Inversi Data Magnetotellurik 1 Dimensi Menggunakan Algoritma Multi-Objektif Dragonfly

Pramudiana, . (2016) Inversi Data Magnetotellurik 1 Dimensi Menggunakan Algoritma Multi-Objektif Dragonfly. Undergraduate thesis, Institut Teknologi Sepuluh Nopember.

[img]
Preview
Text
1112100058-Undergraduate_Thesis.pdf - Accepted Version

Download (1MB) | Preview

Abstract

Metode Maegnetotellurik (MT) dapat digunakan untuk mencitrakan resistivitas bawah permukaan yang dalam. Resistivitas bawah permukaan ini didapat melalui proses inversi data MT. Pada penelitian ini, inversi data MT untuk menghasilkan resistivitas 1D menggunakan algoritma Multiobjektif Dragonfly untuk meminimumkan error antara data resistivitas semu dan fase perhitungan dengan data pengukuran. Algoritma ini telah diuji pada data sintetik dan data lapangan. Hasilnya ialah algoritma multiobjektif dragonfly dapat digunakan untuk menentukan resistivitas bawah permukaan dengan akurat dan sesuai kondisi litologi bawah permukaan. ================================================================================================================== Magnetotelluric Method (MT) is used for imaging resistivity of subsurface. The resistivity is obtained by inversion process of MT data (apparent resistivity and phase). In this research, inversion of MTdata is used to obtain the 1-D resistivity using Multiobjective Dragonfly algorithm to simultaneously minimize root mean square error of observed and calculated MT data. This algorithm has been tested both synthetics and field data. The result is Multiobjective Dragonfly algorithm can be used to accurately determine the resistivity of subsurface and in accordance with the condition of local lithology.

Item Type: Thesis (Undergraduate)
Additional Information: RSFi 538.3 Pra i
Uncontrolled Keywords: magnetotellurik; resistrivitas semu; fasa; resivitas 1 D; multiobjektif dragonfly
Subjects: Q Science > Q Science (General) > Q325 GMDH algorithms.
Divisions: Faculty of Mathematics and Science > Physics > 45201-(S1) Undergraduate Thesis
Depositing User: ansi aflacha
Date Deposited: 15 Apr 2020 07:36
Last Modified: 15 Apr 2020 07:36
URI: http://repository.its.ac.id/id/eprint/75795

Actions (login required)

View Item View Item