Evaluasi Unjuk Kerja Sistem Proteksi Water Hammer Pada Sistem Perpipaan (Studi Kasus Di Rumah Pompa Produksi Unit Instalasi Pengolahan Air Minum (Ipam) Karang Pilang 2 Pt Pdam Surya Sembada Surabaya)

Prasetya, Handi (2016) Evaluasi Unjuk Kerja Sistem Proteksi Water Hammer Pada Sistem Perpipaan (Studi Kasus Di Rumah Pompa Produksi Unit Instalasi Pengolahan Air Minum (Ipam) Karang Pilang 2 Pt Pdam Surya Sembada Surabaya). Undergraduate thesis, Institut Teknologi Sepuluh Nopember Surabaya.

[thumbnail of 2113106021-Undergraduate_Thesis.pdf]
Preview
Text
2113106021-Undergraduate_Thesis.pdf - Published Version

Download (2MB) | Preview

Abstract

Sistem jaringan perpipaan merupakan komponen penting
dalam menunjang produksi maupun distribusi pada sektor
industri. Jaringan perpipaan mengalami beberapa fenomena
seperti distribusi fluida dan water hammer. Water hammer sering
terjadi di daerah discharge pompa pada saat pengoperasian
pompa maupun pada saat kegagalan operasi pompa. Dampak
yang ditimbulkan dari fenomena water hammer akan terjadi
seketika itu juga. Dan penanggulangan yang tidak tepat terhadap
dampak tersebut dapat mengakibatkan instalasi perpipaan harus
dimatikan (shutdown). Beberapa cara untuk mengurangi dampak
water hammer adalah dengan cara menambahkan flywheel
ataupun gas accumulator pada jaringan perpipaan. Lonjakan
tekanan serta aliran balik yang terjadi akibat fenomena water
hammer akan dilawan oleh putaran impeller pompa yang
dibebani oleh flywheel dan akan memperlambat lonjakan tekanan
dalam pipa dan tekanan yang berlebih akan dibuang ke gas
accumulator sehingga tekanan dalam pipa berangsur stabil dan
tidak akan menyebabkan aliran balik tersebut memutar arah
putaran poros pompa ke arah sebaliknya yang akan merusak
komponen motor penggerak.
Pada penelitian ini, pemodelan sistem perpipaan
dilakukan dengan menggunakan perangkat lunak AFT Impulse
4.0. Sistem perpipaan yang disimulasikan merupakan sistem
perpipaan dengan rangkaian pompa paralel yang dilengkapi
flywheel pada instalasi pompa dan divariasikan dengan
penambahan gas accumulator sebagai sistem proteksi water
hammer. Analisa yang dilakukan adalah untuk mempelajari
fenomena water hammer pada saat kondisi ekstrim yakni ketika
sebagian pompa operasi mati dan juga ketika seluruh pompa
operasi mati untuk melihat pengaruh variasi ukuran flywheel
terhadap fluktuasi tekanan yang terjadi. Ukuran flywheel yang
divariasikan adalah flywheel dengan diameter luar 1100mm,
1200mm dan 1300mm dengan tebal masing-masing 300mm,
400mm dan 500mm. Sehingga dengan ukuran flywheel yang
berbeda dapat dilihat pengaruh momen inersianya dalam
melawan lonjakan tekanan. Serta untuk melihat pengaruh
penambahan gas accumulator pada pipa discharge utama dalam
meredam fluktuasi tekanan.
Hasil yang didapatkan pada simulasi berupa plot grafik
dari fluktuasi tekanan yang terjadi pada sistem perpipaan. Pada
sistem perpipaan tanpa menggunakan gas accumulator, tekanan
maksimum yang terjadi pada discharge pompa mencapai 19,807
bar dari kondisi tekanan kerjanya 5,6 bar. Variasi ukuran
flywheel memberi dampak pada perlambatan terjadinya lonjakan
tekanan, semakin besar ukuran flywheel akan menunda
terjadinya lonjakan tekanan akibat water hammer. Dan
penambahan gas accumulator berperan dalam meredam serta
mempersingkat waktu terjadinya lonjakan tekanan, sehingga
fluktuasi tekanan cenderung berangsur stabil dengan cepat. Serta
tebal pipa discharge yang digunakan yakni 9,52 mm mampu
menahan tekanan maksimum yang terjadi akibat efek water
hammer sesuai dengan perhitungan tebal pipa minimum untuk
material steel yang dikeluarkan oleh American Water Works
Association (AWWA) Manual M11
=============================================================================================
Piping network system is an important component in
supporting the production and distribution of the industrial
sector. Piping network experienced some phenomena such as
fluid distribution and water hammer. Water hammer often occurs
in the discharge area of the pump during operation of the pump
or when the pump failures. The impact of water hammer
phenomenon will occur instantly. And the wrong
countermeasures againts the effect can lead piping installation to
the shutdown condition. Some ways to reduce the impact of water
hammer is by adding a flywheel or gas accumulator in the
pipeline. The pressure fluctuations and backflow which is caused
by the phenomenon of water hammer will be opposed by the
rotation of the pump impeller which is burdened by the flywheel
and it will slow down the surge of pressure in the pipes and
excessive pressure will be discharged into the gas accumulator so
that the pressure in the pipes gradually stabilized and will not
cause a backflow of the rotational direction of pump shaft
rotation in the opposite direction which will damage the motor
components.
In this study, the piping system modeling is done by using
the AFT Impulse 4.0 software. Plumbing system that simulated is
a piping system with a series of parallel pump incorporates a flywheel on the installation of the pump and the gas accumulator
is varied by the addition of a water hammer protection system.
The analysis is to study the phenomenon of water hammer during
extreme conditions, in example when most of the operating pump
is turned off and also when the entire operation of the pump
turned off to see the effect of flywheel size variations to the
pressure fluctuations that occur. The flywheel size variation is a
flywheel with an outer diameter of 1100mm, 1200mm and
1300mm with thickness respectively 300mm, 400mm and 500mm.
So that the different sizes of flywheel can be seen the influence of
moment of inertia against pressure surges. As well as to see the
effect of additional of gas accumulator on the main discharge
pipe in dampening the pressure fluctuations.
The results obtained in the simulation is a plot graph of
pressure fluctuations which occur in piping systems. In piping
systems without using gas accumulator, the maximum pressure
that occur at discharge pump reaches 19.807 bar of pressure
working conditions of 5.6 bar. The flywheel size variations
impact on the decelaration of pressure escalation, the greater the
size of the flywheel will delay the occurrence of pressure surges
due to water hammer. And the addition of gas accumulator is
serve as dampening as well as shorten the time of the occurrence
of pressure fluctuations, so the pressure fluctuations tends
gradually stabilized quickly. And the thickness of the discharge
pipe is used with 9.52 mm is able to withstand the maximum
pressure caused by water hammer effect in accordance with the
calculation of minimum pipe thickness for steel materials issued
by the American Water Works Association ( AWWA ) Manual
M11 .

Item Type: Thesis (Undergraduate)
Additional Information: RSM 621.867 2 Pra e
Uncontrolled Keywords: water hammer, discharge, AFT Impulse, flywheel, gas accumulator.
Subjects: T Technology > TJ Mechanical engineering and machinery > TJ930 Pipelines (General). Underwater pipelines.
Divisions: Faculty of Industrial Technology > Mechanical Engineering > 21201-(S1) Undergraduate Thesis
Depositing User: EKO BUDI RAHARJO
Date Deposited: 30 Jun 2020 01:49
Last Modified: 30 Jun 2020 01:49
URI: http://repository.its.ac.id/id/eprint/76251

Actions (login required)

View Item View Item