	Expires
2.1	Safety Equipment Certificate:	May 20, 2015		May 12, 2016
2.2	Safety Radio Certificate:	May 20, 2015		May 12, 2016
2.3	Safety Construction Certificate:	May 20, 2015		May 12, 2016
2.4	Load line Certificate:	May 19, 2015		Oct 18, 2015
2.5	International Oil Pollution Prevention Certificate (IOPPC):	Apr 8, 2013	20 May 2015	Mar 21, 2016
2.6	Safety Management Certificate (SMC):	Jun 6, 2014		Feb 17, 2019
2.7	Document of Compliance (DOC):	Mar 4, 2013	23 Dec 2014	Dec 02, 2017
2.8	USCG (specify: COC, LOC or COI):	N/A		
2.9	Civil Liability for oil polution Damage Certificate (CLC):	Feb 20, 2015		Feb 20, 2016
2.10	Civil Liability for Bunker Oil Pollution Damage Convention Certificate (CLBC):	Feb 20, 2015		Feb 20, 2016
2.11	U.S. Certificate of Financial Responsibility (COFR):	N/A		
2.12	Certificate of Fitness (Chemicals):	N/A		
2.13	Certificate of Fitness (Gas):	N/A		
2.14	Certificate of Class:	May 19, 2015		Oct 18, 2015
2.15	International Ship Security Certificate (ISSC):	Sep 26, 2013		Sep 25, 2018
2.16	International Sewage Pollution Prevention Certificate (ISPPC)	Jun 11, 2015		Jun 10, 2018
2.17	International Air Pollution Prevention Certificate (IAPP):	Jun 29, 2015		Jun 10, 2018
Docu	mentation			
2.18	Does vessel have all updated publications as listed in the Questionnaire, Chapter 2- Question 2.24, as applicable:	e Vessel Inspection	Ye	es
2.19	Owner warrant that vessel is member of ITOPF and will entire duration of this voyage/contract:	remain so for the	Ye	es

BIRO KLASIFIKASI INDONESIA

SERTIFIKAT KLASIFIKASI MESIN

CERTIFICATE OF CLASSIFICATION FOR MACHINERY

1 3 0 4		
No. 019596	T/PERTAMINA-1025	No. Register : 07123 No. IMO : 9106651
Dengan ini diterangkan bahwa instalasi mesin This is to certify that the undermentioned mach tersebut di atas telah disurvey dalam rangka SURVE ship has been surveyed for pada tanggal 08.03.2015 s/d 19.05.201 on Biro Klasifikasi Indonesia, sesuai dengan ketentuan-k to the Biro Klasifikasi Indonesia, in compliance with 1. MESIN UTAMA (Jumlah, merek dan tip Main Engine (Number, license and type 1. (actua) huah Mesian Diesel J	hineries of above named Y PEMBARUAN KELAS 5 di BELAWAN at etentuan Peraturan Biro Klasifikasi Indonesia the requirements of the Rules of Biro Klasifikasi A be)	
Tenaga efektif 6650 HP Effective power Dibangun di JAPAN Built at Nomor mesin 3662 No.	pada putaran 170 at oleh MITSUI ENGINEERING & by SHIPBUILDING CO.LTD	Rpm <i>rpm</i> Pada 1997 <i>in</i>
 MESIN BANTU (Jumlah, merek, tipe d Auxiliary Engine (Number, license, type) 	and power)	

3 (tiga) buah DAIHATSU, 6 DK-20, 3 x 960 HP

Dibangun di	JAPAN	oleh	DAIHATSU	DIESEL	ENGINE	CO.,	LTD.	Pada	1997
Built at		by						in	

Instalasi mesin tersebut akan didaftar dalam Register dengan karakter kelas The machineries will be entered in the Register with the character

⊮ SM

dan dinyatakan berlaku sampai Survey Pembaruan Kelas pada tanggal and will remain valid until Class Renewal Survey on

08 MARET 2020

dengan syarat bahwa survey yang ditentukan dalam Peraturan BKI untuk dapat mempertahankan kelas dipenuhi provided that survey as required by the BKI Rules for maintenance of the class are fulfilled, 11 MEI 2015 Survey terakhir 5 (lima) Tahun Poros baling-baling : Periode survey Last survey Propeller shaft : Periodicity of survey

> Dikeluarkan di Jakarta, tanggal Issued at Jakarta, on

14 AGUSTUS 2015

BIRO KLASIFIKASI INDONESIA

Direktur Klasifikasi, Classification Director

MAN SATRIA UTAM

054076

PT. PERTAMINA (PERSERO) DIT . PEMASARAN & NIAGA PERKAPALAN MT. PALUSIPAT

KEPADA YTH : Bpk. BUDI UTOMO Owner Superintendent Di Jakarta

Dengan hormat,

Bersama ini kami lampirkan dokumen laporan bulanan MT. PALU SIPAT yang terdiri dari :

- 1. Running Hours Main Engine
- 2. Daily Work Record
- 3. Running Hours Auxiliary Engine
- 4. Daily Work Aux Engine
- 5. Chemical Consumption
- 6. Condition All Pump & Purifier
- 7. LO Consumption Report
- 8. Engine Log
- 9. Abstrack Log

-	
PERTANDA	Month : FEBRUARI 2016

Engine Log

MT. PALU SIPAT / P.1025

		H	tour						1		Pre	SSUT	e Kg	/cm2	2		-			_	Tem	perat	ture		-		_		TC		Workir	ng Hoe	urs of	Aux	Engin	÷				LO	& FO	Consur	nption	/ day		
Г			1											T	1		TT		12	identifi	1.40	tho!	Pat	nooi		Cooles				-	Carp	o Oll F	Sump	Di	ssel Er	gine		-				1		T	1	
	In Post	Camponey Andres	Under West		Disperied H	6.6.0	AV Speed	deg sui	Handle Position	FOIN COL	Jacket Cooling	Petiture Cocoling	Bearing CP	著書の	for Vici ppinnious	Ligne Have	See Woder	Bravengerg Ale	rumen.	Lowest	Highest	Lawer .	Highest	Lowert.	(C) IN	EVLIN FVLIN	PW Out	Main Thursd	1.00.11	Aur. THERMAL OK	ŧ	e.			a.	ä	110 M	0.51	A. 812	10680108E88	TUR. 45	Number of	MAD IN	Network Of Figure A.E.	Damps (10) (10) (10)	Francis For traimat
Т	5.63	21.0	x)	2	20								_											-	1										14:00	24.00					-		155	1.0		
	13 20	1		4	60						0														1								1510		24.00	34.00		10				in such distances	I III		1	
Т			23.8	80 0	22	134	85		87	22	+ 70	23	6 H (4	13		10	32		10 2	20 360	81	77	100	54	55	50 T	22.	-94	1133003		1. 1				24.00	2.50		200				1.14		T		
	_	0.00	3 16.1	10 1	10	TAS	10.5		1 30	2.9					-		51			00 360		78				10 3		19	143000							24 00		300				110	344	1	1	1.
		104.00	0	-							1.11	1								-					-	1					1 1	1		1	1	24 00								1		1
		340	0				_				11																									24.00								1.000		10
1		340	101																		[3.06	34.00		100						1.00		1
	21.20	0.80	a [1 2	20																														24.00	3.00							5 97	1.718		1
1	20 15		2.0	10 1	90	105	95			84							31		00 13	80 360	72	65	50	50	50	46 .00	40	37.	1.5300						22.00	0.50		62				10.1	0.10	1000		
2			241	00		141	8.50		6.40	10.3	1.70	22	ta -	12		46	22	4	13 3	80 360	1 22	28	68	- 55	56	50 20	48	-36	15400							24.00		250				11,000		200		
1			24.0	00		13H	10.25		6.40	7.8	1.75	2.21	Obj (\$		41	32		69 I 3	85 370	60	182	58	56	.57	12 7	1 50	30	15500						24 00	1.00		255				107		2010		10
1			24.1	16	_ [134	10.75			.0.2						42			16 3	90 350	12	372	57	54	34	50 60	48	-36	15400						24:00			250				11		2000		10
1	13.00		7.5	50 B	20	135			12:40	82						41		1	12 3	60 345	76	171	56	54	54	48 6	I AB	38	160000				5.20		24.00	15.00		125				100	0.77	11		T
1	9.90	L	113	20 2	20	142	11:50		6.40	17	1.70	2.3	1.6	2		3410	322	. 1	15 3	90 350	26	:72	56	54	36	50 10	48	- 30	10300				3.35	0	3.90	24.00		375				10.00		200		10
51		_	24.0				12.00			15						31	3.2			00 350		72				48 70		-26	14800						1	24.00		231				1111		1 100		1
6 :		9.00	0 11/	60 2	60	138	11.00		ft 30	15	1.70	23	1.6 1	2		42	12	1	29) 3	90 353	6	64	56	53	53	48 83	48	38	15100						12.50	15.20		36				1.18	1.93.0			
-	24.00	1	-	_											_				_					1		10						_	14:40	1	24.00	24.00		<u> </u>			. U .	1.1		1.280		10.
	24.00	•	-																							1							7.60		24.00	24:00			1					1 2 2		
1	23.00	-			00										_			_0	_	_						1		_							25.00	24 00		25				0.00		2,20		
1		21.7	0	2	30									-						_											-					24.00					23			1 1 11 2 2		
4		24.0	(P)	-	1	_	_	_					_	_	_			_	_ 1					() (-			L		24:00									1 1000		1
4		1107	91.114	06 1		1.14				9.4					_			- 4		00 000		64	52		.50			34	10000	_					24.00			140				20.20	O Del	1740		1
ч.			0 [18.4			138	11.00			7.8					_	47	321			se 000		08				46. 88			15200	1			1	<u> </u>	3:50	21:00		230			1	111.0		0.136		1
	2.40	14.0	01.4.0	0 0	60	141			1.30	78	1.70	2.2	60 1	2	_	-47	321	1	10 8	06 3 6 0	. 74	60	58	- 54	36 1	60 68	58	-39	10000					1	20.00	16.00		20				1.00	0.09	1.740		
4	24.00			-									_		_			_				Ú				-	1	-				_	-		24:00							-		1.000		-
-	19.10			9 7		114				17					_	30	23 23			00 350		.65				41 84			11200					1	4.90	24.00		35				-	0.00	-		1
4	_	-	74.0			137				85					_	-417	39			00 360		79				48 8			14100							24 00		280			500		1	1 1.841		
4		-	73.0	_		137	11.00		1.00	82	\$ 70	2.21	1.6	0		41	123	1	16 4	10 390	75	71	50	10	34 9	41 8	45	.39	14100	_						5.00		280				THE .	1	1 1 100		10
ľ	1.20		16.7	2 27	.70		_								1				1	+-					+					-			2.70		24.00	14.20		Tild	100				234	1111		+
	211:00	99.00	18118	6	8				1	t				T	1	-			1							1				-		0.00	62.30	90.0	22.00	603.40		1			. 1	1	-		0.00	of D

(Neth)	simoj	Up / Alongside	Decharge / Landing Cargo	Ocean or Port	Shitting Piel	Reital
01 02 2018		Alongelde	Decharge	To weng		
57.02.2016		Alongeide	Loading	Cascap		
12.02.2018		Alongalde.	Decharge	Pacang		
1# 02.2018		Autgebe	Discharge	tig Prick		
24 02 2016		Aongeide	grossi	Cracep		
29 02 2018		Alongalde	Destratige	Maxabaar		

Diata	Demage, Repairing Maximance & Change Dontrol	Date	Demage, Repairing Maintenance & Change Control
1/2/2016	Clean F W oppier Main Engine	19/3/00/18	Renewing Climp Cover handle Of Weidham pirt with
30/2018	Cleaning Bosch pump Main Engrie	20/2/2018	Maintenance Aux 8
4/0/2016	Assembly Compressor Air Control	22/2/2016	Cleaning Filter LO Themail OI purep
5/0/2018	Transfer LO Cyl. To Storage tame	23/2/2016	Wrapping Frendre yon of Circulation pump Arill 1 \$2
100018	Continue Assembly Ar Control compressor	24/2/2018	Maintenance Hydrauric pump Winchlass Truewed of seal & Check Coupling Rubber
3/2/5/2/8	Prepare Mechanical Ses Thermal OI Circulation pump No 1	25/222016	Bunker MFO (100 000 KL) & MDO(70 000KL)
10/2/2016	Assenby Themal Of pump No. 2	25/2/2018	Added LO Thermal Of To Expanse Tank
11(2/2016	Clean Condensol As Conditioning	27/2/2018	Transfer LO Turale 43 for Windlate Bloriege Tr
12/2/2016	Clean Fuel Dil Fitter CY Mem Engine & Franker LO MED 412 To storage larik		
13/212316	Clean Auto Filter supply pump Main Engrie & Maintenance Emergency Generator		
15/2/2018	Service Valve All Control		
16/2/2010	Cleaning Sea Cheast P/S		
1772222918	Filing Expanse Of thermal of & Check auto Biowerof Main angree	_	
18/2/2015	Cleaning Gooler M.A.C. unit And Renewed Pipe Line out let		

PERTAMIN Master in cauli sistat Cupt ASEP SUPYANI Np. 747178 PENSERG

ChiefEngine PRIVONO

POLI TOARTARA 2939MIDHE TEND . 2501.91 TARIE UJAG.TM - NAJAGARAPA ADAIN NAG NARARAMER TAROTAERIG ANIMATREE

DENSERO

DIRECTHALE MARKETING

ONOVIDE REALIZING CHICAGO

		NET.	2000			.1729			1118.92			1997	-	101.7			GLE 64 OLUCE	#10.291 1010.291				-	-	10.22	- 20		Witted 0.1	02	20)	(2 WY
		1009/E	905.93			2.494			1995-81	and the second second		69972	and the second second	Letter 1	-	18 236	386.99	PR: 371		_		-	-	702.62	47	32	900/30	1.00	-	70
-	-	100.0	5000 5									(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		-E13		1000	100.18	192.079				_			1.			97,59	20)	× 47
-		151.3	(111.00			141 2			2017-336								225.92	200 212					_	14.00	50	R.	WEDGOW	1.5		
-		5228	0000		-							1603		0.540								-	-	-				-	- 0	
_									_			_								_		-	_	1		_				
-																				-		-			-					_
			_									_																		
50	000.0	111.17	115 11.	1078.0		11722		1000	1000.000	- WY.	1000	100.0		2000	-987.5					-		-+	+	-	-	-	_	1	-	
																				_					_	_				_
MET.	2YH				Campi)	INO BUDIED	1 3V	10,40	3/8		_						(1)]] (a jung					_	-	-	1.048		SINCH	at man	_	-
(hill)		112 + 5VM	0.94	15.101	PR HILINGTH	18 0m 81		ad days	78.0m	1			ALLEY		NALES .			100754	ONE	342	net i i				2.2.991	-90	DOMESTIC:	ectorium;	(4)	10.00
44	reat	scer	2160	SPES	945	201	0005	1968	CI82	w494		-	J PY 65	909728	COM	ANE FLE	215 282	0211	P1/Sivia:	193	Lor		•		1.779 5.144		124	inumber inumber	12	UPH D
_							-			092 3/898/c	Documum		000-15	000.04	DON		006-905	Oilii	TADIANS.	-187	-	prom			L 2015			ALC: MARK	100	
_			_							2405	bevece?				00m 00m			0.50				1000			C 1944		VICEORNAL D	14.000	1791	
	1944	-	STIL.	3963	ex.a	694	1 Mills	2965	1162	-	1991 -	_	-	-	004			0.00				1000			5.96		REENUMCO .	10.00	1.00	302
4	IL ST	9	9912	34/3	02.5	281	081	CCCC.	R	(g.)	i permuzi.	_	100101	805-127		(ABEDRE)	219.015								1.796	_	levy site		1.44	486.W TD
25	266	1000	dist.	5005	845	261	Dets	WLL	CISI.	wait	incel.		205 55	485.10	11	120 81	Ter Pes					-			2.00		2.002	1	0.85	
					-	-				CRC	60a		100.00	TIN'SC	1000	-	165 /17	0.01	Villera I	- 205		*G			2.144		THE DECK			4W5412

WAYGUE GEEA 1060 RETEAM

D+

ATTACHMENT - 3 MITSUBISHI DIESEL GENERATOR SPECIFICATIONS FOR MAIN DIESEL GENERATOR ENGINE

(650 kW ACG x 900 min-1 3 sets/ship)

OWNER :Pertamina 17,500DWT WHITE PRODUCT TANKER SHIPYARD :PT.PAL-INDONESIA

DAIHATSU DIESEL MFG.CO.,LTD. TECHNICAL DEPARTMENT OSAKA JAPAN

HULL NO.	M000271/272	DRAWN BY	M. Ochi
ENG. MODEL	6DK–20e	CHECKED BY	H. Shikang
LIST NO.	AQA10012765F	CHECKED BT	
DATE	Aug. 27, 2010	APPROVED BY	J. Innchi
REVISION	B. P.1,2, 4,5,6,8,10,12 Sep.14, C. P.3, 6,7,8 Feb.7,2011 M.Ocl D. P.3, 5 Mar.4,2011 M.Ochi E. P.1,8,14 Mar.20,2011 E.Matsu F. P.5,6,9 Sep.15,2011 M.Ochi	hi Ida	

ADK20-7071-3

AQA10012765F (1/14)

Е

B

1. GENERAL

1.1 Rules and Regulations

The diesel generator engine will be complied with the requirements of the following rules and regulations of the latest issue.

1) ClassificationNK

2)Compliance for Engine Air Pollution Prevention with Marpol, AnnexVI,Regulation 13 Statement of Compliance issued by classification society should be submitted.

- 3) Japanese industrial standardJIS
- 4) Miscellaneous The other not specifically mentioned in this specifications will be manufactured on the basis of manufacturer's quality control standard.
- 5) Flag...... Unknown

1.2 Conditions

Machinery	
	cooling sea water temp. 32°C
	relative humidity 60 %
	barometric press. 100kPa
General power source	. AC 440 V, 60 Hz,3-phase
Control power source	AC 220 V, 60 Hz,1-phase and DC24 V
Starting air source	. 3.0 MPa
Control air source	. 0.6 - 0.9 MPa
Heating steam source	. 0.7 MPa saturated, working

1.3 Installations

Diesel engine will be rigidly coupled to the generator as maker's standard and placed together on the common bed.

Diesel generator set should be rigid-installed onto the hull structure.

1.4 Pipe connection flanges

Pipe connection flanges which are connected to the shipyard's piping will be provided in accordance with JIS.

JIS counter-flanges will be supplied by Daihatsu.

1.5 Name and caution plates

Name plates are written in English. Caution plates are written in English. Unit is the SI system.

ie., pressure unit is Bar and temperature unit is °C

В

1.6 Painting

1.7 Plans

Approval plan.....8 copies Working plan.....8 copies Final plan......8 copies of final drawings, CD 1 copy instruction manuals and test report Statement of Compliance, for each ship

DAIHATSU DIESEL MFG.CO., LTD.

Marine Diesel Oil, equivalent to ISO 8217 F-DMA or DMB (HFRR should be below 460 μ m)

1.9 Notes for Fuel oil pre-treatment

- 1) Upon deep deliberation with separator maker, the best centrifugal separation system should be applied.
- 2) Recommended fuel properties before engine Aluminum content : < 10 mg/kg
 - Water content : < 0.2 % by volume Sodium content : < 50 mg/kg
- 1.10 Fuel oil when engine starting, stopping and normal condition

Engine starting and stopping MDO Normal operation MDO

1.11 Notices for operation

The engine, together with proper external system arrangements, can be operated on the above-mentioned fuel, still:

- fuel oil viscosity at the inlet port of engine should be kept to 14 ± 1.5 mm²/s(cSt) in any case.
- viscosity of MDO at the inlet port of engine \geq 2.0 mm²/s (cSt)
- recommendable continuous low load ≧20% (130kW Gen. output)

- No load operation before stopping is proper to as short as possible, less than 5 min.

1.12 Recommended lubricating oil

System oilAPI service grade CD SAE30 TBN10 to 15 Governor oilsame as system oil SAE30

Supplier	Oil brand
BP	BP ENERGOL DL-MP30
	CASTROL MLC30
CHEVRON	DELO 1000 Marine Oil SAE30
TEXACO	TARO XD SAE30
EXXON MOBIL	EXXMAR 12TP30 or MOBIL GARD312
GULF	GULF VERITAS DPO30
PETROBRAS	MARBRAX CCD310
SHELL	GADINIA 30
TOTAL, FINA	RUBIA S SAE30 OR DISOLA M3015

PERTAMINA OIL. : SALLYX415,SAE-40,TBN15-20

1.13 Fluid holdings in engine

Lubricating oil LO cooler 22 lit. + LO tank 1350 lit. = initial filling quantity about 1377lit. (engine in running condition 86 lit.) Governor oil...... 1.3 lit.

Jacket CW engine 85 lit.

Cooler CW air cooler 23 lit. + LO cooler 11 lit.

DAIHATSU DIESEL MFG.CO.,LTD.

2. PRINCIPAL PARTICULARS

2.1 Type of Engine	vertical in-line 4-stroke single-acting non-reversible direct injection trunk piston type with exhaust turbocharger and air cooler	
2.2 Type of Generator	. synchronous self-exciting brushless, bracket type self-lubricating two(2) sleeve bearings Supplier: DAIHATSU Maker: TAIYO ELECTRIC CO.,LTD.	3
2.3 Direction of rotation	. clockwise as viewed from generator end	
2.4 Control	. manual start/stop :remote and engine-side automatic start :managed by MSB automatic stop :caused by engine emergency shutdown synchronization :manual/auto on MSB and engine-side	
2.5 Engine starting method2.6 Engine cooling system		B
2.7 Location of Turbocharger	. opposite side to generator	
2.8 Camshaft	.built-up type	

2.9 Diesel generator data

Engine model	6DK-20e
Quantity of cylinders	6
Cylinder bore x Piston stroke	200 mm x 300 mm
Engine rated output	710 kW
Engine speed	900 min ⁻¹
Mean effective pressure	1.67 MPa
Mean piston speed	9.0 m/s
Maximum pressure	≦17.7 MPa
Overload capacity	110% for an hour every 12 hours
Lube oil consumption	0.8g/kWh (estimate at full load)
Fuel oil consumption *1) *2)	201g/kWh +5% with pumps

Generator capacity	812.5 kVA						
Generator rated output	650 kW						
Power factor	0.8 lagging						
No. of poles	8						
Voltage Phase Frequency	AC 450 V 3-phase 60 Hz						
Insulation	Class F						

Quantity of DG set	three(3) sets/ship
Parallel running	Fellow D/Gs

*1)Fuel oil consumption is based on the engine output (kW) at crankshaft-end using fuel lower calorie of 42700kJ/kg, under 100% generator load, on condition that the engine drives each one (1) of LO pump and CW pump.

*2) Fuel oil consumption is based on IMO Tier 2 limitation of MARPOL 73/78 ANNEX VI

AQA10012765F (4/14)

TEST RECORDS OF THE DIESEL ENGINE AT SHOP TRIAL ディーゼル機関試運転成績書

SHIPYARD :	MESSRS. PT.PAL INDONESIA(PERSERO)		
造船所:		SNO.	M000272
ENGINE TYPE :			
機関型式:	6DK-20e		
ENGINE NO. :			
機関番号:	DK620E0073, DK620E0074, DK620E0075		
DATE OF MFG .:			
製造年月:	Jan. – 2012		

RECORDS OF SHOP TRIAL 記 事

24 – Jan. – 2012 24 – Jan. – 2012

R	U	Ν	Ν	I	Ν	G	т	Ε	S	Т	
	運		j	転			A.	査			
 0	VE	ERI	ΗA	U	IN	SPE	EC	ΤI	ON		
分			解			栘	ALC: NO	査			

DAIHATSU DIESEL MFG. CO., LTD. MORIYAMA FACTORY, SHIGA

QUALITY CONTROL DEPT.

JUDGMENT	0,00
判定	good

APPROVED BY: 5. Nan APPROVED BY: VI CHECKED BY:

SPECIFICATIONS 主要目

		DIESEL ENGINE			ディーゼル機関					
Engine model	& type	機関仕様、型式	4-cycle diesel 立形単動4サ/	engine イクルディーゼル	~機関	•	6DK-20e			
Engine No.				073 , DK6		, DK620E0	0075			
Rated output &	& speed	定格出力及び回転速度	710	kW (966)PS,	900	min ⁻¹		
No of cylinder,Bo	ore & Stroke	シリンダー数、直径、行程	6	``	200	mm 、	300	mm		
		A. C. GENERAT	ORS		交流発電	機〔	Purchase	購入品		
Manufacture		製作所		Taiyo	Electric C	co.,Ltd		made		
Output, Cycl	e	出力、周波数	812.5	KVA (650) kW 、	60	Hz		
Voltage, Current & P.F.		電圧、電流、力率	450	V,	1042	Α、	80	%		
		ACCESSORY	2		付属機	器				
	Mfg. 製作所	Type 形式	Spec.	仕様	No.1	No.2	No.3			
Turbo-charger 過 給 機	IHI	TPS48-F33		Г65СА17 Г16ТА70	Xi302976	Xi302977	Xi302978			
Air cooler 空気冷却器	DDK	DH-48HZ-1			Z48751	Z48752	Z48753			
Governor 調速機	BOSCH	RHD6-MC		gn No. -1 N	11115000	105856		1		
	<u> </u>	SURVEYOR'S M		al No.		11115004	11116002			
					規格					
		No.1 Eng.	_	Eng.		Eng.				
Diesel engine ディーゼル機関		NK 78B112D	派 ^{78B}		111	112D				
		ENO.DK620E0073	-							
74-67	「レ「成」氏」	24-1-12	24-	-1-12	24-	1-12				
		∭K 822 NG	<i>N</i> K 82	22 NG	<i>I</i> √K 82	2 NG				
A.C. Generator 交流発電機		M.NO.285265		.285266		285267				
		22-12-11	22-	12-11	22-	12-11				
		VALVE ADJUST	MENTS	······································	調整要	目表				
		Open (before T.D.C) 開 (上死点前)	Degree 度	60		earance ン頂隙	7.5	mm		
Intake valve 吸気弁		Close (after B.D.C) 閉 (下死点後)	Degree 度	35		ı pressure	29.4	MPa		
		Clearance 間隔	mm	0.31		前庄力	300	kg/cm^2		
Exhaust valve 排気弁		Open (before B.D.C) 開 (下死点前)	Degree 度	55	Fuel pump 燃料ポンプ	Type 形式	10425	7-3060		
		Close (after T.D.C) 閉 (上死点後)	Degree 度	50	Nozzle 噴射弁	Type 形式	DLL1377	FE2810N5		
		Clearance 間隔	mm	0.31	Firing order		1-5-3	-6-2-4		
		」 g (before T.D.C) め (上死点前)	Degree 度	9	着火順序					
Starting valve		Open (before T.D.C) 開 (上死点前)	Degree 度	4		ion of crank 1		Clock wise		
起動		Close (after T.D.C) 閉 (上死点後)	Degree 度	130		(Viewed from the flywheel 回転方向(フライホイル側から		時計方向		

				Dat	a of tast ·	≭ 9 <i>1</i> −1	-2012					<u>TYPE : 6DK-20e</u>			
LOAD RUNNING TEST				Date of test :		*24-1-2012		*	*	*	<u>No.1 ENG.</u> *		ENG.NO. : DK620E0073		
Kind of load				%	Standard at 100%	25	50	- 75	т 100	- 100	110				
Time of recording				O'clock-min		9-00~	9-40	75 10-00	10-30	11-00	11-20				
Runnning tes	-			min		<u>9-20</u> 20	20	20	30	30	20				
Generator ou				kW		163	325	488	650	650	715				
Fuel consum	-		**	kg/h		52.5	77.3	107.2	138.8	138.8	152.9				
	e based on Gen.o			-		323.0	237.9	219.8	213.5	213.5	213.8				
		- ·		g/kWh	- 001 + 5%										
	e based on Eng.o	սւքսւ)	**	g/ kwn	≦ 201 +5%	293.9	224.8	209.9	204.5	204.5	204.8				
Gen.efficiency						91.0	94.5	95.5	95.8	95.8	95.8				
Fuel pump ra						11.0	15.0	18.0	21.0	21.0	23.0				
Coo	ling water press			MPa	For reference		0.23	0.23	0.23	0.23	0.23				
Lub. oil pressure	Beari			MPa	$0.4 \sim 0.55$	0.54	0.52	0.50	0.50	0.50	0.50				
pressure	Turbo-cl	Turbo-charger		MPa	$0.2 \sim 0.5$	0.48	0.45	0.43	0.42	0.42	0.41				
Boost air pre	essure			MPa		0.032	0.089	0.149	0.219	0.219	0.248				
Fuel oilpress	ure			MPa	For reference	0.46	0.45	0.44	0.44	0.44	0.43				
r 1 11	Oil cooler	Inl	et	°C		35	56	60	62	63	63			-	
Lub. oil temperature		Out	tlet	°C		14	24	35	36	37	38				
	Engine	Engine inlet		°C		37	54	55	55	55	55				
Cooling water	Engine	Inlet		°C		50	66	67	68	68	69				
temperature	Englie	Out	tlet	°C		54	68	70	71	71	71				
			1	°C		265	270	280	300	300	310			-	
			2	°C	1	265	270	280	300	300	310				
				°C	Difference ≦10%	265	275	290	320	325	335				
Exhaust gas				°C		265	275	290	310	310	325				
temperature			5	°C		260	275	295	320	320	330				1
			6	°C		255	275	300	320	320	330				
	Turbo-charger inlet		et in the second	°C		325	370	400	420	420	435				
	Turbo-charger outlet			°C		280	300	300	290	290	300				
Fuel oil temr	perature			°C	For reference		17	18	19	19	20				
Boost air ter				°C	$45 \sim 55$	20	27	35	46	46	51				
			1	MPa		6.1	8.1	10.2	12.1	12.1	12.9				
			2	MPa	-	6.0	8.0	10.2	12.1	12.1	12.9				
			3	MPa	-	6.0	8.0	10.0	12.1	12.1	12.9				
Maximum co	mbustion pressu	re			Difference $\leq \pm 0.3$										
			4	MPa		6.0	8.0	10.1	12.1	12.1	13.0				
5			MPa	-	5.9	8.0	10.0	12.1	12.1	12.9					
	6			MPa		5.9	7.9	10.0	12.0	12.0	12.9				
Generator bearing temperature			-			22	29	33	34	36	38				
		Other	r side	°C		25	30	33	33	34	35				
Other Data					1	1	1	1	1	1	<u>.</u>	1			
Air temp. at Turbo-charger inlet °C						13	13	14	15	16	16				
Room temperature				°C		9	10	11	12	12	12				
F.O. temp. of F.O.flowmeter inlet				°C		11	12	12	13	13	13				
C.W. temp. of Air cooler inlet				°C		12	13	14	17	17	18				
Humidity %				%		68	66	64	59	59	57				
Atmospheric pressure hPa					998	998	997	997	997	996					

* Inspected by DAIHATSU
**Corrected value with Low heating value 42.7 MJ/kg, Accordance with ISO
Fuel consumption (be based on Eng.output) = Fuel consumption (be based on Gen.output) ×Gen.efficiency

No.1 ENG. ENG.NO. : DK620E0073 *Crank-shaft Deflection Date of test : *19-1-2012 $(Gen.side \leftrightarrow \rightarrow Eng.side)$ UNIT: 1/100mm Cold condition (Standard $+3.0 \sim -3.0$) 2 3 4 5 6 1 0.0 0.0 0.0 0.0 0.0 0.0 View from the fly-wheel А ±0 ± 0 ± 0 ± 0 В ± 0 ± 0 А В 30 30 +0.2 +1.0 +0.2 0.0 +0.5 +0.5 С D +2.50.0 -0.50.0 +0.8+0.5Е С +0.2 +1.5 -0.2 0.0 +0.5 +0.5Ε D(Top) °C) Hot condition (crank-arm temperature 66 6 1 2 3 4 5 Dial gauge reading 0.0 А ± 0 ±O (+) ± 0 ± 0 ± 0 ± 0 В С -2.0 D -5.0 Е -2.0 *Temperature after continuous operation (°C) Date of test; *20-1-2012 **Diesel Engine** 7 No. 2 3 4 5 6 1 63 65 67 67 67 66 63 Main bearing — 64 Crank pin bearing 64 65 65 65 64 64 Lub. oil *23-1-2012 Date of test; *Engine starting test Air receiver capacity Time Pressure Time Pressure Time Pressure 1.25 100 L 1 2.45 8 15 1.15 16 2 2.15 9 Initial pressure 2.00 1.00 172.45 MPa 3 10 Room temperature 4 1.80 11 0.95 189 °C 5 1.65 12 0.85 19 × 0.70 1.50 6 13Standard 7 1.35 14 ≥ 6 ≦1.18 Date of test; *23-1-2012 *Protecting Device test $(1008 \sim 1035)$ Over speed L.O. filter difference 1020 GOOD pressure rise (alarm) (stop) \min^{-1} (0.20 ± 0.01) L.O. pressure 0.20 down (stop) MPa $(90\pm^{3}_{2})$ C.W. temp. rise 90 (stop) °C Exxon mobil oil "A" Fuel oil ; g/cm³at 15℃ 0.8439 Density ; 42.80 MJ/kg Low heating value ; Lub. oil ; MARINE T103 100% Power factor; **T.NAKAGAWA** Drawing ; **T.FUJIMOTO** Checked :

TYPE : 6DK-20e

	NNING TEST			Date	e of test :	*24-1					<u>No.2 ENG.</u>		<u>TYPE :</u> ENG.NC		
Kind of load				%	Standard at	*	*	*	*	*	*				
					100%	25 9-00~	50	75	100	100	110			+	
Time of recor	-ding			O'elock-min	_	9-20	9-40	10-00	10-30	11-00	11-20				
Runnning tes	t time			min		20	20	20	30	30	20				
Generator ou	itput			kW		163	325	488	650	650	715				
Fuel consum	ption		**	kg/h		52.6	77.6	107.1	139.1	139.1	153.2			_	
(b	e based on Gen.o	utput)	**	g/kWh		323.6	238.7	219.7	214.0	214.0	214.3				
(b	e based on Eng.o	utput)	**	g/kWh	≦ 201 +5%	294.5	225.6	209.8	205.0	205.0	205.3		-		
Gen.efficiency	at P.F.=1.0					91.0	94.5	95.5	95.8	95.8	95.8				
Fuel pump ra	ick reading		1			11.5	15.0	18.5	21.5	21.5	22.5				
Coo	ling water press	ure		MPa	For reference	0.25	0.25	0.25	0.25	0.25	0.25				
Lub. oil	Bearin	ng		MPa	$0.4 \sim 0.55$	0.54	0.52	0.51	0.50	0.50	0.50				
pressure	Turbo-ch	arger		MPa	$0.2 \sim 0.5$	0.48	0.44	0.42	0.40	0.40	0.40				
Boost air pre	essure			MPa		0.030	0.089	0.151	0.220	0.220	0.248				
Fuel oilpress	ure			MPa	For reference	0.46	0.45	0.45	0.43	0.43	0.42			1	
		Inl	et	°C	:	33	56	60	62	62	62				
Lub. oil	Oil cooler	Out		°C		13	25	36	37	38	38				
temperature	Engine			°C		34	54	54	54	54	54				
Cooling	Englite	Inl	ot	°C		48	68	68	68	68	69		_		
water	Engine								70	70	71			-	
temperature		Out		°C		51	70	70							
		1		°C	-	270	275	280	295	300	310			_	
	Cylinderhead outlet		2	°C	Difference ≦10%	275	275	290	315	315	325				
			3	°C		255	275	290	315	315	330				
Exhaust gas			4	°C		275	285	295	315	315	330				
temperature			5	°C		260	280	300	320	320	335				
			6	°C		260	285	300	315	315	330				
	Turbo-char	ger inle	t	°C		320	365	390	420	420	440				
	Turbo-charg	ger outle	et	°C		270	300	295	290	290	295				
Fuel oil tem	perature			°C	For reference	17	19	20	21	22	22				
Boost air tei	nperature			°C	$45 \sim 55$	17	25	34	45	45	49				
			1	MPa		6.0	8.0	10.1	12.0	12.0	12.8				
			2	MPa	_	6.0	8.0	10.0	12.1	12.1	12.9				
			3	MPa	- -	6.0	8.0	10.0	12.0	12.0	13.0				
Maximum co	mbustion pressu	ire	4	MPa	Difference $\leq \pm 0.3$	5.9	7.9	10.0	12.0	12.0	13.0			-	
			5	MPa		5.9	7.8	10.0	12.0	12.0	12.9				
		6		-	5.9	7.9	10.0	12.0	12.0	12.9	-				
		C		MPa					34	36	38			-	
Generator bearing temperature Other side				20	28	32									
		Othe	r side	°C		24	31	33	34	35	36				
Other Data				-				·	T						
Air temp. at	Turbo-charger	inlet		°C		13	15	17	18	18	19			_	
Room tempe				°C		9	10	11	12	12	12				
F.O. temp.	of F.O.flowmete	er inlet	5	°C		10	11	11	12	12	12				
C.W. temp.	of Air cooler in	nlet		°C		12	13	14	17	17	18				
Humidity				%		68	66	64	59	59	57				
Atmospheric	c pressure			hPa		998	998	997	997	997	996				

* Inspected by DAIHATSU
**Corrected value with Low heating value 42.7 MJ/kg, Accordance with ISO
Fuel consumption (be based on Eng.output) = Fuel consumption (be based on Gen.output) × Gen.efficiency

P.6

									<u> TYPE : 60</u>	
		and yilling (1997) og 11 den Zazelle o Mendonski af		and the second	ung sa		No.2 ENG	<u>.</u>	ENG.NO.	: DK620E0074
		*Crank-	shaft Defl	ection				Date	of test;	*19-1-2012
	Cold cond	lition (Star	ndard +3	$.0 \sim -3.0$)	(Gen.side	e←→Eng	.side)		UNIT: 1/100mm
	1	2	3	4	5	6				
Α	0.0	0.0	0.0	0.0	0.0	0.0			View f	rom the fly-wheel
B	±0	± 0	±0	±0	±0	±0			А	30 30 B
С	+1.0	0.0	0.0	0.0	+0.8	+0.2				
D	+2.5	0.0	-0.2	0.0	+1.0	+0.2			Е –	} c
E	+1.0	0.0	0.0	0.0	+0.8	+0.2				
	Hot condi	tion (cra	nk-arm ter	nperature	66	°C)				' D(Top)
	1	2	3	4	5	6			Dia	l gauge reading
Α	-0.5									
В	±0	±0	±0	±0	±0	±0] (+)
С	-2.5									
D	-5.5									
E	-2.5									<u> (-) </u>
		*Temper	ature afte	er contin	uous opei	ration (°	C)	Date	e of test;	*20-1-2012
				Ľ	Diesel Engi	ne				,
		No.	1	2	3	4	5	6	7	
Main bea	ring		63	66	67	67	67	66	63	
Crank pi	n bearing		65	65	66	66	65	64	-	
Lub. oil						64				
		*Engine	starting t	est				Date	of test;	*23-1-2012
Air rece	iver capacit	ty	Time	Pre	ssure	Time	Pres	sure	Time	Pressure
	100	L	1	2	.45	8	1.	20	15	
Initial pr	ressure		2	2	.10	9	1.	10	16	
	2.45	MPa	3	1	.90	10	1.	00	17	
Room te	mperature		4	1	.70	11	0.	90	18	
	9	°C	5	1.	.55	12	0.	80	19	
			6	1	.40	13	×	D.65	ſ	Standard
			7	1	.30	14			≥ 6	≦1.18
			ing Devic	e test				Date	e of test;	*23-1-2012
0	. 1	(1008-	~1035)		11.00					
	r speed top)	10)20		r difference rise (alarm)	GO	OD			
(0			\min^{-1}							
LO		(0.20	±0.01)							
	pressure 1 (stop)	0.	20							
aoni	r (500p)		MPa							
O W		(90	±32)							
	emp. rise top)	g	90							
(5	(0p)		°C	-						
					Fuel oil	;		Exxo	n mobil o	il "A"
					Density	;			0.8439	g∕cm³at 15℃
					Low hea	ating value	э;			42.80 MJ/kg
					Lub. oil			M	ARINE T	
					Power fa					100%
					Drawing			Y.IWATU	IKI	
					Checke			T.FUJIM		
						/				

LOAD RUI	NNING TEST			<u>Dat</u>	e of test :	*24-1	-2012				No.3 ENG	<u>TYPE : 6</u> ENG.NO	DK-20e : DK620	P.7 E0075
Kind of load				%	Standard at	*	*	*	*	*	*			
					100%	25	50	75	100	100	110	 		
Time of reco	rding			O'clock-min	—	9-00∼ 9-20	9-40	10-00	10-30	11-00	11-20	 		
Runnning tes	t time			min		20	20	20	30	30	20			
Generator ou	itput			kW		163	325	488	650	650	715			
Fuel consum	ption		**	kg/h		52.5	77.5	107.0	138.9	138.9	153.6			
(b	e based on Gen.o	utput)	**	g/kWh		323.3	238.6	219.6	213.7	213.7	214.8			
(E	e based on Eng.o	utput)	**	g/kWh	≦ 201 +5%	294.2	225.5	209.7	204.7	204.7	205.8			
Gen.efficiency	at P.F.=1.0					91.0	94.5	95.5	95.8	95.8	95.8			
Fuel pump ra	ick reading					11.0	14.5	18.0	21.0	21.0	22.5			
Cooling wate	r pressure			MPa	For reference	0.24	0.24	0.24	0.24	0.24	0.24			
Lub. oil	Beari	ng		MPa	$0.4 \sim 0.55$	0.55	0.52	0.51	0.50	0.50	0.50			
pressure	Turbocl	larger		MPa	$0.2 \sim 0.5$	0.49	0.46	0.43	0.42	0.42	0.41			
Boost air pre				MPa		0.030	0.086	0.150	0.222	0.222	0.250	 		
Fuel oilpress				MPa	For reference	0.030	0.000	0.130	0.222	0.222	0.230	 		
* act oubtess		Inl	ot	°C	* or reference	34	54	58	61	61	62	 		
Lub. oil	Oil cooler											 		
temperature		Out	let	°C		12	24	34	36	37	38			
	Engine			°C		34	52	54	54	54	54	 		_
Cooling water	Engine	Inl	et	°C		49	68	69	70	70	70			
temperature		Out	let	°C		51	70	71	72	72	73	 		
		1		°C		270	275	280	295	300	310	 		
			2	°C		265	270	285	310	310	320			
	cylinderhead outlet 4		3	°C	Difference	255	270	285	315	320	335			
Exhaust gas			4	°C	≦10%	255	270	290	310	310	330			
temperature			5	°C		255	275	290	315	320	335			
			6	°C		255	270	295	315	320	335			
	Turbo-char	ger inle	t	°C		320	370	390	420	420	435			1
	Turbo-charg			°C		270	305	305	300	300	305	 		
Fuel oil tem	perature			°C	For reference		17	18	20	20	21	 		+
Boost air ter				°C	$45 \sim 55$	15	24	34	46	46	50			
			4	MPa	40 - 00	6.0		10.0	11.9	11.9	12.8	 -		
			1		-		8.1							
			2	MPa		5.9	7.9	10.0	12.0	12.0	12.9			
Maximum co	mbustion pressu	re	3	MPa	Difference ≦±0.3	5.9	8.0	10.1	12.1	12.1	13.0	 		
			4	MPa		5.8	7.9	10.0	12.0	12.0	12.9	 		
			5	MPa	-	5.8	7.9	10.1	12.1	12.1	13.0			
6		6	MPa		5.9	7.9	10.1	12.1	12.1	13.0	 			
Generator bearing temperature Coupling side Other side		ng side	°C		23	29	33	35	36	38	 			
		°C		24	30	34	35	36	37					
Other Data	1											 		
Air temp. at	Turbo-charger	inlet		°C		12	14	16	19	20 .	20			
Room tempe	rature			°C		9	10	11	12	12	12			-
F.O. temp. (of F.O.flowmete	er inlet	:	°C		10	10	10	10	10	11			1
C.W. temp.	of Air cooler in	nlet		°C		12	13	14	17	17	18		_	1
Humidity				%		68	66	64	59	59	57	 		
Atmospheric	nressure			hPa		998	998	997	997	997	996	 		
-	by DAIHATSU			nra		330	000	001	331	591	330			

* Inspected by DAIHATSU
 **Corrected value with Low heating value 42.7 MJ/kg, Accordance with ISO Fuel consumption (be based on Eng.output) = Fuel consumption (be based on Gen.output) × Gen.efficiency

ATTACHMENT - 4 HOMOGENIZER PURCHASE ORDER

PURCHASE ORDER

9. Term of Payment

Project Name Project Code Final Negatiatio

Number

PC 11 HJT 107989 Tanker 17,500 LTDW M000272 116 AV 19811 Dated Mr

I ON OTHER ONDER	Final Negotiation : Dated March 07, 2011
1. Place and date of order	: surabaya. fully 29. 2011
2. Company's name, address, contact details	PT.PAL INDONESIA (PERSERO)
- Nome	HARSUSANTO
- Address	1 Ujung Surabaya, 60155 Indonesia
- Cantact person	: Achmod Djuhairi
- Phone	: +62 031 3292275 ext.4000
- Fax	1 +62 031 3292426
- E-mail	: actuhairi@pat.co.id
3. Vendor's name, address, contact details	: Schilfs & Industrie Technik GmbH (SIT GmbH)
- Name	: EGON STACHE
- Address	: Wittenmoor 36, 22525 Homburg
- Contact person	: Egon Stache
-Phone	+49 040 837061
+ Fox	+49 040 837276
-E-mail	: service@stil-hamburg.com
4. Description of the Goods	: Homogenizer, the detail specification, scope of supply and accessories as mentioned in ANNEX TO ORDER 1.
5. Scope of supply shall include :	
- Quantity	A Planet state field or SULTAR At a Statement and and
- Classification	: 1 (one) sets / ship as mentioned in ANNEX TO ORDER L : NK
- Certificate	NK Class Certificate and related Certificate
A BANK MENNY BETTER RECEIPTER 1	
6, Price of the Goods (Order Price)	Total material supplied USD 28,000 (Say USD Twenty eight thousand) per shipset CIF Surabaya Port Incoterns 2000. In this contract PT PAL prohibit vendar to use shipping line as mentioned in ANNEX.
7. Delivery - Delivery Time	: On April 07, 2012 CIF Surabaya part
- Port/ Place of Loading	- Commission Parts
- Port of Destination	: Germany Port CIF Surabaya Port
- Consignee	PT PAL Indonesia
- Packaging Condition	: As will be adequate for sea-borne export shipment /
 Partial shipment/Trans- shipment 	Seaworthy Packaging. : Not Allowed / Not Allowed
- Notice	: Seller shall inform the Buyer of the expected shipment date prior to twenty (20) days of shipment by written.
8. Penallies	 0.1% per day of Order price far every day of delay on Equipment as Clause 7 and or relevant documents and or relevant service as per clause 10 (document) maximum penalty 10% of Order price.
9 Tarm of Roumant	1000 Advanced Research Inter 14 days and the

: 20% Advanced Payment within 14 days after signed the contract against Bank Guarantee 20% and 80% by LC at Sight open 2 months before shipment.

1 Total Amount/Base:	PUPIFIER UNIT	Supplier Contact Petrion: Seler Rel Position: Note Note Note History M19/M21/ M2314d Part Oxfor Lines No Part Oxfor Lines Charges Misc Order IMo Misc PAL Info Recent Info Definery Address Work Flow Onder History M19/M21/ M2314d Part Oxfor Lines No Part Description Quantity Place U/M Price/Curr Price U/I Price/Base Inventory U/I Conv Factor Statu Price Con		Dider No:	■ File Edit Operations Commands Window Hotp +● AN 0
	AIP.	st Person: [No Part Dider Lines Part Description	wer:	Suppler	All All Solution Hot
242760010.00 TeldAmount	1	Charges Miss	Coordinator R	Subby	ds Window +
Total Amount	SET	Seiter Ref Position gene Misc Order Misc PAL Quantity Purch U/M Price/O	Recept Dista 11/25/2011	Supplier Name: SUBRES & INDUSTRIE TERMIN D	
	28000.00] 5	Position: lisc PAL Info R Plice/Cutr P	Currency	S INVEST 30	
280000 T Die	ET	Recent Info Deli Price U/I Pr	Printed	Ste	100
8	242750000.00	have Address V	-	Statuat:	
	139	Valk Flow On	Document Text	ļ	
	1	ter History MT Conv Factor			
	Churn	ork Flow Onder History M19/M217 M231eto Inventory U/I Conv Factor Statu Price Com			i are

х

ATTACHMENT - 5 S.I.T. HOMOGENIZER

OPERATION MANUAL FINAL DRAWING

CD92[™] Mycronizer MD - MagneticDrive

19

CD92[™] Type: Application Ser -No: Year: Customer: Plant/Vessel. 85-M-MD/SR-IL Sludge Reduction - In Line 12-1505 2012 PT. PAL Indonesia (Persero) HN 272

NEW ADDRISS Triodencaller 328 22783 Hermont

S.LT - Schiffs-SindustrieTechnik GmbH Wittenmoor 36 - D-22525 Hamburg / Germany Phone: +40(0)40 - 837061 - Faic +48(0)40 - 837278 - e-Mail: service@sit-hamburg.com

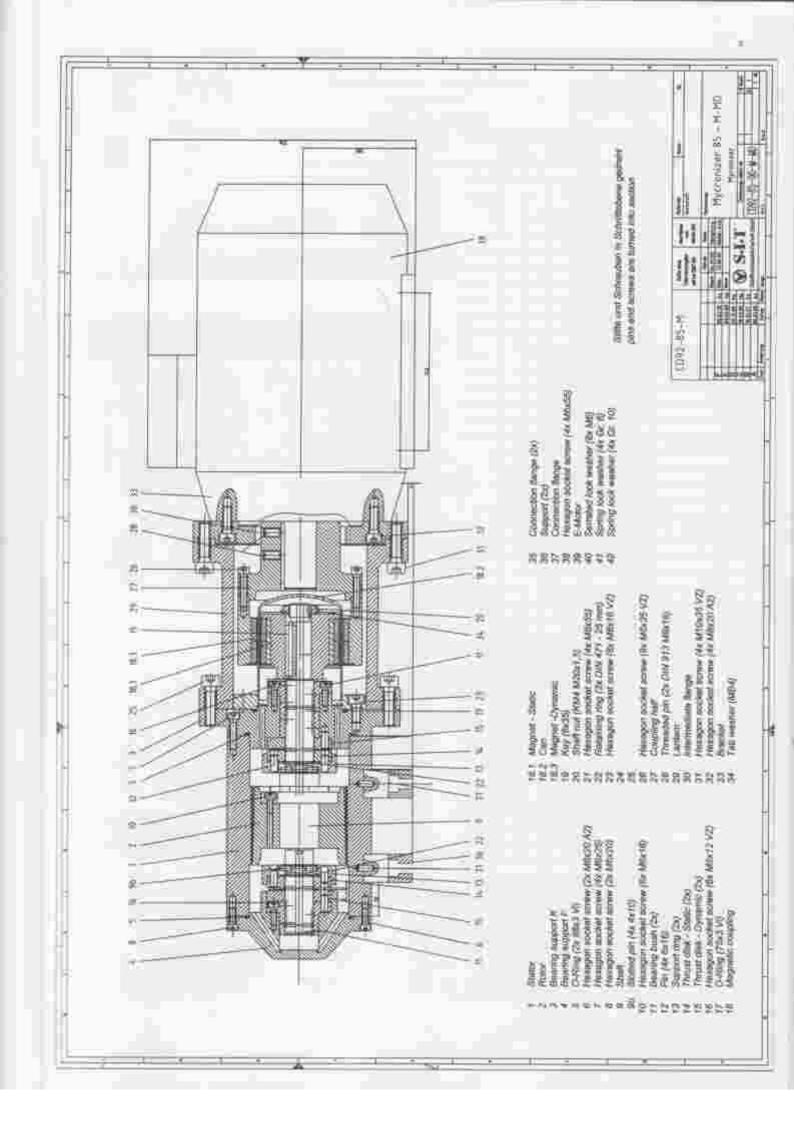


Table of Contents

CD92-MD (Magnetic Drive) MYCRONIZER

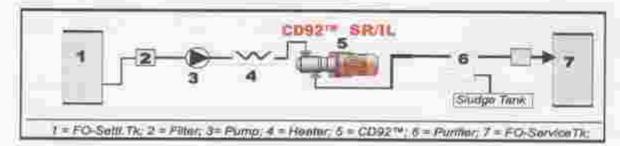
- 1. Sectional Drawing
- Part List Mycronizer GD92¹⁰-MD (Spare parts)
- 3. Safety Instructions for CD92¹¹⁰ Mycronizers
- Start Up Procedure
- Maintenance CD92¹¹⁸ -Units
- 6. Wiring Diagram
- 7. Equipment List
- 8. Installation Drawing
- 9. Certificates

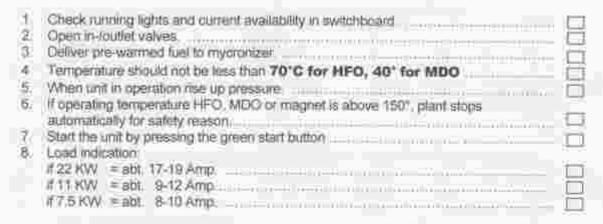
EITRAN	fts- & /educate Technik Groat
THIRDS	+411 (0(40.30 70 81
Yauphan:	H4810 45 83 72 18
Franciensa	bare Tabl
22783 F	lamburg

Einzelbauteile / Single Parts Mycronizer CD92-85-M-MD

diana di Antonio di An	Fatheberectioning Designation	Bestreebung Description	Gimmetry	Tem C-Nu. Pert/G-Nu	CINY Clini
			1	17 accerne	2011
1	Stator	St 1.0570	1.01	57-02-07	DIN 17 350
2	Rotor	\$1.1.0570	1.1	RT-02-07	DIN 17 350
3	Lagerträger K./ bearing support K.	St 1,0570	141	LTK-01-08	DIN 17.100
-4	Lagerträger F / bearing support F	St 1.0570	1.11	LTF-01-06	DIN 17 100
5	O-Ring	IDP88x3V/	2	OR-06-05	
B	Indusschraube (hexagon socket screw.	IBH M6x20A2	-4	18-06-05-820	
7	Inbusschraube / hexagon socket screw	IBH M6x25	4	IS-06-05-675	
8	Inbusschraube / hexagon socket screw	IBH M6x20	- 4	15-06-05-820	
商	Welle / shatt	42C(Mo4V	1	WS-02-07	
9D	Kerbiltiff / slotted pin	IUE 4x10.A2	4	KS-06-05-410	
10	Inbusschraube / hexagon socket screw	18时 M5x12VZ	6	IS-06-05-1035	
11:	Lagerbuchte / bearing bush	GuAII0Ni5Fe4	2	LBa-06-05	DIN 17 865
12	Shh / pin	IGF Bx16	- 4	S-61-08-616	
13;	Stützring / support ring	St 1.0570	2	STR-01-05	
14	Aniaufscheibe / thrust disk - Static	Caraic 310	2	AS-06-05-5	
15	Aniautscheibe / thrust disk - Dynamic	Carsic 310	2	AS-0605-D	
3.0	Inbusschraube / nexagon socket screw	18H M6x16VZ	6	IS-05-05-425	
	Anschlußflansch / connection flange	\$11.0570	2	AF-01-06	CHN 17 100
	Inbusschraube / nexagon socket screw	JIBH MOx50	4	15-01-06	
17	O-ring	10P 75×2Vi	1	OR-06-05-753	
相目	Magnetkupplung / magnet coupling	Minex S8 75/10	Set	MK-05-05-75	
18.1	Magnet Statisch / magnet static	Inclusian	1	1112.000.000.000	
18.2		Intelligibied			
18.3		Induded	1		
19	Pathoder 7 key	DIN 6885-A6 6x32	1	PF-12-05-632	
30	Wellenmutter/shaft.nut	KM4 M20x1.5	1	NM-06-05-2015	
21		Trease and the second		(tim the off and the	
22	Sicherungszing 7 retaining ning	DIN-471 - 25mm	2	SR-06-05-25	
23	Inbusschraube / hexagon socket screw	IBH M8x18 VZ	12	IS-06-05-816	
24	Inbusschraube / hexiligon socket screw	TEH MBx45VZ	8	IS-08-05-845	
25	Inbusschraube / hexagon socket acrew	IBH MT0x45A2	Ĩ	IS-06-05-1045	
26	Inbusschraube / hexagon socket acrew	IBH M6x30VZ	4	15-06-05-630	
27	Kapplungsnabe / coupling hub	AIMgSit	3	KN 02-07	
28	Gewindestift / Inreaded pin	DIN 913 Max16	2	GS-06-05-818	_
29	Laterne / lantern	AlMoSi1	1 1	LL-02-07	
30	Zwischenflansch fintermediate flange	AlMgSi1	1 4	ZF-02-07	
31	Inbusschraube / hexagon socket screw	IBH M10x45VZ	4	SKS-03-05-1235	
12	Inbusschräube / hexagon socket screw	IBH M8x25A2	- T	15-06-05-825	
1	E-Motorflansch / bracket	Electric Motors		10-149-04.04.0	
34	Sicherungsblech / tab washer	DIN 5406 MB 4		SB-06-05-20	
35	Malorkonsole / motor foundation	L 75 x 50		MK 12-06	DIN STOR TO
36	Geratefuß / support	AlMgSi1		terroristic de la construction de la de la construction de la construc	EIN 1725 T2
37	Anschlußhänsch / connection flange	St 1.0570	2	GF 12-05	DIN 1726 T2
	Inbuschraube / heagon socket screw	IEH MBx60	8	AF-01-06 1S 03-05-880	DIN 17 100
38		The loss with the second		152 793 154 100 0	

Ersatzteile / Spare parts - Makers Stand.

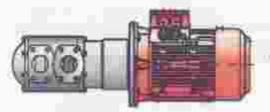

	Amontecimation	Galleries.	Pas	Attikulikeseletemietig	(1960) (Centro
5	O-Ring	2	15:	Anluutecheibe / Thrust disk - Dynamic	1. 10
- 71	Lagerbuchse / bearing bush	2	36	Inbussomaube / hexagon socket screw	6
13	Statzning / support ring	1	17	O-Ring	1.1
14	ArtiaLfactielbe / Thrust disk - Static	- L	22	Sicherungszing / retaining ring	1.1.


OK

START-UP PROCEDURE

CD92TM SR-UNIT / In Line

For safe operation please follow this guide:


If everything is in operation

adjust the flushing interval of purifier stepwise to maximum. Sludge amount is a function of the flushing adjustment. Extended intervals (less flushes/day) reduce the sludge formation.

Remarks:

The CD92™ M-MD is fitted with thrust diak out of silicium – system for long term trouble-free operation

If in port supply pumps should be stopped, make sum that mycronizer also taken out of operation. Danger of overheating by rotating of unit in own fuel.

Schiffs- 5 Industrie Technik GmbH Phone: +49 (40) 83 70 61 E-Mail: service@sithamburg.com

Lodderf 21/22 2010

MAINTENANCE - CD92TH-UNITS

No. 1 – CB92-SR (Sludge Reduction) No. 2 – CD92-Cl (Combustion Improvement) No. 3 – CD92-WIDE (Water-In-Diesel/Fuel-Emulaification) No. 4 – CD92-WOR (Waste-Oll-Regeneration)

How to maintain CD92-fuel conditioning units:

1. START UNIT:

- Check running lights at switchboard, current available.
- Check load on amp. meter.
- Start internal supply pump.
- Check fuel pressure by opening both inlet and outlet valves slowly.
- When finished switch selection, switch to position AUTO.
- Start-up temperature of min. 65-70" C is reached.

2. FLUSHING INTERVALS

Purifier: Adjust flushing intervals depending on oil quality up to 3 hours or max. 4 hours.
 CD92-WOR-Plant only, adjust timer in switchboard up to 3 hours circulating period.

3. REPAIR / CLEANING

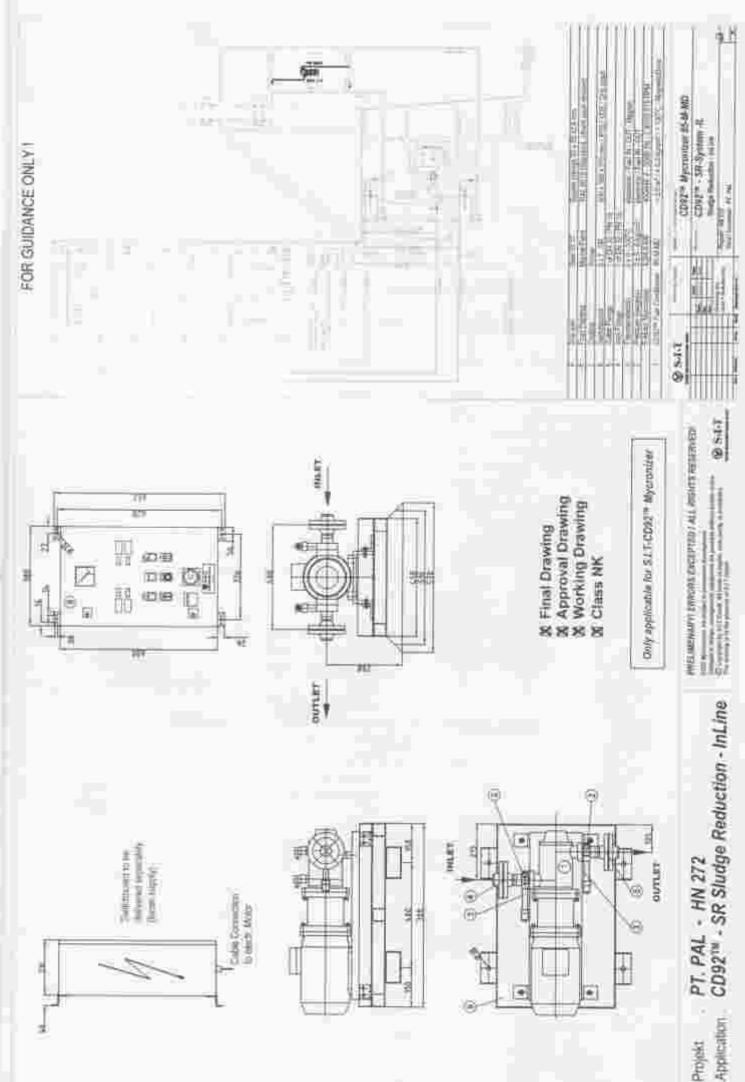
Open unit after approx. 8.000 hours for service resp. cleaning purpose.

- check condition of bushes
- · chein hito myonisizer
- · Sleet inne magnet and can
- clean inner and outer magnet.
- Flanges are sealed by c-rings. After opening of unit at least c-rings have to be renewed incl. c-rings in flanges.
- Thrust disks to be handled with care
- For allover cleaning of unit use preferrably diesel oil respectively petroleum.
- In case of repairs to main engine, please stop micronizer, this in order to avoid overheating or dry-run.
- If during first start up NOISE observed, stop unit. Reason can be insufficient of flow in unit caused by too low temperature and disturbed heat transfer.
- 6. Avoid stress to pipe connections.

Quotation from Shell Brochure "Bunker Quality":

"The mechanism of blending process itself is equally important. The components must be completely homogenised and this is extremely difficult to achieve without suitable efficient blending equipment" - incer case, only with CD92-M-unit.

Ionien Maron 2006


WIRING	DIAGRAM
Setting U	r Rischuction System 1 Line Service
CD92 ⁷⁹ Type Power	100-M-MD 11.0 kW/ (50 Hz) 13.0 kW/ (60 Hz)
Operating Voltage Control Consumption Control Voltage Regulations	3 x 400/440V / PE / 50/50 Hz max: 21.5 A 230 V / 50 Hz VDE and V8G4 / IP55
Semarka	Temperature Control must be resolutioned connected Otherwise the CD92 ¹¹⁶ connect be started
Color Coding:	phase R or U = black phase S or V = black phase T or W = black Control used = red
Schiffs- A Industrie	

STT CD-SR 1 Studge Reduction System

EQUIPMENT LIST

Capacity max <1.5 m/h (FD.700/50°C) Operation Pressure: <6.0 kg/cm³ 2 Electric Motor: Operation Temperature: <100 °C Power Consumption: 4.07.4.5 kW Power Source: 4.07.4.5 kW Power Consumption: 4.07.4.5 kW Power Source: 2.x Electronic type / Fuel IN – OUT 0 ~25.0 kg/cm² 1.0 kg/cm² 4 Thermometer(s) Type: 2 file DIN 7 Outlet Flange DIN 8 Switchboard Operating Vinter 7 Conting Operating Vinter 7 Upe: <	Pos. / Components (as p	at System Overview)	Description / Designation			
2 Electric Motor Operation Temperature: < 100 °C	1 CD9211	Capacity max	< 1.5 m/h (IEO 700/50°C)			
0 - 25.0 kg/cm² 4 Thermometer(s) Type: 2 x Electronic type / Fuel IN - OUT: 0 - 150°C 5 Thermometer 5 Inter Flange 0 N / PN: 32 / 16 DIN 7 Outlet Flange 0 N / PN: 32 / 16 DIN 7 Outlet Flange 0 Operating Voltage: 3 x 400 / 440 V / PE / 50/60 Hz Climent Consumption: max Public 0 Operating Voltage: 2 Switchboard Operating Voltage: 2 Sol x 20 V / 50 Hz Figulations: VDE and VBG4 / IP 55 Dimensions: 60 x 380 x 210 mm Final Painting: Type: Primer 0 Final Painting Type: SR-Steel St 37 Square pipings 50 x 50 x 2.5 mm Nant Dimensions Langth:	2 Electric Motor.	Operation Temperature: Power Consumption	< 100.°C 4.07 4.5 KW			
5 Thermameter Type: 5 Thermameter Type: 5 Inlet Flange DN / FN: 32 / 16 DIN 7 Outlet Flange DN / FN: 32 / 16 DIN 7 Outlet Flange DN / FN: 32 / 16 DIN 7 Switchboard Operating Voltage: 3 x 400 / 440 V / PE / 50/60 Hz Gument Consumption: rmax 21 5 A Max Fuse: 40 A Control Voltage: 230 V / 50 Hz Hegulations: VDE and VBG4 / IP 55 Dimensions: 600 x 380 x 210 mm Final Painting: RAL 7035 7 Coating Type: Primer 0 Final Painting Type: SR-Steef St 37 Square pipings 50 x 50 x 2,5 mm Nant Dimensions Length: 900 mm	3 Pressure Transmitter	Туре				
Type: Type: Valet Flange DN / FN: 32 / 16 DIN / Outlet Flange DN / PN: 32 / 16 DIN / Outlet Flange DN / PN: 32 / 18 DIN / Switchboard Operating Voltage: 3 x 400 / 440 V / PE / 50/60 Hz Clament Consumption: max 21 5 A Max Fuse: 40 A Control Voltage: 230 V / 50 Hz Hegulations: VL/E and VBG4 / IF 55 Dimensions: 600 x 380 x 210 mm Final Painting: RAL 7035 / Coating Type: Primer 0 Final Painting Type: Manne Paint, RAL 8019 1 Drip Pan Type: SIR-Steel St 37 Square pipings 50 x 50 x 2.6 mm Nant Dimensions Longth: 900 mm	4 Thermometer(s)	Туре	2 x Electronic type / Fuel IN – OUT 0 – 150°C			
Inter Flange DN / FN: 32 / 16 Outlet Flange DN / PN: 32 / 16 Outlet Flange DN / PN: 32 / 16 Switchboard Operating Voltage: 3 x 400 / 440 V / PE / 50/60 Hz Switchboard Operating Voltage: 3 x 400 / 440 V / PE / 50/60 Hz Switchboard Operating Voltage: 230 V / 50 Hz Control Voltage: 230 V / 50 Hz Regulations: VEE and VBG4 / IP 55 Dimensions: 600 x 380 x 210 mm Final Painting Type: Primal Painting Type: Prima Painting Type: Man Dimensions Longth: Numersions SR-Steer St 37 Square pipings 50 x 50 x 2,5 mm Square pipings 50 x 50 x 2,5 mm	i Thermometer	Туре:				
DIN. Switchboard Operating Voltage 3 x 400 / 440 V / PE / 50/60 Hz Current Consumption: max 21.5 A Max Fuse: 40 A Control Voltage: 230 V / 50 Hz Regulations: VTRE and VBG4 / IP 55 Dimensions: 600 x 380 x 210 mm Final Painting: RAL 7035 Coating Type: Primar Type: Painting Type: Marine Painting Type: Annone Paint, RAL 8019 Type: Square pipings 50 x 50 x 2.5 mm Langth: Nant Dimensions Langth: 900 mm	Inter Flange		32/16			
Current Consumption: max. 21.5.A Max Fuse: 40.A Control Voltage: 230.V / 50.Hz Regulations: VDE and VBG4 / IF 55 Dimensions: 600 x 380 x 210 mm Final Painting: RAL 7035 O Final Painting Type: Primar Type: Type: Mannel Paint, RAL 8019 Type: SR-Steel St 37 Square pipings 50 x 50 x 2.5 mm Iant Dimensions Length: 900 mm	Outlet Flange		32/16			
O Final Painting Type: Manne Paint, RAL 6019 1 Drip Pan Type: SR-Steel St 37 Square pipings 50 x 50 x 2.6 mm Iant Dimensions Length: 900 mm	Switchboard	Current Consumption Max Fuse Control Voitage Regulations Dimensions	max: 21.5 A 40 A 230 V / 50 Hz VDE and VBG4 / IP 55 600 x 380 x 210 mm RAL 7035			
Type: SR-Steel St 37 Square pipings 50 x 50 x 2,6 mm	Coating	Туре.	Primer			
ant Dimensions Length: 900 mm	Final Painting	Type:				
	1 Drip Pan	Type	SR-Steel St 37			
Width: 620 ram		Height:	540 mm			

ñ.

Projekt

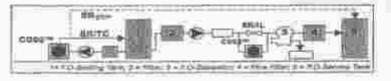
SIGMARINE BTD

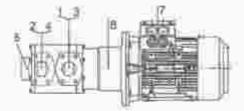
7238

December 1999 V Drigt 6-1995

	December Meximum of 6
DESCRIPTION	e general purpose gidas para bused on a modified alord race)
FRINCIPAL CRARACTERISTICS	 - controllery subside as + 1 web for boottop, reporter description and data is a calcol crying head toogh weden and reactive research total of who moderate group retention. - calcol crying head toogh weden and reactive research total of who moderate group retention. - calcol crying head toogh weden and reactive research total of who moderate group retention. - calcol crying head to grantee working to we who have all prices. - calcol crying head to grantee primer RL depending on the control of the control. - production properties in wet and dry september on the control weter and the control of the control
COLOURS AND GLOSS	III O MIETRE Studiose I - glésa
SASICIDATA AT 2010	
Afress denety, Solids contemp VOC (supplied) Recommended dry files theoretical opticiding rate Record dry after Denoclating (relatival Short III) (cool and dry place) Ricety point	Aperox: 45-495 (contains) - 45% (which by solution max: 1.5 Mapal - 420 m) 35 pm pm coar 12,5 14.0 m9 (colours) - 10,7 m% (which the 35 pm 1 hour at 20°C, 3 coars: at 5°C roln: 16 cours at 20°C, 24 more at 5° - 10 % at which the course at 20°C, 24 more at 5° - 10 % at which the course at 20°C.
RECOMMENDED SUBSTRATE CONDITIONS AND TEMPERATURES	 mericles cost, by and free from any contrastructory the temperature of the substrate stability be at least 3°C prove dow point
SYSTEM SPECIFICATION	Typeness for housing and legs (burg System about 210)

a then pape usual





(Sludge Reduction)

Customers, PT Pel - Indonesia	Vessels HTI 272
Comm: No.3. 3.01.1450	Class Approvali, yes/ma
Month Cycan, March 2012	Delivery Date: 18.02.2012

Technical Data / Unit	85-M-MD / SR IL	Serial No: 12-1605
Gattacity m ¹ (h)	1.5 m//h	MDD / HFO := < 700 cSt - IFO/60" C
E Motor 1	maker: Hanas KW 4.0/4.5 V: 400/440	Hz 50/60 RPM: 2.950/3.490
HED Fand Rumou	makor: Type: dap:	ntho KW: RPM:
In Unidentation	thermometer / manometer vie / elac.	#42 Direct == out 2-4 / In 1-3
	Pipe Ø = 32 SAE Ø = 32	Test Failt / HED 380 IFO / 50°C
이는 문화 다음 관리		Op/Press bar: < 3,0
That Provider / dari	< tā.0	Gp:Tamp. +C < 100

Modaurement Solnta:

- 1 Faul Temperature triel
- 2 Fuel Temporature Guttet
- 3 Fiel Pressure Inlat
- 4 Feel Pressure Outlet
- 5 Seeve Temperature
- 6 Magnet Temperature
- 7 Endritsi Lond

2348 y	111	- Etit	LICK .	王が見	nat film	上にです。 本の見出 一本の良		Purd in			F.D. Ulides Headardg		
		a a	2	a In	.4 058	7		100	Firsth Stoffing 97	Flow Setting mith	Numper K Vesser prod. Literating	anidge bentitiky	
	34	385	剪	48	32	10.5					-		
	74	1000	105	5.0	2.5	19.0							
	247	:111	111	51	43	M.							
	£6	-		_									
	55	1			_								

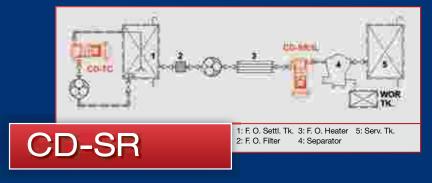
Remarks: Test runs = standard data in workshop, type 100-140 M. Note Start-up temperature 76°C, arold dry run! For your guidance please find attached Parformance Record (blank form submitted on CD-ROM).

Serio: S17 / Powerthin Skiveyor7 Citiss 1 Evander S.I.T uningtria Tocimik GminH Bchiff 14/100 12/ Date: 15,03.2012 Date: 15.03.2012 2763 Hamil Remerke: produced acc. Qualification-Nr. ISO 0002 C. MIC 2000 - NOX MARPOL 1 op 73/75

S I T GmbH - Friedensallee 128 - ID-22763 Hamburg - Tel. (0)40 - 83 70 61 - Fex. (0)40 - 83 72 78

21

CD92[™] SLUDGE PERFORMANCE RECORD CD92[™] - SR (Sludge Reduction)



	Gustomen PT F GDRZ Type: 85-8	Pal – Indo M-MD/SR-	esente IL			Voorelt		_					
	Maine Engline:		KW/BHP										
RECON	MANDATION: Acc	ocoing to I	Regulation	r 20 (4) Mar	ooi 73/78 this t	l bhuarfe olda	he kept tog	athar with	the oil re	soid bros			
Ban Diff.	Technigal Data	n	CDS	32**- 85-N	MD/SR-IL	0	THE R	Sarial No	xii l	12-160	5		
6.5	Unit Gapacity:				m*//n					24 / In			
	or Maker/Gapacity:			4.0/4.5 kV		/ 440 V		60 Hz		150 / 3.49	RPM		
	Instrumontation					Out/It Pipe Ø 32 SAE Ø 32							
NETEN E CO	Fuel-Type:	0	HFO /	MDO		THE H	our Cour	tor (tota	DRI .	_	_		
	1 fff.com					1	1.3	5	1 - 05	10			
CD93			- Cal				A	Xat					
Date -	Till EQ. Rost	and the second second	NAMES OF A	- HOS	CO-Rentice Tank		日長期合教。			100 P 0.8	MANES -		
	Corn 95 Mid-edt	Temps	r fin	Frontin			Lpad/	Pur		Hind	ling		
	HFD - MDD	1.2	2	3	4 5	8	7	More	Planet -	Budge &	-		
01	/ 380	10/	out)im	sut:			gar day	per der	Laiday	- Shings		
02	1000						-				-		
03.	1									t —			
04.								<u> </u>					
05.									_	1			
06.											_		
07					_	-	-						
08.	1 7				_								
39.	Ĭ												
10.	L	1			_								
11.	1												
12	I												
13.	<i>I</i>										_		
14.							_				_		
15.	1	-				-				_	_		
16	1	-				-		_	_		-		
17.	1.	1		_	1.00								
18.	1 1	-			_	-			-				
19;	/						_						
20.	<u> </u>					_	_						
1						-							
22		-	-								-		
24							-	_					
25	1				_		-		_				
24		1			_	-	1	_	_				
27	1	1									_		
20. 21. 22. 23. 24. 25. 26. 27. 28.	i i						1		_				
29		-		_		1.000			-				
30.	1				_								
31.													
Total	un e su								·				
CONCLU	ISION	-			Remarks				-	_	_		
Total S	ludge Produced x1	= 00		% Sludge		-		_			_		
Total Fi	uel Consumption			merre C					_				
					Date		Slan	ature :					

The CD92-SR: "Sludge Reduction System"

Following see the potential of our CD92-System to reduce fuel costs.

Fuel Conditioning

The production of F.O. sludge is a direct function of the conventional fuel purification/separation process with regard to the function principle of the used technology, rotor-stator principle.

Conditioning (homogenizing) of the fuel prior to purification is the easiest way to solve this problem. Because of the well balanced fuel structure, the flushing sequences of the purifiers/separators can be extended to the maximum available time, which as a consequence will lead to a reduced sludge production down to less than 20% of the conventional amount.

Fuel conditioning (homogenization) prevents the agglomeration of asphaltenes. The result is that more fuel is passing the separator, which now is remarkable unloaded from the separation process. Considering these facts, fuel conditioning improves the fuel handling from the economic and the ecologic point of view.

Effects & Benefits...

- ☑ Reduced sludge build-up from F. O. Separators and F. O. Filters.
- Recovery of former sludge disposals as valuable operation fuel for us in both main engine and generator.
- Reduced bottom layers in F. O. Tanks.
- Extendable flushing intervals of F. O. Separators and F. O. Filters (reduced maintenance work, reduced spare parts requirements, less displacement of water, stable water seal, easier bowl cleaning, etc.).
- ☑ Installation possible without interference of operation.

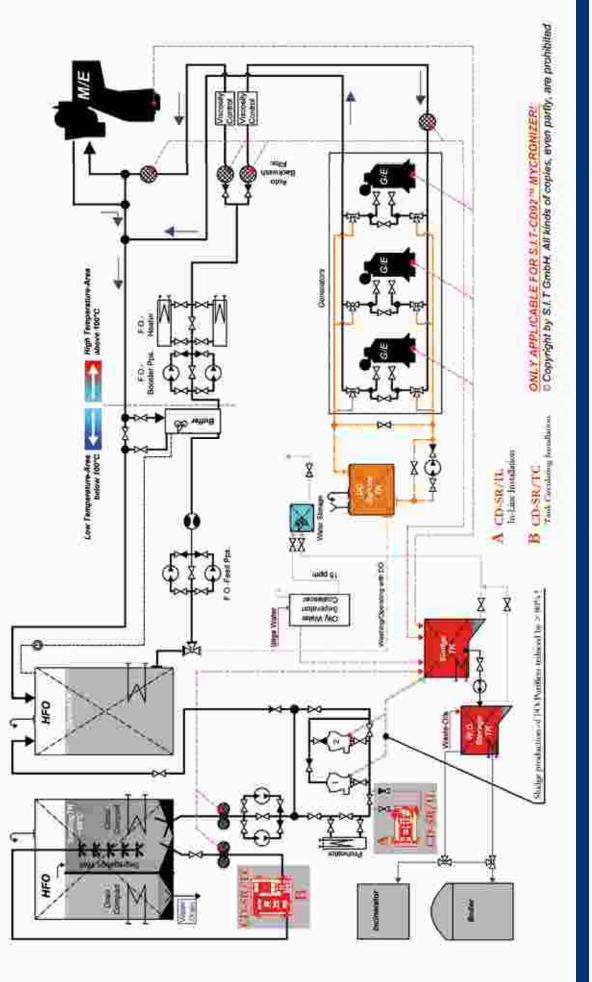
Only achievable with CD92-Mycronizer.

The Core of each CD92-system: Different Application, same CD92-Homogenizer.

With our treatment process we don't add and don't withdraw anything from the fuels. The catfines remain untreated and further on maintained by purifiers and filters.

S.I.T establishes a new, improved technical standard in order to be able to continue to guarantee an economic and ecological use of heavy fuel oils in future.

S.I.T systems are approved by class societies ABS & LR and complying with Marpol 73/78, IMO 2000 requirements.



ト・う

S.I.T systems are approved by class societies ABS & LR and complying with Marpol 73/78, IMO 2000 requirements. Lloyd's Register ABS

MARPOL

The CD92-SR: "System-Description"

ATTACHMENT - 6 OTHERS HOMOGENIZER BRAND

Homogenizer Better combustion, less maintenance

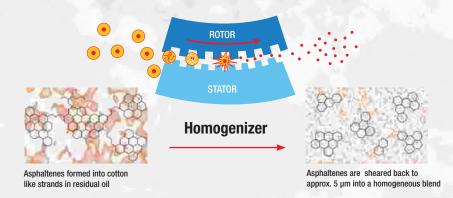
VD 7-962 e 05.2015

- Continuous homogenizing by shearing of asphaltene clusters
- Pure mechanical and no chemical treatment
- Continuous generation of water in fuel emulsion Individual optimization of combustion process
- Sludge treatment on board

Benefits

- Reduction of sludge
- Increases amount of burnable fuel
- Less wear and tear on engine components

System description


The homogenizer is a dynamic milling machine and it mainly consists of a specially constructed stator / rotor-milling gear to improve the fuel quality as well as to allow sludge treatment on board of sea-going vessels.

- Pure mechanical homogenizing
- Free adjustable clearance between rotor and stator
- Creates long term stable fuel-water emulsion
- Low maintenance

Principle

The Homogenizer operates on the principles of mechanical shearing and ultrasonic forces. It utilizes a special conical shaped milling gear, to generate high hydrodynamic power consisting of shearing, friction and acceleration forces with pressure waves of high frequency. The high molecular asphaltenes are reduced in their size to below 5 µm and homogenized into the heavy fuel oil.

Specification and ordering information

Power supply	and the second se	400/440 V; 50/60 Hz	
Working pressure		max. 15 bar	
Working temperature		max. 150 °C	
Size / Type	Capacity IF0380	Flange (in- /out-let)	Art. No.
	at 130°C (~13cSt)	DIN/ISO 2633	
	[m ³ /h]	[mm; bar]	
Homogenizer HG100	3.0	DN 32; PN 16	94709
Homogenizer HG130	8.0	DN 50; PN 16	94710
Homogenizer HG150	12.0	DN 65; PN 16	94711
Homogenizer HG220	25.0	DN 80; PN 16	94735

Optional control panel / Type	Art. No.
Control panel CP100	95191
Control panel CP130	94725
Control panel CP150	94726
Control panel CP220	94734

SALES PARTNER:

AQUAMETRO REPRESENT. OFFICE

Regus Business Centre

Link Road, Andheri (West)

Mumbai - 400 053 / India

Phone +91 961 901 3282

sales.india@aquametro.com

Level 3, Neo Vikram

HEAD OFFICE:

AQUAMETRO AG Ringstrasse 75

CH-4106 Therwil Phone +41 61 725 11 22 Fax +41 61 725 15 95 info@aquametro.com

AQUAMETRO Japan 1-18-4, Nakane

Meguro-ku

Tokyo 152-0031 / Japan Phone +81 3 3723 8611 Fax +81 3 5729 4607 yasuhiko.takahashi@aquametro.com Aquametro Marine GmbH Friedrich-Barnewitz-Str. 7

D-18119 Rostock-Warnemünde Phone +49 381 519 64 88 1 Fax +49 381 519 64 88 2 rostock@aquametro.com

AQUAMETRO KOREA LTD 3F, 169, Sameo-ro, Haeundae-gu

Busan 612-050 / Korea Phone +82 51 905 55 66 Fax +82 51 905 55 69 aquametro@korea.com AQUAMETRO ME JLT Jumeirah Lake Towers Jumeirah Bay X3, Office 1807 P.O. Box 334132 Dubai / UAE Phone +971 56 7587 801 info.amme@aquametro.com

AQUAMETRO (S.E.A.) PTE LTD 190 Woodlands Industrial Park E5, #08-17 Woodlands BizHub

Singapore 757516 / Singapore Phone +65 6899 1980 Fax +65 6899 2972 customersupport@aquametro.com.sg

aqua metro

www.aquametro.com

AQUAMETRO (CHINA) PTE LTD Sales Office 190 Woodlands Industrial Park E5 #08-17 Woodlands BizHub Singapore 757516 / Singapore Phone +65 6899 1980 Fax +65 6899 2972

sales.china@aquametro.com.sg

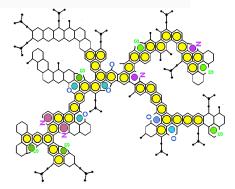
TO WHOM IT MAY CONCERN

Service letter, June 2011

Product presentation:

JOWA - HOMOGENIZER

Today's challenge:


"It's all about asphaltenes in fuel. ..."

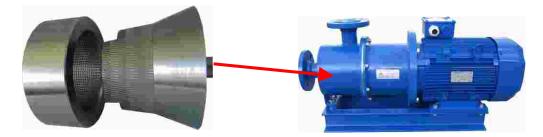
Core problem:

Residual fuel has a high concentration of asphaltenes, which contributes to a wide range of combustion problems and undesirable combustion by-products.

Asphaltenes are special problematic parts in fuel, because of large and heavy combustible hydrocarbon components, which are often insoluble.

Long asphaltenes chains in fuel have the tendency to cluster into big particles even over 100µm in size.

Typical structure of asphaltenes


These big particles consist of complex high calorie combustible hydrocarbons yet are unusable in this phase due to their size.

Filters will remove these asphaltenes cluster and will unnecessary clog finally.

Non- homogeneous fuel with a high amount of asphaltenes cause incorrect injection with non-uniform spray pattern resulting in incomplete and bad combustion.

ONLY technical solution JOWA - HOMOGENIZER:

JOWA - HOMOGENIZER is a dynamic fuel milling machine.

Between conical shaped grinding surfaces of rotor and stator fuel is exposed to hydrodynamic shearing and friction forces.

In result the high molecular asphaltenes in fuel will be milled to a well balanced homogeneous fuel, with particles of about 5µm in size.

Operational advantages:

Pre-treatment of fuel results in a smooth combustion, which will lead to much cleaner engine parts.

Life time of filters and fuel parts will increase drastically.

Combustion will be more complete which results in less deposits and smoke free exhaust.

These operational advantages will affect a very fast return of investment together with decreased maintenance costs.

JOWA – **HOMOGENIZER** can therefore be considered as a welcome addition in a fuel system both from technical and commercial viewpoint.

Summary:

- reduces sludge output
- improves combustion
- reduces wear and tear on engine parts
- reduces deposits on exhaust pipes and funnels

"It's all about asphaltenes particle size in fuel. ...

Fuel treatment with **JOWA - HOMOGENIZER** is the most efficient way to reduce these."

FUEL TREATMENT SYSTEMS

HOMOGENIZER SYSTEM OPTIMIZE YOUR COMBUSTION

With fuel oil often accounting for more than 40% of a vessels operation costs, efficient combustion is of crucial importance. Furthermore, fuel oil quality can have serious long term implications for engine wear and it's associated costs.

The Homogenizer has been specifically designed to solve the uniformity problems ship owners and operators face when running on heavy fuel oil. There is no better chemical-free approach for best treatment of heavy fuel oil, waterin-fuel-emulsion and sludge.

The equipment incorporates a hermetically sealed magnetic coupling drive and special hard material combination, suitable for very high pressure and temperature applications.

ow, Jowa has b supplier of tec

Sweden JOWA AB Tulebovägen 104 S-428 34 Kållered Sweden Telephone: +46-31 726 54 0 Telefax: +46-31 795 45 40 website: www.jowa.com e-mail: info@jowa.se +46-31 726 54 00

Singapore JOWA (S) PTE., LTD. JOWA (S) PTE., LTD. 93 Lorong N Telok Kurau #05-04 Singapore 425244 Singapore Telephone: +65-6872 8802 Fax: +65-6872 8896 vebsite: www.iowa.so e-mail: jowaspdk@singnet.com.sg

Norway JOWA NORGE A/S Solbergveien 22 3057 Solbergelva Norway Telephone: +47-3223 6700 Fax: +47-3223 6701 website: www.jowa.no e-mail: post@jowa.no

China

China JOWA (Shanghai) Marine Equipment Co.,Ltd. 5111 Luo Shan Road, Pudong New Area Shanghai 201204 China Telephone: +86-21-3390 6889/90/91/92

Fax: +86-21-3390 7550

e-mail: iowasha@iowa.com.cn

Germany JOWA GERMANY GMBH Hansestrasse 21 / Haus 2 18182 Rostock-Bentwisch 18182 Rostock-Bentwisch Germany Telephone: +49-381 6302 660 Fax: +49-381 6302 641 website: www.jowa.de e-mail: info@jowa.de

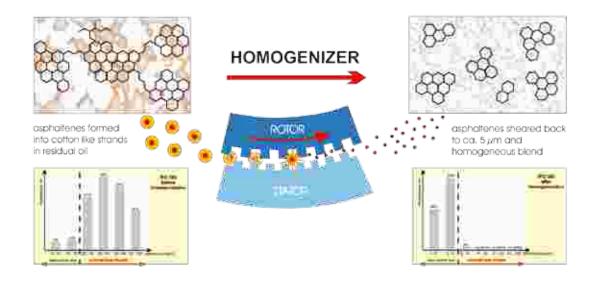
> China JOWA (Shaoxing) Enviroment Protection Equipment Co.,Ltd. 3# He Hu Road Paojiang Industrial Estate Shaoxing 312071 China Fax: +86 575 88158630

Netherlands JOWA HOLLAND Ebweg 61 2991 LS Barendrecht Netherlands Telephone: +31(0)180 55 71 33 Fax: +31(0)180 61 11 27 website: www.jowa-holland.nl e-mail: post@jowa-holland.nl

China China Telephone: +86 575 88179900

USA JOWA USA, INC. 59 Porter Road Littleton, MA 01460 USA Telephone: +1-978 486 98 00 Fax: +1-978 486 01 70 website: www.jowa-usa.com e-mail: info@jowa-usa.com

Korea (South) Jowa Korea Co. Ltd. Jowa Korea Co. Ltd. 1650-6, Song Jung Dong Gang Seo - Gu 618-819 Busan South Korea Telephone: +82-51-831-4911~3 Fax: +82-51-831-4914 website: www.iowakorea.kr e-mail: info@jowakorea.ki



Operational Principle

The Homogenizer operates on the principles of mechanical shearing and ultrasonic forces. It utilises a special conical shaped milling gear, to generate high hydrodynamic power consisting of shearing, friction and acceleration forces with pressure waves of high frequency. The high molecular asphaltenes, the existing cat-fines, remaining water etc. are homogenized into heavy fuel oil with maximum particle size of 5 µm.

Main Features

- » Reduction of fuel oil sludge
- » Increased burnable fuel amount with improved fuel efficiency
- » Improved combustion quality and reduced exhaust emissions
- » Reduced wear on engine components and reduced operational costs
- » For more info see Jowa Germany website www.jowa.de
- » Std cap 5-8 m3/h

BENIELUX, CHINA, SOUTH AMERICA

Ruysch Technical Agencies Holland 8V Disturce/riad 3 7202 CM Zutehen The Nathenards

CANADA & U.S.A.

Promise Engines 54, Chick Shoet Welland Ontario Late SW6

CYPHUS, SYRIA, LEBANON, UKRAINE

Istand Oli 145-149 Chr. Hadlipäkiou Silvan, 2^{nr} Flodr Christiel Building 3036, Limittadi Cyprus

FRANCE ITALY, SWITZERLAND, GREECE, MONACO, MOROCCO

G. D. Susply Impliste des Lilus II Les Fregales 13340 Régnie Franço

GERMANY:

TS/5 Technische/ Service GmbH Rivriskamp 53 25337 Elmittiam Garmany

SPAIN

TSC Technical Supply Center Strobe Kolms 8 20800 Zaratits Spain

INDONESIA

GV ALPHA OVIEGA JL Guberg Micyle 55 Subshiyu 60131 Indonésili

TURKEY

Ruhmar Shizsang & Teatling Filmber Candidas Fable Inham No. 131/1 80000 Karakoy / Istahbal Tufkay Mr Hans Huyson i Mr Jeroen Venaert Tel +31 575 515 744 Fax +31 575 515 744 Boordage Truyson.bu

Mr Poter Stevens Tel +1 905 288 3305 Fax +1 905 788 5833 Poter, stevens & premierengines, com

Mr Inci Linko Tel +357 2588 0000 Fax +357 2574 5468 Inc. 10 pluno-oil.com

Mr Gerard Dave Tel +33 44 278 2194 Fax +33 44278 2195 pdauge/vitwenadoo.tr

Mr Beend Meynoetg Tel +40 4121 450 1834 Fax +40 4121 450 1835 tech norv@1-prime.de

Mr Inaio Urbiota Tel +38 04 589 6002 Fox +38 94 383 5825 Incurbint Cterra es

Mi Khon S Wryesigoria Tel 162:343 63(683) Fax 162:343 63(683) Whon Koviso, com

Mr Aylor Soman Tel x90 21/22029/387 Fax x90 21/22028/278 koman/20068.ref.0

315

FTS - WASTE OIL RE-GENERATION (FTS-R)

Application principle

Waste oil is an inevitable by product of any styp's installation. This cill is generally a matter of fuel oil studge, tube oil studge, miscellisheous waste oils and water.

One can electorize this mixture onshorts. Some choose to mix it with gassal and use it problem. With the application of a FTS-R unit, the original robuste can be made homogeneous allowing for an excellent combuiltion in either an increastor or botter.

and the second s

Key Benefilts

- Further environment unloading
- -Large money savings
- Improved fuel afficiency
- Sludge traismanit separator maintenance reduction.

Turn waste into profit.

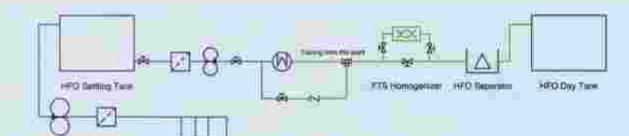
Wrate of a difficult to burn and to be able to do this it must be mixed 1.1 with expensive grant.

This means that barring 17 of white oil costs you around 6 560.

Using F75-R will bless you instant money

Fluids with different characteristics and difficult to muc most oils will fluid on water for example. The chemical explanation for this is that each fluid has it's rzwn stress or surface tension.

By applying FTS homogenising technique, this stress will be overcome. The result will be a new stable fluid consisting of particles of 2 – 3 micron in average. This fluid can now be well atomised and burned.


FTS - SLUDGE REDUCTION (FTS-SR)

Installation

FTS offers a system that does not require any substantial modification to the example fast system. Everything that is required is supplied into one factory lested skid A FTS-S unit is installed right before the fast of separator after the leed plants.

An FTS homogenition can be settily installed. With 4 standard small footprint each unit can also be billion made according customer requirements.

Connections

An ETS-SH unit is initialized in the oriculation losp prior to the argine

FTS-SR units are available in 5 collected capacities ranging from 1 to 25 m²/m²

Depending on the size is homogenizer requires 3 - 27 KW of 380 / 50 Hz or 440 V// 60 Hz.

A ETS homogeniser complian with all Glassification Socialize michaegulithono

FTS - SLUDGE REDUCTION (FTS-SR)

Application principle

Asphatiene build-up is a process that originates from the refineny yet continuous on board. Asphationes, obtain board to harmfull solids, and rejected by the expension.

Homogenization will dimitize the size of the respharament while leaving solids untermed. This solids from the expension to tester distinguish solids from the valuable task and therefore improves in a efficiency. Grown this improvement, shooling intervents can be dramically extended.

The use of a FTS-S homogeniser can result in a reduction of sludge by over 80%. An FTS-S unit will self emotion within 6 to 10 months.

Fuel analysis

Independent analysis of fixel of samples taken from various points in the fixer treatment system of various arrays prove that the use of FTS equipment is not farmthal to the system.

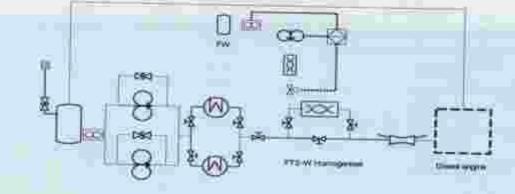
To this contrary, II contributes to a better efficiency and reflability.

Key Benefits

- · Draite separator unloading
- Improved separator atticiency,
- Large money savings
- Improved fuel atticition
- Separator maintenance reduction
- Widely accepted

FTS - WATER-IN-FUEL EMULSION (FTS-W)

Installation


ETS offers a system that does not require any substantial modification to the examples fuel system. Everything that is required is suppress into one factory tables skill.

An FTS unit can be pownected to your existing freih water system.

To obtain the maximum efficiency while remaining your engine output, we advise to perform this installation together with your engine supplier.

Water dollage to very precise due to sopresticated mulastrement technique.

Connections

An FTS-W unit is installed in the enculation loop prior to the engine

FTS-W units and eventople in 5 offerents capacities ranging from 1 to 25 m Thr.

Depending on the size is homogeniser, requires 3 - 27 kW of 380 / 50 Hz or 410 V / 60 Hz,

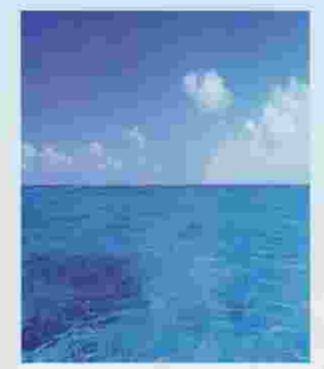
A FTS homogenider complete with all Classification Societies' strict regulations

Water in Foot 7.

The FTS efficiency allows for a prolonged stable emutator. No free water will re-appear in the engine.

FTS - WATER-IN-FUEL EMULSION (FTS-W)

Application principle


It is a well known fact that by leading water into the cylinder during the compustion the combustion temperature will reduce which will consequently reduce the emission of NOx emissions.

Engine minufacturers have determined that a stable water in fuel emulsion is the most efficient way to establish this.

FTS offers a technique that could result in a induction of NOx emission by over 20%.

This dould be of great help in your effempt to comply with Marpola Annea VI limitations

Did you know?

Filet and water, where mound, will normally are at the to other mound in their meeting weight and observations.

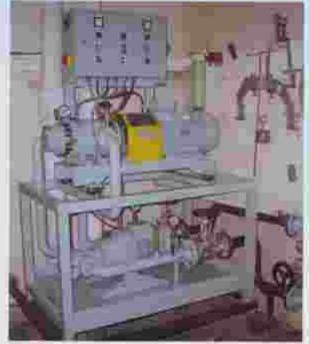
Homogenitudies by PTS results in an emulation whereby saith microscopic displict of water to encapsulated by a cost of fuel. Surface strates betters have been elimipated, the emulator will remain stable.

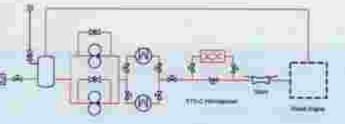
When being injected into the combattion cheruber, the writer will further enhance the atomization and improvemitat efficiency.

Key Benefitte

- -NOx reduction
- Improved erights reliability
- Unproved foal afficiency
- Continuous protonised angine output
- Reduction of visible smoke
- Extended maintenarios Intervals
- -Widely accepted

315


FTS - COMBUSTION OPTIMISATION (FTS-C)

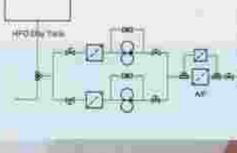

breataillations

The FTS Combardion Optimization and is smith and relatively many to install, ethnic at hisy-build or retrolit.

The unit is to be installed in the booster will: prefirmibly as done to the englise as plassible, before the incomity regulator.

Customers can choose to have the sets incorporated into the booster stockle. FTS can also supply the unit in a stabilitione skid.

An FTS-C unit is installed as more to the

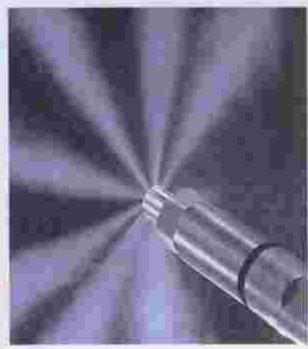

KTS-C on a nor evaluable of a rationent crossollies ranging from 1 to 25 m² hr:

Depending on the stop a homogeneous requires: 3 - 27 kW of 380 (50 Hz or 4=0 V / 60 Hz.

The unit is connected through filanges. The total build-in specie is minimum and will require most eleminous to your plong only.

AN FTS homogenicati complete with all major Cheshication Societies an otheganitana.

FTS - COMBUSTION OPTIMISATION (FTS-C)


Application principle

Variations is pressure and interpretation stronoly villance the build-up of anonalismus into large climiters. Attriction having a high calorid value, these climites simply can not been completely.

Homopolication counteracts this build up allowing for a new perfect domination that will result in a smooth and clean combustion.

Compare it to a log of wood on a life. It will take a while before it is burked. All this semin log into sewebist and you will get a feepe powerful fame.

Frequencies any of the following

- · Stalling HP pumps?
- Fillers dogod on the enable?
- Repid tube of found?
- General music follog?
- Poor turbooharger performance?

Then you are aspectioning the compositions of explanations build-up

- This can be effectively spond by applying a simple-to-visibil low cast
- F16 Compation Oplimitation unit.

Key Benefits

- insensitivity for poor full quality
- Improved entrine reliability
- improved file efficiency
- Continuous prolonged engine output
- Reportion of value smooth
- Extended mandemence mervals
- Fast return on investment
- Widely accepted

High precision machining

An PTS homogenider is based on a mori/ control principal, both with a special control shape and machined surface. With 3000 rpm and a clearance of around 50 microms, princing fuel on will be subjected to high sheer force and utnetonic writes.

It is due to the very fligh precision mathening wills that this process is efficient and dorable. FTS offers a 5 year guarantee on rolo; and stator.

Treatment efficiency

informogenisation by FTS equipment is very efficient and by far exceeds any other technique. Simply because it is mechanical efficiency can be ensured

No other teatminus has proven to be equally efficient for treatmint of gasoil as well as >700 cBLHPQ

Sealing

Sealing is established by use of a Garlook® patient vell, sumable for temperations op to 1801C, of which temper types are also bring used for billumer pumps,

The sealing package is triple redundlim and manylinke for vibration. Minor prexentive manifestance is required no more than once per year.

Rehability

The use of PTS equipment hat only improves the installation's system, it is own dataign to rigid and resultion resulting in a maximum requirement for maintenance.

Range of application

- 2 Stroke & 4 Stroke engines
- HFO and IFO Systems
- Manne & Stationary matalamore.

Return on Investment

Only a machine that is efficient is worth investing in Depending on the application, FTS equipment amortizes within 6 months to 2 years:

County connect of precision points at Contar Karl Enloyeechanik

Homogenisation

This principle of homogenisation is to convert organic pranticles of various sizes into equal size, therefore homogeneous.

Large (but (pool) particles are a burden, smaller one's can be fully utilised. Homogenisation will make you practically invulnerable to the varying nonhomogeneous fuel oil quality.

The FTS Homogeniser

An FTS homogenitier reduces the size of ell organite soft particles to 2-3 micron.

Harmful solids pass myough the FTS, homogenitian unharmed.

An FTS homogeniser does not add not does it extrant anything from the fuel.

1 1

"Homogenising fuel enhances fuel efficiency"

Acceptance

The advantages of the use of homogenisers are workly recognized by engine manufacturers, classification societies the international Mantime Organization and meny satisfied contomors.

FTS Homogenicers are type approved by Germanische Lloyo

CAPACITIES

FTS 10	1.000 l/h
ETS 40	4.000 17 h
FTS 75	7.5001/h
FTS:120	12.000 I / h
FTS 250	25.000 I / h

Emissions

The emission quality depends on the coulity condition of the engine but also on the quality of the full. The condition of the engine however is strongly induced by the quality of the full.

The increased horse power to waight ratio of forary's engines caudde an increase in NOx emilitien.

Minisel requirements are reconflict with our attempts to reduce global NOx invests.

> "Sludge is more expensive than fuel."

Each ship produces fust studge of around at tossi 1% of the dely fuer concemption. Fuel studge consume of fuel, writer organic rediments and harmful solids like catalyticfices.

Shore disposal

Disposal of studge at a shore facility can be a costly business. There is no global standard for discharger costs and maximum allowable studge tank filling. Port authorities teoporements can very greatly.

Extreme proces are known to have been charged for waste oil disposal at privaral ports.

Tottay's distillate faiel

The spaling of loday's intermediate and feavy distillate fuel is an intreasing worry for many users hol only does it vary worldwide. It's price keeps form as well.

While regulations as stipulated in Ameri VI of Marpol 73/78 describe tiricter imission invitations, this guality becomes an even bioger worry.

Ever quelly not only working those with an environmental serve out and those in stronge of economics."

"Guarantee Continuous Fuel Quality"

Fuel stability

Clatitude fail is a complex missure of various transmis. Marine fail often is a bland of different products. As such if may not always be as oblid. Stability dands for the tendency of the various fractions to remain in suspension.

Even when studie, the formation of large clusters of yild, exphanishes to a common phonomena, in an satisfiable fuel, this event grows to be expensive

Particles can reach sizes over 100 micron in diamotert

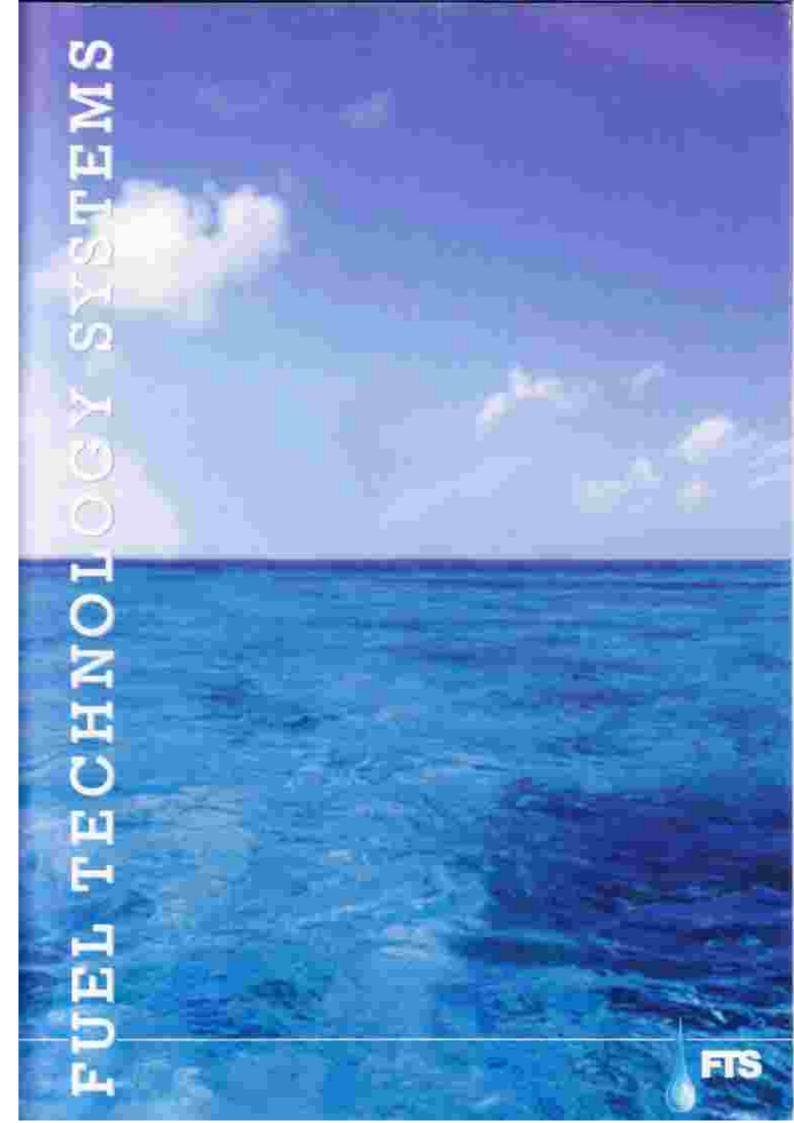
On board last of a located by an indicative vector always conclusive. Shore analysis roouls are contaily not received befant departure of the vector.

Supply chain,

Foat all duity often contains unwanted washingroducts that wwarraboldentially added comewhere in the supply chain. One simply can not completely control full quality.

FTS Fuel Technology Systems GmbH

FTS was founded in 2004 as a decider company of Lother Xabi Ferrmochains and TSG Technocher Service Growt Handberg Kall exists for over 50 years and Has over 10 years of experience in the technique of manufacturing homogenizzers. TSG has over 10 years of experience is engineering installation and commissioning of homogenizzers. TSG has over 10 years of systematic is engineering installation. TSG has fully developed today's successful ander-ryfuel enablighted on estallation.


FTS designed a new homogenizer, simple, durbble and efficient

With induces engineering and manufacturing, the highest-guality can be guaranteed.

FT5 Fuel Technology Bystems GatbH Grandfuhlbring 14 22549 Hambing - Germany -Prone +49 4121 4501851

Technical Workshop Elmilion Remelamp 53 25337 Elmilion - Germany -Plane: +49 4121 4501832 Fex: +49 4121 4501832

mail (the fip the picture) com

CHAPTER V CONCLUSION AND SUGGESTION

CHAPTER V CONCLUSION AND SUGGESTION

2.1. Conclusion

Based on study of this research, it can be conclude the research result as follows :

- 1. To install homogenizer in to MT. Pangkalan Brandan ship fuel system, the folowing item is required : electric motor, pressure transmitter, thermometres, switchboard, coating, final painting, drip pan, and mycronizer part.
- 2. Over the 10 years life time of homogenizer operation, PT. Pertamina will gain fuel saving value from installing homogenizer. Fuel oil saving value are ; \$47.462,1 with fuel oil price decrease 2,93% annually, \$52.615,9 with fuel oil price decrease 1,47% annually, \$58.185,0 with constant fuel oil price, \$89.928,0 with fuel oil price increase 6,7% annually, and \$134.975,1 with fuel oil price increase 13,41% annually. Payback period will be obtained within 4 years after operation.

2.2. Suggestion

- 1. This research can be continued by study the environment benefit from intalling homogenizer in the ship. It has been claimed that homogenizer not only can reduce fuel cost, but also can reduce NOx content, sludge, and other unuseful waste material.
- This research result will be more accurate if there are provided by homogenizer maintenance history record for 10 years operation. The new instalation of this equipment in MT. Pangkalan Brandan and very few ship in Indonesia

which already install this equipment have lead to lack of information about maintenance record. For the next decade, trend of using homogenizer will be increased, so the maintenance record source can be found more easy and accurate result research can be gained.

3. It's suggested that in the next reseach, in analisys comparing operational fuel oil consumption, precentage of engine load is to be considered. The addition precentage of main engine load will provide more accuracy in operational SFOC calculation and comparison.

CHAPTER VI REFFERENCES

CHAPTER VI REFERENCES

- [1]Adnan, Faizul Amri.2014. "Effectiveness of Homogenization Equipment on Very Large Crude Carrier Vessel. MARTEC Conference Paper. Universiti Teknologi Malaysia.
- [2]Aqua Metro Germany. **Homogenizer Product Brochure**. 2015.
- [3]Burak, Stephen, 2004. "Improving HFO Usage by Homogenization, Ashland Speciality Chemical Company". United State – Ashland Inc.
- [4]CD92-SR S.I.T. Homogenizer. S.I.T. Homogenizer Product Brochure. Hamburg Germany.
- [5]FO. Purifiying Piping Diagram. Product Oil Tanker 17,500LTDW Pangkalan Brandan. PT. PAL Indonesia. 2012.
- [6]Fuel Technology Systems . FTS Homogenizer Brochure. **FTS Fuel Technology Systems GmbH.** Elmshorm Germany.
- [7]I Made Ariana, Nishida O, Fujita H, Harano W And Fujio M.
 2006. Removal of Marine Diesel Particulate Matter by Electrostatic Precipitator. Maritime Science – Kobe University. 10th ICESP-X. Cairns-Australia.
- [8]JOWA Group Sweden. Homogenizer System Reference Manual. 2009.

- [9]Monthly Report. MT. Palusipat Engine Log. Shipping-Marketing & Trading Directorate PT. Pertamina (Persero). 2016.
- [10]Monthly Report. MT. Pangkalan Brandan Engine Log. Shipping-Marketing & Trading Directorate PT. Pertamina (Persero). 2016.
- [11]Operational Manual Final Drawing. 2012. CD92TM
 Mycronizer MD Magnetic Drive. S.I.T. Schiffs- &
 IndustrieTechnik GmbH. Hamburg Germany.
- [12]Purchase Order S.I.T. Homogenizer PC 11 HJT 107989, PT
 PAL Indonesia (Persero) Schiffs Industrie Technik (SIT
 GmbH). Logistic Division PT. PAL Indonesia
 (Persero). 2011.
- [13]Rischmann, Jürgen. 2006. "The Role of the Homogenizer in Modern Shipping". Lloyd's Register Technical Association. Lloyd's Register.
- [14]Semin and Rosli Abu Bakar. 2007. A Technical Review of the Future Internal Combustion Engines. Faculty of Mechanical Engineering, University Malaysia Pahang. MARINE Vol.4 ISSN: 0216-9886.
- [15]Sertifikasi Klasifikasi Mesin. Pangkalan Brandan. Biro Klasifikasi Indonesia. 2015.

BIOGRAPHY OF AUTHOR

Author was born in Purworejo, Central Java in 10th October 1994 with father Mr. Suprihono and mother Mrs. Ernawati. Author is second son of three sibblings. In 2000, author study elementary school in SD N 1 Pangenrejo and graduated in 2006. Then author continue the study in junior high school SMP N 2 Purworejo, and graduated in

2009. Author then continue study in senior high school SMA N 1 Purworejo and graduated in 2012. After graduated from senior high school, author move to surabaya and continue to pursue higher education in Double Degree Programme in Marine Engineering Department, Faculty of Marine Technology, Institut Sepuluh Nopember, Teknologi Surabaya. Author specialized his field study in Marine Power Plant. During study in college, author has actively contribute college organization and voluntered in social activities outside college. In the second year author serve as vice president of UKM Catur ITS, become president in third vear, and serve as Coordinator of Board Advisor Council in fourth year. In HIMASISKAL, author serve as staff of Public Relation Department in second year, and head division of PSDM Department in third year. In LMB ITS, author serve as staff of PSDM Department in second year and serve as Coordinator of Sport Organizations Council in fourth year. Author also volunteered as voluntary teacher fo Lentera Harapan (NGO) in Dolly, Surabaya, from second year to fouth vear. In field experience, author has been conducting On Job Training in PT. Daya Radar Utama - Jakarta in 2014, in PT. Pertamina (Perkapalan) – Jakarta in 2015, In PT. General Electric (Alstom) Indonesia – Surabaya in 2016, and intership in National Ship Design and Engineering Centre from 2014 to 2015. In 2014 author awarded as 2nd Finalist of Climater-Smart Leaders Programme, Indonesian Foundation for Sustainable completed Development. his bachelor Author engineering study of marine engineering in 8 semesters.

Muhammad Lutfi Pragola Putra

Student of Marine Engineering Department, FTK – ITS lutfi.pragola.putra@gmail.com.