Perancangan Passive Smart Discrete Solar Tracker Pada PV Berbasis Fuzzy – Ant Colony Controller

Elchoir, Najela Rafia (2020) Perancangan Passive Smart Discrete Solar Tracker Pada PV Berbasis Fuzzy – Ant Colony Controller. Undergraduate thesis, InstitutTeknologi Sepuluh Nopember.

[img] Text
02311640000056-Undergraduate_Thesis.pdf - Accepted Version
Restricted to Repository staff only

Download (1MB) | Request a copy

Abstract

Solar tracker merupakan gabungan sistem mekanik dan elektrik yang dapat menggerakkan suatu sistem panel surya agar selalu mengikuti arah matahari. Sistem solar tracker ini diharapkan dapat mengoptimalkan daya keluaran dari photovoltaic. Berdasarkan penelitian-penelitian yang telah ada sistem solar tracking banyak dikembangan dengan dengan metode penjejakan aktif sehingga konsumsi daya dari komponen-komponen penyusun solar tracker juga semakin besar , sehingga pada penelitian ini diterepkan sistem penjejak matahari pasif agar bisa mengrangi konsumsi internal energi dari solar tracker. Pada penelitian ini dilakukan perancangan passive smart discrete solar tracker dengan 3 posisi dan 5 posisi penjejakan berbasis fuzzy-ant colony controller. Perancangan passive solar tracker Berbasis Fuzzy-Ant Colony Controller memiliki indeks performansi (rata-rata) dengan nilai rise time sebesar 0,45 detik, settling time sebesar 0,701 detik, maximum overshoot sebesar 0,5% dan error steady state sebesar 0,05 %. Dari perancangan yang dilakukan, passive solar tracker 3 posisi dengan kontrol Fuzzy-ACO mampu meningkatkan efisiensi dengan gross energi gain sebesar 42,79% selama 10 jam dibandingkan dengan PV fixed. Sedangkan pada passive solar tracker 5 posisi menggunakan kontrol Fuzzy-ACO mampu meningkatkan efisiensi dengan gross energi gain sebesar 43,99%. =================================================================================== Solar tracker is a combination of mechanical and electrical systems that can move a solar panel system to always follow the direction of the sun. The solar tracker system is expected to optimize the output power of photovoltaics. Based on studies that have been there solar tracking system has been developed with an active tracking method so that the power consumption of the components of the solar tracker is also greater, so that in this study passive solar tracking systems are applied so that they can reduce the internal energy consumption of the solar tracker. In this research, a passive smart discrete solar tracker design with 3 positions and 5 tracking positions is based on fuzzy-ant colony controller. The design of passive solar tracker based on Fuzzy-Ant Colony Controller has a performance index (average) with a rise time value of 0.45 seconds, a settling time of 0.701 seconds, a maximum overshoot of 0.5% and an error steady state of 0.05%. From the design done, 3 position passive solar tracker with Fuzzy-ACO control can increase efficiency with gross energy gain of 42.79% for 10 hours compared to fixed PV. While the 5 position passive solar tracker using Fuzzy-ACO control can increase efficiency with gross energy gain of 43.99%.

Item Type: Thesis (Undergraduate)
Uncontrolled Keywords: Solar tracker, passive solar tracker, FLC, Fuzzy-Ant Colony Controller
Subjects: Q Science > QA Mathematics > QA9.64 Fuzzy logic
T Technology > TJ Mechanical engineering and machinery > TJ810.5 Solar energy
T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK1001 Production of electric energy or power
T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK1007 Electric power systems control
T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK1056 Solar powerplants
T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK1087 Photovoltaic power generation
Divisions: Faculty of Industrial Technology > Physics Engineering > 30201-(S1) Undergraduate Thesis
Depositing User: Najela Rafia Elchoir
Date Deposited: 07 Aug 2020 02:31
Last Modified: 07 Aug 2020 02:31
URI: http://repository.its.ac.id/id/eprint/77133

Actions (login required)

View Item View Item