

TESIS (TM142501)

PENINGKATAN KINERJA KOLEKTOR SURYA TIPE TRAPEZOIDAL ABSORBER PLATE MENGGUNAKAN OBSTACLE BERBENTUK PRISMA SEGITIGA DENGAN VARIASI SUDUT TEKUK VERTIKAL DISUSUN INLINE

LOHDY DIANA NRP. 2114202001

Dosen Pembimbing: Prof. Dr. Ir. Djatmiko Ichsani, M.Eng.

PROGRAM MAGISTER BIDANG KEAHLIAN REKAYASA KONVERSI ENERGI JURUSAN TEKNIK MESIN FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2016

TESIS (TM142501)

IMPROVING THE PERFORMANCE OF A TRAPEZOIDAL ABSORBER PLATE SOLAR COLLECTOR USING VARIATION OF TRIANGULAR PRISM OBSTACLE FOLDED ANGLE ARRANGED INLINE

LOHDY DIANA NRP. 2114202001

Supervisor: Prof. Dr. Ir. Djatmiko Ichsani , M.Eng.

MAGISTER PROGRAM ENERGY CONVERSION DEPARTEMENT OF MECHANICAL ENGIEERING FACULTY OF INDUSTRIAL TECHNOLOGY INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2016

KATA PENGANTAR

Bismillahirrahmanirrahim, Dengan Menyebut nama ALLAH yang Maha Pengasih lagi Maha Penyayang, yang mampu menciptakan langit tanpa penyangga. Alhamdulillah berkat rahmat-Nya penulis mampu menyelesaikan buku ini. Dan kepada Nabi Muhammad saw, Allahummashali 'ala sayyidina muhammad wa 'ala ali sayyidina muhammad.

Kepada Mami wanita kuat yang selalu memberikan kasih sayang dan perhatian yang sesungguhnya tanpa pamrih, semoga ALLAH selalu senan tiasa memberikan rahmat, taufik dan hidayah kebahagiaan kepada beliau, Aminn. Kepada Bapak yang selalu sabar dan meluangkan banyak waktu kepada anaknya tercinta, semoga ALLAH senantiasa memberikan tempat yang terindah, Aminn. Kepada Kak linda, Abang untung, Kak laura kakak-kakakku tersayang yang selalu menemani penulis baik suka maupun duka berusaha memberikan sesuatu yang lebih dari layak kepada penulis, maaf selama ini penulis selalu merepotkan semoga ALLAH memberikan kehidupan yang baik di akhirat maupun di dunia, Aminn.

Kepada Ayahanda Prof. Dr. Ir. Djatmiko Ichsani, M.Eng yang selalu berusaha meluangkan waktu dan memberikan arahan di tengah kesibukan beliau yang padat bagi penulis, semoga ALLAH memberikan pahala atas ilmu yang telah diberikan, Aminn. Kepada para dosen penguji terimakasih telah memberikan saran untuk kelengkapan isi dari buku ini, Dr. Ir. Budi Utomo Kukuh W., ME., Dr. Wawan Aries Widodo, ST., MT., Ary Bachtiar, ST., MT., Ph.D, . Serta Mas Erdi dan seluruh pihak Jurusan T. Mesin ITS, semoga ALLAH memberikan pahala, Aminn

Kepada yang penulis sayangi,

Mb Aristha ZK wanita satu-satunya di RKE'14 terimakasih dapat mengimbangi penulis selama menyelesaikan tesis. Grace, yang menganggap penulis sebagai saudara. Sir Satrio YB, " I will", still remember this words when really needed help seriously for a month. Dhek Sulistyono banyak cerita baik suka maupun duka, terimakasih sudah menemani penulis. Agus CA, yang selalu ingin ditemani. Arrad GS, yang memberikan kesibukan kepada penulis. Royyan, P.Alfi, Mb Wulan dan RKE'14, Mz Joko, Mb Anin, Dhek Tari dkk. Serta semua pihak yang telah meluangkan waktu, semoga ALLAH menyayangi kalian, Aminn.

PENINGKATAN KINERJA KOLEKTOR SURYA TIPE TRAPEZOIDAL ABSORBER PLATE MENGGUNAKAN OBSTACLE BERBENTUK PRISMA SEGITIGA DENGAN VARIASI SUDUT TEKUK VERTIKAL DISUSUN INLINE

Nama	: LOHDY DIANA
NRP	: 2114202001
Pembimbing	: Prof. Dr. Ir. Djatmiko Ichsani, M.Eng.

ABSTRAK

Matahari memiliki jumlah energi yang melimpah. Energi radiasi matahari dapat digunakan untuk berbagai keperluan contohnya untuk pemanas udara. Prinsip kerja *Solar Air Heater* (SAH) adalah energi panas matahari ditransmisikan oleh kaca kemudian diserap oleh plat penyerap. Panas tersebut digunakan untuk memanaskan udara yang dialirkan ke atas atau ke dalam plat penyerap melalui bantuan fan. Berdasarkan referensi-referensi tersebut perlu dilakukan penelitian lebih lanjut untuk mendapatkan bentuk plat penyerap yang diperkirakan dapat menyerap energi radiasi matahari lebih banyak yakni bentuk *trapezoidal*. Bentuk *trapezoidal* memiliki luasan kolektor yang lebih besar dibandingkan bentuk *v-corrugated*. Bentuk ini diharapkan dapat menyerap panas lebih banyak sehingga menghasilkan efisiensi yang lebih baik.

Pada penelitian ini terdiri dari dua tahap. Tahap pertama adalah pra-desain secara perhitungan dan simulasi. Simulasi menggunakan software CFD komersial dilakukan untuk mendapatkan dimensi dan jarak obstacle yang paling optimum. Saat simulasi obstacle ditambahkan di dalam saluran plat penyerap bentuk trapezoidal yang disusun secara inlined. Dari simulasi diperoleh hasil bahwa obstacle dengan sudut tekuk 40° menghasilkan energi yang berguna sebesar 132.12W dengan penurunan tekanan sebesar 36.97Pa serta memiliki nilai effectiveness tertinggi sebesar 2.036. Tahap kedua adalah eksperimen yang dilakukan secara artificial, lampu halogen digunakan untuk menggantikan matahari. Pada tahap ini hanya dimensi obstacle paling optimum dan jarak paling optimum yang diuji.Variasi pada eksperimen terdiri dari kecepatan inlet 2.62m/s, 3.27m/s, 3.93m/s, 4.59m/s. Intensitas radiasi 520W/m², 620W/m², 720W/m². Berdasarkan eksperimen dapat disimpulkan kenaikan temperatur tertinggi dicapai ketika intensitas radiasi tertinggi 720W/m² dengan kecepatan terendah 2.62m/s yakni sebesar 14K. Penurunan tekanan saluran dengan obstacle lebih besar daripada saluran tanpa obstacle. Penurunan tekanan tertinggi 216Pa. energi berguna tertinggi dicapai ketika intensitas tertinggi 720W/m² dengan kecepatan udara tertinggi 4.59m/s yakni 121W. efisiensi kolektor tertinggi dicapai ketika intensitas 520W/m² kecepatan 4.59m/s yakni 0.98.

Kata kunci : Solar Air Heater, Obstacle, Trapezoidal.

IMPROVING THE PERFORMANCE OF A TRAPEZOIDAL ABSORBER PLATE SOLAR COLLECTOR USING VARIATION OF TRIANGULAR PRISM OBSTACLE FOLDED ANGLE ARRANGED INLINE

Name	: LOHDY DIANA
NRP	: 2114202001
Supervisor	: Prof. Dr. Ir. Djatmiko Ichsani, M.Eng.

ABSTRACT

The sun has an abundant amount of energy. Solar radiation energy can be used for air heater. The working principle Solar Water Heater (SAH) is a solar thermal energy transmitted by the glass is then absorbed by the absorber plate. The heat is used to heat the air supplied to the top or to the absorber plate with the help of fan. Based on these references need to do more research to get a plat form an absorbent that is expected to absorb more solar radiation energy that trapezoidal shape. Trapezoidal shape has a collector area larger than v-corrugated shape. This form is expected to absorb more heat resulting in better efficiency.

In this study consisted of two stages. The first stage is pre-designed in the calculation and simulation. Simulation using commercial CFD software is made to get the dimensions and the most optimum distance obstacle. When simulated obstacle added to the absorber plate channel trapezoidal shape arranged inlined. From the simulation result that obstacle with a folded angle of 40 $^{\circ}$ to produce useful energy for 132.12W with a pressure drop of 36.97Pa and has the highest effectiveness value of 2,036. The second phase is an experiment that is done artificially, the halogen lamp is used to replace the sun. At this stage, only the most optimum dimensions and distances obstacle most optimum is analysed. The experiment consists of inlet velocity 2.62m s, 3.27m/s, 3.93m/s, 4.59m/s. Radiation intensity 520W/m², 620W/m², 720W/m². Based on the experiments can be concluded highest temperature rise is achieved when the radiation intensity 720W / m² with the lowest velocity 2.62m / s which is equal to 14K. The pressure drop channels with greater obstacle than the channel without any obstacle. The highest pressure drop 216Pa. Highest useful energy is achieved when the highest intensity 720W / m² with the highest air velocity 4.59m/s ie 121W. The highest collector efficiency is achieved when the intensity of 520W/m² velocity of 4.59m/s namely 0.98.

Key words : Solar Air Heater, Obstacle, Trapezoidal

DAFTAR ISI

ABSRTRAK	i
DAFTAR ISI	ii
BAB 1 PENDAHULUAN	1
1.1 Latar Belakang	1
1.2 Rumusan Masalah	3
1.3 Batasan Masalah	3
1.4 Tujuan Penelitian	4
1.5 Manfaat Penelitan	4
1.6 Sistematika Penulisan	4
BAB 2 KAJIAN PUSTAKA DAN DASAR TEORI	7
2.1 Penelitian Terdahulu	7
2.1.1 Peningkatan Kinerja Solar Air Heater	7
2.1.2 Studi Numerik Terkait Solar Air Heater	13
2.2 Analisa Thermal dalam Solar Air Heater	15
2.2.2 Perpindahan Panas Konveksi	16
2.2.2 Perpindahan Panas Radiasi	18
2.2.3 Perpindahan Panas Konduksi	19
2.2 Energi Berguna dan Efisiensi Kolektor Surya	19
2.3 Konfigurasi Pengujian	21
2.4 Honeycomb pada Saluran	21
2.5 Computational Fluid Dynamic	22
BAB 3 METODE PENELITIAN	23
3.1 Sistem dan Prinsip Kerja Solar Air Heater yang Akan Diteliti	23
3.2 Tinjauan Pra-Desain Plat Absorber dari Sisi Luasan Efektif	23
3.3 Tinjauan Pra-Desain Plat Absorber dari Panas yang Berguna	26
3.4 Tinjauan Pra-Desain Obstacle	30
3.5 Rancangan Simulasi dengan Computatioal Fluid Dynamic	32
3.5.1 Pre-processing	32
3.5.2 Pro-processing	33
3.5.3 Post-processing	33
3.5.4 Grid independence	34

3.5.5 Hasil Simulasi Numerik	35
3.6 Rancangan Eksperimen	36
3.6.1 Rancangan Skema Sistem Kerja	36
3.6.2 Peralatan yang Digunakan	39
3.7 Diagram Alir Penelitian	43
3.8 Grafik yang Dihasilkan	44
BAB 4 ANALISA DAN PEMBAHASAN	45
4.1 Hasil Simulasi Numerik dan Pembahasan	45
4.2 Hasil Eksperimen dan Pembahasan	66
4.2.1 Kenaikan temperatur udara	67
4.2.2 Penurunan Tekanan	70
4.2.3 Energi yang Terbuang (Qloss)	71
4.2.4 Energi yang Berguna	72
4.2.5 Efisiensi Kolektor	73
BAB 5 KESIMPULAN	75
DAFTAR PUSTAKA	77
Lampiran	79

DAFTAR GAMBAR

Gambar 2.1 Grafik Quseful pada berbagai sudut (Ardiansyah, 2010)	7
Gambar 2.2 Skema instalasi peralatan eksperimen (Ekadewi,2014)	8
Gambar 2.3 Pandangan depan ukuran obstacle dalam saluran (Ekadewi,2	2014)
	8
Gambar 2.4 Koefisien heat loss U_L dan heat gain factor F_o	9
Gambar 2.5 Grafik efisiensi dan pressure drop terhadap kecepatan	
(Ekadewi,2014).	9
Gambar 2.6 Susunan obstacle (Ozgen, et al., 2009)	10
Gambar 2.7 Grafik Efisiensi terhadap laju udara dengan berbagai tipe	
kolektor	11
Gambar 2.8 Bentuk-bentuk obstacle (Abene, et al., 2004).	11
Gambar 2.9 Efisiensi kolektor dengan berbagai obstacle (Abene, et al., 2	004)
	12
Gambar 2.10 Bayangan pada plat (Bany dan Appelbaum, 1986) .	12
Gambar 2.11 Grafik perbandingan model turbulen dengan hasil eksperin	nen
(Dongxu et al. (2015)	13
Gambar 2.12 Grafik perbandingan model turbulen dengan hasil eksperin	nen
(Yadav & Bhagoria, 2013).	14
Gambar 2.13 Tahanan thermal pada Solar Air Heater	15
Gambar 2.14 Hot Plate Ts>T-(Incropera & DeWitt, 2002).	16
Gambar 2.15 V-corrugated plat absorber.	17
Gambar 2.16 Konfigurasi pengujiann kolektor surya fluida udara (ASHR	AE
93-1986, 1986).	21
Gambar 3.1 Sistem kerja Solar Air Heater bentuk trapezoidal.	23
Gambar 3.2 Plat absorber bentuk trapezoidal.	24
Gambar 3.3 Grafik panas yang berguna (Qu).	30
Gambar 3.4 a.) Obstacle bentuk segitiga ditekuk (Ekadewi, 2014). b.)	
Obstacle bentuk trapesium ditekuk.c.) Geometri obstacle 3D dan jarak S	S/H.
	31
Gambar 3.5 Boundary Condition.	32

Gambar 3.6 Grafik grid-independence.	34
Gambar 3.7 Meshing yang digunakan.(a) tanpa obstacle, (b) dengan obsta	acle.
	35
Gambar 3.8 (a) Letak thermocouple, (b) Alat kerja, dan (c) Susunan obsta	acle
	37
Gambar 4.1 Grafik (a) ΔT , ΔQu , (b) ΔP , (c) <i>Effectiveness</i>	46
Gambar 4.2 Distribusi temperatur (a) di center plane x=0, (b) bidang Z tampilar	1
isometris(c) di bidang Z, (d) Grafik temperatur terhadap jarak.	50
Gambar 4.3 Distribusi tekanan (a) di center plane x=0, (b) bidang Z tampilan	
isometris (c) di bidang Z, (d) Grafik tekanan terhadap jarak.	54
Gambar 4.4 Grafik (a) $\Delta T, \Delta Qu$, (b) ΔP , (c) <i>Effectiveness</i>	55
Gambar 4.5 Distribusi temperatur (a) di center plane x=0, (b) bidang Z tan	npilan
isometris (c) di bidang Z, (d) Grafik temperatur terhadap jarak.	58
Gambar 4.6 Distribusi tekanan (a) di center plane x=0, (b) bidang Z tan	ıpilan
isometris (c) di bidang Z, (d) Grafik tekanan terhadap jarak. (e) v	vector
kecepatan.	65
Gambar 4.7 Grafik kenaikan temperatur kaca penutup terhadap jarak.	68
Gambar 4.8 (a) Grafik kenaikan temperatur plat penyerap terhadap jarak (b) La	ıpisan
fluida yang dipanasi dari bawah (Bejan, 2013 hal 263)	69
Gambar 4.9 Grafik kenaikan temperature	70
Gambar 4.10 (a) Grafik penurunan tekanan terhadap kecepatan(b) Skema mano	meter
yang digunakan	71
Gambar 4.11 Energi yang hilang	72
Gambar 4.12 Energi yang berguna	73
Gambar 4.13 Efisiensi kolektor	74

DAFTAR TABEL

Tabel 2.2 Kekasaran permukaan	18
Tabel 3.1 Ukuran plat <i>absorber</i> bentuk <i>trapezoidal</i> dalam satuan mm.	24
Tabel 3.2 Nilai perubahan sudut dari pukul 08:00 sampai 16:00.	25
Tabel 3.3 Nilai luasan efektif kolektor surya untuk berbagai sudut beta.	26
Tabel 3.4 nilai F ₁₂₋₃ untuk berbagai sudut beta.	28
Tabel 3.5 Kekasaran permukaan	28
Tabel 3.6 Tipe <i>obstacle</i> dan variasi jarak S/H	32
Tabel 3.7 Pengaturan parameter processing	33
Tabel 3.8 Desain simulasi.	33
Tabel 3.9 Grid independence.	34
Tabel 3.10 Prosentase error untuk ΔT , ΔP dan ΔQu .	35
Tabel 3.11 Peralatan yang digunakan.	39
Tabel 3.12 Desain Eksperimen	42
Tabel 3.13 Tabel pengambilan data saat eksperimen.	42
Tabel 4.1 Hasil Simulasi	45
Tabel 4.2 Hasil Simulasi untuk Obstacle Variasi S/H	54

BAB 1

PENDAHULUAN

1.1 Latar Belakang

Energi fosil merupakan energi tidak terbarukan. Energi tersebut dapat berasal dari minyak bumi, batu bara dan gas alam. Namun, saat ini jumlahnya semakin menipis dikarenakan konsumsi energi semakin meningkat sebanding dengan jumlah kebutuhan yang diperlukan oleh manusia. Penelitian mengenai energi terbarukan seperti matahari, angin, gelombang laut telah banyak dilakukan untuk mengatasi permasalahan krisis energi.

Matahari memiliki jumlah energi yang melimpah. Energi radiasi matahari dapat digunakan untuk berbagai keperluan. Contohnya digunakan sebagai pengering buah dan sayur seperti dilakukan oleh Ivanova dan Andonov (2000). Eksperimen tersebut menggunakan energi matahari dan panas air geothermal untuk memanaskan udara. Udara panas tersebut digunakan untuk mengeringkan buah dan sayur.

Prinsip kerja *Solar Air Heater* (SAH) adalah energi panas matahari ditransmisikan oleh kaca kemudian diserap oleh plat penyerap. Panas tersebut digunakan untuk memanaskan udara yang dialirkan di atas dan di bawah plat penyerap dengan bantuan *induced fan*. Fluida yang digunakan SAH adalah udara, ada beberapa kekurangan bila menggunakan fluida jenis udara karena memiliki konduktifitas dan kapasitas termal yang rendah. Hal tersebut menunjukkan udara kurang dapat menghantarkan kalor secara baik dan tidak dapat menyimpan kalor lebih lama apabila dibandingkan dengan fluida jenis air. Namun, kelebihan udara adalah lebih ringan dan tidak korosif dibandingkan air. Beragam kajian mengenai SAH telah banyak dilakukan.

Penelitian mengenai variasi bentuk plat penyerap untuk meningkatkan efisiensi SAH dilakukan oleh Karim dan Hawlader (2003) dimana disimpulkan bahwa kolektor tipe v-corrugated memiliki efisiensi lebih tinggi sebesar 68.5% sedangkan tipe finned 65% dan flat plate 62%. Namun, nilai perpindahan kalor dari plat penyerap ke udara masih dianggap rendah

sehingga diperlukan penelitian lebih lanjut yakni dengan memberikan kekasaran pada permukaan bawah plat penyerap (ribs) seperti yang dilakukan oleh Kumar dan Saini (2008) dengan menambahkan kawat silinder yang disusun berjajar pada bagian permukaan bawah plat penyerap.

Pengujian secara eksperimen untuk meningkatkan performansinsi SAH dilakukan oleh Ozgen et al (2009) dengan menyisipkan kaleng (*cans*) yang terbuat dari aluminium. Kaleng tersebut disusun secara *inline* dan *stagerred*. Pada penelitian tersebut, diperoleh hasil efisiensi tertinggi saat *cans* disusun secara stagerred dan semakin tinggi masa laju aliran udara maka efisiensi akan meningkat.

Penelitian juga dilakukan oleh Ekadewi (2014) dengan mengkombinasikan tipe kolektor yang memiliki nilai efisiensi paling tinggi yakni jenis *v*-*corrugated* dengan sudut 20° yang sebelumnya telah dilakukan oleh Ardiansyah (2010) kemudian ditambahkan *obstacle* berbentuk segitiga yang ditekuk di dalam saluran. Pada penelitian tersebut diperoleh *obstacle* dengan sudut 30° menghasilkan efisiensi yang paling optimum dibandingkan dengan *obstacle* dengan sudut tekuk 0° sampai 80°.

Berdasarkan referensi-referensi tersebut perlu dilakukan penelitian lebih lanjut untuk mendapatkan bentuk plat penyerap yang diperkirakan dapat menyerap energi radiasi matahari lebih banyak yakni bentuk *trapezoidal*. Bentuk *trapezoidal* memiliki luasan kolektor yang lebih besar dibandingkan bentuk *v-corrugated*. Bentuk ini diharapkan dapat menyerap panas lebih banyak sehingga menghasilkan efisiensi yang lebih baik.

Pada penelitian ini terdiri dari dua tahap. Tahap pertama adalah pra-desain secara perhitungan dan simulasi. Simulasi menggunakan *software* CFD komersial dilakukan untuk mendapatkan dimensi dan jarak *obstacle* yang paling optimum. Saat simulasi *obstacle* ditambahkan di dalam saluran plat penyerap bentuk *trapezoidal* yang disusun secara *inlined*. Bentuk *obstacle* yang digunakan menggunakan prinsip dasar yang sama dengan penelitian Ekadewi (2014), pada penelitian ini *obstacle* yang awalnya berbentuk *trapesium* kemudian ditekuk dan dilakukan modifikasi pada bagian atas. Sehingga, diharapkan aliran yang melewati saluran mengarah ke plat penyerap

baik bagian samping maupun bagian atas. Kemudian, untuk menghindari *dead stage* maka *obstacle* dibuat pejal. Pada penelitian ini, dilakukan variasi sudut tekuk *obstacle* untuk mendapatkan sudut tekuk yang paling optimum sehingga temperatur fluida akan meningkat dan menghasilkan efisiensi yang tinggi namun *pressure drop* yang rendah. Tahap kedua adalah eksperimen yang dilakukan secara artificial, lampu halogen digunakan untuk menggantikan matahari. Pada tahap ini hanya dimensi *obstacle* paling optimum dan jarak paling optimum yang diuji. Variasi pada eksperimen terdiri dari kecepatan *inlet*, Intensitas radiasi terhadap kenaikan temperatur, *pressure drop* dan efisiensi.

1.2 Rumusan Masalah

Penggunaan kolektor tipe *trapezoidal* adalah untuk meningkatkan kinerja kolektor surya, ditunjukkan dengan meningkatnya efisiensi kolektor surya. Adapun permasalahan yang akan dibahas dalam penelitian ini adalah:

- 1. Bagaimana pengaruh variasi sudut *obstacle* untuk mendapatkan tipe *obstacle* yang paling optimum.
- 2. Bagaimana pengaruh penambahan *obstacle* terhadap peningkatan temperatur dari *absorber* ke fluida kerja dan efisiensi kolektor surya.
- 3. Bagaimana pengaruh perubahan laju aliran massa fluida inlet dan intensitas radiasi terhadap kinerja kolektor surya.

1.3 Batasan Masalah

Beberapa batasan dan asumsi yang diambil dalam penelitian ini adalah

- 1. Pengambilan data dilakukan pada steady state condition.
- 2. Aliran udara yang mengalir di dalam ducting kolektor surya dianggap *uniform* pada sisi inlet, *steady* dan *incompressible*.
- 3. Penggunaan bahan untuk *obstacle* adalah aluminium serta di isolasi pada bagian dalam.
- 4. *Obstacle* hanya berfungsi sebagai pengarah aliran dan vortex generator.
- 5. Eksperimen menggunakan hasil dari simulasi yang memiliki nilai *effectiveness* paling tinggi.

6. Data-data lain yang diperlukan dalam perencanaan dan analisa diambil sesuai dengan literatur yang relevan.

1.4 Tujuan Penelitian

Tujuan dari penelitian ini adalah :

- Meningkatkan efisiensi dengan cara menambahkan *obstacle* pada kolektor surya.
- 2. Mengetahui pengaruh penambahan dan jarak susunan *obstacle* terhadap peningkatan temperatur fluida kerja dan efisiensi kolektor surya.
- 3. Mengetahui pengaruh perubahan laju aliran massa fluida inlet dan intensitas radiasi terhadap kinerja kolektor surya.

1.5 Manfaat Penelitan

Manfaat yang dapat diambil dari dilakukannya penelitian ini adalah :

- Dapat mengurangi ketergantungan manusia terhadap penggunaan bahan bakar fosil dengan pengoptimalan energi alternatif yang sangat melimpah jumlahnya, yakni energi panas matahari.
- 2. Sebagai referensi desain untuk aplikasi nyata pemanfaatan teknologi untuk kepentingan masyarakat

1.6 Sistematika Penulisan

BAB I : Pendahuluan

Bab ini menjelaskan tentang latar belakang, perumusan masalah, tujuan, manfaat, batasan masalah serta sistematika penulisan dari perencanaan yang dilakukan.

BAB 2 : Dasar Teori

Bab ini menuliskan tentang tinjauan pustaka dan dasar teori tentang kolektor surya.

BAB 3 : Metodologi Penelitian

Bab ini menjelaskan tentang gambaran sistem kerja pada penelitian yang dilakukan, pra-desain kolektor surya dengan tipe *trapezoidal* dengan penambahan *obstacle* serta peralatan ukur dan instalasi yang digunakan pada penelitian yang dilakukan.

BAB 4 : Hasil dan Pembahasan

Bab ini berisi pembahasan dan analisa mengenai hasil simulasi dan hasil eksperimen.

BAB 5 : Kesimpulan

Bab ini ringkasan inti dari penelitian beserta hasil.

(halaman ini sengaja dikosongkan)

BAB 2

KAJIAN PUSTAKA DAN DASAR TEORI

2.1 Penelitian Terdahulu

Penelitian tentang peningkatan efisiensi dan perpindahan panas secara konveksi pada kolektor surya menggunakan berbagai bentuk plat penyerap dan bentuk *obstacle* serta susunan *obstacle* telah banyak dilakukan. Secara umum, dengan penambahan *obstacle* dapat meningkatkan efisiensi kolektor surya. Beberapa penelitian tersebut dijadikan sebagai referensi antara lain sebagai berikut.

2.1.1 Peningkatan Kinerja Solar Air Heater

Penelitian mengenai peningkatan kinerja solar air heater jenis v-corrugated dilakukan oleh Ardiansyah (2010) disimpulkan v-corrugated dengan sudut 20° memiliki performansi terbaik dengan nilai Qu paling tinggi seperti ditunjukkan pada grafik Gambar 2.1.

Gambar 2.1 Grafik Quseful pada berbagai sudut (Ardiansyah, 2010)

Kemudian dilanjutkan oleh Ekadewi (2014) dengan menambahkan *obstacle* di dalam saluran *v-corrugated*. Bentuk geometri dan ukuran skema instalasi peralatan eksperimen seperti ditunjukkan pada Gambar 2.2. Tinggi plat *absorber* 85mm, labar 30 mm dengan panjang 900mm. Pada penelitian ini *obstacle* disusun secara *inlined*.

Gambar 2.2 skema instalasi peralatan eksperimen (Ekadewi, 2014).

Obstacle yang digunakan adalah bentuk segitiga dengan tinggi 51mm dan lebar alas 18mm. Namun, *obstacle* tanpa sudut tekuk memiliki kekurangan yakni *pressure drop* yang tinggi. Sehingga, untuk mengurangi *pressure drop* dilakukan sudut tekuk pada *obstacle*.

Gambar 2.3 Pandangan depan ukuran obstacle dalam saluran (Ekadewi, 2014).

Variasi sudut tekuk dilakukan dari 0° sampai 80°, ukuran pandangan depan *obstacle* ditunjukkan seperti pada Gambar 2.3. Hasil yang terbaik dihasilkan oleh *obstacle* dengan sudut tekuk 30° dikarenakan memiliki *heat gain factor* paling tinggi. *Heat gain factor* merupakan perbandingan efisiensi dengan *pressure drop* seperti yang ditunjukkan pada Gambar 2.4.

Gambar 2.4 Koefisien heat loss U_L dan heat gain factor F_o

Berdasarkan eksperimen diperoleh grafik efisiensi dan *pressure drop* pada masing-masing sudut tekuk dengan variasi kecepatan 1-5 m/s seperti pada Gambar 2.5. Hasil menunjukkan semakin tinggi kecepatan maka efisiensi akan meningkat serta meningkatkan *presssure drop*.

Gambar 2.5 Grafik efisiensi dan *pressure drop* terhadap kecepatan (Ekadewi,2014).

Ozgen et al. (2009) melakukan penelitian kolektor surya dua laluan dengan menambahkan kaleng yang berfungsi sebagai obstacle disusun secara inlined dan staggered seperti pada Gambar 2.6.

type I

type II

type III

type I

type II

type III

Gambar 2.6 Susunan obstacle (Ozgen, et al., 2009)

Berdasarkan penelitian yang telah dilakukan, diperolah grafik pengaruh laju udara terhadap efisiensi. Semakin besar laju aliran udara maka efisiensi semakin tinggi dan susunan obstacle secara staggered memiliki efisiensi paling tinggi seperti pada Gambar 2.7.

Gambar 2.7 Grafik Efisiensi terhadap laju udara dengan berbagai tipe kolektor

Abene et al. (2004) melakukan penelitian untuk mengetahui pengaruh berbagai bentuk *obstacle* terhadap kinerja kolektor surya. Bentuk-bentuk *obstacle* yang diteliti antara lain tanpa *obstacle* (WO), *obstacle* bentuk *ogival transverse* (OT), bentuk *ogival* yang ditekuk miring (OFI), pipa dibengkokan (WT), delta dibengkokan (WDL1), *ogival* dibengkokkan (WOL1), dan bentuk *transverse longitudinal* (TL). Bentuk-bentuk *obstacle* ditunjukkan pada Gambar 2.8.

Gambar 2.8 Bentuk-bentuk obstacle (Abene, et al., 2004).

Berdasarkan hasil penelitian yang telah dilakukan, didapatkan hasil bahwa *obstacle* dengan bentuk TL dan WDL1 memiliki efisiensi tertinggi dibandingkan efisiensi bentuk *obstacle* yang lain seperti yang ditunjukkan grafik pada Gambar 2.9.

Gambar 2.9 Efisiensi kolektor dengan berbagai obstacle (Abene, et al., 2004)

Pengaruh efek banyangan terhadap performansi solar kolektor dipaparkan oleh Bany dan Appelbaum (1986). Dua buah kolektor disusun secara sejajar, plat kedua mendapat bayangan dari plat pertama dengan gambar skema bayangan seperti pada Gambar 2.10. Secara umum, bayangan yang terbentuk pada permukaan kolektor surya akan menurunkan jumlah energi yang diserap.

Gambar 2.10 Bayangan pada plat (Bany dan Appelbaum, 1986).

2.1.2 Studi Numerik Terkait Solar Air Heater

Dongxu et al. (2015) melakukan simulasi numerik untuk mengetahui perpindahan panas dan aliran fluida pada solar air heater dengan menambahkan plat bentuk V pada plat *absorber*. Model RNG k- ε merupakan model yang paling sesuai untuk digunakan dikarenakan hasil berupa bilangan Nu mendekati hasil eksperimen seperti pada Gambar 2.11.

Gambar 2.11 Grafik perbandingan model turbulen dengan hasil eksperimen (Dongxu et al. (2015)

Hal serupa juga dipaparkan oleh Yadav dan Bhagoria (2013) seperti pada gambar 2.12 yang meneliti perpindahan panas dan aliran fluida pada solar air heater dengan penambahan kawat sirkular yang dipasang melintang pada plat *absorber. Pressure-velocity coupling* diselesaikan menggunakan SIMPLE pada kedua penelitan tersebut.

Gambar 2.12 Grafik perbandingan model turbulen dengan hasil eksperimen (Yadav & Bhagoria, 2013).

2.2 Analisa Thermal dalam Solar Air Heater

Rangkaian thermal dalam saluran Solar Air Heater dapat dilihat pada Gambar 2.13. Energi yang diserap plat (S) memanaskan plat hingga temperatur menjadi T_{abs} . Energi ditransfer dari plat ke udara sekitar pada T_{amb} melalui bagian bawah kolektor dengan koefisien kehilangan panas U_B dan bagian atas plat hingga kaca penutup dengan koefisien kehilangan panas U_T serta menjadi enegi yang berguna Qu yang memanasi udara dari Temperatur masukan $T_{f,in}$ menjadi temperatur keluaran $T_{f,out}$.

Gambar 2.13 Tahanan thermal pada Solar Air Heater

Pada tahanan thermal di atas, U_T dapat dihitung menggunakan persamaan:

$$U_t = \frac{1}{R_1 + R_2}$$
(2.1)

$$R_1 = \frac{1}{h_{cv,p-c} + h_{r,p-c}}$$
(2.2)

$$R_2 = \frac{1}{h_w + h_{r,c-a}}$$
(2.3)

Sedangkan, U_B dapat dihitung menggunakan persamaan:

$$U_b = \frac{1}{R_3} \tag{2.4}$$

$$R_3 = \frac{L}{k} \tag{2.5}$$

Kehilangan panas total (U_L) merupakan penjumlahan dari U_T dan U_B atau dengan persamaaan:

$$U_L = U_t + U_b \tag{2.6}$$

Berdasarkan persamaan di atas diperlukan koefisien konveksi, koefisien radiasi serta koefisien konduksi dimana nilai-nilai tersebut dibahas pada subbab 2.2.1 sampai 2.2.3.

2.2.1 Perpindahan Panas Konveksi

Konveksi adalah proses perpindahan panas dari temperatur tinggi ke temperatur rendah melalui suatu medium disertai dengan perpindahan partikel medium tersebut. Perpindahan panas secara konveksi dibagi menjadi dua, konveksi alami dan konvesi paksa.

Konveksi alami adalah proses perpindahan panas secara alami akibat gaya *bouyancy*. Pada *Solar Air Heater* konveksi alami terjadi di permukaan kaca dengan udara yang berhembu. Pada kondisi ini, temperatur permukaan kaca lebih tinggi dibandingkan temperatur *infinity*. Konveksi alami pada permukaan kaca ditunjukkan seperti pada Gambar 2.14.

Gambar 2.14 Hot Plate Ts>T⁻ (Incropera & DeWitt, 2002).

$$\overline{Nu_L} = 0.54Ra_L^{\frac{1}{4}} (10^4 \le Ra_L \le 10^7, Pr \ge 0.7)$$
(2.7)

Konveksi alami juga terjadi di antara permukaan kaca bagian bawah dengan plat *absorber*. Pada penelitian kali ini, bilangan Nusselt diperoleh menggunakan pendekatan *v-corrugated* karena penelitian untuk plat bentuk *trapezoidal* belum pernah ada. Persamaan 2.8 dan Tabel 2.1 digunakan untuk memperoleh bilangan Nusselt. Pada Tabel 2.1 terdapat konstanta A yang merupakan perbandingan tinggi *absorber* (h) dengan jarak kaca ke setengah tinggi *absorber* (l), seperti ditunjukkan pada Gambar 2.15. Pada persamaan tersebut terdapat bilangan Rayleigh yang dapat diperoleh dari persamaan 2.9.

$$Nu = \max[(C Ra^n), 1]$$

Та	able 2.1 Konstant	a untuk persamaan	2.8
β	A'	С	п
0	0.75	0.060	0.41
	1	0.060	0.41
	2	0.043	0.41
45	0.75	0.075	0.36
	1	0.082	0.36
	2	0.037	0.41
60	0.75	0.162	0.30
	1	0.141	0.30
	2	0.027	0.42

 $Ra = \frac{g\beta\Delta TL^3}{\nu\alpha}$

(2.9)

(2.8)

Konveksi paksa adalah proses perpindahan panas secara tidak alami karena ada pengaruh dari luar, contoh hembusan angin dari *induced fan*. Pada penelitian kali ini, konveksi paksa terjadi di dalam saluran plat *absorber*. Bilangan Nusselt diperoleh menggunakan persamaan 2.10 (Gnielinski,1976).

$$Nu = \frac{\left(\frac{f}{8}\right)^{(Re-1000)Pr}}{1+12.7\left(\frac{f}{8}\right)^{0.5}\left(\frac{Pr^2}{3}-1\right)} (0.5 \le Pr \le 2000, 3 \times 10^3 < Re < 5 \times 10^6)$$
(2.10)

Dari persamaan di atas terdapat bilangan Reynolds dan bilangan Prandl yang dapat dperoleh dari persamaan:

$$Re = \frac{\rho V D h}{\mu} \tag{2.11}$$

$$Pr = \frac{1}{\beta} \tag{2.12}$$

Sedangkan, friction factor diperoleh dari Table 2.2.

Roughness, ɛ/L	Factor,
0.0*	0.0119
0.00001	0.0119
0.0001	0.0134
0.0005	0.0172
0.001	0.0199
0.005	0.0305
0.01	0.0380
0.05	0.0716
0.00	0.0710

Tabel 2.2 Kekasaran permukaan

2.2.2 Perpindahan Panas Radiasi

Perpindahan panas radiasi tidak membutuhkan zat perantara, radiasi yang dipancarkan oleh permukaan berasal dari energi panas zat yang dipindahkan oleh permukaan tersebut. Laju perpindahan panas radiasi dapat ditunjukkan oleh persamaan sebagai berikut :

$$q''_{rad} = \sigma \varepsilon (T_S^4 - T_\infty^4) \tag{2.14}$$

dimana q" rad adalah fluks radiasi (W/m²), ζ merupakan konstanta Stephen Boltzman (5,6697 . 10-8W/m2.K4) dan ε adalah emmisivitas bahan.

Pada Solar Air Heater perpindahan panas radiasi yang pertama terjadi di permukaan kaca penutup dengan udara luar. Koefisien perpindahan panas radiasi dapat dihitung menggunakan persamaan:

$$h_{r,amb-cg} = \varepsilon_{cg} \sigma \frac{(T_{cg} + T_{sky})(T^2_{cg} + T^2_{sky})(T_{cg} - T_{sky})}{(T_{cg} - T_{amb})}$$
(2.15)

Perpindahan panas yang kedua terjadi antara kaca penutup dengan plat *absorber*. Koefisien perpindahan panas radiasi dapat dihitung menggunakan persamaan:

$$h_{r,cg-abs} = \frac{\sigma(T^2_{cg}+T^2_{sky})(T_{cg}+T_{sky})}{\frac{1-\varepsilon_{abs}}{\varepsilon_{abs}} + \frac{1}{F_{12-3}} + \frac{(1-\varepsilon_{cg})A_p}{\varepsilon_{cg}A_c}}$$
(2.16)

Dimana F adalah *view factor* yang membikan pengaruh terhadap proses perpindahan panas radiasi dari plat *absorber* ke udara sekeliling.

View factor dapat diperoleh menggunakan persamaan:

$$F_{1-3} = 1 - \sin\frac{\alpha}{2} = \frac{2L(F_{1-3})}{2L+2H}$$
(2.17)

2.2.3 Perpindahan Panas Konduksi

Konduksi adalah proses perpindahan panas dari temperatur tinggi ke temperatur rendah, melalui suatu media tanpa disertai perpindahan partikel media itu sendiri. Laju perpindahan panas konduksi ditunjukkan pada persamaan (2.18) dimana q" adalah fluks perpindahan panas konduksi (W/m²) dan k adalah koefisien konduksi (W/m².K).

$$q'' = k \frac{\Delta T}{L} \tag{2.18}$$

Pada Solar Air Heater perpidahan panas konduksi terjadi pada bagian bawah yakni saat panas melewati *styrofoam* dan triplek. Nilai koefisien konduksi untuk *styrofoam* adalah 0.045 W/mK dan 0.12 W/mK untuk triplek.

2.3 Energi Berguna dan Efisiensi Kolektor Surya

Menurut (Duffie, 1991), enegi berguna yang diserap oleh fluida dapat dinyatakan dengan persamaaan:

$$Q_u = A_c F_R [S - U_L (T_{fi} - T_a)]$$
(2.19)

Dimana Ac adalah luasan kolektor surya yang terpapar sinar matahari dan F_R adalah *heat removal factor* dapat diperoleh dari persamaan:

$$F_R = F''.F'$$
 (2.20)

F' adalah collector efficiency factor, nilai tersebut dapat dihitung dari persamaan:

$$F' = \frac{1}{1 + \frac{U_L}{\frac{h_{ap-f}}{\sin\frac{\beta}{2}} + \frac{1}{h_f + b_p}}}$$
(2.21)

Sedangkan F'' dapat dihitung dari persamaan:

$$F'' = \varphi [1 - e^{-\frac{1}{\varphi}}]$$
(2.22)

Dimana,
$$\varphi = \frac{mc_p}{A_c \cdot U_L \cdot F'}$$
 (2.23)

S adalah radiasi matahari yang diserap kolektor surya dinyatakan dengan persamaan:

$$S = \tau_c \alpha_{ap} I \tag{2.24}$$

Dalam hal ini, *I* adalah kecepatan radiasi (W/m²), transmisivitas adalah τ_c dan absorptivitas adalah $\alpha_{ap.}$

Efisiensi kolektor surya merupakan perbandingan antara energi yang berguna dengan Intensitas radiasi matahari yang diterima kolektor, dinyatakan dengan persamaan:

$$\eta = \frac{Q_u}{A_c I_T} \tag{2.25}$$

Desain *obstacle* yang optimum diketahui dari perbandingan efisiensi menggunakan Qu secara thermodinamika dengan *pressure drop* dinyatakan dengan persamaan:

$$\left|\frac{Qu^*}{\Delta P^*}\right| = \left|\frac{\frac{Qu_2 - Qu_1}{Qu_1}}{\frac{\Delta P_2 - \Delta P_1}{\Delta P_1}}\right| 1 \tag{2.26}$$

dimana, $Qu_{thermo} = \dot{m} C_p \Delta T$ (2.27)

Energi yang hilang dapat dihitung menggunakan persamaan:

$$Q_{loss} = A_c I - Q_u \tag{2.28}$$

1.4 Konfigurasi Pengujian

Pada penelitian kali ini, menggunakan konfigurasi yang direkomendasikan ASHRAE 93-1986. Gambar 2.16 menunjukkan peletakan alat ukur saat melakukan pengujian kolektor surya dengan fluida udara.

Gambar 2.16 Konfigurasi pengujiann kolektor surya fluida udara (ASHRAE 93-1986, 1986).

Thermocouple digunakan untuk mengukur temperatur dan pressure gauge atau manometer digunakan untuk mengukur perubahan tekanan. Thermocouple dan manometer diletakkan dengan jarak yang di dalamnya terdapat unsur \sqrt{ab} , dimana a dan b adalah dimensi saluran yang digunakan dalam kolektor surya. Pada sisi masukan: pressure gauge diletakkan pada jarak $0.5\sqrt{ab}$ dari ujung masukan kolektor, thermocouple diletakkan pada jarak $2\sqrt{ab}$ dari ujung masukan kolektor, dan panjang inlet sebesar $3.5\sqrt{ab}$. Pada sisi keluaran: pressure gauge diletakkan pada jarak $2\sqrt{ab}$ dari ujung keluaran kolektor, thermocouple diletakkan pada jarak $3.5\sqrt{ab}$ dari ujung keluaran kolektor, dan panjang outlet sebesar $4\sqrt{ab}$.

1.5 Honeycomb pada Saluran

Penelitian mengenai honeycomb telah dilakukan oleh Mehta & Bradshaw (1979). Berdasarkan penelitian tersebut disimpulakan bahwa honeycomb dapat

menghilangkan olakan dan menseragamkan aliran. Bentuk cell honeycomb dapat berupa segitiga, lingkaran, hexagonal dan persegi dengan panjang cell 6 sampai 8 kali diameternya.

2.6 Computational Fluid Dynamic

Computational Fluid Dynamics (CFD) merupakan suatu cabang ilmu yang melakukan pendekatan secara numerik untuk menyelesaikan permasalahan fluida, perpindahan panas dengan menggunakan computer. Ada tiga tahapan dalam menyalesaikann CFD yaitu tahap *pre-processing*, *pro-processing dan post-processing*.

Pre-processing merupakan langkah pertama dalam melakukan simulasi secara CFD, yang dimulai dengan membuat model dari geomteri yang disimulasikan dengan bantuan perangkat lunak CAD (*Computer Aided Design*), selanjutnya membagi geometri menjadi bagian-bagian kecil dengan mesh yang sesuai, selanjutnya memberikan kondisi batas pada geometri dan sifat-sifat dari fluida kerja yang digunakan.

Pro-processing, tahapan ini perangkat lunak *solver* menghitung persamaanpersamaan yang diaplikasikan terhadap kondisi-kondisi yang telah didefinisikan sebelumnya pada tahap *pre processing*.

Post-processing merupakan tahap terakhir dalam proses simulasi CFD adalah *post processing*, dimana pada tahap ini dilakukan pengambilan dan interpretasi data dari perhitungan tahap sebelumnya. Data yang bisa diambil dapat berupa kontur, gambar, kurva, maupun animasi

Terdapat beberapa model turbulen salah satunya adalah RNG k- ϵ . Model renormalization Group k- ϵ (RNG k- ϵ) merupakan model persamaan k- ϵ yang menyelesaikan persamaan RANS dengan teknik statistik yang baik. Keunggulan model RNG k- ϵ adalah ada tambahan dalam persamaan epsilon, persamaan tersebut dapat memperbaiki analisis untuk aliran yang terhambat, dapat mensimulasikan pengaruh olakan dalam turbulensi dan meiliki formula analitis untuk bilangan Prandtl aniran turbulen. Model RNG k- ϵ dapat memprediksi aliran dengan lengkungan yang sangat streamline, aliran transisi dan dinding dengan perpindahan kalor dan massa. (halaman ini sengaja dikosongkan).

BAB 3

METODE PENELITIAN

3.1 Sistem dan Prinsip Kerja Solar Air Heater yang Akan Diteliti

Penelitian ini dilakukan secara simulasi dan eksperimen, difokuskan pada bagaimana mendesain kolektor surya yang memiliki performansi lebih tinggi yakni dengan mengubah kolektor surya bentuk *v-corrugated* menjadi bentuk *trapezoidal*. Bentuk *trapezoidal* memiliki luasan kolektor yang lebih besar dibandingkan bentuk *v-corrugated*. Bentuk ini diharapkan dapat menyerap panas lebih banyak sehingga menghasilkan efisiensi yang lebih baik. Sistem kerja *Solar Air Heater* bentuk *trapezoidal* ditunjukkan seperti pada Gambar 3.1.

Gambar 3.1 Sistem kerja Solar Air Heater bentuk trapezoidal.

Prinsip kerja *Solar Air Heater* adalah energi panas matahari ditransmisikan oleh kaca kemudian diserap oleh plat penyerap. Panas tersebut digunakan untuk memanaskan udara yang dialirkan di atas dan di bawah plat penyerap dengan bantuan *induced fan*.

3.2 Tinjauan Pra-Desain Plat Absorber dari Sisi Luasan Efektif

Bayangan memberikan pengaruh terhadap performansi kolektor surya. Bayangan mengakibatkan adanya daerah yang tidak tersinari sehingga luasan efektif kolektor surya menjadi berkurang. Oleh karena itu, perlu dilakukan perhitungan luasan efektif. Ukuran geometri plat *absorber* bentuk *trapezoidal* ditunjukkan pada Gambar 3.2. Ukuran tinggi (t) dan lebar (x) yang digunakan sama seperti plat *absorber* bentuk *v-corrugated* telah diteliti sebelumnya oleh Ekadewi (2014) yakni t = 85 mm dan x = 30 mm. Kemudian dilakukan variasi sudut beta dari 80° sampai 89° seperti ditunjukkan pada Tabel 3.1.

Gambar 3.2 Plat absorber bentuk trapezoidal.

Tabel 3	.1 U	Jkuran p	olat <i>abso</i>	rber	bentul	k trapezo	idal	dalam	satuan	mm
---------	------	----------	------------------	------	--------	-----------	------	-------	--------	----

Beta	x	Т	W	Α	b	L
89	30	85	27	85.01	1.5	900
88	30	85	24	85.05	3.0	900
87	30	85	21	85.12	4.5	900
86	30	85	18	85.21	5.9	900
85	30	85	15	85.32	7.4	900
84	30	85	12	85.47	8.9	900
83	30	85	9	85.64	10.4	900
82	30	85	6	85.84	11.9	900
81	30	85	3	86.06	13.5	900
80	30	85	0	86.31	15.0	900

Letak geografis Teknik Mesin ITS, Surabaya yaitu 7,28°LS dan 112,74°BT pada tanggal 1 Maret 2016, maka dapat diketahui hari ke-n dalam tahunan, yaitu:

$$n = 59 + i = 59 + 1 = 60$$

memiliki sudut deklinasi yaitu

$$\delta = 23,45sin\left(360\frac{284+n}{365}\right) = -8.29$$

Pada pukul 08.00 (*solar time*) didapatkan sudut jamnya (*hour angle*) adalah : $\omega = 15\tau - 180^{\circ} = 15(8) - 180^{\circ} = -60^{\circ}$. dengan sudut *altitude* (α) maupun sudut *azimuth* (γ_s) adalah :

 $\sin \alpha s = \sin \emptyset \cos \delta + \cos \emptyset \cos \delta \cos \omega = 0.365$

 $\alpha s = arc \sin 0.365 = 21.43$

 $\sin \gamma s = \frac{\cos \delta \sin \omega}{\cos \alpha} = -0.9206$

maka $\gamma s = \arcsin(-0.9206) = -67.02$

untuk perubahan tiap jam ditunjukkan pada Tabel 3.2.

Tabel 3.2 Nilai	perubahan	sudut dari	pukul	08:00	sampai	16:00.

jam	ω	sin αs	As	sin γs	cos ys	γs
08:00	-60	0.365389	21.43	-0.92062	0.39	-67.02
09:00	-45	0.568678	34.66	-0.85067	0.53	-58.28
10:00	-30	0.724667	46.44	-0.71798	0.7	-45.89
11:00	-15	0.822726	55.36	-0.45057	0.89	-26.78
12:00	0	0.856172	58.89	0	1	0
13:00	15	0.822726	55.36	0.45057	0.89	26.78
14:00	30	0.724667	46.44	0.717981	0.7	46.81
15:00	45	0.568678	34.66	0.850671	0.53	58.28
16:00	60	0.365389	21.43	0.920615	0.39	67.02

Berikut adalah contoh perhitungan tinggi bayangan (Hs) untuk sudut 89° pada pukul 08:00, dimana terdapat beberapa persamaan yang menggunakan simbol A dan D. A adalah sisi miring plat *absorber* (a) dan D adalah panjang alas plat *absorber* (x) seperti pada Tabel 3.1 :

$$Py = A\cos\beta + \frac{A\sin\beta\cos\gamma s}{\tan\alpha} = 8,6301$$
$$Hs = A\left(1 - \frac{D + A\cos\beta}{Py}\right) = -17,1492$$

Sedangkan panjang bayangan (Ls) untuk sudut 89° pada pukul 08.00 adalah sebagai berikut :

$$Px = \frac{A \sin \beta \cos \gamma s}{\tan \alpha} = 5,6262$$
$$Ls = L - Lus = \left(L - \frac{(D + A \cos \beta)Px}{Py}\right) = 87,9411$$

Dengan mengunakan cara yang sama, bisa didapatkan besarnya Hs dan Ls untuk tiap sudut dari pukul 09.00 sampai dengan 16.00, hasil perhitungan seperti pada Lampiran 1. Sehingga luasan kolektor efektif untuk sudut *trapezoidal* 89° adalah :
$Ap = A.L + WL[\langle A.L - (Hs, avg \ x \ Ls, avg) \rangle x(n-1)] = 4,95963 \ m^2$

Luasan efektif untuk sudut beta 80° sampai 89° ditunjukkan pada Tabel 3.3 berdasarkan tabel tersebut sudut 89° memiliki luas efektif paling besar .

Beta	Hsavg	Lsavg	Ap(m)
89	-11.47	58.15	4.95963
88	-11.61	58.11	4.90183
87	-11.74	58.07	4.84428
86	-11.87	58.03	4.78703
85	-12.00	58.00	4.73013
84	-12.13	57.96	4.67361
83	-12.26	57.93	4.61750
82	-12.38	57.90	4.56183
81	-12.51	57.87	4.50663
80	-12.64	57.84	4.45191

Tabel 3.3 Nilai luasan efektif kolektor surya untuk berbagai sudut beta.

3.3 Tinjauan Pra-Desain Plat Absorber dari Panas yang Berguna

Setelah memperoleh luasan efektif, selanjutnya adalah mengghitung panas yang berguna. Pada perhitungan ini menggunakan data-data aktual berdasarkan penelitian sebelumnya yang dilakukan oleh Ardiansyah (2010). Berikut adalah contoh perhitungan panas yang berguna untuk sudut 89°.

Menghitung h_w

Dimana, $T_{cg} = 324,62$ K; $T_{f,avg} = 315,17$ K maka berdasarkan tabel A.4*Thermophysical Properties of Gases at Atmospheric Pressure*, maka nilai propertiesnya $v=1,589.10^{-7}$ m²/s; $\alpha=2,48.10^{-7}$ m²/s; Pr=0,706; k=0,0274

$$\beta = \frac{1}{T_{f,avg}} = \frac{1}{315,17} = 0,00317$$

$$L = \frac{A_s}{p} = \frac{2x9}{2x(2+3)} = 1,8$$

$$Ra = \frac{g\beta'\Delta T_{f,avg-cg}L^3}{v\alpha} = \frac{g\frac{1}{T_{f,avg-cg}}\Delta T_{f,avg-cg}L^3}{v\alpha}$$

$$Ra = \frac{9,81\frac{1}{315,17}(324,62-315,17)(1,8)^3}{(0,00001589)(0,0000248)} = 4353092357$$

$$Nu = 0,54. Ra^{\frac{1}{4}} = 0,54 x (4353092357)^{\frac{1}{4}} = 138,705$$
$$hw = Nu. \frac{k}{L} = 138,705 x \frac{0,0274}{1,8} = 2,1114$$

Menghitung h_{r,amb-cg}

Dimana $T_{cg} = 324,62$ K; $T_{amb} = 305,72$ K, maka:

$$T_{sky} = 0,0552 \cdot T_{amb}^{1,5} = 0,0552 \cdot 305,72^{1,5} = 295,1 K$$
$$h_{r,amb-cg} = \varepsilon_{cg} \sigma \frac{(T_{cg} + T_{sky})(T_{cg}^2 + T_{sky}^2)(T_{cg} - T_{sky})}{T_{cg} - T_{amb}} = 9,51487 W/m^2 K$$

Menghitung h_{c,cg-abs}

Dimana: $T_{cg} = 324,62 \text{ K}; T_{abs} = 346,15 \text{ K}$

$$T_{f,cg-abs} = \frac{T_{abs} + T_{cg}}{2} = \frac{346,15 + 324,62}{2} = 335,385 \, K$$

Dengan tabel A.4 *Thermophysical Properties of Gases at Atmospheric Pressure*, didapatkan data properties k = 0,02892

$$L = \frac{A_s}{p} = \frac{2x9}{2(2+3)} = 1,8 m$$
$$Ra = \frac{g\beta'\Delta T_{cg-abs}L^3}{\nu\alpha} = \frac{g\frac{1}{T_{f,cg-abs}}\Delta T_{cg-abs}L^3}{\nu\alpha}$$

Nusselt number didapatkan dari data penelitian oleh Ardiasyah (2010) dengan sudut 20° , yaitu sebesar 8,895

$$h_{c,cg-abs} = \frac{Nu.k}{Dh} = 8.895 W/m^2 K$$

Menghitung h_{r,cg-abs}

$$F_{1-3} = 1 - \sin\frac{\alpha}{2} = 1 - \sin\frac{89}{2} = 0,299$$

$$F_{12-3} = \frac{2L(F_{1-3})}{2L + 2H} = \frac{2(8,501)(0,299)}{2(8,501) + 2(2,125)} = 0,2393$$

$$h_{r,cg-abs} = \frac{\sigma(T_{abs}^2 + T_{cg}^2)(T_{abs} + T_{cg})}{\frac{1 - \varepsilon_{abs}}{\varepsilon_{abs}} + \frac{1}{F_{12-3}} + \frac{(1 - \varepsilon_{cg})A_p}{\varepsilon_{cg}.A_c}} = 0.348W/m^2K$$

Beta	F1-3	a(cm)	H(cm)	F12-3	hr,cg-abs
89	0.299091	8.501	2.125	0.23928	0.34802976
88	0.305342	8.505	2.125	0.24430	0.35266970
87	0.311645	8.512	2.125	0.24938	0.35738219
86	0.318002	8.521	2.125	0.25453	0.36216632
85	0.324410	8.532	2.125	0.25973	0.36702139
84	0.330869	8.547	2.125	0.26499	0.37194691
83	0.337380	8.564	2.125	0.27031	0.37694259
82	0.343941	8.584	2.125	0.27569	0.38200828
81	0.350552	8.606	2.125	0.28113	0.38714394
80	0.357212	8.631	2.125	0.28664	0.39234970

Tabel 3.4 nilai F_{12-3} untuk berbagai sudut beta.

Menghitung h_{c,duct}

Dimana $T_{f,avg} = 322,15$ K maka berdasarkan tabel A.4 Thermophysical Properties of Gases at Atmospheric Pressure, maka nilai propertiesnya Pr = 0,706

Tabel 3.5 Kekasaran permukaan

Relative Roughness, ɛ/L	Friction Factor, f
0.0*	0.0119
0.00001	0.0119
0.0001	0.0134
0.0005	0.0172
0.001	0.0199
0.005	0.0305
0.01	0.0380
0.05	0.0716
*Smooth surface. All valu and are calculated from B	tes are for Re = 10 ⁶ , Eq. 8–73.

$$r = \frac{\varepsilon}{Dh} = \frac{0,001.\ 10^{-3}}{0,02829} = 3,538.\ 10^{-5}$$

Dengan melakukan interpolasi, sehingga didapatkan nilai fricrion factor (f) sebesar 0,119078

$$Nu = \frac{\left(\frac{f}{8}\right)(Re - 1000)Pr}{1 + 12,7\left(\frac{f}{8}\right)^{0.5}\left(Pr^{\frac{2}{3}} - 1\right)} = \frac{\left(\frac{0,119078}{8}\right)(5375,24 - 1000)0,706}{1 + 12,7\left(\frac{0,119078}{8}\right)^{0.5}\left(0,706^{\frac{2}{3}} - 1\right)} = 67,7069$$
$$h = Nu.\frac{k}{Dh} = \frac{67,7069.0,02892}{0,02827} = 69,27W/m^2K$$

Menghitung h_r

Dimana, T_{abs}=346,15 K; T_{ins}=322,15 K; ϵ_{ins} = 0,15; dan ϵ_{abs} = 0,98

$$h_{r} = \frac{\sigma(T_{abs}^{2} + T_{ins}^{2})(T_{abs} + T_{ins})}{\frac{1 - \varepsilon_{abs}}{\varepsilon_{abs}} + \frac{1}{F_{12-3}} + \frac{(1 - \varepsilon_{ins})A_{p}}{\varepsilon_{ins} \cdot A_{c}}} = 0.06689W/m^{2}K$$

Menghitung R₁

$$R_1 = \frac{1}{h_w + h_{r,amb-cg}} = \frac{1}{2,1114 + 9,515} = 0.086012$$

Menghitung R₂

$$R_2 = \frac{1}{h_{c,cg-abs} + h_{r,cg-abs}} = 0.10908$$

Menghitung U_T

$$U_T = \frac{1}{R_1 + R_2 + \frac{1}{h}} = 4.77255$$

Menghitung U_B

$$U_B = \frac{1}{\frac{L_1}{k_1} + \frac{L_2}{k_2}} = \frac{1}{\frac{0.01}{0.045} + \frac{0.004}{0.12}} = 3,91304$$

Menghitung U_L

$$U_L = U_T + U_B = 8.68559$$

Menghitung F'

$$F' = \frac{1}{1 + \frac{U_L}{\frac{h}{\sin\frac{\emptyset}{2}} + \frac{1}{\frac{1}{hr}}}} = 0.91927$$

Menghitung F"

$$F'' = \frac{\dot{\mathrm{m}.} C_p}{A_c U_L F'} \left[1 - exp\left(-\frac{A_c U_L F'}{\dot{\mathrm{m}} C_P} \right) \right]$$
$$= 0.90289$$

Menghitung FR

 $F_R = F' x F'' = 0.829$

Menghitung Qu

Dimana S=($\tau \alpha$)IT = 690,598; Tf,in = 314,8 K; Tamb = 305,72 K $Q_u = A_c F_R [S - U_L (T_{f,in} - T_{amb})] = 2518.17 \text{ W}$

Hasil perhitungan Qu untuk berbagai sudut beta dilampirkan pada Lampiran 2. Gambar 3.3 adalah grafik Qu untuk sudut 80° sampai 89°. Berdasarkan grafik tersebut sudut 89° memiliki nilai Qu tertinggi.

Gambar 3.3 Grafik panas yang berguna (Qu).

3.4 Tinjauan Pra-Desain Obstacle

Tinjauan pra-desain *obstacle* dilakukan secara simulasi, menggunakan *software fluent.* Ada 3 jenis *obstacle* yang akan diteliti yakni *obstacle* dengan sudut tekuk 20°, 30° dan 40°, pandangan depan ditunjukkan pada Gambar 3.4. Simulasi dilakukan pada perbandingan jarak antar *obstacle* dengan tinggi *obstacle* sama dengan 1 atau S/H=1. Beberapa perhitungan diperlukan untuk menentukan tipe *obstacle* yang paling optimum. Perhitungan tersebut antara lain kenaikan temperatur, *pressure drop* dan perbandingan efisiensi dengan *pressure drop*.

Gambar 3.4 a.) *Obstacle* bentuk segitiga ditekuk (Ekadewi, 2014). b.) *Obstacle* bentuk trapesium ditekuk. c.) Geometri *obstacle* 3D dan jarak S/H.

Tabel 3.6 Tipe obstacle dan variasi jarak S/H

Obstacle				
	Sudut			
Tipe	tekuk	s/h		
А	20°			
В	30°	1.3		
С	40°			

Jarak			
s/h			
1.3	Tipe Obstacle		
1	Optimum		
0.7			

3.5 Rancangan Simulasi dengan Computatioal Fluid Dynamic

Proses selanjutnya mensimulasikan tipe *obstacle* dan jarak yang optimum dengan menggunakan software CFD komersial yang meliputi beberapa tahapan terdiri dari *Pre-pocessing, Processing dan Post-pocessing.*

3.5.1 Pre-processing

Beberapa tahapan pada proses ini di awali dengan pembuatan geometri, pembuatah mesh dan kemudian penentuan *boundary condition*. *Boundary condition* ditunjukkan seperti pada Gambar 3.5. Masukan di posisi z = 0didefinisikan sebagai *velocity inlet*. Keluaran di posisi z = -900 didefinisikan sebagai *outflow*. Dinding atas dan samping didefinisikan sebagai *wall* dengan *heat flux* konstan sedangkan dinding bagian bawah didefinisikan sebagai *insulated wall*.

Gambar 3.5 Boundary Condition.

3.5.2 Pro-processing

Setelah membuat *meshing* dan menentukan *boundary condition*, kemudian simulasi dilakukan menggunakan software fluent 6.3.26 dengan memasukkan nilai-nilai pada *boundary condition* serta pengaturan parameter *processing* seperti pada Tabel 3.7. *Convergence criterion* menggunakan 10⁻⁶.

		Processing				
Model Solver		Solver		Pressure	Based	
		Formulation		Implicit		
		Space		3D		
Energi Equatio	n	Active				
Model viscous		RNG k-epsilon m	nodel, st	andard wa	all function	
Boundary Con	dition	Туре		Value		
Inlet		Velocity Inlet		V=2.62 m/s (Re=4000)		
					<i>Tin</i> = 299 <i>K</i>	
Outlet		Outflow		-		
Dinding		Wall		<i>Heat flux</i> = 620 <i>W</i> / <i>m</i> ²		
Material	Density	Ср		K	Viscosity	
	kg/m³	J/kg.K	W	//mK	kg/ms	
	1.16607	1006.98	0.0)2622	1.841x10 ⁻⁵	
Pressure-Veloc	ity Coupling	SIMPLE				
Discretization		Pressure		Second Order		
		Momentum		Second Order		
		Turb.Kinetic Energi		Second Order		
		Turb. Dissipation Rate		Second Order		

Tabel	37	Pengaturan	narameter	nrocessing
1 aber	5.7	rengaturan	parameter	processing

3.5.3 Post-processing

Data dari proses iterasi kemudian diolah untuk mendapatkan beberapa parameter yang diperlukan antara lain seperti pada Tabel 3.8 Desain simulasi.

Tabel 3.8 Desain simulasi.			
OUTPUT			
Didapat	Tfin, Tfout, Pin, Pout		
Dihitung	Qu,Efisiensi,Qloss, ΔEfisiensi/ ΔP		

3.5.4 Grid independence

Grid independence merupakan sebuah proses untuk menentukan jumlah meshing agar simulasi dapat dikatakan akurat dan valid. Pada proses kali ini dibuat lima jenis mesh A, B, C, D dan E. Hasil grid independence ditunjukkan pada Tabel 3.9 dari table tersebut dapat disimpulkan semakin banyak jumlah *cell* maka nilai y+ akan semakin menurun. Hal tersebut menandakan *cell* semakin rapat di dinding dan dapat meningkatkan keakuratan. Parameter lain seperti ΔT , ΔP dan ΔQu diplot ke dalam grafik untuk mengetahui *trend* grafik dari kelima jenis mesh seperti ditunjukkan pada Gambar 3.6.

Mach	Colle	Facos	Nodes	Nodoc	Nodos	V.	ΔΤ	ΔΡ	Qu
IVIESII	Cells	Faces	noues		(K)	(Pa)	(Watt)		
Α	401241	858536	103710	18.04	14.37	3.94	112.54		
В	797885	1825441	354277	17.28	15.08	4.18	114.96		
С	1259435	2823965	435141	14.27	15.73	5.61	118.66		
D	1524571	3756452	557689	11.32	16.42	6.36	122.36		
E	1987955	4960493	679428	10.08	16.93	6.62	124.01		

Tabel 3.9 Grid independence.

Gambar 3.6 Grafik grid-independence.

Dari Gambar 3.7 terlihat mesh D dan E memiliki nilai yang hampir sama untuk ΔT , ΔP maupun ΔQu . Mesh D dan E juga memiliki prosentase selisih error kecil dibandingkan dengan mesh yang lain seperti pada Tabel 3.10. Berdasarkan uraian tersebut mesh D dan E dapat dikatakan baik. Namun, dengan mempertimbangkan kemampuan komputer dan keefektifan waktu mesh D dipilih untuk dijadikan acuan dalam menentukan jumlah *grid*.

Mesh	% Δ T	%Δ P	%Qu
A ke B	4.71	5.74	2.11
B ke C	4.13	25.49	3.12
C ke D	4.20	11.79	3.02
D ke E	3.01	3.93	1.33

Tabel 3.10 Prosentase error untuk ΔT , ΔP dan ΔQu .

Adapun ilustrasi mesh yang digunakan menggunakan tipe *Hex Core* (*native*) seperti ditunjukkan pada Gambar 3.7

Gambar 3.7 Meshing yang digunakan.(a) tanpa obstacle, (b) dengan obstacle.

3.5.5 Hasil Simulasi Numerik

Hasil yang diperoleh dari simulasi di plotkan kedalam grafik perbandingan antara *effectiveness* persamaan 2.26, untuk semua variasi sudut *obstacle*. *Obstacle*

dikatakan memiliki peformansi paling optimum apabila nilai *effectiveness* paling besar diantara *obstacle* yang lain.

3.6 Rancangan Eksperimen

3.6.1 Rancangan Skema Sistem Kerja

Eksperimen dilakukan di dalam ruangan yang dilengkapi dengan Air Conditioning. Intensitas radiasi yang diterima permukaan kolektor dijaga konstan dengan menggunakan 5 buah lampu halogen dengan daya masing-masing 500 watt sebagai pengganti matahari. Gambar skema sistem kerja ditunjukkan pada Gambar 3.1.

Kolektor surya yang akan diteliti memiliki dimensi tinggi 135mm, panjang 90mm dan lebar plat *absorber* 30mm. Kaca bening tebal 3mmpada bagian atas plat *absorber*. Plat *absorber* terbuta dari Aluminium yang dicat hitam pekat. Rangka terbuat dari kayu, *styrofoam* digunkan sebagai isolator pada sisi kanan, kiri dan bawah setebal 25mm. Jarak antara kaca dengan plat *absorber* 21.25mm Selama proses eksperimen dilakukan pengukuran temperature, tekanan dan kecepatan. ASRHAE 93-1986 digunakan sebgai dasar peletakan alat ukur seperti pada Gambar 3.8.

(a)

(b)

(c)

Gambar 3.8 (a) Letak *thermocouple*, (b) Alat kerja, dan (c) Susunan obstacle.

Pada sisi masukan: *pressure gauge* diletakkan pada jarak $0.5\sqrt{ab} = 24.61$ mm dari ujung masukan kolektor, *thermocouple* diletakkan pada jarak $2\sqrt{ab}$ =98.44mm dari ujung masukan kolektor, dan panjang inlet sebesar $3.5\sqrt{ab}=172.27$ mm. Pada sisi keluaran: *pressure gauge* diletakkan pada jarak $2\sqrt{ab}$ =98.44mm dari ujung keluaran kolektor, *thermocouple* diletakkan pada jarak 3.5 \sqrt{ab} =172.27mm dari ujung keluaran kolektor, dan panjang outlet sebesar $4\sqrt{ab}$ =196.88mm. Pengukuran kecepatan menggunakan *anemometer*. *Honeycomb* digunkan untuk menyeragamkan aliran yang masuk kedalam saluran, diletakan 172.27mm dari sisi *inlet* saluran. *Thermocouple* diletakkan pada tiga titik di permukaan kaca, 3 titik di bagian atas plat *absorber* dan 3 titik di bagian samping plat *absorber*.

3.6.2 Peralatan yang digunakan

Beberapa peralatan digunakan selama eksperimen seperti pada Tabel 3.11.

No	Nama Alat	Diskripsi	Gambar
1.	Thermo- infrared	untuk mengukur temperatur.	
2.	Manometer	Untuk mengukur perbedaan tekanan	
3.	Arduino	untuk mengetahui nilai temperatur di setiap titik saat pengambilan data	

Tabel 3.11 Peralatan yang digunakan.

4.	Anemometer	untuk mengukur kecepatan angin	SEASO
		F	Follows
			several datas vera da Parcelanda Parcela questa la testa da Parcelanda Parcela questa da testa da Parcelanda Parcelanda da Parcelanda da Parcelanda Parcelanda da Parcelanda da Parcelanda da Parcelanda Parcelanda da Parcelanda da
			CCD back light: Auto parent OFF Auto parent OFF Strack stand inicided X vanous materialistic Custowy materialistic
			Electronic Anamometer Moor
5.	Dimmer	Untuk mengatur	
		intensitas cahaya	
		lampu	
			A CONCERNING AND A CONC
6.	Pyranometer	Untuk mengukur	
		Intensitas radiasi.	
		No.Seri : S	
		97048.32ML-020VM.	
		Buatan : Eko	
		Instrument Trading	A State of the sta
		Co.Ltd-Jepang.	
		Konversi : 7.65	
		$mV/kW.m^2$.	
7.	Lampu	sebagai pengganti	
	Halogen	matahari karena	
	-	eksperimen dilakukan	
		secar artfifisial	
1			

8.	Induced fan	untuk mengalirkan	
		udara ke dalam saluran	
		kolektor.	

Langkah-langkah eksperimen adalah sebagai berikut :

- a. Tahap persiapan
 - 1. Mempersiapkan dan memastikan semua peralatan dan alat ukur yang digunakan dalam kondisi yang baik.
 - 2. Merangkai semua peralatan dan alat ukur.
- b. Tahap pengambila data
 - 1. Memastikan semua peralatan yang akan diunakan berada pada tempatnya.
 - 2. Menentukan intensitas radiasi menggunakan dimmer agar temperatur seragam.
 - 3. Memvariasikan kecepatan udara.
 - 4. Menunggu hingga alat dalam kondisi steady.
 - 5. Mengambil data yang diperlukan : T_{amb} , $T_{f,in}$, $T_{f,out}$, T_{cg} , T_{abs} , P_{in} , P_{out} .
 - 6. Mengulangi dengan langkah yang sama, dengan menaikkan kecepatan dan intensitas radiasi.
- c. Tahap akhir
 - 1. Mematikan *induced fan*.
 - 2. Mematikan semua peralatan listrik.
 - 3. Meletakkan peralatan dan alat ukur sesuai pada tempatnya.

Desain Eksperimen

Berikut adalah parameter input dan output disajikan pada Tabel 3.12.

Table 5.12 Desain Eksperinten						
INPUT						
Variabel Tetap	Variabel Kontrol					
Dimensi Kolektor	V = 2.62, 3.27, 3.93, 4.59 (m/s)					
Obstacle dan Jarak	$I = 520, 620, 720 (W/m^2)$					
Optimum						
OUTPUT						
Diukur	Tamb, Tcg, Tabs, Tfin, Tfout					
	Kenaikan temperature, ΔT , ΔP , Qu,					
Dihitung	Qloss, Efisiensi.					

Tabel 3.12 Desain Eksperimen

Tabel 3.13 adalah tabel pengambilan data saat eksperimen.

I	V	Tamb		Tabsorber (K)					Tf,in	Tf,out	٨٢				
(W/m²)	(m/s)	(К)	Tcg,1	Tcg,2	Tcg,3	T1	T2	Т3	Т4	T5	Т6	(K)	(К)	Δ3	ΔΡ
	2.62														
520	3.27														
	3.93														
	4.59														
	2.62														
620	3.27														
	3.93														
	4.59														
720															
	2.62														
	3.27														
	3.93														
	4.59														

Tabel 3.13 Tabel pengambilan data saat eksperimen.

3.7 Diagram Alir Penelitian

3.8 Grafik yang Dihasilkan

Grafik yang akan dibuat dari simulasi meliputi :

1. Kenaikan temperature, penurunan tekanan, effectiveness terhadap variasi sudut tekuk *obstacle*

Grafik yang akan dibuat dari eksperimen meliputi :

- 1. Kenaikan temperatur terhadap jarak
- 2. Penurunan tekanan terhadap kecepatan
- 3. Energi yang berguna setiap variasi intensitas terhadap kecepatan
- 4. Energi yang hilang setiap variasi intensitas terhadap kecepatan
- 5. Efisiensi setiap variasi intensitas terhadap kecepatan

BAB 4

HASIL DAN PEMBAHASAN

4.1 Hasil Simulasi Numerik dan Pembahasan

Obstacle dapat meningkatkan perpindahan panas dalam saluran kolektor. Peningkatan perpindahan panas ditandai dengan kenaikan temperatur. Kenaikan temperatur merupakan selisih temperatur udara masuk dan temperatur udara keluar. Kenaikan temperatur ditunjukkan pada Tabel 4.1. Saluran kolektor tanpa obstacle memiliki kenaikan temperatur terendah 16.42K. Saluran kolektor dengan obstacle sudut tekuk 20° memiliki kenaikan temperatur tertinggi 21.14K. Kenaikan temperatut tertinggi karena aliran udara masuk mengenai obstacle. Aliran udara yang semula hanya melewati bagian tengah saluran akan terdistribusi kebagian samping dan atas obstacle sehingga mengenai plat absorber bagian samping dan plat absorber bagian atas. Aliran udara yang mengenai plat absorber akan terpanasi sehingga temperatur udara yang keluar kolektor lebih tinggi dibandingkan saluran tanpa obstacle.

Sudut	ΔТ(К)	ΔP(Pa)	Qu(Watt)	Effectiveness
No Obs	16.42	6.36	122.36	-
20	21.14	40.36	157.53	0.054
30	18.58	37.82	138.45	1.924
40	17.73	36.97	132.12	2.036

Tabel 4.1 Hasil Simulasi

Dari hasil simulasi diperoleh data selisih temperatur (ΔT), penurunan tekanan atau *pressure drop* (ΔP), energi berguna (Qu) serta *effectiveness* seperti pada Tabel 4.1. Kemudian, untuk memperlihatkan perbedaannya data-data tersebut diplotkan ke dalam grafik seperti pada Gambar 4.1. Penentuan obstacle yang paling optimum yang akan digunakan dalam penelitian ini yaitu dengan memilih *effectiveness* yang memiliki nilai paling besar atau dapat dinyatakan dalam persamaa matematis : $\left|\frac{Qu^*}{\Delta P^*}\right| = \left|\frac{\frac{Qu_2-Qu_1}{Qu_1}}{\frac{\Delta P_2-\Delta P_1}{\Delta P_1}}\right|$ dengan harapan penekukan sudut obstacle dapat meningkatkan energi berguna namun dengan penurunan tekanan sekecil mungkin. Berdasarkan grafik Gambar 4.1c diperoleh hasil *effectiveness*

terbesar pada sudut 40° yakni sebesar 2.036, nilai tersebut memiliki arti obstacle dengan sudut 40° dapat menghasilkan energi yang besar dengan usaha *induced fan* yang kecil. Sehingga, obstacle dengan sudut 40° dinyatakan paling optimum.

(c) Gambar 4.1 Grafik (a) $\Delta T, \Delta Qu$, (b) ΔP , (c) *Effectiveness*

Proses simulasi dilakukan untuk mengetahui distribusi temperatur di dalam saluran solar kolektor seperti ditunjukkan pada Gambar 4.2. Pada Gambar 4.2a dan Gambar 4.6a menampilkan bidang tengah dari saluran kolektor yang dipotong secara vertical atau dengan koordinat x=0, y₁=0, y₂=85, z₁=0, z₂=900. Pada Gambar 4.2a terlihat terjadi peningkatan temperatur hingga sisi keluaran kolektor. Hal tersebut ditandai dengan distribusi warna yang semakin terang pada sisi keluaran. Proses simulasi dilakukan untuk mengetahui distribusi tekanan di dalam saluran solar kolektor seperti ditunjukkan pada Gambar 4.3.

Z=675

Z=675

Z=450 Obstacle sudut 30°

(d)

Gambar 4.2 Distribusi temperatur (a) di center plane x=0, (b) bidang Z tampilan isometris (c) di bidang Z, (d) Grafik temperatur terhadap jarak.

Tanpa obstacle

Obstacle sudut 20°

(d) Gambar 4.3 Distribusi tekanan (a) di center plane x=0, (b) bidang Z tampilan isometris (c) di bidang Z, (d) Grafik tekanan terhadap jarak.

Setelah memperoleh jenis obstacle yang paling optimum yakni obstacle dengan sudut tekuk 40° kemudian simulasi dilanjutkan untuk medapatkan jarak optimum. Simulasi dilakukan pada obstacle sudut tekuk 40° dengan variasi S/H 0.7, 1 dan 1.3. Berdasarkan simulasi diperoleh grafik seperti pada Gambar 4.4, menunjukkan nilai kenaikan temperatur dan penurunan tekanan untuk setiap jarak S/H obstacle. Berdasarkan grafik Gambar 4.4c diperoleh hasil *effectiveness* terbesar pada S/H 1.3 yakni sebesar 0.78, nilai tersebut memiliki arti obstacle dengan S/H 1.3 dapat menghasilkan energi yang besar dengan usaha *induced fan* yang kecil. Sehingga, obstacle sudut 40° dengan S/H 1.3 dinyatakan paling optimum.

Jarak (S/H)	ΔТ(К)	ΔP(Pa)	Qu(Watt)	Effectiveness		
No Obs	16.42	6.36	122.36	-		
0.7	18.73	18.73 37.09		0.029		
1	18.53	33.44	138.08	0.109		
1.3	17.73	31.59	132.12	0.780		

Tabel 4.2 Hasil Simulasi untuk Obstacle Variasi S/H

Gambar 4.4 Grafik (a) ΔT , ΔQu , (b) ΔP , (c) *Effectiveness*

Proses simulasi dilakukan untuk mengetahui distribusi temperatur pada S/H 0.7, 1 dan 1.3 seperti ditunjukkan pada Gambar 4.5.

(a)

S/H=1

(d)

Gambar 4.5 Distribusi temperatur (a) di center plane x=0, (b) bidang Z tampilan isometris (c) di bidang Z, (d) Grafik temperatur terhadap jarak.

Proses simulasi dilakukan untuk mengetahui distribusi tekanan pada S/H 0.7, 1 dan 1.3 seperti ditunjukkan pada Gambar 4.6a sampai 4.6c.

S/H=1.3

(a)

S/H=0.7

(d)

Tanpa obstacle

Obstacle 20°

Obstacle 30°

Obstacle 40°

Tanpa obstacle

	<u> </u>
	<u> </u>
	and a
	-
and the second s	*
and the second with the second s	~ · · · ·
	~
	*
	++
~ ㅠ ㅠ ㅠ ㅠ ㅠ ㅋ ㅋ ㅋ ㅋ ㅋ ㅋ ㅋ ㅋ ㅋ ㅋ ㅋ ㅋ ㅋ ㅋ	
	5-12
the second of the second s	

Obstacle 20°

he we have been a started to be an a started by the started by the started and the started by the started and the started by t	and the second
	₽ ₽₽₽ ₽₽₽ ₽₽₽ ₽₽₽
[Manager	
	··· - → → ₩ (#
	an in National II 🦶 🗸 🖛 🖛 🖛 ann an 1997. Tha t

Obstacle 30°

1.8 + 1.1.V (1.1)			

Obstacle 40°

S/H=0.7

S/H=1.3

S/H=0.7

											water a select
K K K K K K K K K K K K K K K K K K K	K KWK	V KANK CK CK	K KK 10 DO		Bridger	101271212	1000		- 1 1 1 1 1 1 1 1.	12 12 14 1	0121452
7 7 7 7 7 7 7	- R. P. P				- N.			V . V			
PAN PAN PAN	MAN	PANA PAR	NAME NAME		ATT -	NU NUC	P PH	P PPA	P MAR MAR	M MA	V MAL
	NON VYK			mn W	NN			NN P		NK 10	NN TT
	7127 12		VWR								
								- 444-			
	Nr -	N NDSD	N N N	N	NKIN		NKE	NKK		NKA	NKK -
	W.		N AN N	HP P			100	W.V.		WV	74.4
			- <u>AA</u>				k				
the part of	-	C.	VV 00 P			- · · · · ·		-	the second s	_ r _ r	
	- 1 -	31C 1			41			- 11	\		
· · · · · · · · · · · · · · · · · · ·		the is the			n -		=				
				·	in a				Section and		K
		· · · · · ·			<u>-</u>						- 34
				1.58	And the second s	· · ·		1.36 1	forman .	·	
		No.		- E-18 II				-E36 IN	have a second		
				🖓 🛛	X		-	- ~ - 1			
		Aller -		. Tes 🗸 1	the an				and and the		
- · · · ~		···· 20		_ <u>⇒</u> ⊳ ∦	h a			W	manan -		
~		Mar -		• • • • • • • •	×		-				
		18		-30	pre-			- 3			~ _
	31	1 - A	2		₩ ~ 	÷	~		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	· · · · ·	
		the and		<u>→</u> _=	· -				server -		4
		Nes .	~	~	Lean .			- 🚽 🛛			
· · · · ·			1. A 4		C ~	· · · · ·			the second secon	· · · · · · · · · · · · · · · · · · ·	
-				= [and the second sec		_	-++	the second on a		
			والأسارين وتعسر	V			·		and the second s		
			6 m 2		the second s	The second second)			
and a second second second		With the second s	er, esti ave			and the second sec	12.12.12.12.12.12	V	State -	e * 1 - 24	\sim

S/H=1

S/H=1.3

(e)

Gambar 4.6 Distribusi tekanan (a) di center plane x=0, (b) bidang Z tampilan isometris (c) di bidang Z, (d) Grafik tekanan terhadap jarak. (e) vector kecepatan.

Gambar 4.2c dan Gambar 4.5c memperlihatkan kontur temperatur pada bidang z=225, z=450, z=675 dan untuk mengetahui distribusi nilai temperatur terhadap jarak maka diplotkan kedalam grafik seperti pada Gambar 4.2d dan 4.5d. Berdasarkan Gambar 4.2d terlihat obstacle dengan sudut 20° memiliki nilai kenaikan temperatur tertinggi. Hal ini yang membuat selisih antara temperatur masuk dan temperatur keluar saluran kolektor menjadi besar. Gambar 4.5d menunjukkan obstacle sudut 40° dengan S/H=0.7 mengalami kenaikan temperatur tertinggi. Hal ini yang membuat selisih antara temperatur keluar saluran kolektor menjadi besar. Gambar 4.3c dan Gambar 4.6c memperlihatkan kontur tekanan pada bidang z=225, z=450, z=675 dan untuk mengetahui dirtribusi nilai tekanan terhadap jarak maka diplotkan kedalam grafik seperti pada Gambar 4.3d untuk variasi sudut obstacle dan Gambar 4.6d untuk sudut obstacle sudut 40° dengan variasi S/H. Berdasarkan Gambar 4.3d terlihat obstacle dengan sudut 40° memiliki nilai penurunan tekanan terendah. Hal ini yang membuat selisih antara tekanan masuk dan tekanan keluar saluran kolektor menjadi kecil. Gambar 4.6d menunjukkan obstacle sudut 40° dengan S/H=1.3 mengalami penurunan tekanan terendah. Hal ini yang membuat selisih antara tekanan masuk dan tekanan keluar saluran kolektor menjadi kecil. Sedangkan, Gambar 4.6d menunjukkan vektor kecepatan. Berdasarkan Gambar 4.6c terlihat bahwa pada saluran tanpa obstacle tidak terjadi aliran balik. Hal tersebut disebabkan udara dapat mengalir bebas di sepanjang laluan. Sedangkan, untuk saluran dengan obstacle, aliran udara mengalami *backflow* atau aliran balik, aliran balik inilah yang menyebabkan terjadinya vortex. Aliran udara pada saluran dengan obstacle tidak lancar mengalir, melainkan ada yang terdistribusi ke atas dan ke samping celah obstacle serta ada sebagian yang berbalik arah ketika mengenai bagian depan obstacle. Aliran udara balik inilah yang menyebabkan terjadinya penurunan tekanan.

4.2 Hasil Eksperimen dan Pembahasan

Eksperimen dilakukan pada desain kolektor surya yang memiliki nilai *effectiveness* paling tinggi berdasarkan hasil simulasi yakni obstacle dengan sudut 40° dengan S/H 1.3 Selama eksperimen, digunakan 3 variasi intensitas radiasi yakni 520 W/m², 620 W/m² dan 720 W/m². Terdapat 4 variasi kecepatan untuk setiap intensitas radiasi antara lain 2.62 m/s, 3.27 m/s, 3.93 m/s dan 4.59 m/s. Berdasarkan data dari hasil eksperimen kinerja kolektor dapat diketahui antara lain berupa kenaikan temperatur udara, penurunan tekanan, energi yang terbuang (Qloss), energi yang berguna (Qu) dan efisiensi kolektor.

4.2.1 Kenaikan Temperatur Udara

Gambar 4.7 menunjukkan grafik distribusi temperatur kaca penutup terhadap jarak dan Gambar 4.8 menunjukkan grafik distribusi temperatur plat penyerap terhadap jarak untuk intensitas 520 W/m², 620 W/m² dan 720 W/m² untuk kecepatan 2.62m/s. Gambar 4.7 memperlihatkan trend grafik yang naik yakni temperatur kaca penutup naik seiring bertambahnya jarak. Kenaikan temperatur kaca penutup tertinggi terjadi pada saluran dengan obstacle saat intensitas 720 W/m² yakni sebesar 323K. Sedangkan, kenaikan temperatur kaca penutup terendah terjadi pada saluran tanpa obstacle saat intensitas 520 W/m² yakni sebesar 303.5K.

Gambar 4.8 memperlihatkan trend grafik yang naik yakni temperatur plat penyerap naik seiring bertambahnya jarak. Kenaikan temperatur plat penyerap tertinggi terjadi pada plat penyerap bagian atas untuk saluran dengan obstacle saat intensitas 720 W/m² yakni sebesar 331K. Sedangkan, kenaikan temperatur plat penyerap terendah terjadi pada plat penyerap bagian samping untuk saluran tanpa obstacle saat intensitas 520 W/m² yakni 314K. Hal tersebut disebabkan karena besarnya pengaruh perpidahan panas dari plat penyerap ke fluida kerja yang juga berubah. Plat penyerap mengkonversi intensitas radiasi matahari menjadi energi panas yang digunakan untuk memanaskan fluida kerja. Fluida kerja menerima panas yang diberikan oleh plat penyerap sepanjang fluida kerja mengalir di dalam saluran kolektor. Selama fluida kerja mengalir di dalam saluran kolektor, fluida kerja terus menerus mengalami kenaikan temperatur. Hal tersebut dibuktikan dengan lebih besarnya temperatur saat keluar kolektor (Tfout) dibandingkan temperatur saat masuk kolektor (Tfin). Temperatur dari fluida kerja inilah mempengaruhi temperatur plat penyerap yang semakin meningkat seiring dengan bertambahnya jarak (x). Kenaikan temperatur plat penyerap ini akan mempengaruhi besarnya temperatur kaca penutup yang juga akan semakin meningkat. Terjadi fenomena dimana ada perpindahan panas dari plat penyerap ke udara diam yang terdapat di ruang antara plat penyerap dengan kaca penutup. Perpindahan panas tersebut merupakan konveksi alami, udara panas dari plat penyerap bergerak ke atas menuju kaca penutup akibat gaya buoyancy, fenomena tersebut ditunjukan seperti Gambar 4.8b.

Selisih temperatur udara (Δ T) dapat diketahui dari selisih perbedaan antara temperatur masuk dan temperatur keluar atau dapat dinyatakan dalam persamaan metematis : $Tf_{in} - Tf_{out}$. Data yang telah diperoleh kemudian diplotkan seperti ditunjukkan pada grafik Gambar 4.9. Gambar 4.9 menunjukkan bahwa semakin meningkatnya intensitas radiasi maka temperatur akan meningkat. Hal tersebut dikarenakan semakin besar intensitas maka temperatur fluida keluar akan meningkat. Pada masing-masing intensitas terdapat 4 macam variasi kecepatan. Berdasarkan Gambar 4.9 Δ T tertinggi terjadi pada saluran dengan obstacle saat intensitas 720 W/m² saat kecepatan terendah 2.26 m/s yakni sebesar 14K.

Gambar 4.7 Grafik kenaikan temperatur kaca penutup terhadap jarak.

Gambar 4.8 (a) Grafik kenaikan temperatur plat penyerap terhadap jarak (b) Lapisan fluida yang dipanasi dari bawah (Bejan, 2013 hal 263)

Gambar 4.9 Grafik kenaikan temperatur

4.2.2 Penurunan Tekanan

Selama eksperimen penurunan tekanan diukur menggunakan manometer. Sehingga, penurunan tekanan diperoleh dengan mengetahui selisih jarak ketinggian fluida pengisi manometer yakni cairan kerosin. Selisih jarak ketinggian tersebut kemudian dikonversikan kedalam persamaan matematis untuk memperoleh perbedaan tekanan. Persamaan matematis tersebut adalah sebagai berikut : $\Delta P = SG_{kerosin}$, ρ_{air} , g. 2S. sin(15°). Gambar skema manometer ditunjukkan pada Gambar 4.10b. Penurunan tekanan ditunjukkan seperti pada Gambar 4.10a. Berdasarkan gambar tersebut, penurunan tekanan bertambah seiring bertambahnya kecepatan. Hal tersebut relevan dengan penelitian yang dilakukan Ekadewi(2014). Apabila dihubungkan dengan persamaan friksi kecenderungan tersebut sesuai. Penurunan tekanan pada saluran dengan obstacle memiliki nilai lebih besar dibandingkan dengan saluran tanpa obstacle. Penurunan tekanan terbesar dalam saluran dengann obstacle 216.1Pa dan 54.3Pa untuk saluran tanpa obstacle pada saat kecepatan tertinggi 4.59m/s. Penurunan tekanan

juga disebabkan oleh gaya drag saat aliran fluida kerja masuk ke dalam saluran kolektor. Aliran udara mengenai bagian obstacle sehingga aliran berbalik arah dan mengakibatkan *secondary flow* seperti yang divisualisasikan dalam sub bab numerik.

Gambar 4.10 (a) Grafik penurunan tekanan terhadap kecepatan (b) Skema manometer yang digunakan

4.2.3 Energi yang Terbuang (Qloss)

Kinerja kolektor surya dapat diketahui dengan menganalisa energi yang terbuang atau Qloss. Qloss merupakan sejumlah energi panas yang tidak mampu

diteruskan oleh kolektor, sehingga mengakibatkan efisiensi kolektor rendah. Semakin tinggi Qloss maka efisiensi kolektor akan semakin rendah.

Grafik Qloss terhadap kecepatan untuk tiga variasi intensitas 520W/m², 620W/m² dan 720 W/m² ditunjukkan pada Gambar 4.11. Berdasarkan grafik tersebut, nilai Qloss terbesar terjadi saat intensitas 720 W/m² untuk semua variasi kecepatan pada salura tanpa obstacle. Trend grafik Qloss mengalami penurunan dengan bertambahnya kecepatan. Sedangkan, Qloss terendah terjadi saat 520 W/m² pada saluran dengan obstacle. Hal tersebut disebabkan semakin meningkatnya kecepatan maka temperatur plat penyerap akan menurun. Menurunnya temperatur plat penyerap mengakibatkan Qloss menjadi rendah mengingat Qloss dapat dicari melalui persamaan: $Q_{loss} = A_{kolektor}I - Q_{useful}$

Gambar 4.11 Energi yang hilang

4.2.4 Energi yang Berguna (Qu)

Energi berguna diplotkan kedalam grafik seperti pada Gambar 4.12. Qu merupakan fungsi dari laju aliran massa, panas spesifik, temperatur fluida masuk dan temperatur fluida keluar kolektor surya. Pada Gambar 4.12 terlihat trend

grafik naik semakin meningkatnya kecepatan. Hal tersebut dikarenakan energi berguna akan meningkat seiring meningkatnya laju aliran massa dan kenaikan temperatur yang merupakan selisih antara temperatur fluida keluar dengan temperatur fluida masuk. Berdasarkan Gambar 4.12 energi berguna tertinggi terjadi pada saluran dengan obstacle untuk intensitas 720W/m² saat kecepatan 4.59m/s yakni sebesar 121W. Sedangkan, energi berguna terrendah terjadi pada saluran tanpa obstacle untuk intensitas 520W/m² saat kecepatan 2.62m/s yakni sebesar 60.4W.

Gambar 4.12 Energi yang berguna

4.2.5 Efisiensi Kolektor

Efisiensi kolektor merupakan perbandingan antara panas yang berguna dengan intensitas radiasi dan luasan kolektor. Berdasarkan data yang diperoleh dari hasil eksperimen maka efisiensi kolektor dapat dihitung menggunakan persamaan 2.25 dan diplotkan kedalam grafik seperti pada Gambar 4.13. Berdasarkan Gambar 4.13 efisiensi kolektor tertinggi terjadi pada saluran dengan obstacle untuk intensitas 520 W/m² pada saat kecepatan 4.59m/s yakni sebesar 0.98. Efisiensi terendah terjadi pada saluran tanpa obstacle untuk intensitas 720 W/m² pada saat

kecepatan 2.62m/s yakni sebesar 0.56. Trend grafik efisiensi terlihat naik seiring meningkatnya kecepatan. Hal tersebut dikarenakan semakin tinggi kecepatan fluida yang mengalir di dalam saluran kolektor maka laju aliran massa juga akan semakin meningkat, dengan meningkatnya laju aliran massa maka energi panas yang diserap akan semakin besar sehingga efisiensi akan meningkat. Mengingat bila dinyatakan dalam matematis : $\Pi = \frac{Q_{useful}}{A_{c}I}$. Berdasarkan Gambar 4.1 terlihat bahwa semakin kecil nilai intensitas maka efisiensi akan naik. Hal tersebut dipengaruhi oleh Qloss. Pada intensitas kecil Qloss juga bernilai rendah. Hal tersebut disebabkan pada saat intensitas kecil temperatur plat penyerap juga akan bernilai rendah. Mengingat, efisiensi juga didapatkan menggunakan persamaan matematis : $\eta = 1 - \frac{Q_{Loss}}{A_{c}I}$. Fenomena tersebut relevan dengan hasil penelitian yang dilakukan oleh Ekadewi (2014).

Gambar 4.13 Efisiensi kolektor

Dete		08:	00			09:00:00				10:00:00			
Бега	Ру	Hs	Рх	Ls	Ру	Hs	Px	Ls	Ру	Hs	Px	Ls	
89	8.6031	-17.1492	5.6262	87.9411	8.7054	-17.1475	6.4637	87.6623	5.7745	-17.2210	5.6262	86.9325	
88	8.7516	-17.2988	5.6262	87.8806	8.8538	-17.2955	6.4637	87.5932	5.9230	-17.4366	5.6262	86.8684	
87	8.9002	-17.4493	5.6262	87.8220	9.0025	-17.4445	6.4637	87.5262	6.0716	-17.6478	5.6262	86.8073	
86	9.0491	-17.6012	5.6262	87.7652	9.1514	-17.5949	6.4637	87.4612	6.2205	-17.8557	5.6262	86.7491	
85	9.1984	-17.7548	5.6262	87.7102	9.3007	-17.7472	6.4637	87.3983	6.3698	-18.0611	5.6262	86.6934	
84	9.3481	-17.9104	5.6262	87.6568	9.4504	-17.9016	6.4637	87.3371	6.5196	-18.2648	5.6262	86.6401	
83	9.4984	-18.0686	5.6262	87.6048	9.6007	-18.0586	6.4637	87.2776	6.6698	-18.4677	5.6262	86.5891	
82	9.6493	-18.2297	5.6262	87.5543	9.7516	-18.2186	6.4637	87.2197	6.8208	-18.6704	5.6262	86.5400	
81	9.8010	-18.3940	5.6262	87.5051	9.9033	-18.3818	6.4637	87.1632	6.9724	-18.8736	5.6262	86.4929	
80	9.9535	-18.5619	5.6262	87.4571	10.0558	-18.5487	6.4637	87.1082	7.1249	-19.0779	5.6262	86.4476	

Lampiran 1. Luasan efektif pukul 08:00 -10:00

Poto		11:00	00:00			12:00:00				13:00:00			
Deld	Ру	Hs	Рх	Ls	Ру	Hs	Px	Ls	Ру	Hs	Px	Ls	
89	5.391	-17.237	5.243	86.938	5.278	-17.242	5.130	86.940	5.391	-17.237	5.243	86.938	
88	5.539	-17.466	5.243	86.880	5.426	-17.476	5.130	86.884	5.539	-17.466	5.243	86.880	
87	5.688	-17.690	5.243	86.824	5.575	-17.703	5.130	86.830	5.688	-17.690	5.243	86.824	
86	5.837	-17.909	5.243	86.772	5.724	-17.926	5.130	86.779	5.837	-17.909	5.243	86.772	
85	5.986	-18.125	5.243	86.721	5.873	-18.145	5.130	86.730	5.986	-18.125	5.243	86.721	
84	6.136	-18.338	5.243	86.673	6.023	-18.361	5.130	86.684	6.136	-18.338	5.243	86.673	
83	6.286	-18.549	5.243	86.628	6.173	-18.576	5.130	86.640	6.286	-18.549	5.243	86.628	
82	6.437	-18.760	5.243	86.584	6.324	-18.788	5.130	86.598	6.437	-18.760	5.243	86.584	
81	6.589	-18.970	5.243	86.542	6.476	-19.001	5.130	86.557	6.589	-18.970	5.243	86.542	
80	6.741	-19.181	5.243	86.501	6.628	-19.214	5.130	86.518	6.741	-19.181	5.243	86.501	

Dete		14:0	0:00			15:00:00				16:00:00			
Dela	Ру	Hs	Px	Ls	Ру	Hs	Px	Ls	Ру	Hs	Рх	Ls	
89	5.7745	-17.2210	5.6262	86.9325	8.7054	-17.1475	6.4637	87.6623	8.6031	-17.1492	5.6262	87.9411	
88	5.9230	-17.4366	5.6262	86.8684	8.8538	-17.2955	6.4637	87.5932	8.7516	-17.2988	5.6262	87.8806	
87	6.0716	-17.6478	5.6262	86.8073	9.0025	-17.4445	6.4637	87.5262	8.9002	-17.4493	5.6262	87.8220	
86	6.2205	-17.8557	5.6262	86.7491	9.1514	-17.5949	6.4637	87.4612	9.0491	-17.6012	5.6262	87.7652	
85	6.3698	-18.0611	5.6262	86.6934	9.3007	-17.7472	6.4637	87.3983	9.1984	-17.7548	5.6262	87.7102	
84	6.5196	-18.2648	5.6262	86.6401	9.4504	-17.9016	6.4637	87.3371	9.3481	-17.9104	5.6262	87.6568	
83	6.6698	-18.4677	5.6262	86.5891	9.6007	-18.0586	6.4637	87.2776	9.4984	-18.0686	5.6262	87.6048	
82	6.8208	-18.6704	5.6262	86.5400	9.7516	-18.2186	6.4637	87.2197	9.6493	-18.2297	5.6262	87.5543	
81	6.9724	-18.8736	5.6262	86.4929	9.9033	-18.3818	6.4637	87.1632	9.8010	-18.3940	5.6262	87.5051	
80	7.1249	-19.0779	5.6262	86.4476	10.0558	-18.5487	6.4637	87.1082	9.9535	-18.5619	5.6262	87.4571	

Lampiran 1b. (lanjutan)

Lampiran 1c. Luasan efektif (lanjutan)

Beta	Hsavg	Lsavg	Ap(cm)
89	-11.47	58.15	49596.29
88	-11.61	58.11	49018.32
87	-11.74	58.07	48442.83
86	-11.87	58.03	47870.34
85	-12.00	58.00	47301.30
84	-12.13	57.96	46736.08
83	-12.26	57.93	46175.01
82	-12.38	57.90	45618.34
81	-12.51	57.87	45066.30
80	-12.64	57.84	44519.08

-		¥		0 0		_							
Ll.v.	beta	Vw(m/s)	Tfavg(K)	viskos	Pr	alfa	k	G	В	Ra	L=As/p	Nu	hw
пw		1.0078	315.17	1.589E-05	0.71	2.48E-05	0.0274	9.81	0.003173	4.35E+09	1.8	138.7054	2.111404
hr,amb-		Tcg (K)	Tamb(K)	Tsky	hr,amb-cg								
cg	89-80	324.62	305.72	295.06986	9.51487								
og obc		Tcg (K)	Tabs(K)	Tins(K)	k(W/mK)	Tf,cg-abs	Pr						
cg-abs		324.62	346.15	322.15	0.027935	335.385	0.706						
	L1(m)	K1(W/mK)	L2(m)	K2(W/mK)	Mdot	ср	S	Tfin	Tamb				
Insulasi	Sty	vrofoam	tri	plek									
Insulasi	0.01	0.045	0.004	0.12	0.189	1007.7	690.598	314.8	305.72				

Lampiran 2. Hasil pehhitungan panas yang berguna untuk sudut 80° sampai 89

Beta	F1-3	A(cm)	H(cm)	F12-3	hr,cg-abs	Ар	Ac	Dh(m)	hr,ins	Nu	hc,cg-abs
89	0.29909	8.50129	2.12500	0.23928	0.34803	4.95963	0.027	0.02827	0.06689	8.895	9.10039
88	0.30534	8.50518	2.12500	0.24430	0.35267	4.90183	0.027	0.02655	0.06770	8.895	9.68764
87	0.31165	8.51166	2.12500	0.24938	0.35738	4.84428	0.027	0.02486	0.06853	8.895	10.34705
86	0.31800	8.52076	2.12500	0.25453	0.36217	4.78703	0.027	0.02319	0.06937	8.895	11.09265
85	0.32441	8.53247	2.12500	0.25973	0.36702	4.73013	0.027	0.02154	0.07022	8.895	11.94233
84	0.33087	8.54682	2.12500	0.26499	0.37195	4.67361	0.027	0.01991	0.07109	8.895	12.91932
83	0.33738	8.56383	2.12500	0.27031	0.37694	4.61750	0.027	0.01830	0.07197	8.895	14.05432
82	0.34394	8.58353	2.12500	0.27569	0.38201	4.56183	0.027	0.01672	0.07286	8.895	15.38875
81	0.35055	8.60595	2.12500	0.28113	0.38714	4.50663	0.027	0.01515	0.07377	8.895	16.97991
80	0.35721	8.63113	2.12500	0.28664	0.39235	4.45191	0.027	0.01360	0.07469	8.895	18.90939

Hasil pehhitungan panas yang berguna untuk sudut 80° sampai 89° (lanjutan).

	V=3.276 m/s]						
beta	Re	Nu0	Nu utk h1	h1 (W/m2K)	R	(f)	R1	R2
89	5375.24	9.04	67.71	69.27	3.54E-05	0.119078	0.08601	0.10908
88	5049.40	8.08	62.67	68.25	3.77E-05	0.119085	0.08601	0.10251
87	4727.60	7.18	57.69	67.11	4.02E-05	0.119093	0.08601	0.09601
86	4409.84	6.34	52.78	65.82	4.31E-05	0.119101	0.08601	0.08959
85	4096.08	5.56	47.93	64.35	4.64E-05	0.119112	0.08601	0.08325
84	3786.33	4.83	43.14	62.66	5.02E-05	0.119123	0.08601	0.07698
83	3480.55	4.15	38.41	60.69	5.46E-05	0.119137	0.08601	0.07079
82	3178.74	3.53	33.74	58.38	5.98E-05	0.119153	0.08601	0.06468
81	2880.86	2.96	29.13	55.62	6.60E-05	0.119171	0.08601	0.05864
80	2586.90	2.44	24.59	52.27	7.35E-05	0.119194	0.08601	0.05268

Lampiran 2b. Hasil pehhitungan panas yang berguna untuk sudut 80° sampai 89° (lanjutan).

Beta	UT	UB	UL	F'	F''	FR	Qu
89	4.77255	3.91304	8.685589	0.919265	0.902886	0.829991	2518.17
88	4.92196	3.91304	8.834999	0.917551	0.902571	0.828155	2477.81
87	5.07814	3.91304	8.991180	0.915620	0.902243	0.826111	2437.00
86	5.24124	3.91304	9.154285	0.913422	0.901906	0.823821	2395.68
85	5.41129	3.91304	9.324337	0.910894	0.901569	0.821234	2353.77
84	5.58809	3.91304	9.501130	0.907944	0.901246	0.818281	2311.14
83	5.77102	3.91304	9.684064	0.904445	0.900958	0.814866	2267.62
82	5.95881	3.91304	9.871849	0.900208	0.900738	0.810851	2222.94
81	6.14889	3.91304	10.061938	0.894938	0.900643	0.806020	2176.68
80	6.33634	3.91304	10.249385	0.888155	0.900769	0.800023	2128.19

Lampiran 2c. Hasil perhitungan panas yang berguna untuk sudut 80° sampai 89° (lanjutan).

Tanpa Obstacle Baru																
I	v	Tamb		Teg				Tabsor	ber (K)			Tf,in	Tf,out	ат	ΔΡ	ΔS (cm)
(W/m²)	(m/s)	(K)	(K)	(K)	(K)	T1	T2	Т3	T4	T5	Т6	(K)	(K)			
	2.62	298	303.5	306.2	310.9	316.4	317.3	318.7	314.4	315.3	316.8	299.0	307.2	8.2	20.89	0.5
E20	3.27	298	303.4	308.1	308.9	311.3	312.0	312.9	309.2	310.0	310.9	297.6	304.7	7.1	33.43	0.8
520	3.93	298	302.4	307.9	308.4	310.2	310.9	312.2	308.1	309.2	310.2	298.8	305.0	6.2	58.50	1.4
	4.59	298	301.3	306.4	307.7	308.3	310.8	312.1	308.0	308.8	310.1	297.6	303.3	5.7	62.68	1.5
	2.62	298	305.7	308.5	311.0	316.6	318.5	321.2	314.6	316.7	319.2	301.7	310.9	9.2	12.54	0.3
620	3.27	298	305.2	308.2	309.7	315.2	316.0	319.9	313.3	314.0	317.9	301.3	309.0	7.7	29.25	0.7
020	3.93	298	302.2	308.1	309.5	313.7	315.6	319.9	311.7	313.7	317.9	297.7	304.4	6.7	45.97	1.1
	4.59	298	301.4	306.8	308.5	312.8	314.0	319.6	310.8	312.0	317.6	297.6	303.7	6.1	62.68	1.5
	2.62	298	307.6	314.3	317.2	320.1	322.3	324.0	318.1	320.4	322.0	302.6	312.6	10.0	20.89	0.5
720	3.27	298	307.4	314.1	316.6	319.7	320.2	322.4	317.8	318.2	320.4	302.3	310.7	8.4	25.07	0.6
	3.93	298	307.3	312.9	315.4	318.5	319.5	321.8	316.5	317.5	319.8	300.0	307.4	7.4	41.79	1
	4.59	298	306.8	312.7	315.1	318.2	318.8	320.4	316.2	316.8	318.5	299.5	306.0	6.5	54.32	1.3

Lampiran 3a. Hasil eksperimen

Lampiran 3b. Hasil eksperimen

										Ар
No obstacle										0.177353
	v	rho	А	m dot	ΔΤ	Ср	Qthermo	Tf mean	Eff	Qloss
520	2.62	1.151216	0.002423	0.007307	8.2	1007.12	60.34	303.06	65.43	31.79
520	3.27	1.157573	0.002423	0.00917	7.1	1007.05	65.56	301.15	71.09	26.58
520	3.93	1.155077	0.002423	0.010997	6.2	1007.08	68.66	301.90	74.45	23.53
520	4.49	1.159902	0.002423	0.012616	5.7	1007.02	72.42	300.45	78.52	19.77
	v	rho	А	m dot	ΔΤ	Ср	Qthermo		Eff	
620	2.62	1.140434	0.002423	0.007238	9.2	1007.25	67.08	306.30	61.00	42.73
620	3.27	1.144261	0.002423	0.009064	7.7	1007.21	70.30	305.15	63.93	39.26
620	3.93	1.157906	0.002423	0.011024	6.7	1007.04	74.38	301.05	67.64	35.54
620	4.49	1.159237	0.002423	0.012609	6.1	1007.03	77.46	300.65	70.44	32.68
	v	rho	А	m dot	ΔΤ	Ср	Qthermo		Eff	
720	2.62	1.136107	0.002423	0.007211	10	1007.30	72.63	307.60	56.88	54.99
720	3.27	1.139768	0.002423	0.009029	8.4	1007.26	76.39	306.50	59.82	51.31
720	3.93	1.149191	0.002423	0.010941	7.4	1007.15	81.54	303.67	63.86	46.15
720	4.49	1.152178	0.002423	0.012532	6.5	1007.11	82.04	302.77	64.25	45.66

	Obstacle Baru															
I	v	Tamb		Teg				Tabsor	rber (K)			Tf,in	Tf,out	AT	AS ()	
(W/m²)	(m/s)	(K)	(K)	(K)	(К)	T1	T2	T3	T4	T5	T6	(К)	(K)	ΔΙ		DS (cm)
	2.62	298	309.5	315.2	316.7	321.4	324.3	325.7	319.9	321.4	322.8	298.2	309.7	11.5	73.4	1.8
E20	3.27	298	309.4	312.0	314.6	316.3	318.9	321.5	316.2	318.8	321.4	298.0	307.3	9.3	118.2	2.9
520	3.93	298	308.6	310.6	312.6	315.2	317.2	319.2	314.9	316.9	318.9	299.0	307.0	8	179.4	4.4
	4.59	298	308.0	309.6	311.2	313.3	314.9	316.5	314.0	315.6	317.2	297.6	304.8	7.2	216.1	5.3
	2.62	298	311.5	316.0	317.4	321.6	325.3	328.2	320.6	322.7	325.2	302.0	314.3	12.3	73.4	1.8
620	3.27	298	312.0	314.6	317.2	320.2	322.8	325.4	319.3	321.9	324.5	302.4	313.4	11	118.2	2.9
020	3.9 3	298	310.2	312.2	314.2	318.7	320.7	322.7	317.7	319.7	321.7	298.1	307.3	9.2	179.4	4.4
	4.59	298	309.7	311.3	312.9	317.8	319.4	321.0	316.8	318.4	320.0	299.0	307.2	8.2	216.1	5.3
	2.62	298	313.7	321.3	323.2	325.1	329.3	331.0	324.1	326.4	328.0	301.7	315.7	14	73.4	1.8
720	3.27	298	313.4	316.0	318.6	324.6	327.2	329.8	323.2	325.8	328.4	302.4	314.4	12	118.2	2.9
	3.93	298	312.8	314.8	316.8	323.5	325.5	327.5	322.5	324.5	326.5	300.0	310.6	10.6	179.4	4.4
	4.59	298	311.9	313.5	315.1	323.2	324.8	326.4	321.9	323.5	325.1	299.6	309.0	9.4	216.1	5.3

Lampiran 3c. Hasil eksperimen

										Ар
Obstacle										0.177353
	v	rho	А	m dot	ΔT	Ср	Qthermo	Tf mean	Eff	Qloss
520	2.62	1.14825	0.00242	0.00729	8.2	1007.16	84.41	303.95	91.53	7.81
520	3.27	1.15258	0.00242	0.00913	7.1	1007.11	85.51	302.65	92.73	6.71
520	3.93	1.15142	0.00242	0.01096	6.2	1007.12	88.32	303.00	95.77	3.90
520	4.49	1.15741	0.00242	0.01259	5.7	1007.05	91.28	301.20	98.98	0.94
	v	rho	А	m dot	ΔΤ	Ср	Qthermo			
620	2.62	1.13428	0.00242	0.00720	9.2	1007.33	89.20	308.15	81.12	20.76
620	3.27	1.13511	0.00242	0.00899	7.7	1007.32	99.63	307.90	90.61	10.32
620	3.93	1.15241	0.00242	0.01097	6.7	1007.11	101.66	302.70	92.45	8.30
620	4.49	1.15108	0.00242	0.01252	6.1	1007.12	103.40	303.10	94.03	6.56
	v	rho	А	m dot	ΔΤ	Ср	Qthermo			
720	2.62	1.13245	0.00242	0.00719	10.0	1007.35	101.37	308.70	79.38	26.33
720	3.27	1.13344	0.00242	0.00898	8.4	1007.34	108.53	308.40	85.00	19.16
720	3.93	1.14376	0.00242	0.01089	7.4	1007.21	116.26	305.30	91.04	11.44
720	4.49	1.14709	0.00242	0.01248	6.5	1007.17	118.12	304.30	92.51	9.57

Lampiran 3d. Hasil eksperimen

•

KESIMPULAN

Penelitian ini dilakukan menggunakan simulasi numerik dan eksperimen. Berdasarkan hasil simulasi dapat disimpulkan :

- 1. Obstacle dapat menaikkan temperatur dan menghasilkan energi yang berguna yang lebih besar di dalam saluran kolektor apabila dibandingkan dengan saluran tanpa obstacle.
- Obstacle dengan sudut tekuk 40° menghasilkan energi yang berguna sebesar132.12W/m² dengan penurnan tekanan sebesar 36.97Pa serta memiliki nilai *effectiveness* tertinggi sebesar 2.036.

Berdasarkan hasil simulasi dapat disimpulkan :

- Kenaikan temperatur udara tertinggi dicapai ketika intensitas radiasi tertinggi 720W/m² dengan kecepatan udara terendah 2.62m/s yakni sebesar 14K.
- Penurunan tekanan saluran dengan obstacle lebih besar dari pada saluran tanpa obstacle. Penurunan tekanan tertinggi terjadi saat kecepatan 4.59m/s yakni sebesar 216 Pa untuk saluran dengan obstacle dan 54.3 Pa untuk saluran tanpa obstacle.
- Energi berguna tertinggi dicapai ketika intensitas radiasi tertinggi 720W/m² dengan kecepatan udara tertinggi 4.59m/s yakni sebesar 121W.
- Efisiensi kolektor tertinggi dicapai ketika terendah 520 W/m² dengan kecepatan udara tertinggi 4.59m/s yakni sebesar 0.98.

DAFTAR PUSTAKA

Abene, A., Dubois, V., Le Ray, M. & Oagued, A., 2004. Study of a solar air flat plate collector: use of *obstacle* and application for the drying of grape. Journal of food engineering, Volume 65, pp 15-22.

Ardiansyah, R, 2010. Studi eksperimental performansi kolektor surya *absorber* gelombang tipe-V. Tugas Akhir Teknik Mesin, Institut Teknologi Sepuluh Nopember.

ASHRAE 93-1986, 1986. Method of Testing to Determine the Thermal Performance of Solar Collector. Atlanta: ASHRAE.

Bany. J & Appelbaum. J, 1986. The Effect of Shading on The Design of A Field of Solar Collectors. pp 201-228.

Bejan Adrian, 2013, Convection heat transfer, John Wiley & Sons, Inc, hal 262, edisi4, Hoboken, New Jersey.

Duffie, J. A., 1991. Solar Engineering of Thermal Processes, 2nd ed. s.1.:John Wiley & Sons, Inc.

Handoyo, Ekadewi, 2014. Experimental Studies on a Solar Air Heater Having V-Corrugated *Absorber* Plate with *Obstacles* Bent Vertically. *Applied Mechanics* and Materials Vol. 493 (2014) pp 86-92.

Incropera, F. P. & DeWitt, D. P,2002. *Fundamental of Heat Transfer*.5th edition ed. S.1:John Wlley & Sons.

Ivanova, D. & Andonov, K. 2001. Analytical and experimental study of combined fruit and vegetable dryer. Energi conversion and management 42 pp 975-983.

Jin Dongxu. & Zhang Manman, 2015. Numerical investigation of heat transfer and fluid flow in a solar air heater duct with v-shaped ribs on the *absorber* plate.

Mehta, R. D. & Bradshaw, P., 1979. Techinal Notes – Design rules for small low speed wind tunnels. *The Aeronautical Journal of the Royal Aeronautical Society*.

Ozgen, F.& Esen, H., 2009. Experimental investigation of thermal performance of double-flow solar air heater having aluminium cans. Renewable Energi, Volume 30, pp.2594-2601.

Yadav, A. S & Bhagoria, J.L, 2013. A CFD (computational fluid dynamics) based heat transfer and fluid flow analysis of a solar air heater provided with circular transverse wire rib roughness on the *absorber* plate.

V. Gnielinski. New Equation for Heat and Mass Transfer in Turbulent Pipe and Channel Flow. International Chemical Engineering 16 (1967), pp.359-36

BIOGRAFI

Penulis dilahirkan di Balikpapan, merupakan anak bungsu dari Ibu Mulyani dan Bapak Muhammad Sidik. Penulis menempuh pendidikan di SD Tamanan 02, SLTP Negeri 1 Tulungagung, SMAN 1 Boyolangu kota Tulungagung. Menempuh Jenjang S1 hingga S2 di Teknik Mesin ITS melalui jalur PMDK dan pernah berorganisasi di KOPMA Dr. Angka ITS. Penulis pernah berpengalaman di PT. Dynapack Indonesia sebagai Management Trainee. Apabila ingin berkomunikasi dapat menghubungi di lohdydiana@gmail.com.