

TUGAS AKHIR (KONVERSI ENERGI) - TM141585

STUDI SIMULASI NUMERIK DAN EKSPERIMENTAL PENGARUH PENAMBAHAN *FIN* BERBENTUK PRISMA SEGITIGA YANG DIMIRINGKAN TERHADAP ARAH ALIRAN YANG DIPASANG PADA BAGIAN BAWAH PLAT *ABSORBER* BERBENTUK V TERHADAP EFISIENSI KOLEKTOR SURYA PEMANAS UDARA

ALIFIA MASITHA HARINA NRP. 2112100008

Dosen Pembimbing Prof. Dr. Ir. Djatmiko Ichsani, M.Eng

JURUSAN TEKNIK MESIN Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember Surabaya 2016

FINAL PROJECT (ENERGY CONVERSION) - TM141585

NUMERICAL SIMULATION AND EXPERIMENTAL STUDY THE EFFECT OF PRISMATIC TRIANGLE FIN ADDITION OBLIQUE TO THE FLOW UNDER V-CORRUGATED ABSORBER PLATE TO SOLAR AIR HEATER EFFICIENCY

ALIFIA MASITHA HARINA NRP. 2112100008

Advisory Lecturer Prof. Dr. Ir. Djatmiko Ichsani, M.Eng

DEPARTMENT OF MECHANICAL ENGINEERING Faculty of Industrial Technology Sepuluh Nopember Institute of Technology Surabaya 2016

STUDI SIMULASI NUMERIK DAN EKSPERIMENTAL PENGARUH PENAMBAHAN FIN BERBENTUK PRISMA SEGITIGA YANG DIMIRINGKAN TERHADAP ARAH ALIRAN YANG DIPASANG PADA BAGIAN BAWAH PLAT ABSORBER BERBENTUK V TERHADAP EFISIENSI KOLEKTOR SURYA PEMANAS UDARA

TUGAS AKHIR

Diajukan Untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Teknik pada Bidang Studi Konversi Energi Program Studi S-1 Jurusan Teknik Mesin Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember

Oleh : ALIFIA MASITHA HARINA NRP. 2112 100 008

Disetujui oleh Tim Penguji Tugas Akhir :

- 1. Prof. Dr. Ir. Djatmiko Ichsani, M.Eng. (NIP. 195310191979031002)
- Ary Bachtiar Khrisna P., ST, MT, Ph.D. (Penguji I) (NIP. 197105241997021001)
- 4. Dr. Bambang Sudarmanta, ST. MT......(Penguji III) (NIP. 197301161997021001)

SURABAYA JULI, 2016

STUDI SIMULASI NUMERIK DAN EKSPERIMENTAL PENGARUH PENAMBAHAN *FIN* BERBENTUK PRISMA SEGITIGA YANG DIMIRINGKAN TERHADAP ARAH ALIRAN YANG DIPASANG PADA BAGIAN BAWAH PLAT *ABSORBER* BERBENTUK V TERHADAP EFISIENSI KOLEKTOR SURYA PEMANAS UDARA

Nama Mahasiswa	: Alifia Masitha Harina
NRP	: 2112100008
Jurusan	: Teknik Mesin, FTI-ITS
Dosen Pembimbing	: Prof. Dr. Ir. Djatmiko Ichsani, M.Eng

Abstrak

Energi merupakan hal yang sangat penting bagi kehidupan manusia, karena hampir semua aktivitas yang dilakukan manusia selalu membutuhkan energi. Energi itu sendiri dibagi menjadi dua macam, yaitu energi yang tidak dapat diperbarui (non-renewable energy) dan energi yang dapat diperbarui (renewable energy). Kebutuhan masyarakat terhadap energi tidak dapat diperbarui meningkat tiap tahunnya. Hal ini menunjukkan ketergantungan terhadap sumber energi yang tidak dapat diperbarui menjadi masalah yang cukup serius. Untuk menanggulangi masalah ketergantungan manusia terhadap sumber energi yang tidak dapat diperbarui maka digunakan energi alternatif dan salah satunya adalah energi surya. Tugas akhir kali ini dilakukan untuk meningkatkan efisiensi dari *kolektor surva pemanas udara dengan penambahan fin berbentuk* prisma segitiga yang dipasang pada bagian bawah plat absorber berbentuk V.

Pada tugas akhir kali ini, dilakukan secara simulasi numerik dan eksperimen yang terletak di Laboratorium Perpindahan Panas dan Massa, Jurusan Teknik Mesin, Institut Teknologi Sepuluh Nopember Surabaya. Simulasi numerik dilakukan untuk mengetahui pengaruh penambahan fin dengan variasi ketinggian segitiga fin (3 mm, 4 mm, dan 5 mm), jarak antar fin (0,25L; 0,5L; 0,75L), dan sudut kemiringan fin (22,5°; 45°; dan 67,5°). Ekperimen dilakukan untuk menguji performansi dan efisiensi Solar Air Heater dari hasil simulasi numerik yang paling optimal dengan memvariasikan laju aliran massa (0,002; 0,004; 0,006; dan 0,008 kg/s) dan intensitas radiasi (431, 575, dan 719 Watt/m²).

Hasil yang didapatkan dari penelitian tugas akhir ini yaitu, berdasarkan simulasi numerik variasi fin dengan tinggi segitiga 3 mm, jarak 0,5L, dan sudut 75° adalah pemodelan paling optimal. Lalu berdasarkan eksperimen nilai energi berguna (Qu) tertinggi yaitu 96,925 dicapai ketika intensitas radiasi 718,954 W/m² dan laju aliran massa 0,008 kg/s, serta efisiensi tertinggi yaitu 0,9256 dicapai ketika intensitas radiasi 431,372 W/m² dan laju aliran massa 0,008 kg/s.

Kata kunci : Kolektor surya, V-corrugated absorber plate, energi berguna, efisiensi kolektor, obstacle, fin

NUMERICAL SIMULATION AND EXPERIMENTAL STUDY THE EFFECT OF PRISMATIC TRIANGLE FIN ADDITION OBLIQUE TO THE FLOW UNDER V-CORRUGATED ABSORBER PLATE TO SOLAR AIR HEATER EFFICIENCY

Student Name	: Alifia Masitha Harina
NRP	: 2112100008
Major	: Mechanical Engineering, FTI-ITS
Advisory Lecturer	: Prof. Dr. Ir. Djatmiko Ichsani, M.Eng

Abstract

Energy is an important thing in human life, because almost all of human acticities need energy. Energy consist of renewable energy and non-renewable energy. People needed of non-renewable energy increase every year. People always depend on non-renewable energy can makes a serious problem. That is why alternative energy must be developed, and one of them is solar energy. To increase the thermal efficiency of solar air heater, modification is needed by making the absorbtion area wider using v-corrugated absorber and prismaric triangle fin addition.

Numerical simulation and experimental study has been done in Heat tranfer and mass laboratory, Mechanical Engineering, Institut Teknologi Sepuluh Nopember Surabaya. Numerical simulation is done to find out the effect of fin addition with varying the height of 3 mm; 4 mm; 5 mm, fin spacing to the obstacle are 0,251; 0.51; 0.751, and fin angle are 22,5°; 45°; 67,5°. The optimum fin is tested experimentally with mass flow rate variations are 0,002 kg/s; 0,004 kg/s; 0,006 kg/s; 0,008 kg/s and radiation intensities are 431 Watt/m²; 575 Watt/m²; 719 Watt/m².

The result of numerical simulation, optimum fin is achieved by 3 mm height, 0,5l spaced fin, and 75° angle fin. Then based on the experiment, the highest usefull energy (Qu) is 96,925 Watt achieved at 719 Watt/m² radiation intensity and 0,008 kg/s mass flow rate. And the highest efficiency is 0,9256 achieved at 431,372 Watt/m² radiation intensity and 0,008 kg/s mass flow rate.

Kata kunci : Solar air heater, V-corrugated absorber plate, usefull energy, efficiency, obstacle, fin

DAFTAR ISI

HAL	AMAN	JUDUL	
LEN	IBAR P	ENGESAHAN	
ABS	TRAK .		i
ABS	TRACT		iii
KAT	APENG	ANTAR	v
DAF	TAR IS	۶I	vii
DAF	TAR G	AMBAR	ix
DAF	TAR T	ABEL	xi
BAB	I PENI	DAHULUAN	1
1.1.	Latar H	Belakang	1
1.2.	Rumus	san Masalah	3
1.3.	Batasa	n Masalah	3
1.4.	Tujuar	Penelitian	4
1.5.	Manfa	at Penelitian	4
BAB	II TIN	JAUAN PUSTAKA	5
2.1.	Dasar '	Teori	5
	2.1.1.	Prinsip Kerja Kolektor Surya Pemanas	
		Udara	5
	2.1.2.	Radiasi Matahari yang Diserap Kolektor	
		Surya	6
	2.1.3.	Tahanan termal pada Kolektor Surya	6
	2.1.4	Perpindahan Panas	7
	2.1.5.	Analisa Perpindahan Panas pada Kolektor	
		Surya Pemanas Udara	11
	2.1.6.	Analisa Energi Surya pada Kolektor Surya	
		Pemanas Udara	25
	2.1.7.	Penurunan Tekanan pada Kolektor Surya	28
2.2.	Penelit	tian Terdahulu	29
	2.2.1.	Md Azharul Karim, M.N.A. Hawlader	29
	2.2.2.	Ekadewi Anggraini Handoyo	31
	2.2.3.	Ahmad Fudholi et al.	33
BAB	III ME	TODE PENELITIAN	36
3.1.	Simula	asi Numerik	36

	3.1.1.	Tahap Pre-processing Menggunakan	
		Software GAMBIT 2.4.6.	36
	3.1.2.	Pra-Design Pemilihan Fin	40
3.2.	Peneliti	ian Eksperimen	42
	3.2.1.	Variasi Laju Aliran Massa	42
	3.2.2.	Variasi Intensitas Cahaya	42
	3.2.3.	Gambaran Sistem Kerja	43
3.3.	Parame	ter vang Diukur dan Peralatan Penelitian	44
	3.3.1.	Parameter vang Diukur	44
	3.3.2.	Peralatan Penelitian	45
3.4.	Tahap-	Tahap Penelitian	47
3.5.	Flowch	art	50
	3.5.1.	Flowchart Penelitian	50
	3.5.2.	Flowchart Pengambilan Data	51
	3.5.3.	Flowchart Perhitungan	52
BAB	IV ANA	ALISA HASIL DAN PEMBAHASAN	54
4.1.	Simula	si Numerik	54
	4.1.1.	Grid Independency	54
	4.1.2.	Hasil Simulasi Numerik	57
4.2.	Eksper	imen	64
	4.2.1.	Perhitungan Data Eksperimen	64
4.3.	Analisa	Energi Berguna Terhadap Variasi Intensitas	
	Radiasi	dan Laju Aliran Massa	73
4.4.	Analisa	Efisiensi Terhadap Variasi Intensitas Radiasi	
	dan La	u Aliran Massa	76
4.5.	Penuru	nan Tekanan dan Koefisien Friksi Aliran	
	Udara		77
BAB	V KES	IMPULAN DAN SARAN	79
5.1.	Kes	impulan	79
5.2.	Sara	ົ້	79
DAF	ГAR PU	JSTAKA	81
LAM	PIRAN		

DAFTAR GAMBAR

Gambar 1.1	Konsumsi Energi Final Indonesia menurut sektor	2
Gambar 1.2	Kolektor surya pemanas udara pada umumnya	2
Gambar 2.1	(a) Skema tahanan termal kolektor surya	
	(b) Kolektor surya tampak depan dengan	
	plat absorber tipe V-Corrugated dengan	
	penambahan obstacle dan fin	7
Gambar 2.2	Skema absorber bentuk-V dan kaca	
	penutup1	3
Gambar 2.3	Luasan penampang inlet fluida1	5
Gambar 2.4	Keliling penampang inlet fluida1	6
Gambar 2.5	Permukaan dengan fin1	7
Gambar 2.6	Grafik efisiensi fin berdasarkan bentuknya 1	8
Gambar 2.7	Tahanan termal pada fin yang disusun1	9
Gambar 2.8	Tahanan termal pada isolator bagian bawah2	4
Gambar 2.9	Tiga kolektor surya yang diteliti3	0
Gambar 2.10	Perbandingan efisiensi ketiga kolektor	
	surya3	1
Gambar 2.11	Kolektor surya dengan penambahan	
	obstacle berbentuk paruh3	2
Gambar 2.12	Rasio penurunan tekanan dan penurunan	
	efisiensi ketika obstacle ditekuk	
	dibandingkan obstacle lurus3	3
Gambar 2.13	Skema kolektor surya dua laluan3	4
Gambar 2.14	Tiga variasi fin longitudinal yang diteliti 3	4
Gambar 2.15	Grafik hasil kolektor surya dengan upper	
	and lower fin (type III)	5
Gambar 3.1	Model V-corrugated absorber pada	
	GAMBIT	7
Gambar 3.2	Meshing V-corrugated absorber pada	
	GAMBIT3	8
Gambar 3.3	Kondisi Batas pada Fluent3	8

Gambar 3.4	Dimensi <i>fin</i> berbentuk prisma segitiga	
	dengan variasi tinggi segitiga	.40
Gambar 3.5	Fin yang dimiringkan terhadap arah aliran	
	(α)	.41
Gambar 3.6	Sistem Kerja V-corrugated solar air heater	.43
Gambar 3.7	Posisi penempatan thermal sensor	.44
Gambar 3.8	Posisi penempatan pressure tap	.45
Gambar 3.9	Peralatan penelitian	.47
Gambar 3.10	Flowchart Penelitian	.50
Gambar 3.11	Flowchart Pengambilan Data	.51
Gambar 3.12	Flowchart Perhitungan	.53
Gambar 4.1.	Rancangan Mesh yang akan diuji	.55
Gambar 4.2.	Grafik nilai eror grid independency	.56
Gambar 4.3.	Grafik $\Delta T = f(Sudut \text{ kemiringan } fin) \text{ pada}$	
	semua variasi	.58
Gambar 4.4.	Grafik $\Delta P = f(Sudut \text{ kemiringan } fin) \text{ pada}$	
	semua variasi	.60
Gambar 4.5.	Grafik $\Delta T/\Delta P = f(Sudut \text{ kemiringan } fin)$	
	pada semua variasi	.61
Gambar 4.6.	Grafik hasil simulasi variasi tambahan	
	pada sudut <i>fin</i>	.62
Gambar 4.7.	Vektor kecepatan pada fin optimal	.63
Gambar 4.8.	Grafik Qu fungsi laju aliran massa pada	
	variasi intensitas radiasi	.73
Gambar 4.9.	Grafik temperatur plat absorber fungsi laju	
	aliran massa pada variasi intensitas radiasi	.75
Gambar 4.10.	Grafik efisiensi fungsi laju aliran massa	
	pada variasi intensitas radiasi	.76
Gambar 4.11.	Grafik koefisien friksi aliran fungsi	
	Reynold number pada intensitas 718.954	
	W/m^2	.77
Gambar 4.12.	Grafik koefisien friksi aliran fungsi	
	Reynolds number pada intensitas 718.954	
	W/m^2	.78

DAFTAR TABEL

Tabel 2.1	Nilai konstanta untuk penggunaan pada	13
Tabel 3.1	Parameter yang digunakan pada	.15
	simulasi	.39
Tabel 3.2	Dimensi fin	.41
Tabel 3.3	Pengambilan Data Eksperimen	.48
Tabel 3.4	Desain Eksperimen	.49
Tabel 4.1	Jumlah <i>cell</i> , <i>face</i> , dan <i>node</i> dari kelima	
	mesh yang diuji	.55
Tabel 4.2	Hasil simulasi variasi mesh	.56
Tabel 4.3	Hasil simulasi kolektor surya dengan	
	variasi tinggi, jarak, dan sudut fin	.57
Tabel 4.4	Hasil simulasi kolektor surya dengan	
	variasi sudut pada <i>fin</i> 3 mm dan jarak	
	0.50L	.62

BAB I PENDAHULUAN

1.1. Latar Belakang

Energi merupakan hal yang sangat penting bagi kehidupan manusia, karena hampir semua aktivitas yang dilakukan manusia selalu membutuhkan energi. Energi itu sendiri dibagi menjadi dua macam, yaitu energi yang tidak dapat diperbarui (*non-renewable energy*) dan energi yang dapat diperbarui (*renewable energy*). Energi yang tidak dapat diperbarui yaitu energi fosil, yang semakin hari semakin habis persediannya. Sedangkan energi yang dapat diperbarui adalah energi yang dapat dimanfaatkan kembali seperti energi matahari.

Berdasarkan data Outlook Energi Indonesia 2014 (OEI 2014) yang diterbitkan oleh Dewan Energi Nasional RI, sampai saat ini Indonesia masih ketergantungan terhadap energi fosil terutama minyak bumi, sebesar 96% (minyak bumi 48%, gas 18%, dan batubara 30%) dari total konsumsi energi di dalam negeri. Perkembangan konsumsi energi berdasarkan sektor pengguna di Indonesia tahun 2003-2013 ditunjukkan pada Gambar 1.1. Dari gambar tersebut terlihat total konsumsi energi final pada periode 2003-2013 terus mengalami peningkatan dengan laju pertumbuhan rata-rata sebesar 4,1% per tahun. Total konsumsi energi final meningkat dari 117 juta TOE pada tahun 2003 menjadi 174 juta TOE di tahun 2013.

Energi surya merupakan salah satu energi yang dapat diperbarui (*renewable energy*) yang ramah, murah, dan mudah didapatkan terutama di negara Indonesia yang terletak pada garis khatulistiwa. Energi surya dapat dikonversikan menjadi energi termal dalam suatu kolektor surya (*solar collector*), energi termal tersebut dapat digunakan untuk memanaskan air atau udara. Kolektor surya pemanas udara pada dasarnya hanya terdiri dari plat penyerap yang menyerap radiasi surya, saluran tempat udara mengalir, kaca penutup, dan *blower* untuk mengalirkan udara seperti yang ditunjukkan pada Gambar 1.2.

Gambar 1.2 Kolektor surya pemanas udara pada umumnya.

Kolektor surva memilki berbagai macam variasi untuk meningkatkan efisiensi termalnya, metode pertama dengan mengganti plat penyerap panas yang berbentuk flat plate V-corrugated absorber, absorber menjadi vang dapat meningkatkan intensitas radiasi cahaya matahari yang diserap oleh absorber. Metode kedua dengan penambahan obstacle pada area perpindahan panas yang berfungsi sebagai pengganggu aliran fluida sehingga menciptakan turbulensi yang dapat meningkatkan koefisien konveksi. Dan metode ketiga adanya penambahan fin pada plat absorber yang dapat memperluas area perpindahan panas, sehingga dapat mengoptimalkan peningkatan temperatur fluida yang dihasilkan. Metode ketiga ini yang akan dibahas lebih lanjut pada penelitian ini untuk menciptakan rancangan fin yang dapat meningkatkan perpindahan panas secara konveksi namun dengan kerugian tekanan minimum.

1.2. Rumusan Masalah

Rumusan masalah yang dibahas dalam penelitian ini adalah :

- 1. Bagaimana pengaruh penambahan *fin* berbentuk prisma segitiga terhadap terhadap performansi dan efisiensi *Solar Air Heater*?
- 2. Bagaimana pengaruh perubahan kecepatan fluida *inlet* dan intensitas radiasi terhadap performansi dan efisiensi *Solar Air Heater*?

1.3. Batasan Masalah

Batasan dan asumsi yang digunakan dalam penelitian ini adalah :

- 1. Analisa performansi kolektor surya dilakukan pada *steady-state condition*.
- 2. Aliran udara yang mengalir di dalam *ducting* kolektor surya dianggap satu dimensi.
- 3. Penggunaan bahan untuk *obstacle* dan *fin* adalah aluminium.

- 4. *Obstacle* dianggap tidak emindahkan panas.
- 5. Temperatur *obstacle* dianggap sama dengan temperatur *base*.
- 6. *Contact resistance* pada *fin* dan plat *absorber* diabaikan.
- 7. Udara sekeliling kolektor surya dianggap udara diam.
- 8. Pengambilan data dilaksanakan di laboratorium dengan menggunakan lampu halogen sebagai pengganti sinar matahari (*artificial sun*).
- 9. Variasi intensitas radiasi lampu di bawah *range* intensitas radiasi maksimal di Surabaya yaitu sekitar 801 Watt/m² (berdasarkan PVGIS *online application*).
- 10. Data-data lain yang diperlukan dalam perencanaan dan analisa diambil sesuai dengan literatur yang relevan.

1.4. Tujuan Penelitian

Berdasarkan latar belakang dan rumusan masalah di atas, maka tujuan penelitian ini dikelompokkan menjadi dua, yaitu :

Studi simulasi numerik, bertujuan untuk :

- 1. Mengetahui variasi ketinggian segitiga fin yang optimal.
- 2. Mengetahui variasi jarak antar *fin* terhadap *obstacle* yang optimal.
- 3. Mengetahui variasi sudut kemiringan *fin* yang optimal. Studi eksperimen, bertujuan untuk :
- 1. Menguji performansi dan efisiensi *Solar Air Heater* dari hasil simulasi numerik yang paling optimal.
- 2. Mengetahui pengaruh perubahan kecepatan fluida *inlet* dan intensitas radiasi terhadap performansi dan efisiensi *Solar Air Heater*.

1.5. Manfaat Penelitian

Manfaat yang dapat diambil dari penelitian ini adalah :

- 1. Mengoptimalkan penggunaan sumber energi alternatif dalam bidang pengeringan.
- 2. Memberikan solusi terhadap permasalahan dan krisis energi.

BAB II TINJAUAN PUSTAKA

2.1. Dasar Teori

2.1.1. Prinsip Kerja Kolektor Surya Pemanas Udara

Kolektor surya merupakan alat yang mampu merubah energi radiasi matahari menjadi energi panas. Besarnya energi panas yang dipindahkan oleh kolektor surya tergantung dari intensitas matahari tiap waktu dan kemampuan kolektor untuk menyerap radiasi matahari. Pada dasarnya, suatu kolektor surya terdiri dari plat *absorber* yang umumnya dicat hitam, kaca penutup yang transparan terhadap radiasi matahari yang dipasang di atas plat *absorber* untuk mengurangi kehilangan kalor secara konveksi dan radiasi ke atmosfer, serta isolasi termal di bagian bawah dan samping kiri kanan untuk mengurangi kehilangan kalor secara konduksi. Plat *absorber* dapat berupa plat datar maupun plat yang ditekuk sehingga membentuk saluran penampang segitiga atau plat tipe *v-corrugated*.

Sinar radiasi matahari mula-mula menembus kaca penutup, kemudian mengenai plat *absorber* atau penyerap yang kemudian meyalurkan kalor tersebut ke fluida yang mengalir pada saluran di bawah dan atau atas plat penyerap. Karena menerima kalor dari plat penyerap, maka temperatur fluida mengalami kenaikan ketika keluar dari kolektor surya. Fluida kerja dalam kolektor dapat berupa air atau udara.

Kolektor surya pemanas udara cenderung memiliki efisiensi lebih rendah dibanding pemanas air. Peningkatan efisiensi kolektor surya dapat dilakukan dengan beberapa cara, salah satunya adalah dengan penggunaan saluran berpenampang segitiga atau *v-corrugated absorber plate* digabungkan dengan *obstacles*, dan pada penelitian ini terdapat penambahan *fin* berbentuk prisma segitiga yang dapat memperluas area perpindahan panas. Untuk memperoleh performansi dan efisiensi sesuai yang diharapkan, maka perlu direncanakan *fin* yang sesuai yaitu dengan menvariasikan tinggi, jarak, dan sudut kemiringan *fin* tersebut.

2.1.2. Radiasi Matahari yang Diserap Kolektor Surya

Matahari merupakan sumber energi yang bermanfaat bagi kehidupan di bumi, radiasi matahari yang berupa pancaran energi dapat dimanfaatkan untuk kehidupan manusia misalnya sebagai alat pengering. Energi matahari mengeluarkan radiasi rata-rata sebesar $G_{SC} = 1353 \frac{W}{m^2}$ setiap saat. Namun energi yang sangat besar ini tidak dapat ditangkap seluruhnya di bumi. Sebelum mencapai bumi, radiasi dari matahari melalui atmosfer terlebih dahulu dimana sebagian radiasi ini diserap, sebagian diteruskan dan sebagian lagi dipantulkan atmosfer. Energi matahari yang diteruskan ke bumi diterima oleh suatu permukaan secara langsung (disebut *beam radiation*) dan secara tak langsung dalam pengertian pantulan dari permukaan tanah atau gedung atau pohon (disebut *diffuse radiation*).

Kolektor surya merupakan suatu alat yang dapat memanfaatkan energi matahari yang berlimpah tersebut. Faktor yang mempengaruhi kolektor surya untuk menyerap radiasi matahari antara lain: transmisivitas dan absorbsivitas dari bahan kolektor, pengaruh atmosfer bumi, nilai dari intensitas radiasi matahari di bidang ekstraterestrial, waktu, dan lokasi penempatan kolektor surya.

2.1.3. Tahanan Termal pada Kolektor Surya

Konsep perpindahan panas pada kolektor surya pemanas udara yang akan diteliti dapat digambarkan dengan rangkaian tahanan termal seperti pada Gambar 2.1 di bawah ini :

2.1.4. Perpindahan Panas

Perpindahan panas merupakan perpindahan energi sebagai akibat dari adanya perbedaan temperatur. Perpindahan panas ini terjadi dari medium yang memiliki temperatur tinggi

menuju temperatur rendah. Ada tiga macam cara perpindahan panas yang dibedakan menurut cara terjadinya dan medium perpindahan panas tersebut, yaitu perpindahan panas secara konduksi, konveksi, dan radiasi.

1. Perpindahan Panas Konduksi

Perpindahan panas konduksi terjadi pada material padat (*solid*). Material padat memiliki susunan molekul yang rapat dan teratur, maka ketika molekul tersebut bergerak akan menabrak molekul disebelahnya. Akibatnya, molekul yang ditabrak akan memperoleh energi dari molekul yang menabraknya. Besarnya laju perpindahan panas dapat dinyatakan dalam bentuk *Heat Flux* q[°] (W/m²) yaitu perpindahan panas per satuan luas, yang arahnya tegak lurus dengan luasan dan besarnya sebanding dengan gradien temperaturnya. Dengan asumsi *steady state conditions*, distribusi temperatur pada konduksi adalah linier sehingga distribusi temperatur dapat dinyatakan :

$$q''_{\text{conduction}} = k \frac{(T_1 - T_2)}{L} = k \frac{\Delta T}{L}$$
.....(2.1)

dengan :

 q_{cond} = fluks perpindahan panas konduksi (W/m²)

k = properties yang disebut sebagai konduktifitas thermal (W/m.K)

 T_1 = temperatur pada titik 1 (K)

 T_2 = temperatur pada titik 2 (K)

2. Perpindahan Panas Konveksi

Konveksi adalah perpindahan panas dimana molekulmolekul benda membawa energi panas dari satu titik ke titik lainnya. Secara umum perpindahan panas konveksi terjadi pada suatu permukaan dengan fluida yang mengalir. Gerakan olakan dari aliran fluida tersebut sangat berpengaruh terhadap perpindahan panas yang terjadi. Selain itu, perpindahan panas konveksi juga dipengarui oleh sifat dari aliran fluida. Perpindahan panas konveksi dibagi menjadi dua yaitu *Force Convection* yaitu perpindahan panas karena faktor luar, misalnya *fan* dan *blower*. *Free Convection* yaitu perpindahan panas tanpa ada faktor luar melainkan karena *Bouyancy Force*. Laju perpindahan panas konveksi dapat dirumuskan persamaan sebagai berikut :

 $q''_{\text{convection}} = h(T_s - T_{co}).....(2.2)$

dengan :

 \mathbf{q}_{conv} = fluks perpindahan panas konveksi (W/m²)

h = koefisien konveksi (W/m^2K)

 T_s = temperatur permukaan (K)

 T_{∞} = temperatur fluida (K)

Koefisien perpindahan panas konveksi (*h*) yang terjadi adalah hasil perhitungan dan merupakan fungsi dari kecepatan. Beberapa parameter tidak berdimensi digunakan untuk menghitung nailai dari koefisien perpindahan panas konveksi apabila kecepatan fluida diketahui. Parameter-parameter tersebut antara lain :

• **Reynolds number** (**Re**), adalah parameter non-dimensi yang menunjukkan perbandingan antara gaya inersia dengan gaya gesek yang terjadi. Bilangan *Reynolds* ini dapat digunakan untuk menentukan jenis aliran yang terjadi merupakan aliran laminar atau turbulen. Secara umum bilangan *Reynolds* dirumuskan dalam persamaan berikut :

$$\operatorname{Re} = \frac{\operatorname{V.L}}{v} \tag{2.3}$$

dengan :

V = kecepatan fluida (m/s)

L = panjang lintasan (m)

v = koefisien gesek kinematis (m²/s)

• **Prandtl number** (**Pr**), adalah parameter non-dimensi yang menunjukkan perbandingan antara viskositas kinematis dengan diffusivitas panas. Bilangan *Prandtl* dirumuskan dalam persamaan berikut :

 $\mathbf{Pr} = \frac{\mathbf{v}}{\mathbf{a}}....(2.4)$

dengan :

 \boldsymbol{v} = viskositas kinematik (m²/s)

 α = difusivitas panas (m²/s)

• Nusselt number (Nu), adalah parameter non-dimensi yang menunjukkan perbandingan antara koefisien perpindahan panas konveksi (h) dengan koefisien perpindahan panas konduksi (k). Bilangan Nusselt dirumuskan dalam persamaan berikut :

 $Nu = \frac{hL}{k}....(2.5)$

dengan :

L = panjang(m)

 $h = koefisien konveksi (W/m^2.K)$

k = koefisien konduksi (W/m.K)

3. Perpindahan Panas Radiasi

adalah perpindahan Radiasi kalor dalam bentuk gelombang elektromagnetik. Pada radiasi, kalor atau energi merambat tanpa membutuhkan zat perantara. Sebenarnya setiap benda memancarkan dan menyerap energi radiasi. Benda panas ada yang berpijar dan ada juga yang tidak berpijar. Kedua benda tersebut memencaran atau meradiasikan energi kalor dalam bentuk gelombang elektromagnetik dengan berbagai panjang gelombang. Besarnya laju perpindahan panas radiasi sangat kemampuan dipengaruhi oleh suatu permukaan untuk memancarkan energi dan temperatur. Laju perpindahan panas radiasi dapat dinyatakan dalam persamaan sebagai berikut :

$$q_{\text{radiation}} = \sigma. \varepsilon_{\text{bahan}} \left(T_{\text{S}}^4 - T_{\text{Sur}}^4 \right) \dots (2.6)$$

dengan :

 q_{rad} = fluks panas radiasi (W/m²)

 σ = konstanta *Stefan-Boltzmann* (5.67 × 10⁻⁸ W/m².K⁴)

 $\varepsilon_{bahan} = emisivitas bahan$

 T_s = temperatur permukaan (K)

 T_{Sur} = temperatur lingkungan (K)

Laju perpindahan panas radiasi juga dapat dituliskan dalam bentuk lain, seperti yang ditunjukkan pada persamaan berikut :

 $\mathbf{q}_{radiation}^{"} = \mathbf{h}_{r} \left(\mathbf{T}_{S} - \mathbf{T}_{Sur} \right) \dots (2.7)$

dengan :

 $\mathbf{h_r} =$ koefisien perpindahan panas radiasi

Dari persamaan (2.6) dan (2.7) , nilai h_r dirumuskan persamaan sebagai berikut :

$$h_{\rm r} = \epsilon \sigma (T_{\rm S} + T_{\rm Sur}) (T_{\rm S}^2 + T_{\rm Sur}^2).....(2.8)$$

Laju perpindahan panas radiasi untuk dua plat paralel ditunjukkan oleh persamaan berikut :

$$q_{\text{radiation}}^{*} = \frac{\sigma}{\frac{1}{\epsilon_{1}} + \frac{1}{\epsilon_{2}} - 1} (T_{1}^{4} + T_{2}^{4}) \dots (2.9)$$

dengan :

 T_1 = temperatur permukaan (K)

 T_2 = temperatur surrounding (K)

 ε_1 = emisivitas bahan permukaan 1

 ε_2 = emisivitas bahan permukaan 2

2.1.5. Analisa Perpindahan Panas pada Kolektor Surya Pemanas Udara

2.1.5.1 Analisa Perpindahan Panas Konveksi

1. Koefisien perpindahan panas konveksi antara kaca penutup dengan udara luar (h_w)

Koefisien perpindahan panas konveksi oleh kaca penutup terhadap udara luar (h_w), didasarkan pada hembusan angin di atas kaca penutup, dengan memakai persamaan :

 $\mathbf{h}_{\mathbf{w}} = \frac{\mathbf{N}\mathbf{u}_{\mathbf{L}}\cdot\mathbf{K}}{\mathbf{L}}....(2.10)$

dengan :

 $h_w =$ koefisien konveksi *wind* (W/m²K)

k = koefisien konduksi (W/mK)

L = panjang cover(m)

Untuk free convection bilangan Nusselt sebagai berikut :

• Aliran pada *inclined* dan *horizontal plate* (permukaan plat bagian atas panas dan permukaan plat bagian bawah dingin)

$$Nu_L = 0.15 \text{ Ra}_L^{\frac{1}{8}}$$
.....(2. 12)
 $10^7 \le Ra_L \le 10^{11}$

$$Ra_{L} = \frac{g\beta' \Delta T_{amb-cg}L^{s}}{\nu \alpha}....(2.13)$$

dengan :

- g = konstanta gravitasi (m/s²) β' = koefisien ekspansi volu
- $\hat{\beta}' = \text{koefisien ekspansi volumetrik (untuk gas ideal}$ $\beta' = \frac{1}{\pi}$)
- ΔT = perbedaan temperatur antara kaca penutup dengan plat *absorber*
- L = panjang karakteristik kaca penutup (m)
- v = viskositas kinematik (m²/s)
- α = viskositas thermal (m²/s)

2. Koefisien perpindahan panas konveksi antara kaca penutup dengan plat *absorber* (h_{conv,cg-abs})

Perpindahan panas konveksi yang terjadi antara plat absorber dengan kaca penutup adalah *free convection*. Randall, 1978, melakukan penelitian mengenai kolektor surya dengan *Vee-Corrugated*. Plat *absorber* bentuk-V dengan gelombang ke arah horizontal pada kolektor surya ditujukan untuk meningkatkan kemampuan penyerapan terhadap perpindahan panas radiasi. Randall menginvestigasi permukaan gelombang bentuk-V dan mengkorelasikan data dalam bilangan *Reynolds* dan *Nusselt* dalam bentuk persamaan :

dengan nilai C₃ dan n diberikan pada Tabel 2.1 berikut sebagai fungsi dari sudut kemiringan gelombang (β) dan aspek perbandingan bentuk-V (A'), yakni perbandingan antara jarak plat *absorber* ke kaca penutup (l) terhadap tinggi gelombang (h) seperti terlihat Gambar 2.2 di bawah ini:

Gambar 2. 2 Skema *absorber* bentuk-V dan kaca penutup

Tabel 2.1Nilai konstanta untuk penggunaan padapersamaan (2.14)

-			
θ	A'	C ₃	n
	0,75	0,06	0,41
0^0	1	0,06	0,41
	2	0,043	0,41
45 ⁰	0,75	0,75	0,36
	1	0,082	0,36
	2	0,037	0,41
60 ⁰	0,75	0,162	0,3
	1	0,141	0,3
	2	0,027	0,42

Adapun nilai persamaan Rayleigh memakai persamaan vakni :

$$Ra = \frac{g\beta'\Delta T_{cg-abs}L^{s}}{\nu\alpha} = \frac{g_{T_{f,cg-abs}}\Delta T_{cg-abs}L^{s}}{\nu\alpha}.....(2.15)$$

dengan :

- = konstanta gravitasi (m/s^2)
- g β' = koefisien ekspansi volumetrik (untuk gas ideal $\beta' = \frac{1}{\pi}$
- ΔT = perbedaan temperatur antara kaca penutup dengan plat *absorber*
- L = panjang karakteristik kaca penutup (m)
- = viskositas kinematik (m^2/s) Ð
- = viskositas thermal (m^2/s) α

Sehingga diperoleh nilai koefisien konveksi antara pelat absorber dengan kaca penutup dengan persamaan :

 $h_{\text{conv,cg-abs}} = \frac{Nu.k}{L}$ (2.16)

3. Koefisien perpindahan panas konveksi antara plat absorber dengan fluida (h_{conv,abs-fluida})

Perpindahan panas konveksi yang terjadi antara plat absorber dengan fluida di dalam duct adalah force convection. Plat absorber yang berbentuk V-corrugated dengan tambahan *obstacle* dan *fin* maka untuk mendapatkan bilangan Nusselt memakai persamaan sebagai berikut ·

$Nu_D = \frac{h \times D_h}{h}$	 17)
- kfluida - 4 x Ac	10)
$D_h =p$	 18)

dengan :

h = koefisien konveksi (W/m^2K) $k_{\text{fluida}} = \text{konduktifitas fluida (W/mK)}$ D_h = diameter hidrolik (m) $A_c^{"}$ = luasan *inlet* fluida (m²)

P = keliling inlet fluida (m)

Dimana $D_{\rm h}$ dapat dihitung dengan mengetahui besarnya luasan penampang yang dilalui fluida (A_c), dapat dilihat pada Gambar 2.3 :

Gambar 2.3 Luasan penampang *inlet* fluida. (Tampak depan)

$$\begin{split} A_{duct} &= \frac{lebar \, duct \, x \, tinggi \, duct}{2} \dots (2.19) \\ A_{fin} &= tinggi \, segitiga \, x \, tinggi \, fin \, x \, 2 \dots (2.20) \\ A_{obs} &= \frac{lebar \, obstacle \, x \, tinggi \, obstacle}{2} \dots (2.21) \\ A_{c} &= A_{duct} - (A_{fin} + A_{obs}) \dots (2.22) \end{split}$$

Sedangkan besarnya keliling penampang yang dilalui fluida (P) pada Gambar 2.4 dapat dihitung berdasarkan:

Gambar 2.4 Keliling penampang *inlet* fluida. (Tampak depan) P = (lebar sisi *duct* x 2) + (tinggi segitiga x 4) + (lebar *duct* – alas *obstacle*) + (tinggi *obstacle* x 2) (2. 23)

Adapun *Reynolds Number* memakai persamaan yakni : $Re_{D_h} = \frac{P \times V \times D_h}{\mu}$(2. 24)

dengan :

 $\rho = \text{massa jenis fluida}\left(\frac{\text{kg}}{\text{m}^{\text{s}}}\right)$

V = kecepatan fluida masuk (m/s)

 D_h = diameter hidrolik (m)

 μ = viskositas dinamik ($\frac{m.s}{kg}$)

Untuk *force convection* pada aliran dalam dikategorikan menjadi :

Sehingga diperoleh nilai koefisien konveksi antara plat *absorber* dengan fluida dengan persamaan :

 $h_{conv,abs-fluida} = \frac{Nu_D \times K_{fluida}}{D_h}.....(2.28)$

4. Koefisien perpindahan panas konveksi antara *fin* dengan fluida (h_{conv,fin-fluida})

Perpindahan panas secara konveksi dipengaruhi oleh luas permukaan pada material padat, maka untuk memperbesar kapasitas perpindahan panas dilakukan modifikasi. Modifikasi dari kolektor surya ini adalah dengan memberi *extended surface* yang berupa *fin* (sirip) pada plat *absorber* sehingga luas permukaan semakin besar dan memungkinkan perpindahan panas meningkat. *Extended surface* ditunjukkan pada Gambar 2.5.

Gambar 2.5 Permukaan dengan fin.

Efisiensi dan luasan permukaan dari beberapa bentuk *fin* ditunjukkan pada Gambar 2.6.

Gambar 2.6 Grafik efisiensi *fin* berdasarkan bentuknya.

Untuk menghitung luasan total pada *extended surface* menggunakan persamaan berikut :

 $A_{t} = NA_{f} + A_{b}(2.29)$ $A_{f} = 2w \left[L^{2} + \left(\frac{t}{2}\right)^{2} \right]^{\frac{1}{2}}(2.30)$

dengan :

 $\begin{array}{l} \mathbf{A_t} &= \text{luasan total } (\text{m}^2) \\ \mathbf{N} &= \text{jumlah } \textit{fin yang disusun} \\ \mathbf{A_f} &= \text{luasan } \textit{fin } (\text{m}^2) \\ \mathbf{A_b} &= \text{luasan permukaan tanpa } \textit{fin } (\text{m}^2) \end{array}$

Efisiensi total (*overall surface efficiency*) dihitung dengan persamaan berikut :

 $\eta_{o} = 1 - \frac{NA_{f}}{A_{t}} (1 - \eta_{f})....(2.31)$

dengan :

 η_{o} = efisiensi overall fin

At	= luasan permukaan total <i>fin array</i> (m^2)
Ν	= jumlah <i>fin</i> yang disusun
Af	= luasan permukaan <i>fin</i> (m ²)

Laju perpindahan panas konveksi total dari *fin* dan plat dimana koefisien konveksi diasumsikan sama pada tiap *fin* dan plat menggunakan persamaan berikut :

$$q_{t} = hA_{t} \left[1 - \frac{NA_{f}}{A_{t}} \left(1 - \eta_{f} \right) \right] \theta_{abs}.....(2.32)$$

dengan

- h = koefisien konveksi (W/m^2)
- N = jumlah fin yang disusun
- $\mathbf{A_f} = \text{luasan} fin (\text{m}^2)$
- A_t = luasan total (m²)
- η_{f} = efisiensi dari satu *fin*

 θ_{abs} = perbedaan temperatur *base fin* (plat *absorber*) dan lingkungan *fin* (fluida), $T_{abs} - T_{fluida}$ (K)

Tahanan termal pada *fin* yang disusun dapat dilihat pada Gambar 2.7 dijabarkan dalam persamaan di bawah ini

Gambar 2.7 Tahanan termal pada *fin* yang disusun.

$$\mathbf{R}_{t,o} = \frac{\mathbf{\theta}_{abs}}{q_t} = \frac{1}{\mathbf{\eta}_o h A_t}.....(2.33)$$

dengan

:

h = koefisien konveksi (W/m^2K)

$$A_t$$
 = luasan total permukaan *fin array* (m²)

$$\eta_{o}$$
 = efisiensi *overall fin*

 $\theta_{abs} = T_{abs} - T_{fluids}(K)$

 q_t = total laju perpindahan panas pada *fin* (Watt)

5. Koefisien perpindahan panas konveksi antara fluida dengan *base* (h_{conv,fluida-base})

Perpindahan panas konveksi yang terjadi antara fluida dengan *base* adalah *force convection*, maka untuk mendapatkan bilangan *Nusselt* memakai persamaan (2.17) dan (2.18).

Adapun Reynolds Number memakai persamaan yakni :

$$\operatorname{Re}_{D_{h}} = \frac{\rho \times v \times D_{h}}{\mu}.$$
 (2.34)

dengan :

 $\rho = \text{massa jenis fluida}\left(\frac{\text{kg}}{\text{m}^{5}}\right)$ V = kecepatan fluida masuk (m/s) $D_{h} = \text{diameter hidrolik (m)}$ $\mu = \text{viskositas dinamik}\left(\frac{\text{m.s}}{\text{kg}}\right)$

Sehingga diperoleh nilai koefisien konveksi antara plat absorber dengan fluida dengan persamaan :

2.1.5.2 Analisa Perpindahan Panas Radiasi

1. Koefisien perpindahan panas radiasi antara kaca penutup dengan udara luar (h_{r,cg-amb})

Koefisien perpindahan panas radiasi pada penutup dapat dihitung berdasarkan:

$$h_{r,cg-amb} = \epsilon_{cg} \sigma \frac{(T_{cg} + T_{amb})(T_{cg}^2 + T_{amb}^2)(T_{cg} - T_{amb})}{(T_{cg} - T_{amb})} (2.36)$$

dengan :

 ε_{cg} = emisivitas cover glass

$$\sigma = \text{konstanta Boltzman} (5,6667 \times 10^{-8} \frac{\text{W}}{\text{m}^2 \text{K}^4})$$

 T_c = temperatur penutup (K)

 $T_{amb} = temperatur ambient (K)$

2. Koefisien perpindahan panas radiasi antara kaca penutup dengan plat *absorber* (h_{r,cg-abs})

Faktor bentuk akan berpengaruh pada proses perpindahan panas radiasi dari plat absorber ke sekelilingnya. Untuk mendapatkan penyelesaian perpindahan panas radiasi pada plat-V dibutuhkan *view factor*, nalai porsi atau bagian radiasi yang meninggalkan permukaansatu dan mengenai lainnya. Adapun untuk perhitungan *view factor* memakai persamaan :

perhitungan view factor memakai persamaan : $F_{1-3} = 1 - \sin \frac{\alpha}{2}$ (2. 37) $F_{12-3} = \frac{2L(F_{1-8})}{2L+2H}$ (2. 38)

dengan :

 F_{1-3} = view factor sisi miring bidang terhadap cover glass

 α = besar sudut gelombang (20⁰)

 F_{12-3} = view factor dua sisi miring gelombang terhadap cover glass

L = sisi miring plat absorber (0,086 m)

H = Ketinggian *equivalent* luasan dimana terjadi konveksi bebas yaitu ketinggian *parallel slat arrays* ditambah dengan setengah dari ketinggian segitiga *absorber*, yaitu $H = 1 \text{ cm} + (\frac{1}{2} \times 8,5 \text{ cm})$ = 5,25 cm

Setelah perhitungan di atas diperoleh faktor bentuk tersebut, maka akan diperoleh koefisien perpindahan panas radiasi yang dipancarkan ke permukaan *cover* :

$$h_{r,cg-abs} = \frac{\sigma(T_{abs}^{2} + T_{cg}^{2})(T_{abs} + T_{cg})}{\frac{1 - \varepsilon_{abs}}{\varepsilon_{abs}} + \frac{1}{F_{12-s}} + \frac{(1 - \varepsilon_{cg})A_{abs}}{A_{cg}}}.....(2.39)$$

dengan :

 ε_{abs} = emisivitas plat *absorber*

- ε_{cg} = emisivitas cover glass
- σ = konstanta Boltzman (5,6667 x 10⁻⁸ $\frac{W}{m^2 K^4}$)

 A_{abs} = Luas efektif *plat absorber* (m²)

 A_{cg} = Luas efektif *cover glass* (m²)

3. Koefisien perpindahan panas radiasi antara plat *absorber* dengan *fin* (h_{r,abs-fin})

Penambahan fin pada sisi-sisi plat *absorber* akan menimbulkan perpindahan panas radiasi pada plat *absorber*. Untuk mendapatkan penyelasaian perpindahan panas radiasi pada plat-V dan *fin*, adapun untuk perhitungan *view factor* memakai persamaan:

 $F_{1-4} = 1 - \sin \frac{\alpha}{2}.....(2.40)$ $F_{12-4} = \frac{2L(F_{1-4})}{2t_{\text{fin}}+W}....(2.41)$

dengan :

 $\begin{array}{ll} \mathbf{F_{1-4}} &= view \ factor \ sisi \ miring \ bidang \ terhadap \ fin \\ \alpha &= besar \ sudut \ gelombang \ (20^0) \\ \mathbf{F_{12-4}} &= view \ factor \ dua \ sisi \ miring \ gelombang \ terhadap \ fin \\ \mathbf{t_{fin}} &= tinggi \ segitiga \ pada \ fin \ (m) \\ \mathbf{W} &= lebar \ alas \ kolektor \ surya \ (0,030 \ m) \end{array}$

Setelah perhitungan di atas diperoleh faktor bentuk tersebut, maka akan diperoleh koefisien perpindahan panas radiasi yang dipancarkan ke permukaan *cover* :

$$h_{r,abs-fin} = \frac{\sigma(T_{abs}^{2} + T_{fin}^{2})(T_{abs} + T_{fin})}{\frac{1 - \varepsilon_{abs}}{\varepsilon_{abs}} + \frac{1}{F_{12-4}} + \frac{(1 - \varepsilon_{fin})A_{abs}}{A_{fin}}}.....(2.42)$$

dengan :

 ε_{abs} = emisivitas *absorber*

4. Koefisien perpindahan panas radiasi antara plat *absorber* dengan *base* (h_{r,abs-base})

Plat *absorber* akan menimbulkan perpindahan panas radiasi pada alas (*base*). Untuk mendapatkan penyelasaian perpindahan panas radiasi pada plat-V dan alas, adapun untuk perhitungan *view factor* memakai persamaan 2.41.

Setelah perhitungan di atas diperoleh faktor bentuk tersebut, maka akan diperoleh koefisien perpindahan panas radiasi yang dipancarkan ke permukaan *cover* :

$$h_{r,abs-base} = \frac{\sigma(T_{abs}^2 + T_{base}^2)(T_{abs} + T_{base})}{\frac{1 - \varepsilon_{abs}}{\varepsilon_{abs}} + \frac{1}{F_{12-4}} + \frac{(1 - \varepsilon_{base})A_{abs}}{A_{base}}}.....(2.43)$$

dengan :

 $\varepsilon_{abs} = emisivitas absorber$ $\varepsilon_{base} = emisivitas base$

 A_{abs} = Luas efektif plat *absorber* (m²)

 $A_{\text{base}} = \text{Luas efektif } base (m^2)$

5. Koefisien perpindahan panas radiasi antara *fin* dengan *base* (h_{r,fin-base})

Fin akan menimbulkan perpindahan panas radiasi pada alas (*base*). Untuk mendapatkan penyelasaian perpindahan panas radiasi pada plat-V dan alas, adapun untuk perhitungan *view factor* memakai persamaan 2.41.

Setelah perhitungan di atas diperoleh faktor bentuk tersebut, maka akan diperoleh koefisien perpindahan panas radiasi yang dipancarkan ke permukaan *cover* :

$$h_{r,fin-base} = \frac{\sigma(T_{fin}^2 + T_{base}^2)(T_{fin} + T_{base})}{\frac{1 - \varepsilon_{fin}}{\varepsilon_{fin}} + \frac{1}{F_{12-4}} + \frac{(1 - \varepsilon_{base})A_{fin}}{A_{base}}}.....(2.44)$$

dengan :

 ε_{fin} = emisivitas *fin*

8 _{base}	= emisivitas <i>base</i>
A_{fin}	= Luas efektif fin (m ²)
A _{base}	= Luas efektif <i>base</i> (m^2)

2.1.5.3 Analisa Perpindahan Panas di Bagian Atas Kolektor Surya (U_T)

 (m^2K/W)

2.1.5.4 Analisa Perpindahan Panas di Bagian Bawah Kolektor Surya (U_B)

Koefisien perpindahan panas di bagian bawah (U_B) dihitung dari plat *absorber* hingga udara luar di bagian bawah kolektor, ditunjukkan pada Gambar 2.8.

Gambar 2.8 Tahanan termal pada isolator bagian bawah.
Perpindahan panas yang terjadi pada isolator adalah perpindahan panas konduksi, yang dapat dirumuskan dengan persamaan berikut ini :

$$U_{B} = \frac{1}{\left(\frac{L_{1}}{k_{1}} + \frac{L_{2}}{k_{2}} + \frac{1}{h_{W}}\right)A_{iso}}....(2.47)$$

dengan :

 $U_{\mathbf{B}}$ = Perpindahan panas di bagian bawah kolektor surya (W/m²K)

 L_1 = tebal *styrofoam* (0.25 m)

 L_2 = tebal *triplex* (0.005 m)

 k_1 = koefisien konduksi *styrofoam* (W/m.K)

k₂ = koefisien konduksi *triplex* (W/m.K)

2.1.5.5 Koefisien Perpindahan Panas Total (UL)

Koefisien perpindahan panas total atau *Overall heat transfer coefficient* (U_L) ada kolektor surya pemanas udara dirumuskan persamaan sebagai berikut :

 $\mathbf{U}_{\mathbf{L}} = \mathbf{U}_{\mathbf{T}} + \mathbf{U}_{\mathbf{B}}.$

2.1.6. Analisa Energi Surya pada Kolektor Surya Pemanas Udara

2.1.6.1. Faktor Efisiensi Kolektor (F')

Faktor efisiensi (F) untuk kolektor surya pemanas udara tipe aliran di bawah plat *absorber* dengan plat *v-corrugated* adalah sebagai berikut :

$$\mathbf{F}' = \frac{1}{1 + \frac{U_L}{\frac{h_1}{\sin\frac{\theta}{2}} + \frac{1}{h_1 + \frac{h_r}{h_r}}}}....(2.49)$$

dengan :

F' = faktor efisiensi

 U_L = koefisien perpindahan panas total (W/m²K)

 h_1 = koefisien perpindahan panas konveksi plat *absorber* dengan fluida

- $h_r = koefisien perpindahan panas radiasi plat$ *absorber*dengan*base*
- θ = besar sudut gelombang (20⁰)

2.1.6.2. Faktor Pelepasan Panas (F_R)

Persamaan faktor pelepasan panas (F_R) untuk kolektor surya pemanas udara tipe plat *v*-corrugated dengan aliran dibawah absorber adalah sebagai berikut :

$$\varphi = \frac{mC_p}{A_p U_L F'}...(2.50)$$

$$F'' = \varphi \left[1 - e^{-\frac{1}{\varphi}} \right]...(2.51)$$

$$F_R = F''.F'...(2.52)$$

dengan :

2.1.6.3. Analisa Panas yang Berguna pada Kolektor Surya, $Q_{Useful}(Q_U)$

Energi berupa panas yang berguna dari kolektor surya pemanas udara tipe aliran di bawah plat *absorber* dengan plat gelombang bentuk-V dijabarkan dalam persamaan di bawah ini :

 $Q_{u} = \dot{m} C_{p} [T_{f,out} - T_{f,in}]$(2.53)

atau

$$Q_u = A_c \cdot F_R [S - U_L (T_{f,in} - T_{amb})]$$
.....(2.54)

atau

$$Q_u = Q_{conv,abs-u} + Q_{conv,fin-u} - Q_{conv,u-base} \dots (2.55)$$

dengan persamaan radiasi surya yang diserap adalah:

$$S = 1,01 \times \tau_{cg} \times \alpha_{abs} \times I_T$$
.....(2.56)

atau

$$S = Q_{conv,abs-u} + Q_{rad,abs-fin} + Q_{rad,abs-base} - Q_{loss upper}(2.57)$$

$$Q_{\text{conv,abs-u}} = \frac{\frac{T_{\text{abs}} - T_{u}}{1}}{\frac{1}{h_{\text{conv,abs-fluida}}}}.....(2.58)$$

$$Q_{\text{conv,fin}-u} = \frac{\frac{T_{\text{fin}}-T_u}{1}}{\frac{1}{h_{\text{conv,fin-fluida}}}}.....(2.59)$$

$$Q_{rad,abs-base} = \frac{\frac{T_{abs} - T_{base}}{\frac{1}{h_{rad,abs-base}}}.....(2.61)$$

$$Q_{rad,abs-fin} = \frac{T_{abs}-T_{fin}}{\frac{1}{h_{rad,abs-fin}}}....(2.62)$$

$$Q_{\text{loss upper}} = \frac{T_{\text{abs}} - T_{\text{amb}}}{R_{\text{total upper}}}.....(2.63)$$

dengan :

Q_u	= energi berguna (Watt)
S	= radiasi matahari per satuan luas yang diserap $\left(\frac{W}{m^2}\right)$
$U_{\rm L}$	= koefisien kehilangan panas total $\left(\frac{W}{m^2 K}\right)$
T _{f,in}	= temperatur fluida masuk <i>ducting channel</i> (K)
T _{amb}	= temperatur lingkungan (K)
Tu	= temperatur usefull equivalent (K)
T _{abs}	= temperatur <i>plat absorber</i> (K)
Tbase	= temperatur plat bawah (K)
T _{fin}	= temperatur <i>fin</i> (K)
F _R	= collector heat removal factor
τ_{cg}	= transmisivitas <i>cover glass</i>
α_{abs}	= absorbsivitas <i>plat absorber</i>

2.1.6.4. Analisa Efisiensi Kolektor Surya (ŋ)

Energi yang berguna secara teoritis pada kolektor surya telah dijelaskan di atas. Sedangkan efisiensi kolektor surya pemanas udara tipe aliran di bawah plat *absorber* dengan plat gelombang bentuk-V dijabarkan dalam persamaan di bawah ini:

$$\eta = \frac{Q_u}{A_{abs}.I_T} \times 100\%....(2.64)$$

dengan :

 $\begin{aligned} \eta &= \text{efisiensi kolektor surya} \\ \mathbf{Q}_{u} &= \text{energi berguna (Watt)} \\ \mathbf{A}_{abs} &= \text{luasan efektif kolektor (m}^{2}) \\ \mathbf{I}_{T} &= \text{Intensitas radiasi matahari} \left(\frac{W}{m^{2}}\right) \end{aligned}$

2.1.7. Penurunan Tekanan pada Kolektor Surya

Tekanan aliran pada saluran kolektor surya diasumsukan *incompressible fluid* yang mengalir pada pipa atau *duct*. Dengan mengabaikan pengaruh gesekan dan asumsi *steady state flow*, persamaan Bernoulli dapat digunakan seperti dibawah ini :

 $\frac{P}{\rho} + \frac{V^2}{2} + gz = contants$

Tekanan menurun sepanjang *duct* diakibatkan oleh pengecilan luasan (kenaikan kecepatan) atau ada beda ketinggian (nilai z meningkat). Pada kenyataannya, aliran dalam pipa atau *duct* mengalami pengaruh gesekan yang signifikan karena alirannya turbulen. Sehingga persamaan Bernoulli tidak dapat diaplikasikan. Pengaruh gesekan akan menyebabkan penurunan nilai pada persamaan Bernoulli (tidak konstan). Penurunan nilai ini dinyatakan sebagai *loss of mechanical energy*.

Pada aliran turbulen, penurunan tekanan tidak dapat dihitung secara analitis melainkan eksperimental. Pada aliran *fully developed*, penurunan tekanan dipengaruhi oleh gesekan pada saluran horizontal dengan luas area konstan, yaitu diameter (D), panjang saluran (L), kekasaran permukaan (e), kecepatan rata-rata aliran (\overline{V}), massa jenis fluida (ρ), dan viskositas fluida (μ).

Pada penelitian ini, penurunan tekanan diukur menggunakan *Magnetic Differential Pressure Gage*, dengan mengetahui penurunan tekanan selama udara mengalir melintasi kolektor surya sepanjang L dengan kecepatan udara, v, aliran turbulen, maka koefisien friksi aliran dapat dicari dengan persamaan :

$\left(\frac{p_1}{\rho} + \alpha_1 \frac{v_1^2}{2} + gz_1\right) - \left(\frac{p_2}{\rho} + \alpha_2 \frac{v_2^2}{2} + gz_2\right) = \text{Head loss total}$	(2.65)
$H_{ltotal} = H_{lmajor} + H_{lminor}$	(2.66)
$H_{lmajor} = f \frac{L}{D} \frac{V^2}{2} \dots$	(2.67)
$ \left(\frac{\mathtt{P}_1}{\rho}\right) - \left(\frac{\mathtt{P}_2}{\rho}\right) = f \frac{\mathtt{L}}{\mathtt{D}} \frac{\mathtt{V}^2}{2} \$	(2.68)
$f = \frac{\Delta P}{\frac{L}{D} - P}$	(2. 69)
Dh. 2	

Asumsi yang digunakan yakni :

- 1. Aliran steady dan incompressible flow
- 2. Aliran *fully developed turbulent flow* ($\alpha_1 = \alpha_2 = 1$)
- 3. Arah aliran horizontal sehingga tidak ada beda ketinggian dalam saluran $(z_1 z_2)$
- 4. Luas penampang aliran konstan sehingga tidak kecepatan rata-rata masuk dan keluar saluran sama $(\overline{V_1} = \overline{V_2})$
- 5. Tidak ada *fitting* pada saluran (heat loss minor = 0)

2.2. Penelitian Terdahulu

Kajian pustaka dilakukan terkait dengan penelitian terdahulu yang berupaya untuk meningkatkan perpindahan kalor konveksi dengan menggunakan plat penyerap jenis *v*-corrugated dan penambahan obstacle dan fin adalah sebagai berikut :

2.2.1. Md Azharul Karim, M.N.A. Hawlader (2004)

Karim dan Hawlader (2004) dalam penelitiannya yang berjudul "**Performance Investigation Of Flat Plate, V-Corrugated, and Finned Air Collector**" meneliti kinerja kolektor surya pemanas udara jenis plat datar, kolektor dengan *v-corrugated absorber plate*, dan kolektor dengan *fin* di atas plat penyerap secara eksperimen dan teoritis. Gambar skema ketiga kolektor yang diuji dapat dilihat pada Gambar 2.9. Pengujian dilakukan dengan membuat temperatur udara masuk dan

kecepatan aliran udara konstan serta mengikuti standart ASHRAE 93-97 saat pengukuran, yaitu intensitas radiasi surya lebih dari 630 W/m² dengan fluktuasi kurang dari 50 W/m², dan kecepatan angin lebih rendah dari 4,5 m/s. Kolektor juga diuji dalam aliran *double-pass*.

(c)

Gambar 2.9 Tiga kolektor surya yang diteliti. (a) *Flat plate*, (b) *V-corrugated*, dan (c) *Finned*

Dari penelitian yang telah dilakukan untuk banyak kondisi di Singapura, Karim dan Hawlader menyampaikan bahwa efisiensi kolektor *v-corrugated* terbukti yang tertinggi dan efisiensi plat datar terendah, seperti ditunjukkan pada Gambar 2.10. Hasil simulasi dari eksperimen membuktikan bahwa kolektor *v- corrugated* mempunyai efisiensi 10-15% lebih tinggi dari plat datar dan 5-9 % lebih dari kolektor *fin.* Penggunaan aliran *double-pass* menyebabkan peningkatan efisiensi terbesar

pada kolektor plat datar dan paling tidak berpengaruh pada kolektor *v*-corrugated.

Gambar 2. 10 Perbandingan efisiensi ketiga kolektor surya.

2.2.2. Ekadewi Anggraini Handoyo (2014)

Pada tahun 2014, Ekadewi Anggraini Handoyo dalam penelitiannya yang berjudul "**Peningkatan Kinerja Kolektor Surya Tipe V-Corrugated Absorber Plate Menggunakan Obstacle yang Ditekuk Secara Vertikal**" melakukan pengujian pada kolektor surya pemanas udara dengan alat penyerap jenis *v*-corrugated yang diberi obstacle di atas plat bawah saluran. Pada studi ini yang merupakan simulasi numerik dan eksperimen dari kolektor surya yang bertujuan untuk mempelajari pengaruh penambahan dan penekukan obstacle berbentuk paruh dalam perpindahan kalor konveksi dari plat penyerap ke aliran udara di bawahnya dan penurunan tekanan yang terjadi dalam suatu kolektor surya pemanas surya.

Eksperimen dilakukan terlebih dahulu, eksperimen dilakukan untuk aliran tanpa *obstacle* dan aliran dengan *obstacle* yang ditekuk dengan semua sudut tekuk yang berbeda mulai dari 0° (lurus, tidak ditekuk), 10° , 20° , 30° , 40° , 50° , 60° , 70° , dan 80° . Simulasi numerik dengan Gambit 2.4.6. dan Fluent 6.3.26 dilakukan untuk mendukung hasil eksperimen yaitu bahwa sudut tekuk optimal adalah 30° . Oleh karenanya, simulasi numerik

dibatasi pada aliran dengan *obstacle* 0° , 10° , 20° , 30° , 40° , dan aliran tanpa *obstacle*. Skema kolektor surya dengan penambahan *obstacle* dapat dilihat pada Gambar 2.11.

Gambar 2.11 Kolektor surya dengan penambahan *obstacle* berbentuk paruh.

Dari simulasi numerik aliran udara dalam saluran berpenampang segitiga didapatkan bahwa *obstacle* yang ditekuk vertikal dengan sudut lebih besar membuat aliran balik berkurang dan vektor kecepatan di sisi dekat plat juga berkurang. Hal ini menyebabkan perpindahan kalor konveksi ke udara beserta temperatur udara ke luar, dan penurunan tekanan aliran ikut berkurang ketika *obstacle* ditekuk dengan sudut besar. Semakin besar sudut tekuk *obstacle*, semakin rendah temperatur udara yang dihasilkan.

Dari eksperimen dengan bilangan *Reynolds* aliran antara 2000 hingga 10000 didapatkan efisiensi kolektor berkurang ketika *obstacle* ditekuk, tetapi penurunan tekanan juga menjadi berkurang. Untuk mencari sudut tekuk *obstacle* yang optimal dibuat rasio $(\Delta P / \Delta E f f)$. Kinerja optimal kolektor surya ditandai dengan rasio $(\Delta P / \Delta E f f)$ yang tinggi. Pada Gambar 2.12, rasio $(\Delta P / \Delta E f f)$ tertinggi dicapai dengan *obstacle* 30° pada hampir semua kecepatan aliran udara dan intensitas radiasi, sehingga disimpulkan *obstacle* yang memberikan kinerja optimal adalah ketika ditekuk dengan sudut 30°.

Gambar 2. 12 Rasio penurunan tekanan dan penurunan efisiensi ketika *obstacle* ditekuk dibandingkan *obstacle* lurus.

2.2.3. Ahmad Fudholi et al. (2011)

Pada tahun 2011, Ahmad Fudholi et al. dalam penelitiannya yang berjudul "**Thermal Efficiency of Double Pass Solar Collector with Longitudinal Fins Absorbers**" melakukan studi mengenai efisiensi termal pada kolektor surya dua laluan dengan penambahan *fins absorbers* longitudinal, seperti pada Gambar 2.13. Penelitian ini membahas studi teoritis untuk menganalisa dampak laju aliran massa, jumlah, dan

ketinggian *fin* terhadap efisiensi kolektor surya dua laluan. Kolektor surya yang digunakan terdiri dari *flat plate absorbers*, *cover glass*, isolasi, dan *fins*. Terdapat tiga tipe yang diteliti, yakni Tipe I (*upper fin*), Tipe II (*lower fin*) dan Tipe III (*upper and lower fin*), ditunjukkan pada Gambar 2.14.

Gambar 2. 13 Skema kolektor surya dua laluan.

Gambar 2. 14 Tiga variasi *fin* longitudinal yang diteliti. (a) Upper fin (type I). (b) Lower fin (type II). (c) Upper and lower fin (type III).

Efisiensi kolektor surya meningkat seiring jumlah dan ketinggian *fin*. Efisiensi kolektor sangat berhubungan dengan laju aliran massa. Untuk laju aliran massa 0.02-0.1 kg/s, efisiensi naik sebesar 30%. Untuk penambahan *fin* dibagian atas plat *absorber* (*Type* I) menghasilkan efisiensi sebesar 36-73%, penambahan *fin* dibagian bawah (*Type* II) menghasilkan efisiensi 37-75% dan penambahan *fin* di bawah dan atas (*Type* III) menghasilkan efisiensi 46-74% seperti yang ditunjukkan pada Gambar 2.15.

Gambar 2.15 Grafik hasil kolektor surya dengan upper and lower fin (type III).

(halaman ini sengaja dikosongkan)

BAB III METODE PENELITIAN

Penelitian dilakukan pada kolektor surya v-corrugated dengan obstacle berbentuk paruh dengan sudut paruh 30° dan fin berbentuk prisma segitiga. Penelitian ini difokuskan pada variasi tinggi segitiga pada *fin* prisma segitiga, jarak antar *fin*, dan sudut kemiringan *fin*, diharapkan untuk dapat meningkatkan efisiensi kolektor surya. Hasil penelitian dari variasi tersebut diharapkan dapat memperoleh tinggi, jarak, dan sudut fin optimum agar mendapatkan peningkatan temperatur outlet yang signifikan. Tinggi segitiga pada *fin* prisma segitiga yang digunakan dalam penelitian ini divariasikan yaitu 3 mm, 4 mm, dan 5 mm. Jarak antar fin dalam penelitian ini divariasikan yaitu 0,25L; 0,5L; 0,75L. L adalah jarak antar obstacle, yakni 50 mm. Sudut kemiringan *fin* dalam penelitian ini divariasikan yaitu $22,5^{\circ}$; 45° ; dan 67.5° . Penelitian eksperimental kolektor surva V-corrugated absorber dengan obstacle dan penambahan fin dilaksanakan di Laboratorium Perpindahan Panas dan Massa, Jurusan Teknik Mesin, Institut Teknologi Sepuluh Nopember Surabaya.

3.1. Simulasi Numerik

Simulasi numerik dilakukan dengan menggunakan metode *Computational Fluid Dynamics* (CFD) dengan *software* Fluent 6.3.26 dan *software* GAMBIT 2.4.6 untuk membuat model awal dan melakukan diskritisasi (*meshing*) pada model. Prosedur yang dilakukan adalah sebagai berikut :

3.1.1. Tahap *Pre-processing* Menggunakan *Software* GAMBIT 2.4.6.

1. Membuat geometri kolektor surya *V-corrugated* dengan bentuk 3D, ditunjukkan pada Gambar 3.1. Geometri yang digunakan mengacu pada geometri pada eksperimen yang dilakukan oleh Ekadewi Anggraini Handoyo (2014).

Gambar 3.1 Model V-corrugated absorber pada GAMBIT

2. Membuat *meshing* volume dengan tipe *TGrid*, dapat dilihat pada Gambar 3.2. Sebelum pengambilan data numerik, tes *grid independency* perlu dilakukan. Hal ini bertujuan untuk memeriksa apakah jumlah grid yang digunakan sudah tepat untuk pengambilan data, supaya mendapatkan nilai pengamatan yang sesuai atau tidak menyimpang dari kondisi kenyataan. Tes ini juga bertujuan untuk menemukan *mesh* yang baik dan efisien untuk dilakukan pengamatan numerik.

Gambar 3.2 Meshing V-corrugated absorber pada GAMBIT

3. Mendefinisikan kondisi batas yaitu penentuan parameter-parameter dan batasan yang mungkin terjadi pada aliran. Plat *absorber*, *fin*, dan *obstacle* didefinisikan sebagai *wall*, sepeti pada Gambar 3.3.

Gambar 3.3 Kondisi Batas pada Fluent.

4. Langkah awal pada *software* Fluent dilakukan *read* untuk data hasil *export* GAMBIT. Kemudian dilakukan pengecekan *grid*. Setelah itu ditentukan skala. Pada penelitian ini menggunakan skala dalam meter. Parameter-parameter yang digunakan pada simulasi dapat dilihat pada Tabel 3.1.

Tabel 3.1Parameter yang digunakan pada simulasi

Parameter		Input			
	Solver	Green-Gauss Cell Based, 3D			
Model	Energy	Energy Equation			
	Viscous	k-omega SST (2 equation)			
Material	Air	$\rho = 1,1614 \text{ kg/m}^3$ $C_p = 1007 \text{ J/kg.K}$ $\mu = 18,46 \text{ x } 10^{-6} \text{ N.s/m}^2$ $\nu = 15,89 \text{ x } 10^{-6} \text{ m}^2/\text{s}$			
Operating Conditions	Operating Pressure	1,01325 x 10 ⁵ Pa			
	Plat absorber (base)	Wall, Temperature constant 310 K			
Dours dam.	Inlet	Velocity inlet 6,5 m/s			
Conditions	Outlet	Outflow			
Conditions	Obstacles	Wall, Temperature constant 310 K			
	Fins	Wall, Heat Flux 430 Watt/m ²			
	Plat absorber	<i>Wall, Heat Flux</i> 430 Watt/m ²			
Controls	Solution	Pressure-Velocity Coupling = SIMPLEC Discretization Pressure = Standard Momentum = First Order Upwind Turbulent Kinetic Energy = First Order Upwind Specific Dissipation Rate = First Order Upwind Energy = First Order Upwind			
	Initialize	Inlet, Z velocity = 6.5 m/s			
	Residuals	Absolute Criteria Continuity = 10^{-6} X velocity = 10^{-3} Y velocity = 10^{-3} Z velocity = 10^{-3} Energy = 10^{-6}			

	$k = 10^{-3}$
	$Omega = 10^{-3}$

3.1.2. Pra-Design Pemilihan Fin

Pemakaian *fin* perlu diperhitungkan untuk mendapatkan Q_{usefull} yang paling optimal. Pemilihan tinggi segitiga, jarak, dan sudut kemiringan *fin* digunakan untuk mencari posisi yang paling optimal, sehingga dapat mengoptimalkan peningkatan temperatur fluida yang dihasilkan.

3.1.2.1. Tinggi Segitiga, Jarak, dan Sudut Kemiringan Fin

Penggunaan *fin* untuk memperluas area perpindahan panas fluida kerja di dalam kolektor surya serta menimbulkan olakan pada sisi-sisi miring plat *absorber*. *Fin* yang digunakan berbentuk prisma segitiga seperti ditunjukkan pada Gambar 3.4.

Gambar 3.4 Dimensi *fin* berbentuk prisma segitiga dengan variasi tinggi segitiga yaitu (a) 3 mm, (b) 4 mm, dan (c) 5 mm.

Fin juga divariasikan jarak dan sudut kemiringannya. Pada Gambar 3.5 ditunjukkan jarak dan sudut kemiringan *fin* yang akan digunakan pada variasi di simulasi. Jarak antar *fin* dalam penelitian ini divariasikan yaitu 0,25L; 0,5L; 0,75L. L adalah jarak antar *obstacle*, yakni 50 mm. Sudut kemiringan *fin* dalam penelitian ini divariasikan yaitu 22,5°; 45° ; dan 67,5°, seperti ditampilkan pada Tabel 3.2.

Gambar 3.5 *Fin* yang dimiringkan terhadap arah aliran (α) (pandangan samping)

Tinggi Segitiga <i>Fin</i>	Tinggi Fin	Jarak antar Fin	Sudut (a)
3 mm		0,25L = 12,5 mm	22,5°
4 mm	50 mm	0,50L = 25 mm	45°
5 mm		0,75L = 37,5 mm	67,5°

Pemilihan *fin* yang paling optimum berdasarkan hasil simulasi yakni perbedaan temperatur dan tekanan masuk dan keluar. Penggunaan diameter *fin* yang besar maka akan mengakibatkan *pressure drop* yang besar pula. Oleh karena itu, pemilihan *fin* digunakan rasio antara perbandingan peningkatan temperatur terhadap penurunan tekanan ketika ditambahkan *fin* dinyatakan secara matematis $\left|\frac{\Delta T_{fin} - \Delta T_{tanpa fin}}{\Delta T_{tanpa fin}}\right| / \left|\frac{\Delta P_{fin} - \Delta P_{tanpa fin}}{\Delta P_{tanpa fin}}\right|$. Rasio yang diharapkan yakni dengan nilai terbesar dengan

peningkatan temperatur terbesar dengan penurunan tekanan terkecil. Rasio terkecil menunjukkan bahwa peningkatan temperatur tidak signifikan namun penurunan tekanan masih terjadi. Hal ini perlu dihindari maka pemilihan *fin* tersebut tidak direkomendasikan.

3.2 Penelitian Eksperimen

3.2.1. Variasi Laju Aliran Massa

Pengambilan data eksperimen dilakukan setelah *test section* hasil simulasi menghasilkan data yang diinginkan yakni tinggi segitia dan sudut *fin* paling optimum. Pada eksperimen digunakan variabel kontrol yaitu kecepatan *blower* dan intensitas radiasi lampu halogen. Kecepatan udara yang dihasilkan *blower* diatur dengan menggunakan inverter. Aliran udara yang mengalir didalam *duct* diketegorikan aliran internal (dalam) dengan ketentuan. *Reynold number* (Re) < 2300, aliran laminar, dan Re > 2300, aliran turbulen.

Dari hasil perhitungan, nilai minimum laju aliran massa yang mengalir dalam *duct* tanpa penghalang dikategorikan laminar adalah 0,002 kg/s dengan Re sebesar 1281. Laju aliran massa 0,002 kg/s dipilih sebagai batas minimum untuk membandingkan performa kolektor surya tanpa dan dengan penghalang. Variasi laju aliran massa udara meliputi 0,002 kg/s; 0,004 kg/s; 0,006 kg/s; dan 0,008/s.

3.2.2. Variasi Intensitas Cahaya

Lampu halogen sebagai pengganti matahari digunakan sebanyak 5 buah lampu dengan masing-masing daya 500 watt. Lampu halogen disusun paralel dan terhubung dengan *voltage regulator*. *Voltage regulator* berfungsi sebagai pengatur tegangan. Pyranometer digunakan untuk mengetahui besar intensitas yang diterima kolektor surya. Variasi intensitas radiasi lampu yakni sebesar 431, 575, dan 719 W/m². Intensitas radiasi ini didasarkan pada kemampuan lampu halogen dan pembacaan pyranometer.

3.2.3. Gambaran Sistem Kerja

Berikut adalah gambaran sistem kerja yang digunakan dalam eksperimen, ditunjukkan pada Gambar 3.6 di bawah.

Gambar 3. 6 Sistem Kerja *V-corrugated solar air heater* (a) Foto alat, (b) Dimensi dan bagian-bagian alat.

Keterangan Gambar :

- 1. Blower
- 2. Kaca penutup
- 3. Plat *absorber*
- 4. Thermocouple

- 5. Isolator
- 6. Thermocouple display
- 7. Lampu halogen

Prinsip kerja kolektor surya ini adalah radiasi matahari yang digantikan oleh lampu halogen dipancarkan mengenai kaca penutup kolektor surya. Panas radiasi lampu diserap oleh plat *absorber* untuk memanaskan fluida kerja. Fluida yang dihisap oleh *blower* dengan kecepatan tertentu menuju *duct* selanjutnya mengenai *obstacle* dan *fin.* Peningkatan temperatur diharapkan terjadi saat fluida keluar dari *duct*.

3.3 Parameter yang Diukur dan Peralatan Penelitian

3.3.1 Parameter yang Diukur

Selama proses pengujian kolektor surya tersebut terdapat parameter-parameter yang diukur dengan posisi seperti yang ditunjukkan pada Gambar 3.7 dan 3.8.

(b)

Gambar 3.7 Posisi penempatan *thermal sensor* (a) pandangan samping, (b) pandangan depan.

Gambar 3.8 Posisi penempatan *pressure tap* (pandangan atas)

Selama pengujian kolektor surya tersebut terdapat parameter yang diukur dengan posisi seperti gambar diatas, berikut parameter-parameter apa saja yang akan diukur:

- 1. Temperatur fluida kerja masuk kedalam *ducting channel* $(T_{f,in})$
- 2. Temperatur fluida kerja keluar *ducting channel* (T_{f,out})
- 3. Temperatur udara *ambient* (T_{amb})
- 4. Temperatur plat *absorber* (T_{abs})
- 5. Temperatur *cover glass* (T_{cg})
- 6. Temperatur *fin* (T_{fin})
- 7. Temperatur *base* (T_{base})
- 8. Temperatur isolasi (T_{iso})
- 9. Intensitas radiasi ektraterrestrial (I_T)
- 10. Kecepatan fluida kerja (v_f)
- 11. Δ Pressure (Pa)

3.3.2. Peralatan Penelitian

Berikut adalah peralatan yang digunakan dalam eksperimen berupa alat alat uji dan alat bantu untuk pengukuran, ditunjukkan pada Gambar 3.9. Peralatan tersebut adalah :

1. Kolektor surya

Panjang kolektor	: 0,9 m
Lebar	: 0,03 m
Tinggi	: 0,095 m

2. *Pyranometer* adalah alat yang digunakan untuk mengukur intensitas radiasi matahari.

No Seri : S 97048.32 ML-020 VM

	Buatan	: Eko Instrument Trading Co Ltd- Jepang
	Konversi	$: 7.65 \text{ Mv/kW.m}^{-2}$
	Untuk pembacaan	pyranometer digunakan multi meter
	<i>digital</i> dengan ketelit	ian 0.1 mV.
3.	Anemometer adalah	alat yang digunakan untuk mengukur
	kecepatan angin.	
	Tipe	: AR816
	Buatan	: Smart sensor
	Akurasi	: +/- 5%
4.	Kabel Thermocouple	tipe K.
5.	Termometer <i>infrar</i>	<i>ed.</i> digunakan untuk mengukur
	temperatur lingkunga	in.
6.	Arduino Thermocou	uple Multiplexer Shield, digunakan
	untuk membaca suhu	kabel <i>thermocouple</i> digital.
	Tipe	: KTA-259K, thermocouple tipe K
	Buatan	: Ocean Control Australia
	Temperature range	: -200 - + 1350°C
	Akurasi	$:\pm 2^{\circ}C$
7.	Blower, digunakan u	ntuk suplai udara masuk.
	Daya	: 260 Watt
	Voltage	: 220 Volt
	Speed	: 3600 rpm
	Diameter discharge	: 2.5 inch
8.	Inverter, digunakan	untuk mengatur kecepatan udara
	masuk.	C
9.	Magnetic Differentie	al Pressure Gage, digunakan untuk
	membaca tekanan.	0 × C
	Tipe	: 2300-120 Pa, Zero Range Center
	Buatan	: Dwyer
	Range	: -60 to 60 Pa
	Akurasi	: ± 2%
10	Lamny halagan dan	ualtana magulatan sahagai nangganti

10. Lampu halogen dan *voltage regulator*, sebagai pengganti cahaya matahari.

(a)

(d)

Gambar 3.9 Peralatan penelitian. (a) Pyranometer, (b) Voltage regulator, (c) Magnetic Differential Pressure Gage (d)Termometer Infrared, (e) Anemometer, (f) Blower dan inverter, (g) Lampu halogen, (h) Thermocouple multiplex dan Arduino

3.4. **Tahap-Tahap Penelitian**

Dalam penelitian tugas akhir ini ada tiga tahap dalam penelitian diantaranya tahap persiapan, tahap pengambilan data, dan tahap akhir. Adapun penjelasan masing-masing tahap akan dijelaskan sebagai berikut :

a. Tahap persiapan

- 1. Mempersiapkan dan memastikan semua peralatan yang digunakan dalam kondisi sudah dikalibrasi yaitu: *pyranometer, anemometer, thermocouple selector, blower, thermometer,* lampu halogen, dan rangkaian-rangkaian listrik yang akan dibutuhkan.
- 2. Merangkai semua peralatan dengan benar.

b. Tahap pengambilan data

- 1. Memastikan semua peralatan disusun dengan benar.
- 2. Memvariasikan laju aliran massa udara dimulai dari 0,008; 0,006; 0,004; dan 0,002 kg/s.
- 3. Mevariasikan intensitas cahaya pada lampu halogen dimulai dari 431 W/m², 575 W/m², dan 719 W/m².
- 4. Mengambil data yang dibutuhkan meliputi: V_f , I_T , T_{cg} , T_{ap} , T_{amb} , $T_{f,out}$, $T_{f,in}$, T_{base} , T_{iso} , $dan T_{fin}$.
- 5. Mengulangi dengan langkah 2 hingga 4, dengan cara mengatur kecepatan menggunakan *voltage regulator*.

c. Tahap Akhir

- 1. Menurunkan kecepatan *blower* secara perlahan-lahan lalu dimatikan.
- 2. Menurunkan tegangan pada lampu halogen lalu dimatikan.
- 3. Mematikan semua peralatan listrik.
- 4. Meletakkan peralatan utama dan peralatan bantu sesuai dengan tempat semula.
- Tabel 3. 3Pengambilan Data Eksperimen
(terlampir)

	INPUT	OUTPUT		
Variabel Tetap	Variabe	Kontrol	Diukur	Dianalisa
Dimensi kolektor surya	Kecepatan aliran udara	0,002 kg/s 0,004 kg/s 0,006 kg/s 0,008 kg/s	$V_{f}, I_{T}, T_{f,in},$ $T_{f,out}, T_{amb},$ $T_{abs}, T_{cg},$	Qusefull,
	Intensitas Radiasi	431 W/m ² 575 W/m ² 719 W/m ²	$T_{fin}, T_{base}, T_{iso}$	EIIIsiensi

Tabel 3. 4Desain Eksperimen

3.5. Flowchart

3.5.1. Flowchart Penelitian

Gambar 3. 10 Flowchart Penelitian

3.5.2. Flowchart Pengambilan Data

Gambar 3.11 Flowchart Pengambilan Data

3.5.3. Flowchart Perhitungan

Gambar 3. 12 Flowchart Perhitungan

BAB IV ANALISA HASIL DAN PEMBAHASAN

4.1. Simulasi Numerik

Simulasi numerik dilakukan pada kolektor surva vcorrugated dengan obstacle berbentuk paruh dengan sudut paruh 30° dan fin berbentuk prisma segitiga dengan memvariasikan tinggi segitiga pada *fin* prisma segitiga, jarak antar *fin*, dan sudut kemiringan *fin*. Simulasi numerik menggunakan metode Computational Fluid Dynamics (CFD) dengan software Fluent 6.3.26 dan software GAMBIT 2.4.6 untuk membuat model awal dan melakukan diskritisasi (meshing) pada model. Tinggi segitiga pada fin prisma segitiga yang digunakan dalam penelitian ini divariasikan yaitu 3 mm, 4 mm, dan 5 mm. Jarak antar fin dalam penelitian ini divariasikan yaitu 0,25L; 0,5L; 0,75L. L adalah jarak antar obstacle, yakni 50 mm. Sudut kemiringan fin dalam penelitian ini divariasikan yaitu 22,5°; 45°; dan 67,5°. Data hasil simulasi numerik dan perhitungan dapat dilihat pada lembar Lampiran.

4.1.1. Grid Independency

Grid independency dilakukan dengan meningkatkan resolusi mesh dari renggang menjadi rapat. Mesh yang rapat dapat memperlihatkan detail vektor lebih baik dibanding mesh renggang namun diikuti dengan waktu yang lama dalam proses iterasi. Jumlah mesh yang terlalu banyak juga akan mempersulit iterasi mencapai konvergensi. Oleh karena itu mesh harus dirancang efektif dan lebih rapat dekat dinding. Rancangan mesh dapat dilihat pada Gambar 4.1.

Gambar 4.1 Rancangan *Mesh* yang akan diuji.

Tabel 4.1Jumlah *cell, face, dan node dari kelima mesh yang diuji.*

Mesh	Konvergen	Jumlah <i>cell</i>	Jumlah face	Jumlah <i>node</i>	Yplus
1	464	192159	410478	45254	100.0415
2	770	685052	1428055	143207	59.50836
3	1024	1022640	2122983	209397	56.15036
4	1363	1486440	3076279	299612	49.90341
5	3512	1898362	3914299	375330	46.03496

Uji grid independency dilakukan untuk membandingkan hasil simulasi dari mesh renggang hingga rapat. Geometri dan domain aliran serta model viscous yang digunakan pada kelima mesh sama. Grid independency bertujuan untuk memeriksa jumlah grid yang digunakan sudah tepat untuk pengambilan data dan menentukan mesh yang baik dan efisien untuk dilakukan pengamatan numerik. Perlu digunakan grid yang tepat supaya mendapatkan nilai pengamatan yang sesuai atau tidak menyimpang dari kondisi kenyataan.

Setiap mesh yang diuji memiliki kondisi batas dan pengaturan yang sama dalam software Fluent. Pengaturan meliputi simulasi 3 dimensi, double precision, model viscous Shear Stress Transport K- ω (SSTK ω), material plat *absorber* dan *fin* adalah aluminium, intensitas radiasi diatur 430 Watt/m², model *dicretization equation* menggunakan *first order scheme* dan hubungan kecepatan dan tekanan menggunakan SIMPLEC.

Hasil simulasi yang digunakan adalah kecepatan fluida searah sumbu Z pada koordinat sumbu x = 0,015 m dan sumbu y = 0,071 m (posisi 0 m dihitung dari ujung plat *absorber*). Nilai kecepatan yang didapatkan ditampilkan pada Tabel 4.2, dan grafik dapat dilihat pada Gambar 4.2.

Mesh	Y (m)	Z Velocity (m/s)	Error
1	0,071	7,52247	100
2	0,071	7,70868	2,415588
3	0,071	7,78737	1,010482
4	0,071	7,90274	1,459873
5	0,071	8,29284	3,859956

Tabel 4. 2Hasil simulasi variasi mesh

Gambar 4.2 Grafik nilai error grid independency.

Nilai *error* kecepatan pada tiap *mesh* yang diuji selanjutnya diplot dalam grafik. Dari Gambar 4.2 didapatkan *mesh* 3 memiliki *error* yang tidak banyak berubah dibandingkan

dengan mesh 4 dan 5. Oleh karena itu, mesh 3 dianggap memenuhi grid independency.

4.1.2. Hasil Simulasi Numerik

Dari hasil *grid independency*, *mesh* 3 digunakan sebagai *mesh* acuan pada semua variasi diameter *fin*. Simulasi dilakukan pada 3 variasi tinggi segitiga *fin* prisma segitiga, 3 jarak *fin* terhadap *obstacle*, dan sudut kemiringan *fin* dengan satu variasi intensitas, 430 Watt/m², dan kecepatan fluida masuk, 6,5 m/s. Selanjutnya, dari simulasi yang dilakukan untuk tiap variasi, *global properties* yang dihasilkan yaitu perbedaan temperatur masuk dan keluar serta penurunan tekanan aliran. Simulasi pada saluran tanpa *fin* juga dilakukan untuk membandingan pengaruh fin terhadap peningkatan temperatur dan penurunan tekanan. Hasil simulasi dapat dilihat pada Tabel 4.3.

Tabel 4.3Hasil simulasi kolektor surya dengan variasitinggi, jarak, dan sudut *fin*

FIN			ΔΤ	$A \mathbf{D} (\mathbf{D}_{\mathbf{a}})$	RASIO		
Tinggi	Jarak	Sudut	(K)	$(\mathbf{K}) \qquad \Delta \mathbf{I} \ (\mathbf{I} \ \mathbf{a})$	$\Delta \mathbf{T}$	Δ P	$\Delta T / \Delta P$
		22.5°	9.059	437.525	0.022	1.202	0.0182
	0.25L	45°	9.252	303.795	0.001	0.529	0.0018
		67.5°	9.486	229.879	0.024	0.157	0.1549
	0.5L	22.5°	9.014	426.618	0.027	1.147	0.0233
3 mm		45°	9.200	319.176	0.007	0.606	0.0109
		67.5°	9.621	229.625	0.039	0.156	0.249
	0.75L	22.5°	9.086	488.495	0.019	1.458	0.0130
		45°	9.172	324.588	0.010	0.633	0.0152
		67.5°	9.432	227.592	0.018	0.145	0.1271
4 mm	0.25L	22.5°	9.256	553.351	0.001	1.785	0.0003
		45°	9.271	432.140	0.001	1.175	0.0009
		67.5°	9.387	340.222	0.014	0.712	0.0191

	0.5L	22.5°	9.236	546.627	0.003	1.751	0.0015
		45°	9.248	464.536	0.001	1.338	0.0011
		67.5°	9.400	350.399	0.015	0.763	0.0197
	0.75L	22.5°	9.397	641.658	0.015	2.229	0.0066
		45°	9.359	485.128	0.011	1.441	0.0073
		67.5°	9.442	355.752	0.020	0.790	0.0247
5 mm	0.25L	22.5°	9.589	712.973	0.035	2.588	0.0137
		45°	9.564	414.737	0.033	1.087	0.0301
		67.5°	9.624	265.395	0.039	0.336	0.1168
	0.5L	22.5°	9.535	714.515	0.030	2.596	0.0114
		45°	9.592	435.719	0.036	1.193	0.0301
		67.5°	9.779	262.324	0.056	0.320	0.1747
	0.75L	22.5°	9.719	845.931	0.049	3.257	0.0152
		45°	9.771	435.301	0.055	1.191	0.0463
		67.5°	9.729	260.506	0.051	0.311	0.1625

Gambar 4.3 Grafik $\Delta T = f($ Sudut kemiringan *fin*) pada semua variasi.

Dari Gambar 4.3 dapat dilihat grafik perbedaan temperatur pada tiap variasi tinggi segitiga, sudut kemiringan, dan jarak *fin* terhadap *obstacle*. *Fin* dengan tinggi segitiga 5 mm, sudut kemiringan $67,5^{\circ}$, dan jarak 0,5L memberikan perbedaan temperatur paling tinggi yaitu 9,779 K. Sedangkan, *fin* dengan tinggi segitiga 3 mm, sudut kemiringan $22,5^{\circ}$, dan jarak 0,5L memberikan perbedaan temperatur paling rendah yaitu 9,014 K. Dari grafik dapat dilihat bahwa semakin besar tinggi segitiga *fin* dan sudut kemiringan *fin* maka semakin besar peningkatan temperatur fluida keluar, hal ini diakibatkan luas perpindahan panas yang meningkat seiring dengan peningkatan tinggi segitiga *fin*. Penambahan *obstacle* dan *fin* berpengaruh pada arah aliran yang terjadi di dalam saluran (*duct*) kolektor surya. Kedua faktor tersebut menyebabkan terjadinya aliran balik dari fluida kerja.

Hasil simulasi menunjukkan perbedaan temperatur yang dihasilan pada tiap variasi tidak berbeda jauh, namun menghasilkan penurunan tekanan yang cukup besar. Penurunan tekanan paling besar pada tinggi segitiga 5 mm, sudut kemiringan 22,5°, dan jarak 0,75L dengan nilai 845,931, dan paling rendah pada tinggi segitiga 3 mm, sudut kemiringan 67,5°, dan jarak 0,75L dengan 227,592. Aliran fluida yang diganggu dengan *obstacle* dan *fin* mengakibatkan adanya penurunan kecepatan aliran secara mendadak dan selanjutnya mengakibatkan adanya aliran balik. Semakin besar aliran balik yang dihasilkan maka akan merugikan karena mengakibatkan *pressure drop* (ΔP) yang besar pula. Pada Gambar 4.5 dapat dilihat grafik penurunan tekanan pada tiap variasi tinggi segitiga, sudut kemiringan, dan jarak *fin* antar *obstacle*.

Gambar 4.4 Grafik $\Delta P = f(Sudut \text{ kemiringan } fin)$ pada semua variasi.

Dari Gambar 4.5 dapat dilihat bahwa fin yang dimiringkan 67,5° menghasilkan penurunan tekanan paling rendah pada semua variasi tinggi segitiga dan jarak. Semakin besar tinggi segitiga fin maka semakin besar pula penurunan tekanan (ΔP) yang dihasilkan. Oleh karena itu, pemilihan fin menggunakan rasio antara perbandingan peningkatan temperatur terhadap penurunan tekanan ketika ditambahkan fin, dapat dinvatakan secara matematis ∆P_{fin}-∆P_{tanpa fin} ∆T_{fin}-∆T_{tanpa fin} Rasio yang diharapkan ∆T_{tanpa fin} yakni dengan nilai terbesar dengan peningkatan temperatur terbesar dengan penurunan tekanan terkecil. Rasio tersebut menunjukkan besar energy gain yang dihasilkan per energy supply yang dibutuhkan. Energy gain dihitung menggunakan persamaan $Q = \dot{m}_f x C_p x (\Delta T_{fin} - \Delta T_{tanpa fin})$, dimana \dot{m}_f adalah laju aliran massa udara (kg/s), C_n adalah panas jenis fluida atau spesifik heat of fluid (J/Kg.°C), ΔT adalah beda temperatur keluar dan masuk udara. Energy supply dihitung menggunakan persamaan $\mathbf{P} = \dot{\mathbf{V}} (\Delta \mathbf{P_{fin}} - \Delta \mathbf{P_{tanpa fin}})$, dimana P adalah daya yang dibutuhkan (Watt), $\dot{\mathbf{V}}$ adalah debit aliran udara (m³/s), $\Delta \mathbf{P}$ adalah penurunan tekanan (Pascal).

Gambar 4.5 Grafik $\Delta T/\Delta P = f($ Sudut kemiringan *fin*) pada semua variasi.

Hasil perhitungan rasio tertinggi adalah tinggi segitiga 3 mm, sudut kemiringan $67,5^{\circ}$, dan jarak 0,5L dengan nilai 0,2499, rasio terendah adalah tinggi segitiga 4 mm, sudut kemiringan 22,5°, dan jarak 0,25L dengan nilai 0.0003. *Fin* dengan tinggi segitiga 3 mm, sudut kemiringan $67,5^{\circ}$, dan jarak 0,5L disimpulkan sebagai *fin* paling optimal. *Fin* optimal didapatkan pada variasi sudut paling besar yaitu $67,5^{\circ}$, oleh karena itu simulasi dilanjutkan pada *fin* tinggi segitiga 3 mm dan jarak 0,5L dengan memvariasikan sudut kemiringan yang lebih besar, yaitu $70^{\circ};72,5^{\circ};75^{\circ};77,5^{\circ};$ dan 80° dengan harapan dapat memperoleh nilai rasio ($\Delta T/\Delta P$) yang lebih tinggi dari variasi sebelumnya. Hasil simulasi variasi sudut dapat dilihat pada Tabel 4.4.

	sudut pada <i>fin</i> 3 mm dan jarak 0.50L												
	FIN		ΔT	$A \mathbf{D} (\mathbf{D}_{\alpha})$	RASIO								
Sudut	Tinggi	Jarak	(K)	∆r (ra)	ΔT	Δ P	$\Delta T / \Delta P$						
70 [°]			9.565	221.782	0.033	0.116	0.2827						
72.5°			9.414 218.036	0.017	0.097	0.1701							
75°	3 mm	0.5L	9.591	213.509	0.036	0.074	0.4788						
77.5°			9.497	211.827	0.025	0.066	0.3855						
80°			9 377	208 652	0.012	0.050	0.2501						

Tabel 4.4

Hasil simulasi kolektor surya dengan variasi

Fin 3 mm 0.50 L 0.500 0.400 0.300 0.200 0.100 0.000 65 67.5 70 72.5 75 77.5 80 82.5 85 Sudut*fin*

Gambar 4.6 Grafik hasil simulasi variasi tambahan pada sudut *fin*.

Pada Gambar 4.7 dapat dilihat bahwa pada variasi tambahan rasio tertinggi yang didapatkan yaitu 0,4788 dengan sudut kemiringan 75° , nilai tersebut jauh lebih tinggi dibandingkan dengan rasio pada *fin* optimal dengan sudut kemiringan 67.5° sebelumnya yaitu 0,2499. Dari hasil simulasi yang telah dilakukan dan perhitungan rasio penurunan temperatur dengan penurunan tekanan, didapatkan *fin* paling optimal dengan tinggi segitiga *fin* 3 mm, sudut kemiringan *fin* 75° , dan jarak *fin*

terhadap *obstacle* 0.5L. Pada Gambar 4.8 dapat dilihat vektor kecepatan fluida kerja pada variasi *fin* paling optimal.

(a)

Gambar 4.7 Vektor kecepatan pada *fin* optimal.

Gambar 4.8 (a) menunjukkan vektor kecepatan fluida kerja yang dilihat dari sumbu-Y dengan *iso value* 0,015 m pada sumbu X. Gambar 4.8 (b) menunjukkan vektor kecepatan fluida kerja yang dilihat dari sumbu-Z dengan *iso value* 0,005 m pada sumbu Y. Setelah fluida mengenai *obstacle* dan *fin* terlihat ada aliran balik dan menimbulkan *vortex* serta meningkatkan kecepatan aliran udara di atas dan samping *obstacle*. Keadaan ini

membuat lebih banyak udara yang bersinggungan dengan plat *absorber* dan *fin* yang panas, sehingga udara ke luar kolektor pada temperatur yang lebih tingi. *Vortex* merupakan ciri bahwa aliran menjadi turbulen. Ketika aliran menjadi turbulen, partikel fluida menunjukkan gerakan tambahan yang dapat meningkatkan kecepatan energi dan pertukaran momentum diantara partikel sehingga dapat meningkatkan perpindahan kalor dan koefisien gesek aliran.

Pada simulasi yang telah dilakukan, semakin kecil tinggi segitiga, semakin besar sudut kemiringan, dan semakin besar jarak *fin* terhadap *obstacle* maka aliran balik yang terjadi semakin sedikit. Hilangnya aliran balik yang berarti pengurangan *vortex* menyebabkan kecepatan energi dan pertukaran momentum menurun.

4.2. Eksperimen

Penelitian dan pengambilan data dilakukan di Laboratorium Perpindahan Panas dan Massa Teknik Mesin ITS untuk mengetahui pengaruh penambahan *fin* prisma segitiga pada kolektor surya *v-corrugated* dengan *obstacle* berbentuk paruh dengan sudut paruh 30°. Penelitian ini menggunakan variasi laju aliran massa udara yaitu 0,002; 0,004; 0,006; dan 0,008 kg/s, dan variasi intensitas cahaya lampu yaitu 3,3; 4,4; dan 5,5 mVolt, serta *holding time* 10 menit tiap pergantian kecepatan dan intensitas cahaya. Data hasil penelitian dan data perhitungan dapat dilihat pada lembar Lampiran.

4.2.1. Perhitungan Data Eksperimen

Berdasarkan data-data yang diperoleh, selanjutnya dilakukan perhitungan untuk dapat mengetahui performansi dari kolektor surya untuk kemudian hasil perhitungan tersebut dilakukan analisa. Perhitungan dan analisa yang dilakukan dibatasi oleh asumsi-asumsi yang disebutkan pada subbab batasan masalah. Berikut ini adalah contoh perhitungan untuk mengetahui performansi dari kolektor surya pada laju aliran massa 0,008 kg/s dan intensitas radiasi 5,5 mVolt. Adapun dimensi kolektor surya adalah sebagai berikut :

• Par	ijang kolektor surya	: $L = 0,9 m$					
• Let	oar kolektor surya	: <i>l</i> = 0,09 m					
• Tin	ggi ducting channel	: t = 0,85 m					
• Lua	asan efektif kolektor surya	$: 0,1553634 \text{ m}^2$					
• Suc	lut gelombang	$:20^{\circ}$					
• Jun	nlah gelombang	:1					
• <i>Co</i>	ver Glass (kaca penutup)						
1.	Transmisivitas (τ_{cg})	: 0,85					
2.	Emisivitas (ε_{cg})	: 0,9					
• Pla	t Absorber						
1.	Absorbsivitas (α_{abs})	: 0,88					
2.	Emisivitas (ɛ _{abs})	: 0,9					
• Sty	<i>rofoam</i> Insulasi						
1.	Ketebalan	: 0,03 m					
2.	Konduktifitas termal (k _{styrofoam})	: 0,01 W/m.K					
• Pap	an Triplek Insulasi						
1.	Ketebalan	: 0,005 m					
2.	Konduktifitas termal (k _{triplek})	: 0,12 W/m.K					

Adapun data-data untuk contoh perhitungan yang didapatkan dari hasil eksperimen adalah sebagai berikut :

1.	Intensitas cahaya	: $I = 5,5 \text{ mVolt} = 718,954$
		W/m^2
2.	Laju aliran massa udara	: $\dot{m} = 0,008 \text{ kg/s}$
3.	Kecepatan udara ambient	: $v_w = 0 m/s$
4.	Temperatur udara ambient	: $T_{amb} = 27^{\circ}C = 300 \text{ K}$
5.	Temperatur cover glass	$: T_{cg} = 51,278^{\circ}C =$
		324,278 K
6.	Temperatur plat absorber	$: T_{abs} = 58,229^{\circ}C =$
		331,229 K
7.	Temperatur fluida kerja sisi inlet	: $T_{f,in} = 32^{\circ}C = 305 \text{ K}$

8.	Temperatur fluida kerja sisi outlet	: $T_{f,out} = 44,5^{\circ}C = 317,5$
		K
9.	Temperatur base	$: T_{base} = 47,967^{\circ}C =$
		320,967 K
10.	Tebal styrofoam	: $L_1 = L_{styrofoam} = 0,03 \text{ m}$
11.	Konduktifitas termal styrofoam	$k_1 = k_{styrofoam} = 0,01$
		W/m.K
12.	Tebal triplek	: $L_2 = L_{triplek} = 0,005 \text{ m}$
13.	Konduktifitas termal triplek	$k_2 = k_{triplek} = 0,12$
		W/m.K
14.	Percepatan gravitasi	: $g = 9,8 \text{ m/s}^2$
15.	Emisivitas plat absorber	: <i>E_{abs}</i> = 0,9
16.	Absorbsivitas	: <i>a_{abs}</i> = 0,88
17.	Emisivitas cover glass	: ε_{cg} = 0,99
18.	Transmisivitas cover glass	: $\tau_{cg} = 0.85$
19.	Konstanta Stefan Boltzman	$: \sigma = 5,67 \times 10^{-8}$
		$W/m^2.K^4$

1. Perhitungan Intensitas Cahaya mengenai Plat Absorber

Intensitas radiasi lampu halogen yang terbaca pada *pyranometer* sebesar 5,5 mVolt. Ketelitian *pyranometer* adalah 7,65 mVolt/kW.m². Intensitas yang mengenai plat *absorber* adalah :

$$\begin{split} I &= \frac{5.5 \, \text{mVolt}}{0.00765 \, \frac{\text{mVolt}}{\text{W},\text{m}^2}} = 718.954 \ \frac{\text{W}}{\text{m}^2} \\ S &= (1.01) \tau_{\text{cg}} \, \alpha_{\text{abs}} \, \text{I} \\ S &= (1.01) \times 0.85 \times 0.88 \times 718.954 \, \frac{\text{W}}{\text{m}^2} \\ S &= 543.155 \, \frac{\text{W}}{\text{m}^2} \end{split}$$

2. Menghitung koefisien perpindahan panas konveksi antara kaca penutup dengan udara luar (h_w) $T = \frac{T_{amb} + T_{cg}}{2} = \frac{300 + 324.278 \text{ K}}{2} = 312.139 \text{ K}$

Berdasarkan $T_{f,amb-cg}$ maka dari tabel A.4 Thermophysical properties of gases at atmospheric pressure selanjutnya didapatkan :

$$v = 17.111 \ 10^{-6} \ \text{m}^2/\text{s}$$

$$\alpha = 24.3 \ 10^{-6} \ \text{m}^2/\text{s}$$

$$k = 27.2 \ 10^{-3} \ \text{W}/\text{m.K}$$

$$Ra_L = \frac{g\beta' \Delta T_{amb-cg} L^3}{\nu \alpha} = \frac{g_{T_{amb-cg}}^{1} \Delta T_{cg-abs} L_{cg}^3}{\nu \alpha}$$

$$Ra = \frac{9.8^{\text{m}}/\text{s}^2 \times \frac{1}{\text{s}_{12.139} \text{ K}} \times (324.278 - 300) \text{K} \times (0.9 \text{ m})^3}{(17.111 \ 10^{-6} \ \text{m}^2/\text{s}) \times (24.3 \ 10^{-6} \ \text{m}^2/\text{s})} = 1336570796$$

$$Nu_{L} = 0.15 \text{ Ra}_{L}^{\frac{1}{8}} = 0.15 (1336570796)^{\frac{1}{8}} = 154.052$$
$$h_{w} = \frac{Nu_{L}k}{L} = \frac{154.052 \times 0.0272^{W}/_{m.K}}{0.9 \text{ m}} = 4.656 \text{ W}/_{m^{2}.K}$$

3. Menghitung koefisien perpindahan panas konveksi antara kaca penutup dengan plat *absorber* (h_{conv,cg-abs}) $T_{f,cg-abs} = \frac{T_{cg}+T_{abs}}{2} = \frac{324.278+331.229}{2} = 327.754 \text{ K}$

Berdasarkan $T_{f,cg-abs}$ maka dari tabel A.4 *Thermophysical* properties of gases at atmospheric pressure selanjutnya didapatkan :

 $v = 18.682 \ 10^{-6} \ m^2/s$ $\alpha = 26.661 \ 10^{-6} \ m^2/s$ $k = 28.35 \ 10^{-3} \ W/m.K$

$$\begin{aligned} \text{Ra} &= \frac{g\beta \Delta T_{cg-abs}L_{cg}{}^{s}}{\nu \alpha} = \frac{g\frac{1}{T_{f,cg-abs}}\Delta T_{cg-abs}L_{cg}{}^{s}}{\nu \alpha} \\ \text{Ra} &= \frac{9.8^{m}/_{s^{2}} \times \frac{1}{327.754\,\text{K}} \times (331.229 - 324.278)\text{K} \times (0.9\,\text{m})^{s}}{(18.682\,10^{-6}\,\text{m}^{2}/_{s})} = 304819139 \end{aligned}$$

 $\underline{Menentukan nilai konstanta (C_3 dan n)} \\
 \underline{dengan,} \\
 \theta = 0^{\circ}$

5.688 ^W/_{m².K}
4. Menghitung koefisien perpindahan panas radiasi antara kaca penutup dengan udara luar (h_{r,cg-amb}) T_{amb} = 300 K h_{r,cg-amb} = ε_{cg}σ^{(T_{cg}+T_{amb})(T_{cg}²+T_{amb}²)(T_{cg}-T_{amb})}/_(T_{cg}-T_{amb})

$$\begin{array}{l} \text{Tr}_{cg-amb} = c_{cg0} & (\text{T}_{cg}-\text{T}_{amb}) \\ = 0.8 \times (5.67\ 10^{-8}\) \times \frac{(324.278+300)(324.278^2+300^2)(324.278-300)}{(324.278-300)} \\ = 5.523\ \text{W}/\text{m}^2.\text{K} \end{array}$$

5. Menghitung koefisien perpindahan panas radiasi antara kaca penutup dengan plat *absorber* ($h_{r,cg-abs}$) $F_{1-3} = 1 - \sin \frac{\alpha}{2} = 1 - \sin \frac{20^{\circ}}{2} = 0.826352$ F_{1-3} merupakan *view factor* (faktor bentuk) berpengaruh pada proses perpindahan radiasi dari plat *absorber* ke kaca penutup dan sekelilingnya.

$$\begin{split} \dot{L} &= 0.086313 \text{ m} \\ H &= 1 \text{ cm} + (1.5 \times 8.5 \text{ cm}) = 5.25 \text{ cm} = 0.0525 \text{ m} \\ F_{12-3} &= \frac{2L(F_{1-8})}{2L+2H} = \frac{2 \times 0.086313 \text{ m} \times 0.826352}{(2 \times 0.086313 \text{ m}) + (2 \times 0.0525 \text{ m})} = 0.51382 \\ A_{abs} &= 2 \times (0.9 \text{ m} \times 0.086313 \text{ m}) = 0.1553634 \text{ m}^2 \\ A_{cg} &= 0.9 \text{ m} \times 0.03 \text{ m} = 0.027 \text{ m}^2 \\ h_{r,cg-abs} &= \frac{\sigma(T_{abs}^2 + T_{cg}^2)(T_{abs} + T_{cg})}{\frac{1 - \epsilon_{abs}}{\epsilon_{abs}} + \frac{1}{F_{12-3}} + \frac{(1 - \epsilon_{cg})A_{abs}}{A_{cg}}}{\frac{1 - \epsilon_{os}}{\epsilon_{abs}} + \frac{1}{F_{12-3}} + \frac{(1 - \epsilon_{cg})A_{abs}}{A_{cg}}} \\ &= \frac{5.67 \text{ 10}^{-8} (331.229^2 + 324.278^2)(331.229 + 324.278)}{\frac{1 - 0.99}{0.027 \text{ m}^2} + \frac{1}{\epsilon_{51582}} + \frac{(1 - \epsilon_{cg}) \times 0.1558634 \text{ m}^2}{\epsilon_{0.027 \text{ m}^2}}} \\ h_{r,cg-abs} &= 2.569 \text{ W}/_{m^2.K} \end{split}$$

6. Menghitung R_{total upper}

$$R_{total upper} = \frac{1}{h_w} + \frac{1}{h_{r,cg-amb}} + \frac{1}{h_{conv,cg-abs}} + \frac{1}{h_{r,cg-abs}}$$

 $R_{total upper} = \left(\frac{1}{4.656} + \frac{1}{5.523} + \frac{1}{5.688} + \frac{1}{2.569}\right) = 0.961 \text{ m}^2 \text{ K/W}$

7. Menghitung Overall heat coefficient top (U_T)

$$U_{T} = \frac{1}{R_{total upper}.A_{abs}} = \frac{1}{(0.961 \text{ m}^{2}.\text{K/W}) \times (0.1553634 \text{ m}^{2})}$$

$$U_{T} = 6.698 \text{ W/m}^{2}.\text{K}$$

8. Menghitung Overall heat coefficient bottom (U_B)

$$U_{B} = \frac{1}{\left(\frac{L_{1}}{k_{1}} + \frac{L_{2}}{k_{2}} + \frac{1}{h_{W}}\right) \cdot A_{iso}} = \frac{1}{\left(\frac{0.05 \text{ m}}{0.01 \text{ W/mK}} + \frac{0.005 \text{ m}}{0.12 \text{ W/m.K}} + \frac{1}{4.656 \text{ W}/\text{m}^{2}\text{,K}}\right) \cdot (0.027 \text{ m}^{2})}$$
$$U_{B} = 11.373 \text{ W}/\text{m}^{2}\text{,K}$$

9. Menghitung Overall heat coefficient total (U_L) $U_L = U_T + U_B = 6.698 + 11.373 = 18.071 \text{ W/}_{m^2.K}$

10. Menghitung koefisien konveksi antara plat absorber dengan fluida (h_{conv,abs-fluida}) $A_c = A_{duct} - (A_{fin} + A_{obs})$ $A_c = \left(\frac{l_{duct} \times t_{duct}}{2}\right) - \left[(t_{segitiga} \times t_{fin} \times 2) + \left(\frac{l_{obstacle} \times t_{obstacle}}{2}\right)\right]$ $= \left(\frac{0.03 \times 0.095}{2}\right) - \left[(0.003 \times 0.05 \times 2) + \left(\frac{0.01559 \times 0.05}{2}\right)\right]$ $= 5.855 \times 10^{-4} \text{ m}^2$ $P = (l_{sisi \ duct} \times 2) + (t_{segitiga} \times 4) + (l_{duct} - \text{ alas obstacle})$ $+ (t_{obstacle} \times 2)$ $= (0.08631 \times 2) + (0.003 \times 4) + (0.03 - 0.01558) + (0.05 \times 2)$ = 0.299 m $D_h = \frac{4 \times Ac}{p} = \frac{4 \times 5.955 \times 10^{-4} \text{ m}^2}{0.299046 \text{ m}} = 0.00783 \text{ m}$ $T_{fluida} = \frac{T_{in} + T_{out}}{2} = \frac{305 + 317.5}{2} = 311.25 \text{ K}$

Berdasarkan T_{fluida} maka dari tabel A.4 *Thermophysical* properties of gases at atmospheric pressure selanjutnya didapatkan :

$$\rho = 1.12396 \frac{\text{kg}}{\text{m}^3}$$

Cp = 1007.45 $\frac{\text{J}}{\text{kg.K}}$

$$\mu = 189.91 \, 10^{-7} \, \text{m}^2/\text{s}$$

k = 27.13 $10^{-3} \, \text{W}/\text{m.K}$
Pr = 0.70543

$$\operatorname{Re}_{D_{h}} = \frac{\rho \times V \times D_{h}}{\mu} = \frac{1.12396 \ kg/_{m^{3}} \times 6.5 \ m/_{g} \times 0.007 \ g3157 \ m}{189.91 \ 10^{-7} \ m^{2}/_{g}} = 30012.765$$

$$\begin{split} \mathrm{Nu}_{\mathrm{D}} &= 0.023 \ \mathrm{Re}_{\mathrm{D}_{\mathrm{h}}}^{\frac{4}{5}} \mathrm{Pr}^{\mathrm{n}} = \\ 0.023 \ \left(3008.3238 \ \frac{4}{5} \right) \ \left(0.70543^{0.4} \right) = 12.194 \\ \mathrm{h}_{\mathrm{conv,abs-fluida}} &= \frac{\mathrm{Nu}_{\mathrm{D}} \times \mathrm{k_{fluida}}}{\mathrm{D}_{\mathrm{h}}} = \frac{12.1937 \times 27.1310^{-3} \mathrm{W}/_{\mathrm{m.K}}}{0.00783157 \ \mathrm{m}} = \\ 42.245 \ \mathrm{W}/_{\mathrm{m}^{2}.\mathrm{K}} \end{split}$$

11. Menghitung koefisien radiasi antara plat *absorber* dan *base* (h_{r,abs-base})

$$\begin{split} F_{1-4} &= 1 - \sin\frac{\alpha}{2} = 1 - \sin\frac{20^{\circ}}{2} = 0.826352 \\ F_{12-4} &= \frac{2L(F_{1-4})}{2t_{fin} + W} = \frac{2 \times 0.086313(0.826352)}{(2 \times 0.003) + 0.03} = 3.9624956 \\ h_{r,abs-base} &= \frac{\sigma(T_{abs}^2 + T_{base}^2)(T_{abs} + T_{base})}{\frac{1 - \epsilon_{abs}}{\epsilon_{abs}} + \frac{1}{F_{12-4}} + \frac{(1 - \epsilon_{bass})A_{abs}}{A_{base}} \\ &= \frac{5.67\ 10^{-8}\ (331.229^2 + 320.967^2)(331.229 + 320.967)}{\frac{1 - 0.9}{2.9} + \frac{1}{3.9624956} + \frac{(1 - 0.9)1553634}{0.027}} = 24.567\ W/m^2.\ K$$

12. Menghitung Faktor Pelepasan Panas (F_R)

$$F' = \frac{1}{1 + \frac{U_L}{\frac{h_1}{\sin\frac{0}{2} + \frac{1}{h_1 + h_r}}}} = \frac{1}{\frac{1}{1 + \frac{22.667 \text{ W}/\text{m}^2\text{K}}{\sin\frac{20}{2} + \frac{42.24514}{42.245 + \frac{1}{24.567}}}}} = 0.931$$

$$\phi = \frac{\text{mC}_p}{A_c U_L F'} = \frac{0.0077 \text{ kg}/\text{s} \times 1007.4608 \text{J}/\text{kg.K}}{0.1553634 \text{ m}^4 \times 22.667 \text{ W}/\text{m}^2\text{.K}} \times 0.931} = 3.708$$

$$F'' = \varphi \left[1 - e^{-\frac{1}{\varphi}} \right] = 3.708 \left[1 - e^{-\frac{1}{8.708}} \right] = 0.876$$

$$F_{R} = F''.F' = 0.876 \times 0.931 = 0.816$$

13. Menghitung Energi Berguna (Q_{Usefull})

Pada penelitian ini memperhitungkan energi berguna secara termodinamika dan energi berguna secara perpindahan panas.

a.
$$Qu_{termo} = \dot{m} C_p [T_{f,out} - T_{f,in}]$$

 $= 0.0077 \frac{kg}{s} \times 1007 \frac{J}{kg.K} \times [317.5K - 305K]$
 $= 96.925 Watt$
b. $Qu_{perpan} = A_c.F_R[S - U_L(T_{f,in} - T_{amb})]$
 $= (0.1553634 m^2) \times 0.816[543.1554 - 18.071(305 - 300)]$
 $= 57.413 Watt$

14. Menghitung Efisiensi (η)

Pada penelitian ini memperhitungkan efisiensi secara termodinamika dan efisiensi secara secara perpindahan panas.

a.
$$\eta_{termo} = \frac{Qu_{termo}}{A_c I} = \frac{96.925 \text{ Watt}}{0.1553634 \text{ m}^2 \times 718.954 \text{ Watt}/\text{m}^2} = 0.868$$

b. $\eta_{perpan} = \frac{Qu_{perpan}}{A_c I} = \frac{57.413 \text{ Watt}}{0.1553634 \text{ m}^2 \times 718.954 \text{ Watt}/\text{m}^2} = 0.514$

4.3. Analisa Energi Berguna Terhadap Variasi Intensitas Radiasi dan Laju Aliran Massa

(b)

Gambar 4.8 Grafik Qu fungsi laju aliran massa pada variasi intensitas radiasi. (a) Qu termo, (b) Qu perpan.

Energi berguna adalah besar energi panas yang diserap oleh fluida kerja untuk menaikkan temperatur keluar. Terdapat

dua energi berguna dari kolektor surya dengan tinjauan termodinamika (termo) dan perpindahan panas (perpan). Pada Gambar 4.9 yang menampilkan grafik Qu fungsi laju aliran massa pada variasi intensitas radiasi, dapat dilihat bahwa tren kedua grafik Qu berubah terhadap besarnya laju aliran massa yang diberikan, semakin besar laju aliran massa yang diberikan maka nilai Qu juga akan semakin tinggi, begitu pula dengan besar intensitas radiasi yang diberikan.

Pada grafik Qu_{termo}, nilai tertinggi dihasilkan pada laju aliran massa 0.008 kg/s dengan intensitas radiasi 718.954 W/m², yaitu 96.9248 Watt. Begitu pula nilai Qu_{perpan} tertinggi dihasilkan pada laju aliran massa 0.008 kg/s dengan intensitas radiasi 718.954 W/m², yaitu 51.98851 Watt. Hal tersebut terjadi karena perhitungan Qu_{termo} dipengaruhi oleh besar laju aliran massa dan beda temperatur yang dihasilkan. Pada intensitas radiasi yang sama, semakin kecil laju aliran massa yang dialirkan maka semakin mudah fluida kerja untuk menyerap panas dan menghasilkan beda temperatur yang besar. Ketika beda temperatur besar tetapi laju aliran massa kecil makan nilai Qu_{termo} yang didapatkan kecil. Dari grafik di atas, 0.008 kg/s adalah laju aliran massa optimal untuk menghasilkan Qu_{termo} paling besar.

Dari hasil perhitungan Qutermo dan Quperpan tedapat selisih yang cukup tinggi. Qutermo dihitung dengan perumusan $Qu_{termo} = \dot{m} C_{p} \left[T_{f,out} - T_{f,in} \right],$ termodinamika, dengan mengasumsikan laju aliran massa yang masuk dan keluar sama kebocoran ada dalam Rumus atau tidak saluran. $Qu_{perpan} = A_c \cdot F_R [S - U_L (T_{f,in} - T_{amb})]$ menunjukkan bahwa besar Qu_{perpan} dipengaruhi oleh besar intensitas yang diterima dan energi hilang $(Q_{loss} = A_c.(U_T(T_{abs} - T_{amb})))$. A_c adalah luasan efektif plat absorber. F_R adalah faktor pelepasan panas plat absorber. T_{f,in} adalah temperatur masuk udara. T_{amb} adalah temperatur sekitar. Jika perumusan U_T dijabarkan maka, nilainya bergantung pada koefisien konveksi dan radiasi pada plat

Gambar 4.9 Grafik temperatur plat *absorber* fungsi laju aliran massa pada variasi intensitas radiasi.

Pada Gambar 4.10 dapat dilihat jika temperatur plat *absorber* memiliki tren menurun seiring dengan naiknya laju aliran massa udara. Semakin besar intensitas yang diberikan maka temperatur plat *absorber* dan *cover glass* juga akan naik sehingga menaikkan koefisien konveksi dan radiasi. Koefisien konveksi dan radiasi sebanding dengan *overall heat coefficient top* (U_T). Jika temperatur plat *absorber* semakin besar maka Q_{perpan} akan semakin kecil, begitu pula dengan semakin tinggi intensitas radiasi maka Q_{loss} yang dihasilkan juga besar. Hal tersebut mengakibatkan tren grafik Qu_{perpan} naik seiring kenaikan laju aliran massa pada semua intensitas.

Perbedaan hasil perhitungan energi berguna dikarenakan dalam melakukan perhitungan desain terdapat banyak asumsi yang digunakan seperti faktor pelepasan panas (F_R) , koefisien absorsivitas plat *absorber*, dan transmisivitas kaca dalam menghitung jumlah intensitas radiasi yang diterima kolektor surya (S), serta asumsi dalam perhitungan *overall heat*

 $coefficient total (U_L)$, sehingga hasil yang didapatkan kurang mendekati kondisi aktual eksperimen. Dengan demikian, nilai Qu yang digunakan didasarkan pada perhitungan termodinamika.

Gambar 4.10 Grafik efisiensi fungsi laju aliran massa pada variasi intensitas radiasi.

Berdasarkan perhitungan yang telah dilakukan, unjuk kerja dari kolektor surya dapat dilihat dari nilai efisiensinya. Efisiensi merupakan perbandingan antara energi yang berguna dengan energi yang masuk. Nilai efisiensi menunjukkan baik atau tidaknya kolektor surya yang diuji dalam mentransfer energi panas ke fluida kerja. Pada Gambar 4.11 dapat dilihat jika efisiensi desain paling tinggi yaitu 0,926 pada laju aliran massa 0,008 kg/s dan intensitas radiasi 431,372 W/m².

Besar efisiensi sebanding dengan kalor yang diterima udara dan berbanding terbalik dengan intensitas radiasi yang diterima plat *absorber*. Hal ini sesuai dengan rumus $\eta = \frac{Q_u}{A_c I_T}$ sehingga tren grafik naik. Efisiensi desain paling tinggi terjadi pada variasi intensitas paling rendah, hal ini dapat terjadi dikarenakan perumusan efisiensi jika dijabarkan yaitu $\eta = 1 - \frac{Q_{loss}}{A_c I_T}$ dimana $Q_{loss} = A_c \cdot (U_T (T_{abs} - T_{amb}))$. Efisiensi dipengaruhi oleh *overall heat coefficient top* (U_T), pada perhitungan U_T dipengaruhi oleh temperatur plat *absorber* dan *cover glass*. Pada Gambar 4.12 dapat dilihat bahwa semakin kecil

intensitas radiasi maka U_T semakin kecil dan Q_u termo semakin besar, dengan demikian efisiensi yang dihasilkan akan besar saat intensitas rendah.

Gambar 4.11 Grafik Overall heat coefficient top

4.5. Penurunan Tekanan dan Koefisien Friksi Aliran Udara

Penurunan tekanan adalah hasil dari gaya gesek pada fluida ketika mengalir melalui saluran. Penurunan tekanan pada eksperimen ini diukur dengan menggunakan *differential magnetic pressure gage* selama proses pemanasan pada tiap variasi *Reynolds number*. Dengan diketahui panjang saluran udara (L) dan kecepatan udara (v), koefisien friksi aliran dapat dicari dengan persamaan (2.69) yaitu $f = \frac{\Delta P}{\frac{L}{D_h} P_a^2}$.

Gambar 4. 12 Grafik koefisien friksi aliran fungsi *Reynolds number* pada intensitas 718.954 W/m².

Pada Gambar 4.13 dapat dilihat grafik koefisien friksi aliran (f) fungsi *Reynolds number* (Re) pada intensitas 718.954 W/m². Koefisien friksi paling besar pada *Reynolds number* 1281. Tren grafik menurun meunjukkan koefisien friksi aliran berkurang seiring bertambahnya Re, hal ini bersesuaian dengan diagram *moody* (*Introduction to Fluid Mechanics*, Fox).

Besarnya *Reynolds number* sebanding dengan kecepatan aliran (v). Saat aliran adalahaliran laminar, nilai koefisien gesek dipengaruhi oleh *Reynolds number* dan kekasaran permukaan saluran (*roughness*, e/D), maka semakin besar *Reynolds number* mengakibatkan semakin kecil nilai koefisien gesek. Sedangkan saat aliran adalah aliran turbulen, nilai f cenderung konstan terhadap kenaikan *Reynolds number*.

Penambahan *obstacle* dan *fin* mengakibatkan penurunan tekanan maka energi yang diperlukan untuk mengalirkan udara semakin besar. Energi yang diperlukan dapat dihitung dengan persamaan $\mathbf{P} = \mathbf{\dot{V}} \Delta \mathbf{P}$, dimana P adalah daya yang dibutuhkan (Watt), $\mathbf{\dot{V}}$ adalah debit aliran udara (m³/s), $\Delta \mathbf{P}$ adalah penurunan tekanan (Pascal). Ketika penurunan tekanan semakin besar maka akan menyebabkan kenaikan daya *blower*.

(halaman ini sengaja dikosongkan)

LAMPIRAN

- Tabel 1Hasil Simulasi Numerik Variasi Fin
- Tabel 2Variasi Tambahan pada fin 3 mm 0.5L
- Tabel 3Data Hasil Eksperimen
- Tabel 4Perhitungan Data Eksperimen (Konveksi)
- Tabel 5Perhitungan Data Eksperimen (Radiasi)
- Tabel 6Perhitungan Data Eksperimen
- Tabel 7Tabel Properties (Ra)
- Tabel 8Tabel Properties (Re)

No		Fin			Sizes		Kovergen	Vnlue	Те	mperatur (K))	Pr	essure Drop (P	a)	Rasio		
10	Tinggi	Sudut	Jarak	Cells	Faces	Nodes	Kövergen	1 plus	Inlet	Outlet	ΔΤ	Inlet	Outlet	ΔP	ΔT	$\Delta \mathbf{P}$	$\Delta T / \Delta P$
1			0.251	1236415	2551862	245537	976	51.61909	300.007	309.066	9.059	-2.757	-440.282	437.525	0.0218	1.202	0.0182
2		22.5°	0.51	1263855	2606770	250164	1036	51.01727	300.007	309.021	9.014	-2.862	-429.480	426.618	0.0267	1.147	0.0233
3			0.751	1262028	2602832	249688	3846	53.71312	300.007	309.093	9.086	-2.928	-491.423	488.495	0.0189	1.458	0.0130
4			0.251	1227230	2533759	244171	919	45.81707	300.007	309.259	9.252	-2.881	-306.676	303.795	0.0010	0.529	0.0018
5	3 Mm	45°	0.51	1206558	2492313	240682	2960	46.79088	300.007	309.207	9.200	-2.935	-322.111	319.176	0.0066	0.606	0.0109
6			0.751	1220452	2519747	242812	3939	46.73639	300.007	309.179	9.172	-2.940	-327.528	324.588	0.0096	0.633	0.0152
7			0.251	1211750	2502519	241457	1673	41.87626	300.007	309.493	9.486	-3.092	-232.971	229.879	0.0243	0.157	0.1549
8		67.5°	0.51	1250963	2583202	249112	3277	42.14611	300.007	309.628	9.621	-2.933	-232.558	229.625	0.0389	0.156	0.2499
9			0.751	1041748	2162345	213209	2976	42.46860	300.007	309.439	9.432	-2.950	-230.542	227.592	0.0185	0.145	0.1271
10			0.251	1220974	2521237	243062	1102	56.25863	300.007	309.263	9.256	-2.553	-555.904	553.351	0.0005	1.785	0.0003
11		22.5°	0.51	1209857	2498786	241113	1149	56.19249	300.007	309.243	9.236	-2.664	-549.291	546.627	0.0027	1.751	0.0015
12			0.751	1234825	2548967	245396	3893	60.37585	300.007	309.404	9.397	-2.838	-644.496	641.658	0.0147	2.229	0.0066
13			0.251	1246527	2572654	247502	1012	52.48314	300.007	309.278	9.271	-2.716	-434.856	432.140	0.0011	1.175	0.0009
14	4 Mm	45°	0.51	1033700	2146724	212073	1060	53.74494	300.007	309.255	9.248	-3.057	-467.593	464.536	0.0014	1.338	0.0011
15			0.751	1111362	2301975	224893	1318	57.23526	300.007	309.366	9.359	-2.764	-487.892	485.128	0.0106	1.441	0.0073
16			0.251	1134936	2349158	228845	876	48.98433	300.007	309.394	9.387	-2.952	-343.174	340.222	0.0136	0.712	0.0191
17		67.5°	0.51	1249518	2578199	247825	1793	50.22468	300.007	309.407	9.400	-2.883	-353.282	350.399	0.0150	0.763	0.0197
18			0.751	1155525	2390309	232265	1369	49.21111	300.007	309.449	9.442	-2.884	-358.636	355.752	0.0195	0.790	0.0247
19			0.251	1238870	2557062	246083	1577	63.52406	300.007	309.596	9.589	-2.542	-715.515	712.973	0.0354	2.588	0.0137
20		22.5°	0.51	1235532	2550341	245541	1402	64.38847	300.007	309.542	9.535	-2.774	-717.289	714.515	0.0296	2.596	0.0114
21			0.751	1190759	2460873	238109	4111	68.59149	300.007	309.726	9.719	-2.906	-848.837	845.931	0.0494	3.257	0.0152
22			0.251	1072351	2224227	218519	944	52.34757	300.007	309.571	9.564	-3.004	-417.741	414.737	0.0327	1.087	0.0301
23	5 Mm	m 45°	0.51	1021039	2121373	209948	1040	55.78708	300.007	309.599	9.592	-2.948	-438.667	435.719	0.0357	1.193	0.0300
24			0.751	1161888	2403010	233209	3178	55.15832	300.007	309.778	9.771	-3.113	-438.414	435.301	0.0551	1.191	0.0463
25			0.251	1148227	2375870	231046	865	43.42944	300.007	309.631	9.624	-3.006	-268.401	265.395	0.0392	0.336	0.1168
26		67.5°	0.51	1230839	2540903	244666	931	45.63943	300.007	309.786	9.779	-2.964	-265.287	262.324	0.0559	0.320	0.1747
27			0.751	1017662	2114516	209243	1703	45.75545	300.007	309.736	9.729	-2.916	-263.423	260.506	0.0505	0.311	0.1625
	Tanpa Fin										9.261			198.722			

Tabel 1	Hasil Simulasi Numerik	Variasi <i>Fin</i>
---------	------------------------	--------------------

		FIN					RASIO		
NO	SUDUT	JARAK	TINGGI	Δ Τ (K)	$\Delta \mathbf{P}$ (Pa)	ΔT	$\Delta \mathbf{P}$	$\Delta T / \Delta P$	
28	70			9.565	221.782	0.033	0.116	0.2827	
29	72.5			9.414	218.036	0.017	0.097	0.1701	
30	75	0,5L	3 mm	9.591	213.509	0.036	0.074	0.4788	
31	77.5			9.497	211.827	0.025	0.066	0.3855	
32	80			9.377	208.652	0.012	0.050	0.2501	

Tabel 2	Variasi	Tambahan	pada	fin 1	3 mm	0.5L

Tabel 3	Data Hasil Eksperimen

ṁ (kg/s)	I	Tamb	T _{cg} (°C) T _{fhuida} (°C) T _{abs} (°C)		T _{fin} (°C)					T _{base}	(°C)		T _{iso}	Р								
(kg/s)	(mV)	(°C)	1	2	3	avg	in	out	1	2	3	avg	1	2	3	avg	1	2	3	avg	(°C)	(Pa)
0.002		27	46.50	49.40	54.04	49.98	32.00	49.79	55.83	55.08	57.29	56.07	48.75	47.33	50.13	48.74	36.55	44.75	43.96	41.75	30	8
0.004	3.3	27	45.54	48.00	52.75	48.76	32.25	46.63	54.33	54.17	56.38	54.96	43.58	48.50	43.42	45.17	40.13	34.83	47.39	40.78	30	24
0.006	5.5	27	45.20	46.42	50.79	47.47	32.50	43.08	53.92	54.67	55.58	54.72	44.46	48.79	46.13	46.46	40.63	38.38	40.13	39.71	30	38
0.008		27	43.92	46.08	50.54	46.85	32.50	40.50	53.00	54.04	55.75	54.26	45.75	45.46	43.42	44.88	42.33	39.00	43.92	41.75	30	56
0.002		27	47.63	53.50	51.83	50.99	32.00	51.22	61.54	58.79	60.63	60.32	45.15	55.83	47.54	49.51	40.63	41.33	44.00	41.99	30	8
0.004	4.4	27	47.30	51.83	49.38	49.50	32.25	47.54	61.04	55.13	57.88	58.01	44.58	50.17	45.08	46.61	41.29	39.67	43.58	41.51	30	24
0.006	4,4	27	45.69	50.28	48.75	48.24	32.00	44.42	58.00	55.00	57.79	56.93	42.69	50.79	46.13	46.53	38.45	36.58	44.71	39.91	30	38
0.008		27	46.63	45.10	50.65	47.46	32.00	42.33	59.50	54.50	54.65	56.22	43.85	52.30	46.05	47.40	37.00	41.88	41.06	39.98	30	56
0.002		27	55.00	53.63	51.08	53.24	32.00	52.00	63.92	60.79	61.38	62.03	48.44	55.67	50.00	51.37	40.48	39.92	44.83	41.74	30	8
0.004	5.5	27	53.29	52.20	49.96	51.82	32.25	50.96	62.29	61.20	60.30	61.26	46.33	52.93	45.29	48.19	38.20	36.30	43.60	39.37	30	24
0.006	5.5	27	52.29	53.05	49.04	51.46	32.25	48.58	62.50	60.42	59.83	60.92	47.50	52.04	45.29	48.28	43.17	41.15	39.67	41.33	30	38
0.008		27	51.67	55.17	47.00	51.28	32.00	44.50	57.88	58.44	58.38	58.23	48.04	51.44	44.38	47.95	44.90	37.58	40.42	40.97	30	56

	h convection (W/m.K)																			
		wind					cg-abs			abs-fluid				fin-fluid					fluid-base	
Ŧ	β'	Ra	Nu	h	Ŧ	β'	Ra	Nu	h	Re	Nu	h	η fin	ηο	Qt	Rt	h	Re	Nu	h
311.490	0.00321	1277685228	151.779	4.579	326.025	0.00307	273565616	172.722	5.417	1187.854	5.765	20.118	0.79	0.993	893.980	0.322	20.118	1187.854	5.765	20.118
310.882	0.00322	1221320335	149.536	4.504	324.861	0.00308	282889785	175.111	5.475	1796.002	8.026	27.897	0.75	0.991	1239.343	0.233	27.897	1796.002	8.026	27.897
310.235	0.00322	1160115844	147.020	4.420	324.096	0.00309	334909767	187.660	5.856	2416.236	10.177	35.215	0.72	0.990	1570.421	0.185	35.215	2416.236	10.177	35.215
309.924	0.00323	1130233490	145.759	4.378	323.556	0.00309	345125392	189.986	5.920	3041.606	12.236	42.190	0.7	0.989	1885.516	0.154	42.190	3041.606	12.236	42.190
311.993	0.00321	1323429725	153.551	4.639	328.653	0.00304	404172548	202.695	6.401	1183.246	5.747	20.093	0.79	0.993	903.835	0.323	20.093	1183.246	5.747	20.093
311.251	0.00321	1255633628	150.909	4.550	326.758	0.00306	378519288	197.318	6.200	1791.521	8.010	27.875	0.75	0.991	1249.517	0.233	27.875	1791.521	8.010	27.875
310.621	0.00322	1196782051	148.538	4.470	325.586	0.00307	392817512	200.341	6.276	2410.759	10.159	35.190	0.71	0.990	1578.433	0.185	35.190	2410.759	10.159	35.190
310.229	0.00322	1159583823	146.998	4.419	324.838	0.00308	400181084	201.872	6.311	3030.617	12.200	42.143	0.7	0.989	1891.732	0.154	42.143	3030.617	12.200	42.143
313.118	0.00319	1423130547	157.276	4.766	330.632	0.00302	370403892	195.573	6.208	1180.720	5.737	20.080	0.78	0.992	906.969	0.323	20.080	1180.720	5.737	20.080
312.408	0.00320	1360662200	154.963	4.686	329.54	0.00303	404080895	202.676	6.415	1774.910	7.986	27.919	0.75	0.991	1258.119	0.233	27.919	1774.910	7.954	27.809
312.231	0.00320	1344787951	154.364	4.666	329.189	0.00304	406410314	203.155	6.424	2381.925	10.104	35.213	0.72	0.990	1589.655	0.185	35.213	2381.925	10.065	35.075
312.139	0.00320	1336570796	154.052	4.656	327.754	0.00305	304819139	180.555	5.688	3012.765	12.194	42.245	0.71	0.990	1903.031	0.154	42.245	3012.765	12.146	42.079

Tabel 4	Perhitungan	Data E	Eksperimen ((Konveksi)
---------	-------------	--------	--------------	------------

		h radia	tion (W/m.l	X)	
cg-a	amb h	cg-abs	abs-fin	abs- base	fin-base
300	5.488	2.528	19.400	23.640	27.410
300	5.455	2.501	18.987	23.411	26.826
300	5.420	2.484	19.079	23.270	26.855
300	5.404	2.471	18.899	23.439	26.911
300	5.515	2.590	24.982	24.145	22.942
300	5.475	2.546	24.393	23.832	22.578
300	5.441	2.518	24.261	23.537	22.401
300	5.420	2.501	24.277	23.465	22.500
300	5.577	2.637	25.392	24.313	23.119
300	5.538	2.611	24.942	23.966	22.520
300	5.528	2.603	24.912	24.141	22.738
300	5.523	2.569	24.567	24.569	23.419

Tabel 5Perhitungan Data Eksperimen (Radiasi)

R total upper	UT	U _B	U_L	F'	φ	F''	Fr	ṁ	C)u	s		η
									termo	perpan		termo	perpan
0.981	6.563	11.361	17.924	0.867	1.606	0.744	0.645	0.002	34.489	23.692	325.893	0.515	0.354
0.988	6.516	11.348	17.864	0.901	2.327	0.813	0.732	0.004	55.732	26.397	325.893	0.832	0.394
0.984	6.540	11.334	17.874	0.919	3.037	0.852	0.783	0.006	61.547	27.699	325.893	0.918	0.413
0.987	6.521	11.326	17.847	0.932	3.751	0.878	0.818	0.008	62.032	28.941	325.893	0.926	0.432
0.939	6.853	11.371	18.224	0.865	1.583	0.741	0.641	0.002	37.251	34.215	434.524	0.417	0.383
0.957	6.729	11.356	18.085	0.899	2.301	0.811	0.729	0.004	59.286	38.484	434.524	0.663	0.431
0.964	6.677	11.342	18.020	0.919	3.015	0.851	0.782	0.006	72.209	41.840	434.524	0.808	0.468
0.969	6.642	11.333	17.975	0.931	3.727	0.877	0.817	0.008	80.099	43.738	434.524	0.896	0.489
0.929	6.925	11.391	18.316	0.864	1.576	0.740	0.640	0.002	38.770	44.903	543.155	0.347	0.402
0.933	6.900	11.378	18.278	0.899	2.279	0.809	0.727	0.004	72.532	50.533	543.155	0.649	0.452
0.935	6.884	11.375	18.259	0.918	2.978	0.849	0.780	0.006	94.984	54.177	543.155	0.850	0.485
0.961	6.698	11.373	18.071	0.931	3.708	0.876	0.816	0.008	96.925	57.413	543.155	0.868	0.514

Tabel 6Perhitungan Data Eksperimen

Tabel 7	Tabel Properties (Ra)
---------	-----------------------

T cg-amb (K)	ρ (kg/m ³)	Cp (J/kgK)	μ (Ns/m ²)	v (m²/s)	k (W/mK)	α (m ² /s)	Pr
311.49	1.12316	1007.46	1.90023E-05	1.70459E-05	0.02715	2.4201E-05	0.7053914
310.882	1.12518	1007.44	1.89736E-05	1.69847E-05	0.02711	2.4111E-05	0.7054765
310.235	1.12734	1007.41	1.89431E-05	1.69196E-05	0.02706	2.4015E-05	0.7055671
309.924	1.12837	1007.4	1.89284E-05	1.68883E-05	0.02703	2.3969E-05	0.7056107
311.993	1.12149	1007.48	1.90261E-05	1.70965E-05	0.02719	2.4275E-05	0.705321
311.251	1.12396	1007.45	1.8991E-05	1.70218E-05	0.02713	2.4165E-05	0.7054249
310.621	1.12605	1007.42	1.89613E-05	1.69585E-05	0.02709	2.4072E-05	0.7055131
310.229	1.12736	1007.41	1.89428E-05	1.69191E-05	0.02706	2.4014E-05	0.7055679
313.118	1.11774	1007.52	1.90792E-05	1.72097E-05	0.02727	2.4441E-05	0.7051635
312.408	1.12011	1007.5	1.90457E-05	1.71383E-05	0.02722	2.4336E-05	0.7052628
312.231	1.1207	1007.49	1.90373E-05	1.71204E-05	0.02721	2.431E-05	0.7052877
312.139	1.121	1007.49	1.9033E-05	1.71112E-05	0.0272	2.4297E-05	0.7053005

T cg-abs (K)	ρ (kg/m ³)	Cp (J/kgK)	μ (Ns/m ²)	v (m²/s)	k (W/mK)	α (m ² /s)	Pr
326.025	1.07479	1008.04	1.96884E-05	1.85081E-05	0.02823	2.63517E-05	0.7033565
324.861	1.07866	1007.99	1.96334E-05	1.8391E-05	0.02814	2.61794E-05	0.7035195
324.096	1.08121	1007.96	1.95973E-05	1.8314E-05	0.02808	2.60662E-05	0.7036266
323.556	1.08301	1007.94	1.95718E-05	1.82597E-05	0.02804	2.59862E-05	0.7037022
328.653	1.06604	1008.15	1.98124E-05	1.87725E-05	0.02842	2.67406E-05	0.7029886
326.758	1.07235	1008.07	1.9723E-05	1.85818E-05	0.02828	2.64602E-05	0.7032539
325.586	1.07625	1008.02	1.96677E-05	1.8464E-05	0.02819	2.62867E-05	0.7034179
324.838	1.07874	1007.99	1.96323E-05	1.83887E-05	0.02814	2.6176E-05	0.7035228
330.632	1.05946	1008.23	1.99058E-05	1.89716E-05	0.02857	2.70335E-05	0.7027115
329.54	1.06309	1008.18	1.98543E-05	1.88618E-05	0.02849	2.6872E-05	0.7028644
329.189	1.06426	1008.17	1.98377E-05	1.88264E-05	0.02846	2.68199E-05	0.7029136
327.754	1.06904	1008.11	1.977E-05	1.8682E-05	0.02835	2.66075E-05	0.7031145

Tabel 8	Tabel Properties (Re)
---------	-----------------------

Tf (K)	ρ (kg/m ³)	Cp (J/kg K)	μ (Ns/m ²)	v (m ² /s)	k (W/mK)	α (m ² /s)	Pr
313.896	1.11515	1007.55583	1.9116E-05	1.7288E-05	0.027328	2.4557E-05	0.705055
312.438	1.12001	1007.4975	1.9047E-05	1.7141E-05	0.02722	2.4341E-05	0.705259
310.792	1.12549	1007.43167	1.8969E-05	1.6976E-05	0.027099	2.4097E-05	0.705489
309.5	1.12978	1007.38	1.8908E-05	1.6846E-05	0.027003	2.3906E-05	0.70567
314.608	1.11278	1007.58433	1.9150E-05	1.7360E-05	0.027381	2.4662E-05	0.704955
312.896	1.11848	1007.51583	1.9069E-05	1.7187E-05	0.027254	2.4409E-05	0.705195
311.208	1.1241	1007.44833	1.8989E-05	1.7018E-05	0.027129	2.4159E-05	0.705431
310.165	1.12757	1007.4066	1.8940E-05	1.6913E-05	0.027052	2.4004E-05	0.705577
315	1.11148	1007.6	1.9168E-05	1.7399E-05	0.02741	2.4720E-05	0.7049
314.604	1.1128	1007.58417	1.9149E-05	1.7359E-05	0.027381	2.4661E-05	0.704955
313.417	1.11675	1007.53666	1.9093E-05	1.7240E-05	0.027293	2.4486E-05	0.705122
311.25	1.12396	1007.45	1.8991E-05	1.7022E-05	0.027133	2.4165E-05	0.705425

BAB V KESIMPULAN DAN SARAN

5.1. KESIMPULAN

Dari penelitian kolektor surya *v*-corrugated absorber dengan penambahan obstacle dan fin prisma segitiga dapat disimpulakan yaitu sebagai berikut :

- 1. Berdasarkan hasil simulasi numerik pada kolektor , *fin* prisma segitiga dengan tinggi segitiga 3 mm, jarak 0,5L terhadap *obstacle*, dan sudut kemiringan 75° adalah *fin* paling optimal dengan beda temperatur 9,591 K dan penurunan tekanan 213,509 Pa.
- Berdasarkan hasil eksperimen, kenaikan temperatur udara tertinggi sebagai hasil perpindahan kalor dari plat *absorber*, yaitu 20,00 K, dicapai ketika intensitas radiasi 718,954 W/m², laju aliran massa 0,002 kg/s dengan penurunan tekanan aliran sebesar 8 Pa.
- 3. Energi berguna (Qu) kolektor surya tertinggi yaitu 96,925 W, dicapai ketika intensitas radiasi 718,954 W/m², laju aliran massa 0,008 kg/s.
- 4. Efisiensi kolektor surya tertinggi yaitu 0,9256, dicapai ketika intensitas radiasi 431,372 W/m², laju aliran massa 0,008 kg/s.
- 5. Penurunan tekanan berbanding lurus dengan penambahan *Reynolds number*. Penurunan tekanan paling kecil dicapai pada *Reynolds number* 1281 yaitu 8 Pa, sedangkan penurunan tekanan paling besar pada *Reynolds number* 3202,67 yaitu 56 Pa.

5.2. SARAN

Beberapa hal yang ingin penulis sampaikan guna kesempurnaan penelitianini antara lain :

1. Penggunaan *blower* sebaiknya jenis hisap agar aliran udara lebih stabil.

- 2. Studi lebih lanjut dengan memperhitungkan efek penurunan tekanan sepanjang saluran fluida kerja serta karakteristik dan perilaku lampu halogen sebagai pengganti radiasi matahari (*sun artificial*).
- 3. Kinerja kolektor surya dapat ditingkatkan denganmengurangi kalor yang hilang (Q_{loss}), upaya tersebut antara lain dengan mempelajari karakteristik penggunaan kaca biasa dan *tempered glass*, pengaruh lebar celah antara plat *absorber* dengan *cover glass*, dan jarak lampu terhadap *cover glass*.

DAFTAR PUSTAKA

- [1] Arieffani, Febry. 2010. Studi Simulasi Numerik dan Eksperimental Unjuk Kerja Kolektor Surya V-Groove Absorber dengan Penambahan Obstacle berbentuk Segitiga yang Disusun Sejajar. Tugas Akhir. Tidak dipublikasikan. Surabaya: Institut Teknologi Sepuluh Nopember.
- [2] Bhushan, B. & Singh, R. 2010. A Review on Methodology of Artificial Roughness used in Duct of Solar Air Heaters. India: Beant College of Engineering and Technology, Gurdaspur.
- [3] Duffie, J.A. and W.A. Beckman. 1991. *Solar Engineering* of *Thermal Processes*. Second Edition. John Willey and Sons Inc., New York.
- [4] Handoyo, Ekadewi A. 2014. Peningkatan Kinerja Kolektor Surya Tipe V-Corrugated Absorber Plate Menggunakan Obstacle yang Ditekuk Secara Vertikal. Tugas Akhir. Tidak dipublikasikan. Surabaya: Institut Teknologi Sepuluh Nopember.
- [5] Incropera, Frank.P., David P. Dewitt, Theodore L. Bergman, Adrienne S. Lavine. 2011. *Fundamentals of Heat and Mass Transfer*.Seventh Edition. John Wiley and Sons Inc., New York.
- [6] Iqlima, Mirza. 2012. Studi Eksperimental dan Analisa Medan Kecepatan pada Performansi Kolektor Surya V-Corrugated Absorber dengan Penambahan Obstacle Berbentuk Paruh dengan Variasi Sudut Paruh. Tugas Akhir. Tidak dipublikasikan. Surabaya: Institut Teknologi Sepuluh Nopember.
- [7] Karim, Md Azharul and M.N.A Hawladerb. 2004. *Performance Investigation of Flat-Plate, V-Corrugated and Finned Air Collectors.* Australia: University of Melbourne, Victoria.

- [8] Randall, K. R., B.A. Meyer, M.M. El-Wakil, and J.W. Mitchell. 1978. Interferometric Investigations of Convection in Slat, Flat Plate, and Vee-Corrugated Solar Collectors. University of Wisconsin-Madison.
- [9] Said, Sudirman. 2014. Outlook Energi Indonesia 2014. Jakarta.
- [10] Tuakia, Firman. 2008. Dasar-dasar CFD Menggunakan FLUENT. Penerbit Informatika. Bandung.

BIODATA PENULIS

Alifia Masitha Harina lahir di Surabaya, 22 Juli 1994, merupakan anak pertama dari 2 bersaudara. Penulis telah menempuh pendidikan formal yaitu di SD Negeri 1 Jiwan, SMP Negeri 5 Madiun, dan SMA Negeri 3 Madiun. Penulis mengikuti SNMPTN dan diterima di Jurusan Teknik Mesin FTI - ITS pada tahun 2012 dan terdaftar dengan NRP 2112100008.

Selama masa kuliah, penulis aktif mengikuti organisasi sebagai Staf Himpunan Mahasiswa Mesin

FTI-ITS dalam Departemen Kesejahteraan Mahasiswa dan juga sebagai Bendahara Umum. Penulis juga aktif sebagai Asisten Praktikum Perpindahan Panas dan Massa, serta aktif dalam beberapa kepanitiaan. Di Jurusan Teknik Mesin ini penulis mengambil bidang studi Konversi Energi sebagai bahasan Tugas Akhir yang memiliki topik Energi Surya di bawah bimbingan Prof. Dr. Ir. Djatmiko Ichsani, M.Eng.

Jika ada informasi, pertanyaan maupun saran yang ingin disampaikan kepada penulis, dapat melalui email <u>alifiaharina@gmail.com</u>.

(halaman ini sengaja dikosongkan)