Arifiani, Siska (2016) Pembentukan Data Uji Menggunakan Algoritma Optimisasi Koloni Semut dan Pendekatan Teknik Pengujian Kotak Abu-Abu. Masters thesis, Institut Teknologi Sepuluh Nopember.
Preview |
Text
5114201043-Master_Thesis.pdf - Accepted Version Download (1MB) | Preview |
Abstract
Pengujian perangkat lunak dapat menjadi cara yang efektif untuk memperbaiki kualitas serta ketahanan perangkat lunak. Secara umum pengujian perangkat lunak dapat dilakukan dengan teknik kotak putih (white box) dan kotak hitam (black box). Teknik pengujian kotak abu-abu (gray box) dikenal sebagai teknik penguijan yang menggunakan pendekatan teknik pengujian kotak putih dan kotak hitam. Teknikpengujian kotak abu-abu memperluas kriteria cakupan logika dari teknik pengujian kotak putih dan menemukan semua kemungkinannya dari model desain perangkat lunak sepertipada teknik pengujian kotak hitam. Teknik pengujian kotak abu-abu menggunakan data seperti: UML Diagram, Model Arsitektur perangkat lunak, ataupun Finite State Machine Diagram (State Model) untuk membentuk kasus pengujian. Selain itu pengujian perangkat lunak dapat dilakukan dengan teknik Soft Computing dan Hard Computing. Teknik Hard Computing sulit diimplementasikan pada problematika yang ada saat ini. Sehinga teknik Soft Computing dapat menjadi alternatif yang digunakan dalam pengujian perangkat lunak. Teknik Soft Computing merupakan teknik yang lebih berfokus pada menginterpretasikan perilaku sistem dari pada hasil presisi. Teknik Soft Computing biasanya berdasarkan teknik logika fuzzy, jaringan saraf tiruan ataupun pengambilan keputusan berdasarkan nilai distribusi kemungkinan. Teknik pengujian perangkat lunak yang mengunakanteknil Soft Computing denganmetode pengambilan sampel berdasarkan nilai kemungkinan dikenal dengan teknik pengujian statistika. Berdasarkan penelitian terkait, algoritma Ant Colony Optimization (ACO) atau optimisasi koloni semut merupakan algoritma yang digunakan pada teknik pengujian statistika untuk membentuk data uji dengan kemampuan yang lebih baik dibandingkan algoritma lain seperti: Simulated Annealing (SA) serta algoritma genetika. Selain itu ACO juga memiliki hasil yang sebanding dengan algoritma Particle Swarm Optimization (PSO) atau optimisasi kawanan partikel. ACO diimplementasikan pada kode program perangkat lunak yang diuji untuk membentuk data uji berdasarkan nilai kemungkinan terbesar random data uji dari domain terpilih. Pemilihan data uji merupakan faktor utama yang menentukan keberhasilan dari suatu pengujian perangkat lunak. Sehingga pemilihan teknik yang tepat dapat membantu menunjang keberhasilan dalam pengujian perangkat lunak.Pada penelitian ini, ACO diimplementasikan berdasarkan teknik pengujian kotak abu-abu menggunakan diagram UML State Machine. Pembentukan data uji yang berkualitas adalah berdasarkan kecukupan kriteria percabangan yang dapat ditelusuri. Tujuan dari penelitian ini adalah untuk mendapatkan hasil perbandingan pembentukan data uji dengan teknik pengujian kotak abu-abu menggunakan diagram UML State Machine dan teknik pengujian struktur kotak putih menggunakan kode program. Hasil penelitian ini diharapkan mampu memberikan gambaran kualitas data uji yang dibentuk dari masing-masing teknik
========================================================================================================Software testing can be an effective way to improve software quality and reliability. In general, software testing techniques can be classified into White Box and Black Box. Gray Box testing technique is known as testing technique which is used both White Box and Black Box techniques. It extends the logical coverage criteria of white box method and finds all the possibility from the design model which is like black box method. Gray Box technique uses data such as: UML Diagram, Software Architecture Model, or Finite State Machine Diagram (State Model) to generate test cases. The other classification of software testing technique is Hard Computing technique and Soft Computing technique. Hard Computing technique is difficult to be implemented in today problems. And Soft Computing technique can be an alternative way which can be used in software testing. Soft Computing technique focuses on system behavior interpretation than precision result. Soft Computing technique is based on fuzzy logic, neural network, or decision making by probability distribution. Software testing which is used Soft Computing technique and its sampling method based on probability distribution, is known as statistical testing. Based on research, Ant Colony Optimization (ACO) Algorithm is algorithm which is used in statistical testing to generate test data, and its result better than another algorithm such as: Simulated Annealing (SA), and Genetic algorithm. Besides, its result is comparable with Paricle Swarm Optimization (PSO) algorithm. ACO was implemented in program code of software under test to generate test data based on the highest probability value of random test data from domain chosen. Test data selection is main factor which determines the software testing success. In this research, ACO was implemented based on Gray Box testing using UML State Machine Diagram. The quality of test data generated is based on branch coverage criteria. This research aims to get comparison result between Gray Box testing using UML State Machine Diagram and structural White Box Testing using program code in generating test data. The result of this research is expected to give description about the quality of test data generated from each technique.
Item Type: | Thesis (Masters) |
---|---|
Additional Information: | RTIf 005.1 Ari p |
Uncontrolled Keywords: | Pengujian perangkat lunak, Teknik pengujian statistika, Optimisasi Koloni Semut. |
Subjects: | Q Science > QA Mathematics > QA9.58 Algorithms |
Divisions: | Faculty of Information Technology > Informatics Engineering > 55101-(S2) Master Thesis |
Depositing User: | Yeni Anita Gonti |
Date Deposited: | 18 May 2020 14:08 |
Last Modified: | 18 May 2020 14:08 |
URI: | http://repository.its.ac.id/id/eprint/76011 |
Actions (login required)
View Item |