

TESIS - RM185913

ANALISIS ALTERNATIF GEOMETRIK JALAN AKSES BENDUNGAN TIGA DIHAJI MENGGUNAKAN PENGINDERAAN JAUH DAN SISTEM INFORMASI GEOGRAFIS DENGAN MEMPERHATIKAN KERENTANAN BENCANA LONGSOR

NISWAH SELMI KAFFA NRP. 03311850012002

DOSEN PEMBIMBING Prof. Dr. Ir. Bangun Muljo Sukojo DEA. DESS Hepi Hapsari Handayani ST.,M.Sc.,Ph.D

Departemen Teknik Geomatika Fakultas Teknik Sipil, Perencanaan Dan Kebumian Institut Teknologi Sepuluh Nopember 2020

LEMBAR PENGESAHAN

Tesis disusun untuk memenuhi salah satu syarat memperoleh gelar

Magister Teknik (MT)

di

Institut Teknologi Sepuluh Nopember

oleh:

NISWAH SELMI KAFFA

NRP: 03311850012002

Tanggal Ujian

: 6 Juli 2020

Periode Wisuda

: September 2020

Disetujui oleh:

Pembimbing:

1. Prof. Dr. Ir. Bangun M. S, DEA.DESS

NIP 195305271983031001

2. Hepi Hapsari Handayani, ST., M.Sc., Ph.D

NIP 197812122005012001

Penguji:

3. Dr. Ir. Muhammad Taufik

NIP. 195509191986031001

4. Dr-Ing. Ir. Teguh Hariyanto, M.Sc

NIP. 195908191985021001

5. Lalu Muhamad Jaelani, ST, M.Sc, Ph.D

NIP. 198012212003121001

Kepala Departemen Teknik Geomatika

Fakultas Teknik Sipil, Perencanaan dan Kebumian

Danar Guruh Pratomo. S.T., M.T., Ph.D.

NIP. 19800507 200312 1 001

PERNYATAAN KEASLIAN TESIS

Dengan ini penulis menyatakan bahwa isi keseluruhan Tesis penulis dengan

judul "ANALISIS ALTERNATIF GEOMETRIK JALAN AKSES

BENDUNGAN TIGA DIHAJI MENGGUNAKAN PENGINDERAAN JAUH

DAN SISTEM INFORMASI GEOGRAFIS DENGAN MEMPERHATIKAN

KERENTANAN BENCANA LONGSOR" adalah benar-benar hasil karya

intelektual mandiri, diselesaikan tanpa menggunakan bahan-bahan yang tidak

diijinkan dan bukan merupakan karya pihak lain yang penulis akui sebagai karya

sendiri.

Semua referensi yang dikutip maupun dirujuk telah ditulis secara lengkap

pada daftar pustaka. Apabila ternyata pernyataan ini tidak benar, penulis bersedia

menerima sanksi sesuai peraturan yang berlaku.

Surabaya, 28 Mei 2020

Niswah Selmi Kaffa

NRP. 03311850012002

V

ANALISIS ALTERNATIF GEOMETRIK JALAN AKSES BENDUNGAN TIGA DIHAJI MENGGUNAKAN PENGINDERAAN JAUH DAN SISTEM INFORMASI GEOGRAFIS DENGAN MEMPERHATIKAN KERENTANAN BENCANA LONGSOR

Nama Mahsiswa : Niswah Selmi Kaffa ID Mahasiswa : 03311850012002

Pembimbing : Prof. Dr. Ir. Bangun M. S.,DEA.,DESS Co-Supervisor : Hepi Hapsari Handayani, ST.,MSc.,PhD

ABSTRAK

Sistem Informasi Geografis (SIG) dan penginderaan jauh dewasa ini sangat efektif dalam menyelesaikan masalah yang berhubungan dengan teknik sipil. Salah satunya yaitu pada penentuan rute geometrik jalan. Namun sejauh ini, belum ada perencanaan geometrik jalan dengan Sistem Informasi Geografis (SIG) yang memperhatikan kerentanan bencana. Penelitian ini bertujuan untuk menentukan rute geometrik jalan akses Bendungan Tiga Dihaji menggunakan Sistem Informasi Geografis (SIG) dan penginderaan jauh dengan memperhatikan faktor kerentanan bencana longsor sejalan dengan tata guna lahan dan faktor konstruksi.

Pemetaan dilakukan dengan metode tumpang-tindih (*overlay*) peta kerentanan longsor, tutupan lahan dan faktor konstruksi. Hasil pemetaan ini dijadikan acuan dalam menentukan alternatif perencanaan geometrik jalan akses bendungan Tiga Dihaji. Penentuan alternatif dilakukan dengan menggunakan metode manual dan *cost distance*. *Analytical Hierarchy Process* (AHP) diterapkan untuk memilih satu rute terbaik dari alternatif yang tersedia. Adapun data yang diperlukan pada penelitian ini adalah *Digital Elevation Model* (DEM), citra satelit SPOT 7, citra satelit Landsat 8, peta persebaran tanah, peta persebaran batuan, data curah hujan satelit TRMM, peta IGD 1:50.000, dan data perencanaan jalan akses Bendungan Tiga Dihaji.

Hasil dari analisis ini menunjukkan alternatif jalan akses bendungan Bendungan Tiga Dihaji yang paling sesuai adalah dengan melakukan perencanaan manual berdasarkan pemetaan gabungan yang telah dilakukan dengan mempertimbangkan RTRW dan ketentuan Dinas Pekerjaan Umum. Jalan alternatif tersebut masing-masing sepanjang 2,95 km untuk seksi 1 dan 0,695 km untuk seksi 2 yang mencakup Kelurahan Sukarena dan Sukabumi.

Kata kunci: Geometrik Jalan, Kerentanan Longsor, Penginderaan Jauh, Sistem Informasi Geografis

ANALYSIS OF TIGA DIHAJI DAM ACCESS ROAD GEOMETRIC ALTERNATIVE USING REMOTE SENSING AND GEOGRAPHIC INFORMATION SYSTEM CONSIDERING LANDSLIDE VULNERABILITY

Student Name : Niswah Selmi Kaffa Student ID : 03311850012002

Supervisor : Prof. Dr. Ir. Bangun M. S.,DEA.,DESS Co-Supervisor : Hepi Hapsari Handayani, ST, MSc, PhD

ABSTRACT

Geographic Information System (GIS) and remote sensing nowadays are very effective in solving problems related to Civil Engineering. One of them is determining the route geometric. However, so far, there has been no route geometric planning with GIS considering the disaster vulnerability. This study aims to determine the Tiga Dihaji Dam access route geometric using GIS and remote sensing considering landslide vulnerability in line with land use and construction factors.

The mapping is carried out by overlaying of landslide vulnerability, land cover and construction factors. The mapping result is used as a reference in determining the geometric planning alternative for the Tiga Dihaji dam access route. The alternatives determination is conducted using the manual and cost distance methods. Anaytical Hierarchy Process (AHP) is applied to choose the best route from the available options. The data needed in this study are Digital Elevation Model (DEM), SPOT 7 satellite imagery, Landsat 8 satellite imagery, soil distribution map, rock distribution map, TRMM satellite rainfall data, IGD map 1:50.000, and the data of the Tiga Dihaji dam access road planning.

The result of this analysis shows that the most suitable alternative of Tiga Dihaji Dam access route is a manual planning route based on the final mapping, thus regarding the Regional Spatial Plan (RTRW) and the provisions issued by Public Work Department. These alternative routes are 2.95 km long for section 1 and 0.695 km for section 2, which cover the Sukarena and Sukabumi sub-districts.

Key words: Geographic Information System, Landslide Vulnerability, Remote Sensing, Road Geometry

KATA PENGANTAR

Puji syukur penulis ucapkan kehadirat Allah SWT atas segala rahmat dan hidayah-Nya sehingga penulis dapat menyelesaikan tesis berjudul "Analisis Alternatif Geometrik Jalan Akses Bendungan Tiga Dihaji Menggunakan Penginderaan Judul dan Sistem Informasi Geografis dengan Memperhatikan Kerentanan Bencana Longsor" dengan tepat waktu.

Penulis berterima kasih sebesar-besarnya pada,

- Orang tua penulis Bapak Drs. Tomi Tristono, M.Si dan Ibu Zuhrotul Rumanah, S.Pd yang banyak memberikan dukungan moril dan materil untuk penulis dalam menyelesaikan tesis ini.
- 2. Bapak Danar Guruh Pratomo, S.T.,M.T.,Ph.D sebagai kepala Departemen Teknik Geomatika.
- 3. Ibu Ira Mutiara A, S.T., M.Phil., Ph.D selaku Koordinator Prodi S2 Teknik Geomatika.
- 4. Dosen, staf dan karyawan Departemen Teknik Geomatika, Institut Teknologi Sepuluh Nopember, Surabaya
- Bapak Prof. Dr. Ir. Bangun M. S, DEA.DESS dan Ibu Hepi Hapsari Handayani, ST.,M.Sc.,Ph.D selaku pembimbing yang telah membimbing penulis dalam menyelesaikan tesis ini
- 6. Narasumber dari pihak Proyek Bendungan Tiga Dihaji yaitu Bapak Maulana Ahsan Fahmi, S.S.T. MT dan Bapak Masykur, S.T., MT yang banyak memberikan kontribusi dan membantu penulis dalam menyelesaikan tesis ini.
- 7. Teman-teman S1 dan S2 Teknik Geomatika serta teman-teman dari Britzone Surabaya.

Penulis menyadari bahwa tesis ini jauh dari kesempurnaan. Oleh karena itu, penulis berterima kasih atas kritik dan saran membangun pembaca untuk perbaikan di masa mendatang. Harapannya, semoga tesis ini dapat bermanfaat bagi penulis dan khalayak luas.

Surabaya, 28 Mei 2020

Niswah Selmi Kaffa

DAFTAR ISI

LEMBAR PENGESAHANiii
ABSTRAK vii
KATA PENGANTARix
DAFTAR ISIxi
DAFTAR GAMBARxv
DAFTAR TABEL xix
BAB 1
PENDAHULUAN
1.1 Latar Belakang
1.2 Perumusan Masalah
1.3 Tujuan Penelitian
1.4 Batasan Masalah
1.5 Manfaat Penelitian
BAB 2
KAJIAN PUSTAKA DAN DASAR TEORI
2.1 Geographic Information System (GIS)5
2.1.1 Subsistem SIG
2.1.2 Komponen SIG6
2.2 Penginderaan Jauh
2.2.1 Komponen Penginderaan Jauh
2.2.2 Jenis Penginderaan Jauh
2.3 SPOT 6/79
2.4 Landsat 8

	2.5 Digital Elevation Model (DEM)	12
	2.6 Rencana Tata Ruang Wilayah (RTRW)	13
	2.7 Bencana Longsor	14
	2.7.1 Pengkelasan (Class Assesing)	14
	2.7.2 Pembobotan	16
	2.8 TRMM	17
	2.9 Tutupan Lahan	17
	2.10 Digitasi	19
	2.11 Confusion Matrix	22
	2.12 Geometrik Jalan	25
	2.13 Faktor Konstruksi	26
	2.13.1 Performa Dump Truck	26
	2.13.2 Biaya Konstruksi	27
	2.13.3 Keamanan	28
	2.14 Pemilihan Alinyemen yang Optimal	28
	2.15 Uji Korelasi	
	2.13 Off Rotolds1	29
	2.16 AHP (Analytical Hierarchy Process)	
		30
	2.16 AHP (Analytical Hierarchy Process)	30
	2.16 AHP (<i>Analytical Hierarchy Process</i>) 2.17 Analisis Spasial	30
	2.16 AHP (Analytical Hierarchy Process) 2.17 Analisis Spasial 2.18 Cost Distance	303232
	2.16 AHP (Analytical Hierarchy Process) 2.17 Analisis Spasial 2.18 Cost Distance 2.19 Penelitian Terdahulu	30 32 32
В	2.16 AHP (Analytical Hierarchy Process) 2.17 Analisis Spasial 2.18 Cost Distance 2.19 Penelitian Terdahulu 2.19.1 Perencanaan Geometrik Jalan	30 32 32 32
	2.16 AHP (Analytical Hierarchy Process) 2.17 Analisis Spasial	30 32 32 32
	2.16 AHP (Analytical Hierarchy Process) 2.17 Analisis Spasial 2.18 Cost Distance 2.19 Penelitian Terdahulu 2.19.1 Perencanaan Geometrik Jalan 2.19.2 Kerentanan Bencana Longsor	30 32 32 33 36

	3.3 Data Primer	40
	3.4 Data Sekunder	40
	3.5 Instrumen	41
В	AB 4	47
Н	IASIL DAN PEMBAHASAN	47
	4.1 Aspek Kerentanan Bencana	47
	4.1.1 Kemiringan Lereng	47
	4.1.2 Arah Lereng (Aspect)	48
	4.1.3 Panjang/Bentuk Lereng	50
	4.1.4 Tipe Batuan	52
	4.1.5 Jarak dari Patahan/Sesar Aktif	54
	4.1.6 Tipe Tanah (Tekstur Tanah)	55
	4.1.7 Kedalaman Tanah (Solum)	57
	4.1.8 Komponen Hidrologi (Curah Hujan Tahunan)	58
	4.1.9 Pemetaan Kerentanan Longsor	61
	4.1.10 Validasi	62
	4.2 Aspek Tutupan Lahan	66
	4.3 Situs	70
	4.4 Faktor-Faktor Pra Konstruksi	71
	4.4.1 Performa <i>Dump Truck</i>	71
	4.4.2 Biaya Konstruksi	73
	4.4.3 Keamanan (Jarak ke Badan Air)	76
	4.4.4 Faktor Pra Konstruksi	77
	4.5 Pemetaan Gabungan Aspek Mitigasi Bencana, Tutupan Lahan dan Fakto	r Pra
	Konstruksi	80
	1 6 Perencanaan Geometrik Ialan	87

4.6.1 Perencanaan Awal	87
4.6.2 Alternatif Manual	91
4.6.3 Alternatif Cost Distance	96
4.7 Pengambilan Keputusan	101
BAB 5	103
PENUTUP	103
5.1 Kesimpulan	103
5.2 Saran	104
DAFTAR PUSTAKA	105
LAMPIRAN	

DAFTAR GAMBAR

Gambar 2.1 Komponen Penginderaan Jauh
Gambar 3.1 Kecamatan Tiga Dihaji (oranye) dari Kabupaten OKUS
Gambar 3.2 Fenomena Longsor pada Lokasi Kajian
Gambar 3.3 Lokasi Bendungan Tiga Dihaji (Sumber: Virama Karya Persero, 2019)
Gambar 3.4 Kondisi Lapangan (Sumber: Virama Karya Persero, 2019) 39
Gambar 3.5 Flowchart Utama (Sumber: Hasil Pengolahan)
Gambar 3.6 Flowchart Parameter Kerentanan Bencana
Gambar 3.7 Flowchart Parameter Tutupan Lahan
Gambar 3.8 Flowchart Parameter Faktor-Faktor Konstruksi
Gambar 4.1 Peta Kemiringan Lereng (Sumber: Hasil Pengolahan)
Gambar 4.2 Peta Klasifikasi Arah Lereng (Sumber: Hasil Pengolahan)
Gambar 4.3 Peta Klasifikasi Panjang/Bentuk Lereng (Sumber: Hasil Pengolahan)
Gambar 4.4 Peta Klasifikasi Tipe Batuan (Sumber: Pusat Penelitian dan
Pengembangan Geologi, 1993)53
Gambar 4.5 Peta Klasifikasi Jarak dari Patahan/Sesar Aktif (Sumber: Hasil Pengolahan)
Gambar 4.6 Peta Klasifikasi Tipe/Tekstur Tanah (Sumber: Geoportal Sumatera
Selatan, 2018)
Gambar 4.7 Peta Klasifikasi Kedalaman Tanah (Solum) (Sumber: Geoportal Sumatera Selatan, 2018)
Gambar 4.8 Peta Klasifikasi Curah Hujan Tahunan (Sumber: Hasil Pengolahan)

Gambar 4.9 Peta Kerentanan Longsor (Sumber: Hasil Pengolahan)
Gambar 4.10 Peta Kerentanan Longsor
Gambar 4.11 Sebaran Titik Sampel (Sumber: Hasil Pengolahan)
Gambar 4.12 Grafik Korelasi Mitigasi Bencana (Sumber: Hasil Pengolahan) 65
Gambar 4.13 Pemetaan Tutupan Lahan (Sumber: Hasil Pengolahan)67
Gambar 4.14 Pemetaan Situs Hutan Lindung dan Tutupan Lahan Setempat (Sumber: Hasil Pengolahan)
Gambar 4.15 Pemetaan Performa <i>Dump Truck</i> (Sumber: Hasil Pengolahan)72
Gambar 4.16 Pemetaan Biaya Konstruksi (Kebutuhan <i>Cut and Fill</i>) (Sumber: Hasil Pengolahan)
Gambar 4.17 Pemetaan Jarak Lokasi ke Badan Air (Sumber: Hasil Pengolahan)
Gambar 4.18 Pemetaan Faktor Pra Konstruksi (Sumber: Hasil Pengolahan)78
Gambar 4.19 Wilayah Curam (kiri) dan Wilayah Kurang Curam (kanan) (Sumber: Hasil Pengolahan)
Gambar 4.20 Pemetaan Gabungan (Sumber: Hasil Pengolahan)
Gambar 4.21 Lokasi Jalan Rencana pada Pemetaan Gabungan (Sumber: Virama Karya Persero, 2019)
Gambar 4.22 Perbesaran Lokasi Jalan Rencana (Sumber: Virama Karya Persero, 2019)
Gambar 4.23 Perbasaran Lokasi Titik STA (Sumber: Virama Karya Persero, 2019)
Gambar 4.24 Dokumentasi STA 1+975 (Sumber: Virama Karya Persero, 2019)
Gambar 4.25 Dokumentasi STA 2+000 (Sumber: Virama Karya Persero, 2019)

Gambar 4.26 Dokumentasi STA 1+650 (Sumber: Virama Karya Persero, 2019)
Second Secon
Gambar 4.28 Dokumentasi STA 1+725 (Sumber: Virama Karya Persero, 2019)
Gambar 4.29 Perencanaan Awal Seksi
Gambar 4.30 Grafik Perencanaan Awal Seksi 1 (Sumber: Hasil Pengolahan) 88
Gambar 4.31 Perencanaan Awal Seksi 2 (Sumber: Virama Karya Persero, 2019)
Gambar 4.32 Grafik Perencanaan Awal Seksi 2 (Sumber: Hasil Pengolahan) 91
Gambar 4.33 Alternatif Manual Seksi 1 (Sumber: Hasil Pengolahan)
Gambar 4.34 Perbandingan Lokasi Perencanaan Awal dan Alternatif Seksi 1 (Sumber: Hasil Pengolahan)
Gambar 4.35 Grafik Alternatif Perencanaan dengan Metode Manual Seksi 1
(Sumber: Hasil Pengolahan)
Gambar 4.36 Alternatif Perencanaan Jalan Akses dengan Metode Manual Seksi 2 (Sumber: Hasil Pengolahan)
Gambar 4.37 Perbandingan Lokasi Perencanaan Awal dan Alternatif dengan
Metode Manual Seksi 2 (Sumber: Hasil Pengolahan)
Gambar 4.38 Grafik Alternatif Perencaan dengan Metode Manual Seksi 2 (Sumber: Hasil Pengolahan)
Gambar 4.39 Alternatif Perencanaan dengan Metode Cost Distance Seksi 1
(Sumber: Hasil Pengolahan)
Gambar 4.40 Perbandingan Perencanaan Awal dengan Perencanaan Alternatif Metode Cost Distance Seksi 1 (Sumber: Hasil Pengolahan)
Gambar 4.41 Grafik Alternatif Perencanaan Metode Cost Distance Seksi 1
(Sumber: Hasil Pengolahan) 97

Gambar 4.42 Alternatif Perencanaan dengan Metode Cost Distance Seksi 1
(Sumber: Hasil Pengolahan)99
Gambar 4.43 Perbandingan Perencanaan Awal dengan Perencanaan Alternatis
Metode Cost Distance Seksi 2 (Sumber: Hasil Pengolahan)
Gambar 4.44 Grafik Alternatif Perencanaan Metode Cost Distance Seksi 2
(Sumber: Hasil Pengolahan)
Gambar 4.45 Perbandingan Alternatif Metode Manual dengan Alternatif Metode
Cost Distance (Sumber: Hasil Pengolahan)
Gambar 4.46 Report Analisis Analytical Hierarchy Process (AHP) (Sumber: Hasi
Pengolahan)

DAFTAR TABEL

Tabel 2.1 Parameter Orbit Satelit Landsat 8	11
Tabel 2.2 Band pada Landsat 8	11
Tabel 2.3 Parameter Penyusun Peta Bahaya Tanah Longsor dengan Metod	de
Deterministik	15
Tabel 2.4 Pengkelasan Zona Kerentanan Gerakan Tanah	16
Tabel 2.5 Klasifikasi Tutupan Lahan Berdasarkan Resolusi Spasial Citra	18
Tabel 2.6 Pembobotan Performa Dump Truck	27
Tabel 2.7 Pembobotan Cut and Fill	27
Tabel 2.8 Pembobotan Jarak Jalan Akses ke Badan Air	28
Tabel 2.9 Interpretasi Koefisien	29
Tabel 2.10 Perbandingan Parameter Perencanaan Geometrik Jalan	33
Tabel 2.11 Perbandingan Parameter Kerentanan Bencana Longsor	35
Tabel 3.1 Kebutuhan Data Primer	40
Tabel 3.2 Kebutuhan Data Sekunder	40
Tabel 3.3 Instrumen Perangkat Lunak yang Dibutuhkan	41
Tabel 3.4 Instrumen Perangkat Keras yang Dibutuhkan	42
Tabel 4.1 Luas Wilayah setiap Kelas Kemiringan	48
Tabel 4.2 Luas Wilayah setiap Kelas Arah Lereng	50
Tabel 4.3 Luas Wilayah setiap Kelas Panjang Lereng	52
Tabel 4.4 Luas Wilayah setiap Kelas Tipe Batuan	54
Tabel 4.5 Luas Wilayah setiap Kelas Tipe Tanah	56
Tabel 4.6 Luas Wilayah setiap Kelas Solum	58
Tabel 4.7 Data Curah Hujan Bulanan Tahun 2019	59

Tabel 4.8 Data Curah Hujan Lokasi Kajian	60
Tabel 4.9 Luas Wilayah setiap Kelas Kerentanan	62
Tabel 4.10 Nilai Titik Sampel	64
Tabel 4.11 Kelas Tutupan Lahan	66
Tabel 4.12 Luas Wilayah setiap Kelas Tutupan Lahan	68
Tabel 4.13 Confusion Matrix (Google Earth Pro)	69
Tabel 4.14 Confusion Matrix (RBI)	70
Tabel 4.15 Skoring Performa Dump Truck	72
Tabel 4.16 Luas Wilayah setiap Kelas Performa Dump Truck	73
Tabel 4.17 Skoring Biaya Konstruksi (Kebutuhan Cut and Fill)	74
Tabel 4.18 Luas Wilayah setiap Kelas Biaya	75
Tabel 4.19 Skoring Jarak Lokasi ke Badan Air	76
Tabel 4.20 Pembobotan Faktor Pra Konstruksi	77
Tabel 4.21 Luas Wilayah setiap Kelas Pra Konstruksi	79
Tabel 4.22 Pemobotan Pemetaan Gabungan	80
Tahel 4 23 Keterangan Kelas Gradasi	89

BAB 1

PENDAHULUAN

1.1 Latar Belakang

Bendungan Tiga Dihaji merupakan bendungan yang dibangun berlokasi di Desa Sukabumi, Kecamatan Tiga Dihaji, Kabupaten Ogan Komering Ulu Selatan (OKUS), Provinsi Sumatera Selatan. Bendungan Tiga Dihaji berada pada posisi 4° 37′ 44,154″ LS dan 103° 52′ 36,748″ BT dengan ketinggian lokasi antara 210 m sampai dengan 350 m di atas permukaan laut (BPS, 2018).

Pekerjaan pembangunan Bendungan Tiga Dihaji meliputi pekerjaan persiapan; pekerjaan jalan masuk, jalan inspeksi dan relokasi jalan; pekerjaan bangunan pengelak, pekerjaan bendungan utama, pekerjaan bangunan pelimpah, pekerjaan bangunan pengambilan, pekerjaan hydromechanical & electrical, pekerjaan bangunan fasilitas, dan lain-lain. Pekerjaan jalan sendiri terdiri atas pemeliharaan, peningkatan jalan serta pembuatan jalan baru. Adapun pekerjaan pembuatan jalan baru terbagi menjadi empat yaitu pekerjaan jalan akses dari Desa Sukabumi menuju damsite, jembatan penghubung, jalan ke quarry, dan jalan ke borrow area (Virama Karya, 2019). Adapun pekerjaan yang dikaji dalam penelitian kali ini merupakan pekerjaan jalan akses dari Desa Sukabumi menuju damsite Bendungan Tiga Dihaji.

Jalan akses tersebut termasuk dalam kategori jalan khusus. Menurut Peraturan Menteri Pekerjaan Umum Nomor 11/PRT/M/2011 menyatakan bahwa jalan khusus adalah jalan yang dibangun oleh instansi, badan usaha, perseorangan, atau kelompok masyarakat untuk kepentingan sendiri. Sehingga parameter yang dipertimbangkan adalah yang berkaitan dengan penyelenggaraan konstruksi bendungan sejalan dengan kondisi lapangan yang ada. Parameter sosial dan ekonomi masyarakat diabaikan dalam penelitian ini.

Berdasarkan hasil wawancara *supervisor* jalan akses Bendungan Tiga Dihaji, perencanaan geometrik jalan yang ada kurang sesuai dinilai dari kerentanannya terhadap bencana alam utamanya longsor. Hal tersebut juga didukung oleh RTRW (Rencana Tata Ruang Wilayah) Sumatera Selatan yang

menyatakan bahwa Ogan Komering Ulu Selatan merupakan wilayah rawan longsor.

Sehingga pada penelitian tesis kali ini, penulis ingin melakukan analisis pada wilayah kajian (Kecamatan Tiga Dihaji, Ogan Komering Ulu Selatan (OKUS) Sumatera Selatan) dengan mempertimbangkan kerentanan bencana longsor sejalan dengan tutupan lahan setempat dan faktor-faktor konstruksi menggunakan metode pembobotan sebagai dasar pembuatan Sistem Informasi Geografis.

1.2 Perumusan Masalah

Adapun rumusan masalah dari latar belakang di atas adalah sebagai berikut,

- 1.2.1 Bagaimana pemetaan lokasi kajian (Kecamatan Tiga Dihaji, Kabupaten Ogan Komering Ulu Selatan (OKUS), Sumatera Selatan) dengan mempertimbangkan kerentanan bencana longsor sejalan dengan tutupan lahan setempat dan faktor-faktor konstruksi?
- 1.2.2 Bagaimana analisis hasil pemetaan lokasi kajian dengan mempertimbangkan kerentanan bencana longsor sejalan dengan tutupan lahan setempat dan faktor-faktor konstruksi?
- 1.2.3 Bagaimana alternatif perencanaan geomtrik jalan akses Bendungan Tiga Dihaji, Kabupaten OKUS, Sumatera Selatan yang paling sesuai?

1.3 Tujuan Penelitian

Adapun tujuan dari latar belakang di atas adalah sebagai berikut,

- 1.3.1 Memetakan tingkat kerentanan bencana longsor pada Kecamatan Tiga Dihaji, Kabupaten Ogan Komering Ulu Selatan, Sumatera Selatan.
- 1.3.2 Membuat perencanaan geometrik jalan dengan mempertimbangkan pemetaan yang telah dibuat.
- 1.3.3 Menganalisis hasil perencanaan geometrik jalan akses Bendungan TigaDihaji menggunakan Sistem Informasi Geografis (SIG).

1.4 Batasan Masalah

Adapun batasan masalah pada penelitian ini adalah sebagai berikut,

- 1.4.1 Wilayah kajian adalah di Kecamatan Tiga Dihaji, Ogan Komering Ulu Selatan (OKUS), Sumatera Selatan.
- 1.4.2 Kajian ini hanya didasarkan pada parameter kerentanan bencana longsor, tutupan lahan dan faktor-faktor konstruksi.
- 1.4.3 Metode yang digunakan dalam memetakan kerenatanan bencana longsor adalah dengan metode deterministik sesuai dengan dokumen Risiko Bencana Indonesia yang dikeluarkan oleh BNPB pada tahun 2016.
- 1.4.4 Metode yang digunakan dalam memetakan tutupan lahan adalah dengan klasifikasi *digitasi on screen* yang divalidasi dengan *confusion matrix*.
- 1.4.5 Metode yang digunakan dalam menentukan pembobotan dan pengkelasan faktor-faktor konstruksi dan tutupan lahan adalah berdasarkan penelitian terdahulu, ketentuan dari Dinas Pekerjaan Umum dan *expert judgement*.
- 1.4.6 Citra satelit yang digunakan adalah citra Landsat 8 OLI dan SPOT 6/7 akusisi tahun 2019.
- 1.4.7 Data kerentanan bencana tanah longsor yang digunakan untuk validasi adalah peta kerentanan bencana tanah longsor yang dikeluarkan oleh BNPB (Badan Nasional Penanggulangan Bencana) melalui portal INARISK (geoportal milik BNPB).
- 1.4.8 Data Rencana Tata Ruang Wilayah (RTRW) yang digunakan untuk validasi adalah RTRW Provinsi Sumatera Selatan tahun 2005 2019 dan RTRW Ogan Komering Ulu Selatan tahun 2012 2032.
- 1.4.9 Hasil akhir dari penelitian tesis kali ini adalah rute alternatif jalan akses Bendungan Tiga Dihaji yang paling sesuai.

1.5 Manfaat Penelitian

Adapun manfaat pada penelitian kali ini adalah sebagai berikut,

- 1.5.1 Mengetahui Sistem Informasi Geografis (SIG) lokasi kajian (Kecamatan Tiga Dihaji, Kabupaten Ogan Komering Ulu Selatan (OKUS), Sumatera Selatan) dengan mempertimbangkan kerentanan bencana longsor, tutupan lahan setempat dan faktor-faktor konstruksi.
- 1.5.2 Mengetahui hasil pemetaan lokasi kajian dengan mempertimbangkan kerentanan bencana longsor, tutupan lahan setempat dan faktor-faktor konstruksi.
- 1.5.3 Mengetahui alternatif perencanaan jalan akses Bendungan Tiga Dihaji berdasarkan analisis yang telah dibuat.

BAB 2

KAJIAN PUSTAKA DAN DASAR TEORI

2.1 Geographic Information System (GIS)

GIS atau SIG (Sistem Informasi Geografis) merupakan alat pada komputer untuk menangkap, menyimpan, menggali, menganalisis, dan menampilkan informasi geografis. SIG memberikan solusi spasial dalam bidang teknik sipil seperti transportasi, sumber daya air, manajemen fasilitas, perencanaan kota, konstruksi dan E-business. SIG merupakan alat yang efektif dalam menggambarkan kondisi topografi lokasi konstruksi. SIG meningkatkan efisiensi perencanaan dan desain konstruksi dengan mengintegrasikan informasi spasial dan atribut pada satu ruang lingkup yang sama (Bansal, 2007).

SIG memiliki 2 model data yaitu data spasial dan data non spasial atau data atribut. Data spasial merupakan data yang menampakkan permukaan bumi. Data non spasial atau data atribut adalah data yang menyimpan informasi-informasi yang terdapat pada kenampakan permukaan bumi (Wijayanti, 2019).

Data yang menjadi bahan baku dalam proses SIG adalah data spasial atau geodata (data yang mengacu pada lokasi geografis), akan diproses menjadi informasi spasial atau geoinformasi yang salah satu bentuk penyajiannya adalah peta (maps). Data yang akan dikelola SIG terdiri dari dua kelompok, yaitu data grafis dan data non grafis/deskriptif /atribut. Data grafis terususn dalam bentuk titik (dot), garis (line), dan area atau poligon (area), sedangkan data deskriptif dapat berupa data kualitatif (seperti nama, jenis, tipe, dan sebagainya) atau data kuantitatif (seperti angka, satuan, besaran, jumlah, tingkatan, kelas, interval, dan sebagainya) yang mempunyai hubungan satu-satu dengan data grafisnya (Wijayanti, 2019).

2.1.1 Subsistem SIG

Menurut Prahasta (2009), SIG dapat diuraikan menjadi beberapa subsistem

a. Data Input

Subsistem ini bertugas untuk mengumpulkan, mempersiapkan dan menyimpan data spasial serta atributnya dari berbagai sumber. Sub-sistem ini pula yang bertanggung jawab dalam mengkonversikan atau mentransformasikan format-format data aslinya ke dalam format yang dapat digunakan oleh perangkat SIG yang bersangkutan.

b. Data Output

Sub-sistem ini bertugas untuk menampilkan atau menghasilkan keluaran (termasuk mengekspornya ke format yang dikehendaki) seluruh atau sebagian basis data (spasial) baik dalam bentuk *softcopy* maupun *hardcopy* seperti halnya tabel, grafik, peta dan lainnya.

c. Data Management

Sub-sistem ini mengorganisasikan baik data spasial maupun tabel-tabel atribut terkait ke dalam sebuah sistem basis data sedemikian rupa hingga mudah dipanggil kembali atau di-*update* dan di-*edit*.

d. Data Manipulasi dan Analisis

Sub-sistem ini menentukan informasi-informasi yang dapat dihasilkan oleh SIG. Selain itu sub-sistem ini juga melakukan manipulasi (evaluasi, penggunaan fungsi-fungsi, operator matematis dan logika) serta pemodelan data untuk menghasilkan informasi yang diharapkan.

2.1.2 Komponen SIG

Suatu sistem memiliki beberapa komponen yang saling berkaitan. Pada SIG memiliki beberapa komponen yang meliputinya antara lain adalah sebagai berikut (Gistut dalam Wijayanti, 2019),

1. Perangkat Lunak

Sistem perangkat lunak pada SIG berupa susunan sistem secara modular. Basis data merupakan komponen terpenting pada sistem ini.

2. Perangkat Keras

Perangkat keras pada SIG terdiri dari beberapa komponen antara lain adalah *Personal Computer*, *workstation* hingga *multi user host* yang dapat

digunakan secara bersamaan dalam jaringan komputer yang luas, memiliki ruang penyimpanan dan kapasitas memori yang besar.

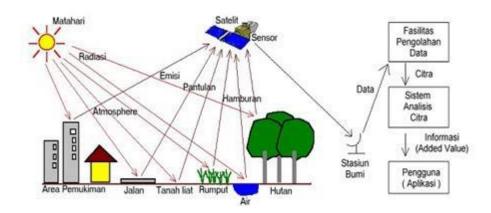
3. Manajemen

Manajemen pada SIG yaitu mengatur sedemikian rupa agar didapatkan hasil yang baik dan dikerjakan oleh sumber daya manusia sesuai dengan keahlian.

4. Data dan Informasi Geografis

Sistem pada SIG mampu mengumpulkan dan menyimpan data serta informasi yang dibutuhkan dengan baik secara langsung yaitu dengan cara mendigitasi data spasial; dan secara tidak langsung yaitu memasukkan data tersebut dari perangkat lunak SIG.

2.2 Penginderaan Jauh


Penginderaan jauh didefinisikan sebagai metode akusisi informasi mengenai sebuah objek tanpa harus melakukan kontak fisik dengan objek bersangkutan (Elachi dan Zyl, 2005). Dalam penginderaan jauh, energi yang berasal dari permukaan bumi diukur menggunakan sensor yang dipasangkan pada pesawat udara maupun pesawat ruang angkasa. Energi tersebut juga termasuk energi buatan seperti laser maupun radar (Richards dan Jia, 2006).

Sistem penginderaan jauh dilengkapi dengan sensor dan kamera yang merekam objek di alam. Rekaman data oleh sensor dari objek di Bumi berupa data numeris (*digit*) yang dinyatakan sebagai besarnya nilai pantul gelombang elektromagnetik (intensitas spektral), yang dipantulkan oleh objek dalam suatu ukuran tertentu (resolusi spasial). Nilai pantul tersebut besarnya secara visual dinyatakan dalam derajat keabuan (*grey scale*), pada rekaman satelit berupa angka numeris (*digit*) antara 0 – 255. Nilai 0 setara dengan derajat keabuan paling rendah (hitam) dan 255 derajat keabuan paling tinggi (putih). Selain dari nilai intensitas spektral, pengenalan suatu objek juga ditentukan dari besarnya resolusi spasial (Sukojo, 2012).

Teknik yang efisien dan terjangkau mengenai akusisi data membuat penginderaan jauh tersebut sangat diminati banyak kalangan. Salah satunya dalam hal memetakan jalan. Hal tersebut dikarenakan beragamnya variasi jalan (perkotaan, antar kota, dan sabagainya) serta kompleksitas lingkungannya (Poullis dan You, 2010).

2.2.1 Komponen Penginderaan Jauh

Sistem penginderaan jauh terdiri atas berbagai komponen yang terintegrasi dalam satu kesatuan. Komponen – komponen tersebut meliputi sumber tenaga, atmosfer, objek, sensor dengan wahana, pengolahan data, interpretasi atau analisis dan pengguna (*user*) (Mulyadi dkk, 2007).

Gambar 2.1 Komponen Penginderaan Jauh (Sumber: Mulyadi dkk, 2007)

Sinar matahari yang dipancarkan akan memantul ke objek yang terdapat di permukaan Bumi, lalu akan ditangkap oleh sensor pada satelit di angkasa. Setelah data pantulan tersebut ditangkap satelit, maka satelit akan mentransmisikan data ke stasiun yang berada di Bumi untuk diolah, dianalisis dan didistribusikan kepada pengguna (Mulyadi dkk, 2007).

2.2.2 Jenis Penginderaan Jauh

Data penginderaan jauh *digital* (citra *digital*) direkam dengan menggunakan sensor non-kamera antara lain *scanner*, radiometer, *spectrometer* (Sukojo, 2012). Sedangkan sensor berdasarkan atas proses perekamannya dibedakan menjadi 2 (dua) macam yaitu, sensor fotografik dan sensor elektromagnetik. Sensor fotografik adalah sensor berupa kamera yang bekerja pada spektrum tampak mata dan menghasilkan foto atau citra, sedangkan sensor

elektromagnetik adalah sensor bertenaga elektrik dalam bentuk sinyal elektrik yang beroperasi pada spektrum yang lebih luas, yaitu dari sinar X sampai gelombang radio dan menghasilkan foto atau citra (Sukojo, 2012).

Menurut Sukojo (2012), dilihat dari sumber energi satelit penginderaan jauh dapat dibedakan menjadi 2 (dua) macam yaitu:

a. Satelit Penginderaan Jauh Aktif

Sistem satelit aktif menggunakan sumber energi buatan yaitu dengan menggunakan panjang gelombang elektromagnetik dan sensor yang digunakan adalah berupa kamera sensor elektromagnetik. Contoh satelit yang menggunakan sistem ini adalah Radar (*Radio Detection Ranging*), SAR (*Synthetic Aperture Radar*), dan LIDAR contohnya satelit Radarsat (Kanada), ERS (Eropa), JERS-1 (Jepang), ALOS PALSAR (Jepang), TerraSAR X dan sebagainya.

b. Satelit Penginderaan Jauh Pasif

Sistem satelit pasif menggunakan sumber energi alam (matahari) yaitu dengan menggunakan panjang gelombang elektromagnetik dan sensor yang digunakan adalah sensor fotografik. Contoh satelit yang menggunakan sistem ini adalah Landsat (*Land Satellite*), SPOT, MOS, Ikonos, *Quick Bird* dan sebagainya.

2.3 SPOT 6/7

SPOT 6/7 merupakan satelit yang diluncurkan pada tahun 2012 dan 2013. SPOT 6/7 ini merupakan penerus kesuksesan SPOT 5 dalam menyediakan produk beresolusi spasial 1,5 m. SPOT 6/7 menawarkan sumber yang baik guna proses analisis (Astrium, 2013).

Satelit SPOT memiliki jumlah band sebanyak 5. Adapun band-band tersebut adalah *Panchromatic* dengan panjang gelombang $0,450-0,745~\mu m$; *Blue* dengan panjang gelombang $0,450-0,520~\mu m$; *Green* dengan panjang gelombang $0,530-0,590~\mu m$; *Red* dengan panjang gelombang $0,625-0,695~\mu m$; dan *Near Infrared* dengan panjang gelombang $0,760-0,890~\mu m$ (Astrium, 2013).

Dengan mengkombinasikan band *Panchromatic* dan *Multispectral* dapat memvisualisasikan citra hitam – putih (resolusi 1,5 meter), *natural color*, *false*

color (resolusi 6 meter) atau penggabungan produk (*Pansharpened colour image*) dengan resolusi citra band *Panchromatic* (Astrium, 2013).

2.4 Landsat 8

Landsat merupakan salah satu satelit sumberdaya yang menghasilkan citra multispektral. Keunggulan satelit ini terletak pada jumlah saluran yang digunakan sebanyak 7 saluran (*band*) serta digunakannya 3 saluran panjang gelombang tampak, 3 saluran panjang gelombang infra merah dekat dan 1 saluran panjang gelombang infra merah termal (Purwadhi, dkk 2001).

Satelit Landsat memiliki dua buah sensor yaitu Multi Spectral Scanner (MSS) dimuat di Satelit Landsat-4 dan Thematic Mapper (TM) dimuat di Satelit Landsat-5. Sensor TM mempunyai resolusi spasial sampai 30 x 30 m, dan bekerja mengumpulkan data permukaan bumi dengan luas cakupan 185 x 185 km, sedangkan resolusi radiometriknya 8 bit, yang berarti setiap piksel mempunyai nilai jangkauan data 0-255. Sensor TM merupakan sistem yang sangat kompleks yang memerlukan toleransi pembuatan yang sangat kecil, sehingga tidak memungkinkan dibuat penyempurnaan di masa mendatang untuk memperkecil resolusi spasial sampai di bawah 20 m (Butler, 1988).

Landsat 8 merupakan satelit yang diluncurkan pada 2013 oleh NASA (Ridwan, 2018). Satelit Landsat 8 memiliki sensor *Onboard Operational Land Imager* (OLI) dan *Thermal Infrared Sensor* (TIRS) dengan jumlah band sebanyak 11 buah. Di antara band-band tersebut, 9 band (band 1 – 9) berada pada OLI dan 2 lainnya (band 10 dan 11) pada TIRS (Loyd, 2013). Data Landsat 8 dapat diakses secara umum, sehingga banyak penelitian yang memanfaatkan ketersediaan data Landsat 8 tersebut. Satelit Landsat 8 memiliki tinggi terbang dan luas area perekaman yang sama seperti Landsat 7, serta melakukan perekaman pada area yang sama setiap 16 hari sekali. Landsat 8 memiliki kemampuan untuk merekam citra dengan resolusi spasial bervariasi, dari 15 meter hingga 100 meter dengan jumlah kanal sebanyak 11. Landsat 8 merupakan salah satu jenis satelit penginderaan jauh yang dikhususkan untuk tujuan pengelolaan sumber daya di bumi.

Tabel 2.1 Parameter Orbit Satelit Landsat 8

Parameter Orbit Satelit Landsat 8			
Jenis Orbit	Mendekati Lingkaran Sinkron		
	Matahari		
Tinggi Terbang	705 km		
Inklinasi	8,2°		
Waktu rekam ulang (resolusi	16 hari		
temporal)			
Waktu melintasi khatulistiwa (Local	Pukul 10.00 hingga 10.15 pagi		
Time Descending Node – LTDN)			
nominal			

Sumber: Ridwan, 2018

Dibandingkan dengan landsat versi sebelumnya, Landsat 8 memiliki beberapa keunggulan khususnya spesifikasi *band-band* yang dimiliki maupun panjang gelombang elektromagnetik yang dimiliki. Sebegaimana telah diketahui, warna objek pada citra tersusun atas 3 warna dasar, yaitu *Red, Green* dan *Blue* (RGB). Dengan makin banyaknya band sebagai penyusun RGB komposit, maka warna-warna obyek menjadi lebih bervariasi (USGS, 2013).

Tabel 2.2 Band pada Landsat 8

No	Kanal	UM (Wave	Penggunaan Data	Resolusi
Band		Length)		Spasial (m)
1	Coastal Aerosol	0,43 – 0,45	Zona pesisir/aerosol	30
			Pemetaan batimetri,	
2	Biru	0,45 - 0,51	membedakan tanah	30
			dengan vegetasi	

No	Kanal	UM (Wave	Panggunaan Data	Resolusi
Band	Kanai	Length)	Penggunaan Data	Spasial (m)
3	Hijau	0,53 – 0,59	Vegetasi untuk menilai tumbuh tanaman	30
4	Merah	0,64 - 0,67	Vegetasi/pesisir	30
5	Near Infrared (NIR)	0,85 – 0,88	Foliage	30
6	Shortwave Infrared (SWIR)	1,57 – 1,65	Membedakan kadar air tanah dan vegetasi, menembus awan tipis	30
7	Shortwave Infrared (SWIR) 2	2,11 – 2,29	Peningkatan kadar air tanah dan vegetasi, penetrasi awan sedikit	30
8	Panchromatic	0,50-0,68	Penajaman citra	15
9	Cirrus	1,36 – 1,38	Mendeteksi peningkatan awan cirrus	30
10	Thermal Infrared (TIRS)	10,60 – 11,19	Perkiraan pemetaan panas dan kelembaban tanah	100
11	Thermal Infrared (TIRS) 2	11,50 – 12,51	Peningkatan pemetaan panas dan kelembaban tanah	100

Sumber: USGS, 2013

2.5 Digital Elevation Model (DEM)

DEM adalah data *digital* yang menggambarkan geometri dari bentuk permukaan bumi atau bagiannya yang terdiri dari himpunan titik-titik koordinat hasil *sampling* dari permukaan dengan algoritma yang mendefiniskan permukaan tersebut (Tempfli, 1991). DEM merupakan suatu sistem, model, metode, dan alat dalam mengumpulkan, *processing*, dan penyajian informasi medan. Susunan

nilai-nilai digital yang mewakili distribusi spasial dan karakteristik medan diwakili oleh nilai-nilai pada sistem koordinat horizontal X Y serta ketinggian medan dalam sistem koordinat Z (Doyle, 1991).

DEM khususnya digunakan untuk menggambarkan relif medan. Gambaran model relif rupabumi tiga dimensi yang menyerupai keadaan sebenarnya di dunia nyata divisualisasikan dengan bantuan teknologi komputer grafis dan teknologi *virtual reality* (Mogal, 1993).

Kualitas DEM dilihat dari tingkat akurasi elevasi tiap pixel (keakuratan absolut) dan tingkat akurasi morfologi yang ditampilkan (keakuratan relatif). Beberapa faktor yang mempengaruhi dalam penentuan kualitas DEM, yaitu

- a. Ketelitian (*accuracy*), ditunjukkan dari nilai RMSE (*Root Mean Square Error*), rata-rata absolut atau standar deviasi.
- b. Ketelitian dalam perekaman (*fidelity*), terkait dengan konsep generalisasi dan resolusi, ditentukan oleh: Perubahan medan yang tidak mendadak: ukuran grid, spasi titik dan akurasi planimetris, tingkat kepercayaan (*confidence*), pengukuran untuk kualitas semantik data, validitas (*validity*), tanggal sumber data, verifikasi data seperti cek lapangan, perubahan bentuk di lapangan.
- c. Tampilan grafis (appearance of graphics), gradasi warna, simbol.

Data DEM dapat digunakan untuk berbagai macam keperluan seperti pembuatan peta DAS (Daerah Aliran Sungai), peta RBI (kontur) yang memang membutuhkan informasi ketinggian di atas permukaan tanah. Aplikasi khusus dari penggunaan data DEM digunakan untuk menggambarkan relif medan. Relif medan yang digambarkan menyerupai bentuk sebenarnya di dunia nyata (*real world*) kemudian divisualisasikan dengan bantuan teknologi informasi geografis (SIG) dan teknologi *virtual reality* dalam bentuk 3D (X, Y dan Z) (Susilo, 2017).

2.6 Rencana Tata Ruang Wilayah (RTRW)

Rencana tata ruang wilayah atau RTRW adalah hasil perencanaan ruang dan wilayah yang merupakan kesatuan geografis beserta segenap unsur terkait yang batas dan sistemnya ditentukan berdasarkan aspek administratif (Permen PU No. 16/PRT/M/2009). Dokumen tata ruang dibuat dengan tujuan

untuk mengatur ruang agar dapat dimanfaatkan secara efektif dan untuk mencegah terjadinya konflik antar fungsi dalam proses pemanfaatan ruang, serta untuk melindungi masyarakat sebagai pengguna ruang dari bahaya-bahaya lingkungan. Fungsi tata ruang pada daerah rawan bencana sejatinya adalah sebagai instrumen pengurangan risiko bencana (Rosari, 2014).

2.7 Bencana Longsor

Aspek mitigasi bencana harus dipertimbangkan mengingat Indonesia merupakan wilayah yang rawan bencana. Utamanya wilayah kajian memiliki topografi pegunungan dan berdekatan dengan Sesar Besar Sumatera (Sesar Semangko). Adapun berdasarkan kajian literatur yang telah dilakukan wilayah kajian merupakan wilayah rawan longsor. Adapun berdasarkan **Tabel 2.3** menurut BNPB (2016), pemetaan kerentanan longsor dapat dibuat berdasarkan delapan parameter yaitu kemiringan lereng, arah lereng, panjang/bentuk lereng, tipe batuan, jarak dari patahan/sesar, tipe tanah (tekstur tanah), kedalaman tanah (solum), dan komponen hidrologi (curah hujan tahunan).

Menurut Peraturan Pemerintah Republik Indonesia Nomor 21 Tahun 2008, bencana adalah peristiwa atau rangkaian peristiwa yang mengancam dan mengganggu kehidupan dan penghidupan masyarakat. Kajian terhadap area terdampak sangatlah penting sebagai upaya mitigasi bencana (Chandio dkk, 2006).

Bencana gerakan tanah atau dikenal sebagai tanah longsor merupakan fenomena alam yang dikontrol oleh kondisi geologi, curah hujan dan pemanfaatan lahan dalam lereng (BNPB, 2016). Longsor merupakan salah satu bencana yang paling merusak pada daerah pegunungan di wilayah beriklim tropis dan sub tropis (Dahal, 2007).

2.7.1 Pengkelasan (*Class Assesing*)

Pengkelasan adalah proses pengelompokkan berdasarkan kriteria yang telah ditentukan. Adapun pengkelasan pada proses pemetaan daerah rentan bencana didasarkan pada kriteria dan jumlah kelas yang ditentukan oleh BNPB. Adapun pengkelasan tersebut didasarkan pada klasifikasi yang tertera dalam

dokumen Risiko Bencana Indonesia yang dikeluarkan oleh BNPB tahun 2016 sebagai berikut,

Tabel 2.3 Parameter Penyusun Peta Bahaya Tanah Longsor dengan Metode Deterministik

No	Data	Pa	rameter	Pengkelasan	Nilai	Skor	Bobot
					Kelas		
1	DEM	1	Kemiringan	15 – 30%	1	0.250	0.3
			Lereng	30 - 50%	2	0.500	
				50 – 70%	3	0.750	
				>70%	4	1.000	
		2	Arah Lereng	Datar	0	0.000	0.05
			(Aspect)	Utara	1	0.125	
				Barat Laut	2	0.250	
				Barat	3	0.375	
				Timur Laut	4	0.500	
				Barat Daya	5	0.625	
				Timur	6	0.750	
				Tenggara	7	0.875	
				Selatan	8	1.000	
		3	Panjang/	<200 m	1	0.250	0.05
			Bentuk	200 – 500 m	2	0.500	
			Lereng	500–1000 m	3	0.750	
				>1000 m	4	1.000	
2	Geologi	1	Tipe Batuan	Alluvial	1	0.333	0.2
	_		_	Sedimen	2	0.667	
				Vulkanik	3	1.000	
		2	Jarak dari	>400 m	1	0.200	0.05
			Patahan/	300 – 400 m	2	0.400	
			Sesar	200 – 300 m	3	0.600	
				100 – 200 m	4	0.800	
				0 – 100 m	5	1.000	
3	Tanah	1	Tipe Tanah	Berpasir	1	0.333	0.1
			(tekstur	Berliat-	2	0.667	
			tanah)	Berpasir			
				Berliat	3	1.000	
		2	Kedalaman	<30 cm	1	0.250	0.05
			Tanah	30 - 60 cm	2	0.500]
			(solum)	60 - 90 cm	3	0.750]
				>90 cm	4	1.000]

No	Data	Pa	rameter	Pengkelasan	Nilai Kelas	Skor	Bobot
3	Tanah	1	Tipe Tanah	Berpasir	1	0.333	0.1
			(tekstur	Berliat-	2	0.667	
			tanah)	Berpasir			
				Berliat	3	1.000	
		2	Kedalaman	<30 cm	1	0.250	0.05
			Tanah	30 - 60 cm	2	0.500	
			(solum)	60 - 90 cm	3	0.750	
				>90 cm	4	1.000	
4	Hidrologi	1	Komponen	<2000 mm	1	0.333	0.2
			Hidrologi	2000 - 3000	2	0.667	
			(Curah	mm			
			Hujan	>3000 mm	3	1.000	
			Tahunan)				

Sumber: Dokumen Risiko Bencana Indonesia BNPB, 2016

Hasil dari *overlay* ke-delapan parameter tersebut kemudian dikelaskan dalam 5 kelas kerentanan longsor sesuai dengan yang tertera dalam dokumen Risiko Bencana Indonesia BNPB (2016) sebagai berikut,

Tabel 2.4 Pengkelasan Zona Kerentanan Gerakan Tanah

Zona Kerentanan Gerakan Tanah	Nilai Kelas	Indeks Bahaya
Sangat Rendah	1	0.2
Rendah	2	0.4
Sedang	3	0.6
Tinggi	4	0.8
Sangat Tinggi	5	1.0

Sumber: Dokumen Risiko Bencana Indonesia BNPB, 2016

2.7.2 Pembobotan

Pembobotan adalah proses pengalian nilai kelas yang telah ditentukan dengan nilai bobot masing-masing parameter. Nilai bobot tersebut didasarkan pada tingkat keberpengaruhan parameter tersebut terhadap fenomena yang sedang dikaji. Adapun pembobotan juga didasarkan atas **Tabel 2.3** di atas (BNPB, 2016).

2.8 TRMM

TRMM adalah singkatan dari *Tropical Measuring Mission*. TRMM menghasilkan perkiraan hujan diperuntukkan bagi kegiatan monitoring kekeringan. TRMM merupakan proyek kerja sama antara NASA, Amerika dengan *Japanese Aerospace Exploration Agency*. Tim TRMM NASA mengembangkan alat dan metode untuk memadukan dan menganalisis data hujan di bumi maupun di antariksa serta memublikasikan data berkualitas hasil kerja tim. Sejak dimulainya tahun 1998, TRMM telah menarik perhatian banyak komunitas ilmuwan yang tertarik pada pengukuran prediksi hujan. Produk hujan TRMM cocok untuk monitoring hujan ekstrim (Virama Karya Persero, 2019).

TRMM dengan tiga sensornya yaitu PR (*Precipitation Radar*), TMI (TRMM *Microwave Imager*) dan VIRS (*Visible and Infrared Scanner*). Ada beberapa satelit meteorologi selain satelit TRMM, yaitu: DMSP (*Defense Meteorological Satellite Program*) dengan sensor SSMI (*Special Sensor Microwave Imager*). Satelit Aqua dengan sensor AMSR-E (*Advanced Microwave Scanning Radiometer-Earth Observing System*) dan satelit NOAA (*National Oceanic and Atmospheric Administration*) dengan sensor AMSU-B (*Advanced Microwave Sounding Unit-B*) (Virama Karya Persero, 2019).

2.9 Tutupan Lahan

Tutupan lahan adalah kenampakan material fisik bumi. Tutupan lahan dapat menggambarkan keterkaitan antara proses alami dan proses sosial. Tutupan lahan dapat menyediakan informasi yang sangat penting untuk keperluan pemodelan serta untuk memahami fenomena alam yang terjadi di permukaan bumi. Informasi tutupan lahan yang akurat merupakan salah satu faktor penentu dalam meningkatkan kinerja dari model-model ekosistem, hidrologi dan atmosfer. Tutupan lahan merupakan informasi dasar dalam kajian *geoscience* dan perubahan global (Sampurno dan Thoriq, 2016).

Informasi tutupan lahan terbaru berupa peta dapat diperoleh melalui teknik penginderaan jauh. Penginderaan jauh telah lama menjadi sarana yang penting dan efektif dalam pemantauan tutupan lahan dengan kemampuan menyediakan

informasi mengenai keragaman spasial di permukaan bumi dengan cepat, luas, tepat, serta mudah. Adapun klasifikasi penutup lahan berdasarkan resolusi spasial citra yang digunakan menurut Lapan (2014) adalah sebagai berikut,

Tabel 2.5 Klasifikasi Tutupan Lahan Berdasarkan Resolusi Spasial Citra

Tingkat 1	Tingkat 2	Tingkat 3
Resolusi Rendah	Resolusi Menengah	Resolusi Tinggi
1. Air	1.1 Perairan Laut	1.1.1 Air Laut Dalam
		1.1.2 Air Laut Dangkal
	1.2 Perairan Darat	1.2.1 Danau
		1.2.2 Waduk
		1.2.3 Setu
		1.2.4 Rawa
		1.2.5 Tambak
		1.2.6 Sungai
2. Vegetasi	2.1 Hutan	1.1.1 Hutan Lahan Basah
		1.1.2 Hutan Lahan Kering
		1.1.3 Belukar/Semak
	2.2 Perkebunan	1.2.1 Perkebunan Industri
		1.2.2 Perkebunan
		Campuran
	2.3 Pertanian	2.3.1 Sawah
		2.3.2 Tegalan/Ladang
3. Tanah	3.1 Lahan Terbangun	3.1.1 Permukiman Kota
		3.1.2 Permukiman Desa
		3.1.3 Fasilitas Umum
	3.2 Lahan Terbuka	3.2.1 Pasir
		3.2.2 Galian Tambang
		3.2.3 Endapan Lahar
		3.1.4 Batuan
		3.1.5 Gosong

Sumber: Lapan, 2014

Menurut PU Bina Marga (1997), pertimbangan dampak lingkungan perlu diperhatikan dalam menentukan rute alternatif. Dampak akan timbul baik pada

saat pembangunan maupun pasca pembangunan. Kriteria yang dipakai dalam menentukan rute alternatif berdasarkan aspek lingkungan adalah:

- a. Meminimalkan jalan tersebut melewati daerah produktif (pertanian) terutama yang mempunyai produksi tinggi dan dilayani oleh jaringan irigasi teknis (relatif tidak ada).
- b. Mengurangi agar tidak mengganggu habitat asli dari flora atau fauna yang mungkin akan terlewati.
- c. Mengurangi jalan tersebut agar tidak melewati daerah padat pemukiman/padat penduduk, sehingga pengaruh kondisi sosial budaya dan ekonomi dapat ditekan (PU Bina Marga, 1997).

Penentuan kelas untuk klasifikasi penutup lahan pada penelitian ini mengkolaborasikan ketentuan kelas yang telah dikeluarkan Lapan (2014) dan pertimbangan PU Bina Marga (1997) dalam menentukan lahan yang diperbolehkan dilewati perencanaan jalan dengan beberapa penyesuaian. Sehingga, kelas dalam proses klasifikasi yang digunakan dalam penelitian ini adalah sebagai berikut,

- 1. Daerah terbangun
- 2. Daerah produktif
- 3. Hutan
- 4. Lahan terbuka
- 5. Perairan darat (sungai)

2.10 Digitasi

Teknis klasifikasi untuk citra penginderaan jauh secara umum dibedakan menjadi dua yaitu klasifikasi visual dan klasifikasi digital. Klasifikasi visual dilakukan dengan interpretasi dan delineasi citra secara langsung, sedangkan klasifikasi digital dilakukan dengan metode *supervised/unsupervised* (didasarkan nilai digital citra) menggunakan perangkat lunak tertentu. Klasifikasi digital pada suatu citra adalah suatu proses dimana piksel-piksel dengan karakteristik spektral yang sama diasumsikan sebagai kelas yang sama, diidentifikasi dan ditetapkan dalam suatu warna (Marini dkk, 2014).

Interpretasi citra penginderaan jauh dapat dilakukan dengan dua cara, yaitu interpretasi secara digital dan visual/manual. Interpretasi secara digital membahas mengenai pra-pengolahan citra meliputi: *Pan-sharpen*, koreksi radiometrik dan koreksi geometrik. Sedangkan interpretasi secara visual/manual membahas mengenai unsur interpretasi, identifikasi objek citra, dan teknik interpretasi serta konvergensi bukti yang dilakukan dalam pengenalan objek citra penginderaan jauh (Muhlis dkk, 2020).

Interpretasi citra visual/manual dilakukan untuk mendeteksi dan mengindentifikasi objek-objek permukaan bumi yang tampak pada citra satelit. Identifikasi tersebut dilakukan berdasarkan spasial dan spektral. Pada klasifikasi visual/manual, pengelompokan pixel ke dalam suatu kelas yang telah ditetapkan dilakukan secara visual/manual berdasarkan kunci-kunci interpretasi objek pada citra. Interpretasi citra dilakukan dengan menerapkan metode klasifikasi visual digitation on screen pada citra komposit warna palsu (false colour composite) maupun komposit warna natural (natural colour composite). Metode ini merupakan teknik interpretasi citra satelit inderaja yang didasarkan pada kenampakan objek yang terlihat pada display komputer (Wijayanti, 2019).

Metode interpretasi hasil digitasi *on screen* yang dilakukan dengan teknik interpretasi berdasarkan 7 kunci interpretasi seperti warna, bentuk, pola dan lainlain yang hasilnya sesuai dengan interpretasi interpreter. Pada metode ini dilakukan dengan mengelompokkan piksel dalam suatu kelas yang telah ditetapkan secara manual berdasarkan interpretasi (warna atau rona, bentuk, ukuran, tekstur, pola, bayangan, dan situs) objek pada citra. Interpretasi dilakukan secara manual menggunakan hasil *On Screen Digitation*, elemen interpretasi dan dicocokkan menggunakan hasil pengamatan data lapangan. Hasil pengamatan data lapangan bersifat memverifikasi kebenaran hasil yang diperoleh dari *on screen digitation*. Interpretasi citra digunakan dalam mendeteksi dan mengidentifikasi objek-objek permukaan bumi pada citra satelit. Metode ini bersifat subjektif dengan kualitas hasil berdasarkan keahlian interpreter (Wijayanti, 2019).

Berikut merupakan penjelasan dari masing-masing kunci interpretasi menurut Lilesand (1976),

1. Rona/Warna

Rona adalah tingkat kegelapan atau tingkat kecerahan objek pada citra. Rona merupakan tingkatan dari hitam ke putih atau sebaliknya. Sedangkan warna adalah wujud yang tampak oleh mata dengan menggunakan spektrum sempit, lebih sempit daripada spektrum tampak. Permukaan yang menyerap cahaya seperti permukaan air akan berwarna gelap, sedangkan tanah yang kering akan berwarna cerah karena memantulkan cahaya ke kamera atau satelit penangkap sinyal atau gelombang cahaya.

2. Bentuk

Bentuk merupakan konfigurasi atau kerangka suatu objek, sehingga dapat mencirikan suatu penampakan yang ada pada citra dapat diidentifikasi dan dapat dibedakan antar objek. Dari penampakan pada citra maupun foto udara dapat diidentifikasi bentuk massa bangunan, maupun bentuk-bentuk dasar fisik alam lainnya.

3. Ukuran

Ukuran adalah atribut objek yang antara lain berupa jarak, luas, tinggi, lereng dan volume. Ukuran objek pada citra maupun foto udara merupakan fungsi skala sehingga dalam memanfaatkan ukuran sebagai unsur interpretasi citra harus selalu memperhatikan skala citranya. Dengan kata lain ukuran merupakan perbandingan yang nyata dari objek-objek dalam citra maupun foto udara yang menggambarkan kondisi di lapangan.

4. Pola

Pola atau susunan keruangan merupakan ciri yang menandai bagi banyak objek bentukan manusia dan bagi beberapa objek alamiah lainnya. Pengulangan bentuk tertentu dalam hubungan merupakan karakteristik bagi objek alamiah maupun bangunan dan akan memberikan suatu pola yang membantu dalam interpretasi citra maupun foto udara dalam mengenali objek tertentu.

5. Tekstur

Tekstur adalah frekuensi perubahan rona pada citra atau pengulangan rona kelompok objek yang terlalu kecil untuk dibedakan secara individual. Tekstur sering dinyatakan dari kasar sampai halus. Tekstur merupakan hasil gabungan dari bentuk, ukuran, pola, bayangan serta rona. Dengan melihat tekstur dapat dikelompokkan penggunaan lahan atau fungsi dari kawasan-kawasan tertentu.

6. Bayangan

Bayangan sering menjadi kunci pengenalan yang penting bagi beberapa objek yang justru lebih tampak dari bayangannya. Akan tetapi di sisi lain keberadaan bayangan merupakan suatu kondisi yang bertentangan, pada satu sisi bentuk dan kerangka bayangan dapat memberikan gambaran profil suatu objek. Tetapi pada lain sisi jika ada suatu objek yang berada di bawah bayangan, maka akan hanya sedikit memantulkan cahaya dan sulit diamati pada citra atau foto udara. Dengan bantuan unsur bayangan ini juga dapat menentukan arah mata angin serta pengenalan terhadap suatu objek yang kemungkinan sulit diamati sebelumnya.

7. Situs

Situs atau lokasi suatu objek dalam hubungannya dengan objek lain dapat membantu dalam menginterpretasi foto udara ataupun citra. Situs ini sering dikaitkan antara objek dengan melihat objek lain.

2.11 Confusion Matrix

Evaluasi akurasi digunakan untuk melihat tingkat kesalahan yang terjadi pada interpretasi tutupan lahan contoh sehingga dapat ditentukan besarnya persentase ketelitian pemetaan. Evaluasi ini menguji tingkat keakuratan secara visual dari interpretasi yang telah dilakukan (Mutia, 2018).

Uji ketelitian interpretasi dapat dilakukan dalam empat cara yang disarankan oleh Short (1982) dalam Mutia (2018) diantaranya:

a. Melakukan pengecekkan lapangan serta pengukuran beberapa titik yang dipilih sebagai sampel area dari setiap bentuk penutup/penggunaan lahan. Uji ketelitian pada setiap area sampel penutup/penggunaan lahan yang homogen. Pelaksanaannya pada setiap bentuk penutup/penggunaan lahan diambil beberapa sampel area didasarkan homogenitas kenampakannya dan diuji kebenarannya (survei lapangan).

$$KI = \frac{JKL}{JSL} x 100\% \tag{2.1}$$

Dengan,

KI = Ketepatan Interpretasi

JKL = Jumlah Kebenaran Interpretasi

JSL = Jumlah Sampel Lapangan

- b. Menilai kecocokan hasil interpretasi setiap citra dengan peta referensi atau foto udara pada daerah yang sama dan waktu yang sama. Hal ini sangat diperlukan dalam penafsiran batas-batas dan perhitungan (pengukuran) luas setiap jenis penutup/penggunaan lahannya.
- c. Menilai kecocokan hasil interpretasi setiap citra dengan peta referensi atau foto udara pada daerah yang sama dan waktu yang sama. Hal ini sangat diperlukan dalam penafsiran batas-batas dan perhitungan (pengukuran) luas setiap jenis penutup/penggunaan lahannya.
- d. Analisis statistik dilakukan pada data dasar dan citra hasil interpretasi. Analisis dilakukan terutama terhadap kesalahan setiap penutup/penggunaan lahan yang disebabkan oleh keterbatasan resolusi citra (khususnya resolusi spasial karena merupakan dimensi keruangan). Analisis dilakukan dari beberapa piksel dengan perhitungan *variance statistic* setiap saluran spektral data yang digunakan. Pengambilan piksel untuk uji ketelitian diambil yang betul-betul murni penutup lahannya (bukan piksel gabungan atau piksel yang isinya beberapa jenis kenampakan = *Mix Pixel*).
- e. Membuat matrik dari setiap kesalahan (*confusion matrix*) pada setiap bentuk penutup lahan/penggunaan lahan dari hasil interpretasi citra penginderaan jauh. *Confusion matrix* merupakan alat pengukuran yang dapat digunakan untuk menghitung kinerja atau tingkat kebenaran proses klasifikasi. Matriks ini merupakan matriks dua dimensi dengan salah satu sisinya merupakan daftar *true class* objek dan sisi yang lainnya merupakan pengkelasan oleh *interpreter* (Ting, 2017). Dengan *confusion matrix* dapat dianalisis seberapa baik *interpreter* dapat mengenali *record* dari kelas-

kelas yang berbeda (Al Kabir, 2017). *Confusion matrix* mampu menilai kemamapuan interpretasi *interpreter* dengan menggunakan beberapa pengetesan data (Ting, 2017). Ketelitian pemetaan dibuat dalam beberapa kelas X yang dapat dihitung dengan rumus:

$$MA = \frac{X_{cr \ piksel}}{X_{cr \ piksel} + X_{o \ piksel} + X_{co \ piksel} X_{cr \ piksel}}$$
(2.2)

Dengan,

MA = Ketelitian Pemetaan (*Mapping Accuracy*)

X cr = Jumlah kelas X yang terkoreksi

Xo = Jumlah kelas X yang masuk ke kelas lain (omisi)

Xco = Jumlah kelas X tambahan dari kelas lain (komisi)

Ketelitian seluruh interpretasi (KH) adalah

$$KH = \frac{Jumlah\ piksel\ murni\ semua\ kelas}{Jumlah\ semua\ piksel}$$
 (2.3)

Overall Accuracy (OA) merupakan total ketelitian interpretasi. Rumus menghitung overall accuracy adalah:

$$OA = \frac{x}{n} \ x \ 100\% \tag{2.4}$$

Dengan,

x = Jumlah nilai diagonal matriks

n = Jumlah sampel matriks

Menurut Anderson (1976), sistem klasifikasi tata guna lahan dan tutupan lahan yang efektif dapat menggunakan data penginderaan jauh orbital dan dataran tinggi yang memiliki tingkat ketelitian interpretasi minimum dalam kategori identifikasi tata guna lahan dan tutupan lahan dari data penginderaan jauh minimal 85% pada beberapa kategori secara homogen yang menggambarkan vegetasi dan jenis tutupan lahan lainnya dengan cakupan area yang luas, dimana sistem

klasifikasi ini juga harus sesuai untuk digunakan dengan data penginderaan jauh pada tahun yang berbeda. Penggunaan data tata guna lahan dan tutupan lahan untuk keperluan perencanaan dan manajemen, ketelitian interpretasi adalah memuaskan ketika interpreter membuat interpretasi sebesar 85 – 90% (Ingram dan Prochaska, 1972 dalam Anderson, 1976). Akurasi yang diharapkan adalah akurasi kappa, karena *overall accuracy* secara umum masih *overestimate*. Akurasi kappa ini sering juga disebut dengan indeks kappa (Sampurno dan Thoriq, 2016).

Menurut Sampurno dan Thoriq (2016) menyatakan bahwa tutupan lahan adalah kenampakan material fisik permukaan bumi. Tutupan lahan dapat menggambarkan keterkaitan antara proses alami dan proses sosial. Tutupan lahan dapat menyediakan informasi yang sangat penting untuk keperluan pemodelan serta untuk memahami fenomena alam yang terjadi di permukaan bumi. Data tutupan lahan juga digunakan dalam mempelajari perubahan iklim dan memahami keterkaitan antara aktivitas.

Informasi tutupan lahan terbaru berupa peta dapat diperoleh melalui teknik penginderaan jauh. Penginderaan jauh telah lama menjadi sarana yang penting dan efektif dalam pemantauan tutupan lahan dengan kemampuannya menyediakan informasi menganai keragaman spasial di permukaan bumi dengan cepat, luas, tepat, serta mudah. Sumber data penginderaan jauh merupakan faktor penting dalam keberhasilan tutupan lahan (Sampurno dan Thoriq, 2016).

2.12 Geometrik Jalan

Perencanaan geometrik jalan merupakan bagian dari perencanaan jalan yang dititik beratkan pada perencanaan bentuk fisik sehingga dapat memenuhi fungsi dasar jalan yaitu memberikan pelayanan yang optimum pada arus lalu lintas dan sebagai akses (Sukirman, 1999). Adapun dalam perencanaan teknisnya, jalan harus memenuhi ketentuan keamanan, keselamatan dan lingkungan (Siga, 2012). Penyelenggara jalan juga harus mampu menjamin terselenggaranya peranan jalan yang berdasarkan rencana tata ruang wilayah dengan memperhatikan keterhubungan antarkawasan atau keterhubungan dalam kawasan (Peraturan Pemerintah Nomor 34 Tahun 2006).

Untuk memperkecil biaya pembangunan jalan, maka standar perencanaan geometrik jalan perlu sekali disesuaikan dengan topografi; sehingga jenis medan dibagi menjadi tiga golongan umum berdasarkan besarnya kelerengan melintang ke dalam arah kurang lebih tegak lurus sumbu jalan (PU Bina Marga, 1997). Topografi mempengaruhi perencanaan alinyemen horizontal yang mana memiliki pengaruh yang lebih nyata terhadap alinyemen vertikal (AASHTO, 2001). Keseimbangan antara fungsi jalan dan keadaan medan akan menentukan biaya pembangunan jalan tersebut (Sukirman, 1999).

Perencanaan geometrik jalan mempunyai batas keamanan. Ada 3 (tiga) aspek yang harus ditetapkan secara cermat dalam perencanaan geometrik agar kecepatan rencana memenuhi persyaratan keselamatan, keamanan dan kenyamanan yaitu aspek jarak pandang, radius minimum dan landai maksimum. Ketiga aspek ini akan memberikan pengaruh yang sangat menentukan dalam merencanakan alinyemen jalan (PU Bina Marga, 1997).

2.13 Faktor Konstruksi

Kang dan Seo (2013) melakukan wawancara terhadap 15 ahli manajemen konstruksi dan teknisi lapangan mengenai faktor-faktor yang harus dipertimbangkan dalam merencanakan jalan akses. Adapun faktor-faktor yang dimaksud adalah waktu tempuh truk, biaya konstruksi, komplain mengenai polusi, dan halangan (tutupan lahan). Faktor-faktor tersebut kemudian disesuaikan dengan lokasi kajian dalam penelitian ini yang berada di daerah terisolasi sehingga faktor komplain mengenai polusi tidak akan dipertimbangkan.

2.13.1 Performa Dump Truck

Performa *dump truck* dipengaruhi oleh kemiringan lereng. Adapun menurut Kang & Seo (2013) pembobotan kemiringan lereng dan pengaruhnya terhadap performa *dump truck* adalah sebagai berikut,

Tabel 2.6 Pembobotan Performa Dump Truck

Kemiringan Lereng (%)	Nilai Linguistik	Bobot Biaya
< -20	Sangat amat bekerja keras	1
-10	Sangat bekerja keras	0,5
-5	Bekerja keras	0,25
-3 hingga 3	Normal	0
5	Bekerja keras	0,25
10	Sangat bekerja keras	0,5
>20	Sangat amat bekerja keras	1

Sumber: Kang & Seo, 2013

2.13.2 Biaya Konstruksi

Besarnya biaya konstruksi dipengaruhi oleh besarnya *cut and fill* yang harus dilakukan. Besarnya *cut and fill* ini dapat dinilai berdasarkan kemiringan lerengnya. Adapun menurut Kang & Seo (2013) pembobotan kemiringan lereng dan pengaruhnya terhadap kebutuhan *cut and fill* adalah sebagai berikut,

Tabel 2.7 Pembobotan Cut and Fill

Kemiringan Lereng (%)	Nilai Linguistik	Bobot Biaya
< -200	Hampir tidak mungkin diisi	10.000
-200	Berbiaya sangat besar	1
-100	Berbiaya besar	0,5
-50	Cukup berbiaya	0,25
-20 hingga 20	Berbiaya rendah	0
50	Cukup bebiaya	0,25
100	Berbiaya besar	0,5
200	Berbiaya sangat besar	1
>200	Hampir tidak mungkin diisi	10.000

Sumber: Kang & Seo, 2013

2.13.3 Keamanan

Menurut Kang & Seo (2013), adanya badan air perlu dihindari untuk mencegah adanya polusi air, tambahan biaya dan menjamin keselamatan pengemudi. Adapun pembobotan jarak rute ke badan air menurut Kang & Seo (2013) adalah sebagai berikut,

Tabel 2.8 Pembobotan Jarak Jalan Akses ke Badan Air

Jarak ke Badan Air (m)	Nilai Linguistik	Bobot Biaya
0 – 10	Buruk	10.000
10 – 20	Cukup	1
20 – 30	Baik	0,5
> 30	Sangat baik	0

Sumber: Kang & Seo, 2013

2.14 Pemilihan Alinyemen yang Optimal

Perencanaan untuk beberapa alternatif bertujuan mencari alinyemen jalan yang paling efisien dengan kriteria sebagai berikut,

- 1. Alinyemen terpendek
- 2. Semua kriteria perencanaan harus dipenuhi. Jika tidak ada alternatif alinyemen yang memenuhi kriteria perencanaan, maka kriteria perencanaan harus dirubah.
- 3. Memiliki pekerjaan tanah yang paling sedikit atau paling murah. Yang dimaksud pekerjaan tanah di sini melingkupi volume galian, volume timbunan dan volume perpindahan serta pengoperasian tanah galian dan timbunan.
- 4. Memiliki jumlah dan panjang jembatan paling sedikit atau paling pendek atau paling murah

Pada alternatif yang paling efisien, perlu dievaluasi koordinasi antara alinyemen horizontal dan alinyemen vertikal. Perubahan kecil pada alinyemen terpilih ini dapat dilakukan, tetapi jika perubahan alinyemen tersebut

menyebabkan penambahan pekerjaan tanah yang besar maka proses seleksi alinyemen perlu diulang (PU Bina Marga, 1997).

2.15 Uji Korelasi

Analisis korelasi adalah metode statistika yang digunakan untuk menentukan suatu besaran yang menyatakan bagaimana kuat hubungan suatu variabel dengan variabel lain dengan tidak mempersoalkan apakah suatu variabel tertentu tergantung kepada variabel lain (Sekaran, 2010).

Analisis statistik yang digunakan dalam penelitian ini adalah dengan regresi linear berganda. Regresi linear berganda berguna untuk mendapatkan pengaruh dua variabel kriterium atau untuk mencari hubungan fungsional dua prediktor atau lebih dengan variabel kriteriumnya atau untuk meramalkan dua variabel prediktor atau lebih terhadap variabel kriteriumnya. Nilai kecocokan hubungan tersebut dapat didefinisikan melalui koefsien determinasi (R²). Nilai koefisien determinasi antara 0 sampai 1. Artinya jika R² mendekati 1 maka dapat dikatakan pengaruh variabel bebas terhadap variabel terikat adalah besar. Berarti model yang digunakan baik untuk menjelaskan pengaruh variabel tersebut. Untuk memastikan tipe hubungan antar variabel dengan berpedoman pada **Tabel 2.6** berikut (Ndruru dkk, 2014),

Tabel 2.9 Interpretasi Koefisien

Interval Koefisien	Tingkat Hubungan
0,80 - 1,000	Sangat Kuat
0,60 – 0,799	Kuat
0,40 – 0,599	Cukup Kuat
0,20 - 0,399	Rendah
0,00 – 0,199	Sangat Rendah

Sumber: Ndruru dkk, 2014

2.16 AHP (Analytical Hierarchy Process)

Analytical Hierarchy Process adalah suatu metode pendukung keputusan yang dikembangkan oleh Thomas L. Saaty. Model pendukung keputusan ini akan menguraikan masalah multi faktor atau multi kriteria yang komplek menjadi suatu hirarki. Hirarki sendiri didefinisikan sebagai suatu representasi dari sebuah permasalahan yang kompleks dalam suatu struktur multilevel (Munthafa dan Mubarok, 2017).

2.17 Analisis Spasial

Menurut Aronoff (1989), Sistem Informasi Geografis (SIG) adalah sistem informasi yang didasarkan pada kerja komputer yang memasukkan, mengelola, memanipulasi dan menganalisis data serta memberi uraian. Kemampuan analisis dalam SIG memiliki peran yang sangat penting yang dikenal dengan istilah analisis spasial. Analisis spasial merupakan suatu teknik atau proses yang melibatkan sejumlah fungsi hitungan dan evaluasi logika matematis yang dilakukan terhadap data spasial dalam rangka untuk mendapatkan ekstraksi, nilai tambah, atau informasi baru yang juga beraspek spasial.

Dalam pengolahan data SIG, analisis spasial dapat digunakan untuk memberikan solusi-solusi atas permasalahan keruangan. Manfaat dari analisis spasial ini tergantung dari fungsi yang dilakukan, seperti: (a) membuat, memilih, memetakan dan menganalisis data raster berbasis sel; (b) melaksanakan analisis data vektor/raster yang terintegrasi; (c) memilih informasi dari beberapa layer data; (d) mengintegrasikan sumber data raster dengan data vektor. Adapun jenisjenis analisis spasial sebagai berikut (Ramadhan, 2018),

- a. *Query* basis data, *query* basis data digunakan untuk memanggil atau mendapatkan kembali atribut data tanpa mengganggu atau mengubah data yang sudah ada.
- b. Pengukuran, fungsi pengukuran yang dimaksud yaitu:
 - Jarak. Pengukuran jarak yang dimaksud adalah menghitung jarak antar dua titik. Pengukuran jarak ini dapat dilakukan dengan mengklik kedua titik tersebut, atau dapat juga menggunakan *query*.

- Luas. Fungsi luas ini dapat digunakan untuk menghitung luas suatu wilayah unsur-unsur spasial. Wilayah tersebut dapat berupa poligon (vektor) ataupun juga wilayah yang bertipe raster.
- Keliling. Fungsi keliling ini digunakan untuk menghitung keliling (parameter) unsur-unsur spasial. Unsur-unsur spasial tersebut dapat bertipe poligon (vektor) dan juga raster.
- Centroid. Fungsi ini digunakan untuk menentukan koordinat titik pusat dari unsur-unsur spasial yang bertipe poligon (raster).
- c. Fungsi Kedekatan. Fungsi kedekatan adalah sebuah fungsi untuk menghitung jarak dari suatu titik, garis, ataupun batas poligon. Salah satu fungsi kedekatan yang paling banyak digunakan adalah *buffer*. *Buffer* adalah analisis spasial yang akan menghasilkan unsur-unsur spasial yang bertipe poligon
- d. *Overlay*. *Overlay* adalah bagian penting dari analisis spasial. *Overlay* dapat menggabungkan beberapa unsur spasial menjadi unsur spasial yang baru. Dengan kata lain, *overlay* dapat didefiniskan sebagai operasi spasial yang menggabungkan *layer* geografik yang berbeda untuk mendapatkan informasi baru. *Overlay* dapat dilakukan pada data vektor maupun *raster*.

e. Pengubahan Unsur-unsur Spasial

- Union, Merge atau Combine

Pada pengolahan data SIG, seringkali harus melakukan penggabungan antar unsur-unsur spasial. Penggabungan tersebut dapat menggunakan analisis spasial, yaitu *union, merge* atau *combine*. Penggabungan ini dapat menjadikan beberapa unsur spasial menjadi satu unsur spasial saja tanpa mengubah beberapa unsur spasial yang digabungkan tersebut.

- Delete, Erase dan Cut

Fungsi analisis spasial ini digunakan untuk menghapus unsur-unsur spasial yang dirasa tidak perlu ditampilkan. Fungsi ini hanya akan menghapus unsur-unsur spasial yang terpilih saja.

Split atau Clip

Fungsi analisis spasial ini bertujuan untuk menghasilkan unsur spasial baru dengan cara memotongnya dari unsur spasial lainnya.

Intersect

Intersect adalah sebuah fungsi pada analisis spasial untuk menghasilkan unsur spasial baru dari dua atau lebih unsur spasial. Fungsi ini menghasilkan unsur spasial baru dari irisan dua atau lebih unsur spasial sebelumnya (Ramadhan, 2018).

2.18 Cost Distance

Pemilihan rute yang optimal pada perencanaan jalan dengan mempertimbangkan beberapa parameter yang telah ditentukan dapat dihitung menggunakan *cost distance* pada aplikasi GIS. *Cost distance* berbeda dengan *euclidean distance* (jarak gairs lurus). Jarak *Euclidean* tidak selalu merupakan jarak yang terdekat karena dalam penentuannya tidak mempertimbangkan faktorfaktor lain yang berkaitan seperti badan air, kemiringan lereng, situs, dan lainlain. Pada kasus ini, perencana jalan dapat menggunakan metode *cost distance* untuk menghasilkan hasil yang lebih realistis (Kang & Seo, 2013).

2.19 Penelitian Terdahulu

2.19.1 Perencanaan Geometrik Jalan

Sistem Informasi Geografis (SIG) merupakan salah satu metode yang efektif dalam menyelesaikan permasalahan perencanaan jalan. Varghese dan O'Connor (1995) mengembangkan sistem berbasis SIG dalam perencanaan rute jalan yang mana informasi yang dibutuhkan selama proses perencanaan dapat diintegrasikan. Penelitian ini didasarkan atas empat parameter yaitu desain fasilitas, *site layout*, urutan pekerjaan, dan tingkat pra perakitan. Kang dan Seo (2004) juga menggunakan SIG untuk mengintegrasikan dan mengelola berbagai informasi dibutuhkan dalam perencanaan jalan. Sistem tersebut dapat membantu perencana untuk membuat keputusan yang tepat. Kang dan Seo (2013) kembali menggunakan SIG dalam menentukan *layout* jalan akses yang paling optimal pada proyek pekerjaan jalan akses bendungan di Korea Selatan. Beberapa faktor

seperti kecepatan truk, biaya konstruksi, dan tutupan lahan yang mempengaruhi perencanaan *layout* jalan akses tersebut dipertimbangkan dalam penelitian ini.

Baik Verghase dan O'Connor (1995) serta Kang dan Seo (2004 dan 2013) tidak mempertimbangkan aspek kerentanan bencana dalam melakukan identifikasi perencanaan. Adapun bila dikembangkan di Indonesia, aspek kerentanan bencana tersebut harus dipertimbangkan mengingat Indonesia merupakan daerah rawan bencana. Sehingga di sini, penulis ingin melakukan perencanaan geometrik jalan akses dengan mempertimbangkan kerentanan bencana. Oleh karena itu, pemetaan dan analisis daerah rentan bencana perlu dilakukan sebelum penentuan geometrik jalan. Adapun perbandingan paremeter perencanaan geometrik jalan antara penelitian terdahulu dan penelitian ini tersaji dalam **Tabel 2.10**.

Tabel 2.10 Perbandingan Parameter Perencanaan Geometrik Jalan

Aspek	Varghase &	Kang & Seo	Penelitian ini
	O'Connor (1995)	(2004 & 2013)	
Parameter	Desain fasilitas, site	Faktor	Kerentanan
Perencanaan	layout, urutan	konstruksi	bencana
Geometrik Jalan	pekerjaan, tingkat	(Kecepatan truk,	longsor, tutupan
	pra perakitan.	biaya konstruksi,	lahan, faktor
		polusi,	konstruksi.
		hambatan) dan	
		landuse	
Metode	Penginderaan jauh	Penginderaan	Penginderaan
	dan SIG	jauh dan SIG	jauh dan SIG

Sumber: Verghase & O'Connor, 1995; Kang & Seo, 2004 & 2013

2.19.2 Kerentanan Bencana Longsor

Respati dkk (2015) memetakan dan menganalisis potensi gerakan massa di Kecamatan Girimulyo, Kabupaten Kulonprogo, Provinsi DIY menggunakan metode kualitatif dan kuantitatif. Metode kuantitatif yang dilakukan adalah dengan menggunakan analisis keruangan SIG pada parameter yang telah diberi bobot. Terdapat empat parameter yang diberi bobot yaitu litologi, struktur geologi, tutupan lahan, dan kemiringan lereng. Penelitian tersebut menghasilkan peta kerentanan tanah dan pembagian empat zona yang digunakan sebagai informasi dasar untuk melakukan mitigasi bencana dan pengembangan area yang lebih baik dan terencana.

Taufik dkk (2016) mengidentifikasi daerah rawan longsor menggunaan GIS. Metode yang digunakan adalah dengan menggunakan TanDEM-X untuk memetakan kemiringan lerengnya. Kemudian, peta kemiringan lereng tersebut dikaji berdasarkan parameter penyebab tanah longsor. Klasifikasi terbimbing dilakukan menggunakan citra landsat untuk memetakan tutupan lahan daerah kajian. Peta kemiringan lereng dan tutupan lahan tersebut kemudian di-*overlay*-kan dengan peta batuan, curah hujan, dan tipe tanah untuk kemudian dilakukan pembobotan dan penilaian guna menentukan daerah rawan longsor.

Pemetaan yang dilakukan Respati dkk (2015) dan Taufik dkk (2016) parameter. Sedangkan, Badan hanya berdasarkan empat Nasional Penanggulangan Bencana (BNPB) dalam dokumen Risiko Bencana Indonesia pada tahun 2016 menerangkan bahwa pemetaan pergerakan tanah tersebut didasarkan atas delapan parameter yaitu kemiringan lereng, arah lereng, panjang/bentuk lereng, tipe batuan, jarak dari patahan/sesar aktif, tipe tanah (tekstur tanah), kedalaman tanah (solum), dan komponen hidrologi (curah hujan tahunan). Sehingga, penulis dalam penelitian ini ingin melakukan pemetaan daerah rentan longsor menggunakan delapan parameter yang telah ditentukan oleh BNPB. Hasil dari pemetaan tersebut lebih lanjut akan dilakukan analisis untuk menentukan alternatif geometrik jalan akses pada proyek Bendungan Tiga Dihaji yang paling sesuai. Adapun perbandingan paremeter kerentanan bencana longsor penelitian terdahulu dan penelitian ini tersaji dalam Tabel 2.11.

Tabel 2.11 Perbandingan Parameter Kerentanan Bencana Longsor

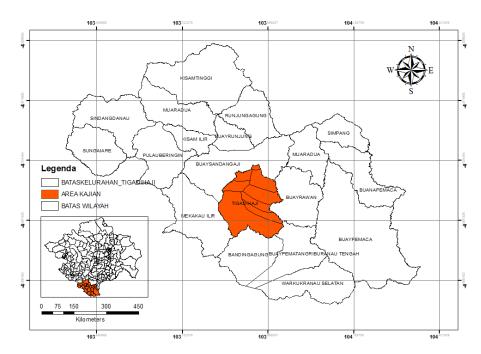
Aspek	Respati dkk	Taufik dkk	Penelitian ini
	(2015)	(2016)	
Parameter	litologi, struktur	Kemiringan	Kemiringan lereng,
Longsor	geologi, tutupan	lereng, tutupan	arah lereng,
	lahan, dan	lahan, geologi,	panjang/bentuk
	kemiringan lereng	curah hujan, dan	lereng, tipe batuan,
		tipe tanah	jarak dari
			patahan/sesar aktif,
			tipe tanah/tekstur
			tanah, kedalaman
			tanah, curah hujan
			tahunan
Metode	Deterministik	Deterministik	Deterministik

Sumber: Respati dkk, 2015; Taufik dkk, 2016; BNPB, 2016

BAB 3

METODA PENELITIAN

3.1 Lokasi Kajian


Penulis membatasi wilayah kajian hanya pada Kecamatan Tiga Dihaji, Kabupaten Ogan Komering Ulu Selatan, Sumatera Selatan. Hal ini dilakukan karena Kecamatan Tiga Dihaji sendiri memiliki luas area sebesar 179 km² atau 17,9 hektar (BPS, 2018). Kecamatan Tiga Dihaji terdiri dari 8 desa/kelurahan, merupakan daerah pertanian dan perkebunan, yang sebagian besar penduduknya bermata pencaharian petani.

Secara umum, keadaan topografi Kecamatan Tiga Dihaji berupa dataran tinggi dengan ketinggian >700 meter. Batas wilayah Kecamatan Tiga Dihaji adalah sebagai berikut,

- Sebelah Utara berbatasan dengan Kecamatan Kisam Ilir
- Sebelah Selatan berbatasan dengan Kecamatan Mekakau Ilir
- Sebelah Timur berbatasan dengan Kecamatan Buay Sandang Aji
- Sebelah Barat berbatasan dengan Kecamatan Pulai Beringin (BPS, 2018)

Di samping itu, Kecamatan Tiga Dihaji memiliki beberapa desa yang dilalui oleh beberapa sungai seperti Sungai Selabung, Sungai Giring-giring, Sungai Tebat, Sungai Air Bunga, dan Sungai Kual. Semua sungai tersebut merupakan anak Sungai Saka dan Selabung yang melalui beberapa kecamatan di Kabupaten Ogan Komering Ulu Selatan (BPS, 2018).

Gambar 3.1 menunjukkan lokasi Kecamatan Tiga Dihaji dari Kabupaten Ogan Komering Ulu Selatan (OKUS), Sumatera Selatan.

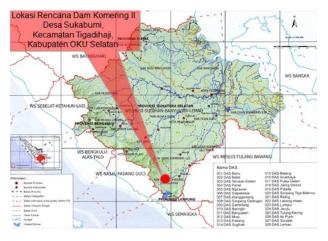
Gambar 3.1 Kecamatan Tiga Dihaji (oranye) dari Kabupaten OKUS (Sumber: Geoportal Sumatera Selatan)

Menurut RTRW Sumatera Selatan Tahun 2005 – 2019 Kabupaten Ogan Komering Ulu Selatan merupakan kawasan rawan bencana longsor. Hal ini dibuktikan dengan laporan Kejadian bencana oleh Badan Nasional Penanggulangan Bencana dan Badan Penanggulangan Bencana Daerah bahwa telah terjadi longsor di Ogan Komering Ulu Selatan pada tanggal 12 Maret 2018, 26 Oktober 2016 dan 4 Desember 2019. Adapun menurut UU Republik Indonesia Nomor 24 tahun 2007 tentang Penanggulangan Bencana, bencana adalah peristiwa atau serangkaian peristiwa yang mengancam dan mengganggu kehidupan dan penghidupan masyarakat yang disebabkan, baik oleh faktor alam dan/atau faktor non alam maupun faktor manusia, kerusakan lingkungan, kerugian harta benda, dan dampak psikologis. Sedangkan fenomena alam merupakan kejadian alam seperti longsor, gempa dan sebagainya yang tidak menimbulkan dampak serta kerugian bagi penghidupan. Banyak kejadian fenomena longsor di wilayah kajian yang tidak dilaporkan oleh Badan Nasional Penanggulangan Bencana (BNPB) maupun Badan Penanggulangan Bencana Daerah (BPBD) karena lokasi kajian yang masih merupakan daerah jarang penduduk, sehingga

kejadian tersebut dianggap tidak merugikan. Namun untuk perencanaan jalan, hal ini sebaiknya diantisipasi kedepannya.

Adapun berdasarkan laporan *supervisor* jalan akses Bendungan Tiga Dihaji, telah terjadi fenomena alam berupa longsor di STA +1950 pada tanggal 2 Maret 2019. Adapun gambaran longsor tersebut dapat dilihat di **Gambar 3.2** di bawah ini.

Gambar 3.2 Fenomena Longsor pada Lokasi Kajian (Sumber: Virama Karya Persero, 2019)


Berdasarkan hal tersebut maka penting untuk mempertimbangkan kerentanan bencana longsor dalam perencanaan jalan yang akan dilakukan. Metode yang akan digunakan dalam pemetaan wilayah rentan longsor ini adalah metode deterministik sesuai dengan ketentuan Badan Nasional Penanggulangan Bencana (BNPB) yang tertera dalam dokumen Risiko Bencana Indonesia tahun 2016. Parameter yang digunakan tersebut merupakan justifikasi terhadap ketersediaan data secara spasial (non-survei). Adapun parameter yang dipertimbangkan dalam melakukan pemetaan ini adalah delapan parameter, yaitu:

- 1. Kemiringan lereng
- 2. Arah lereng (Aspect)
- 3. Panjang/Bentuk lereng
- 4. Tipe batuan

- 5. Jarak dari patahan/sesar aktif
- 6. Tipe tanah (tekstur tanah)
- 7. Kedalaman tanah (solum)
- 8. Komponen hidrologi (curah hujan tahunan)

3.2 Lokasi Proyek

Bendungan Tiga Dihaji merupakan bendungan yang dibangun berlokasi di Desa Sukabumi, Kecamatan Tiga Dihaji, Kabupaten Ogan Komering Ulu Selatan (OKUS), Provinsi Sumatera Selatan. Bendungan Tiga Dihaji berada pada posisi 4° 37′ 44,154″ LS dan 103° 52′ 36,748″ BT dengan ketinggian lokasi antara 210 m sampai dengan 350 m di atas permukaan laut. Lokasi pekerjaan dapat ditempuh dari Kota Palembang melalui jalur darat dengan jarak ± 313 km. Lokasi rencana bendungan disajikan pada gambar berikut ini,

Gambar 3.3 Lokasi Bendungan Tiga Dihaji (Sumber: Virama Karya Persero, 2019)

Gambar 3.4 Kondisi Lapangan (Sumber: Virama Karya Persero, 2019)

Penelitian ini menggunakan metode deterministik dalam melakukan pemetaan daerah rentan pergerakan tanah yang merupakan justifikasi terhadap ketersediaan data secara spasial (non-survei), klasifikasi digitasi on screen dalam melakukan pemetaan tutupan lahan, overlay berjenjang untuk melakukan pemetaan, dan Analytical Hierarchy Process (AHP) dalam penentuan rute terbaik.

3.3 Data Primer

Sumber data primer merupakan sumber data yang langsung memberikan data dari pihak pertama kepada pengumpul data yang biasanya melalui wawancara ataupun *survey* (Herviani dan Febriansyah, 2016). Adapun data primer pada penelitian kali ini adalah sebagai berikut,

Tabel 3.1 Kebutuhan Data Primer

No	Data	Sumber Data
1	Definisi, karakteristik,	Wawancara Supervisor Jalan Akses
	kondisi, dan fungsi jalan	Bendungan Tiga Dihaji OKUS, Sumatera
	akses bendungan.	Selatan

Sumber: Hasil Pengolahan

3.4 Data Sekunder

Sumber data sekunder adalah data yang diperoleh secara tidak langsung atau melalui sumber-sumber lain yang sudah tersedia sebelum penulis melakukan penelitian (Herviani dan Febriansyah, 2016). Adapun data sekunder pada penelitian kali ini adalah sebagai berikut,

Tabel 3.2 Kebutuhan Data Sekunder

No	Data	Spesifikasi	Sumber Data
1	IGD	Skala 1:50.000	Badan Informasi Geospasial
2	Rencana Tata Ruang	Tahun 2005-	BAPPEDA Sumatera
	Wilayah	2019	Selatan
3	Peta Rupa Bumi (RBI)	1:50.000	Inageoportal

No	Data	Spesifikasi	Sumber Data
4	Digital Elevation Model	Resolusi 8 m	Demnas
	(DEM)		
5	Peta Geologi OKUS	1:250.000	Lab Geokomputasi ITB
6	Data Sesar OKUS	Tahun 2019	Laporan Geologi Bendungan
			Tiga Dihaji
7	Peta Persebaran Tanah	RTRW OKUS	Geoportal Provinsi Sumatera
	OKUS	2012-2032	Selatan
		skala 1:50.000	
8	Data Perencanaan	Tahun 2019	PT Virama Karya (KSO)
9	Citra SPOT 6/7 (2019)	Res. 1,5 m	LAPAN
	Level Ortho		
10	Data curah hujan	Tahun 2019	Laporan Bendungan Tiga
			Dihaji & satelit TRMM
11	Citra Landsat 8 L1TP	Resolusi 30m	USGS
	(Mei 2019)		

Sumber: Hasil Pengolahan

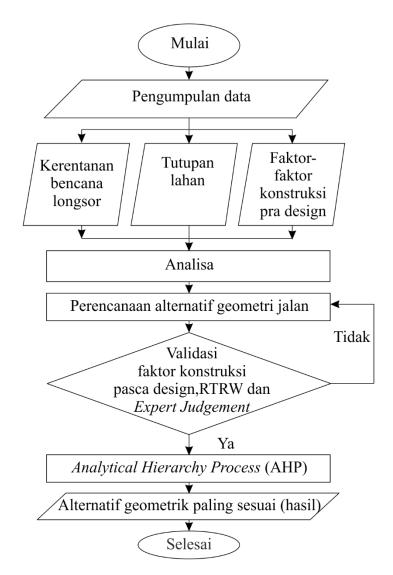
3.5 Instrumen

Adapun perangkat lunak yang digunakan dalam penelitian ini adalah sebagai berikut,

Tabel 3.3 Instrumen Perangkat Lunak yang Dibutuhkan

No	Instrumen	Kegunaan
1	Aplikasi pengolah kata	Melakukan pelaporan
2	Aplikasi pengolah angka	Melakukan perhitungan pada perencanaan dan
		pembuatan <i>database</i>
3	ArcGIS 10.3	Melakukan pengolahan data spasial dan
		pemetaan
4	Aplikasi gambar	Melakukan pemodelan 2 dimensi dan untuk
		mempermudah perhitungan

Sumber: Hasil Pengolahan

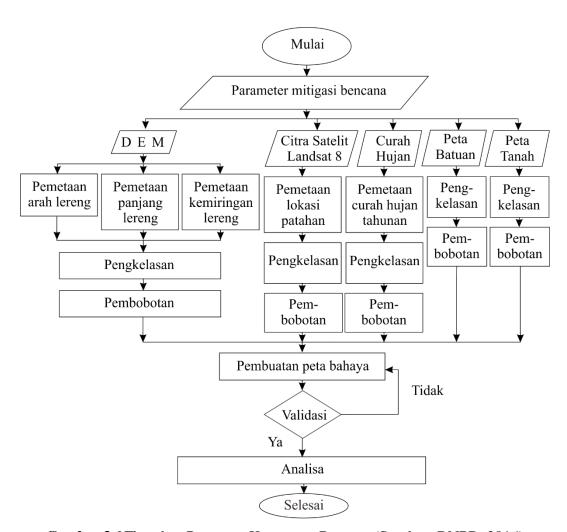

Adapun perangkat keras yang digunakan dalam penelitian ini adalah sebagai berikut,

Tabel 3.4 Instrumen Perangkat Keras yang Dibutuhkan

No	Instrumen	Kegunaan
1	Laptop	Melakukan keseluruhan/sebagian besar
		pengolahan

Sumber: Hasil Pengolahan

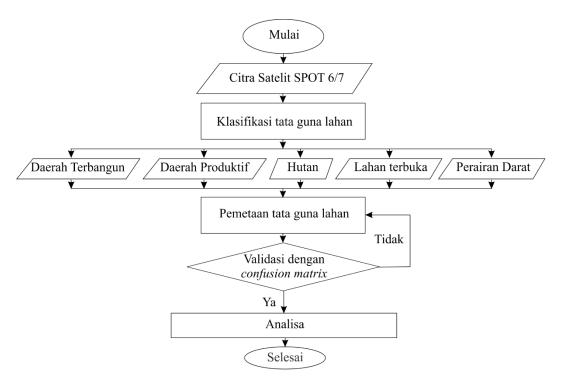
Adapun flowchart pengerjaan penelitian ini adalah sebagai berikut,



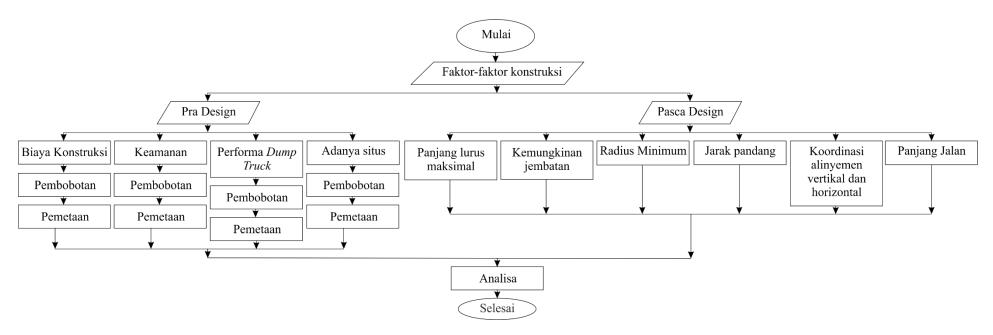
Gambar 3.5 Flowchart Utama (Sumber: Hasil Pengolahan)

Analisis didasarkan atas tiga parameter utama yaitu kerentanan bencana longsor, tutupan lahan dan faktor-faktor konstruksi. Ketiga faktor tersebut digabungkan menggunakan teknik *overlay* berjenjang; yaitu dengan terlabih dahulu melakukan *overlay* masing-masing sub parameter. *Output* pemetaan sub-parameter tersebut kemudian di-*overlay* lagi untuk mendapatkan hasil pemetaan gabungan (akhir). Hasil analisis tersebut dijadikan acuan dalam menentukan alternatif geometrik jalan akses Bendungan Tiga Dihaji. Alternatif jalan tersebut divalidasi

dengan dokumen Rencana Tata Ruang Wilayah (RTRW) Provinsi Sumatera Selatan tahun 2005-2019, RTRW Kabupaten Ogan Komering Ulu Selatan tahun 2012-2032, perencanaan jalan pada modul Perencanaan Jaringan Jalan yang dikeluarkan oleh PUPR (2017) sebagai faktor pasca konstruksi, dan *expert judgement*.


Adapun penjabaran masing-masing parameter dapat dilihat di **Gambar** 3.6, Gambar 3.7 dan Gambar 3.8.

Gambar 3.6 Flowchart Parameter Kerentanan Bencana (Sumber: BNPB, 2016)

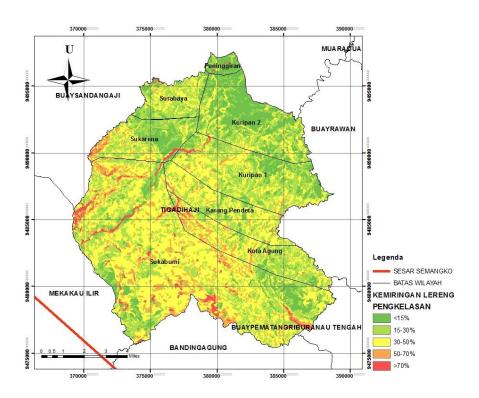

Gambar 3.6 di atas merupakan penjabaran dari parameter kerentanan bencana. Adapun parameter serta metode yang digunakan tertera dalam dokumen Risiko Bencana Indonesia yang dikeluarkan oleh BNPB (Badan Nasional

Penanggulangan Bencana) pada tahun 2016. Parameter yang digunakan tersebut merupakan justifikasi terhadap ketersediaan data secara spasial (non-survei). Validasi dilakukan dengan menghitung nilai korelasi antara peta kerentanan yang dihasilkan pada penelitian ini dengan peta kerentanan yang dikeluarkan BNPB pada portal INARISK (geoportal BNPB).

Gambar 3.7 Flowchart Parameter Tutupan Lahan (Sumber: PUPR, 2017; Lapan, 2014)

Gambar 3.7 di atas merupakan penjabaran dari parameter tutupan lahan. Penentuan parameter ini didasarkan atas pengkelasan klasifikasi lahan yang ditetapkan oleh Lapan (2014) dan ketentuan analisis lahan yang dijadikan dasar perencanaan jalan sesuai modul yang dikeluarkan oleh PUPR (2017). Citra Satelit SPOT 6/7 dengan resolusi multispektral 6 meter dan pankromatik 1,5 meter yang telah terortorektifikasi digunakan untuk melakukan interpretasi tutupan lahan. Interpretasi ini menggunakan metode *digitasi on screen*. Adapun hasil interpretasi divalidasi dengan *confusion matrix* dan *ground truth*.

Gambar 3.8 Flowchart Parameter Faktor-Faktor Konstruksi (Sumber: Kang & Seo, 2013; PUPR, 2017)


Gambar 3.8 di atas merupakan penjabaran dari parameter faktor-faktor konstruksi. Penentuan parameter ini didasarkan atas penelitian terdahulu yang dilakukan Kang dan Seo (2013) mengenai perencanaan jalan akses proyek dengan metode SIG dan ketentuan yang tertera dalam modul perencanaan jaringan jalan yang dikeluarkan oleh PUPR (2017). Masing-masing parameter dihitung kemudian dipetakan untuk lebih lanjut dilakukan analisis.

BAB 4 HASIL DAN PEMBAHASAN

4.1 Aspek Kerentanan Bencana

4.1.1 Kemiringan Lereng

Penentuan kemiringan lereng dilakukan dengan mengolah *Digital Elevation Model* (DEM) pada wilayah studi. Adapun pengkelasan kemiringan lereng dilakukan berdasarkan parameter penyusunan peta bahaya tanah longsor yang dikeluarkan oleh Badan Nasional Penanggulangan Bencana (BNPB) pada dokumen Risiko Bencana Indonesia tahun 2016 (**Tabel 2.3**). Adapun berdasarkan **Tabel 2.3** dibuatlah peta kemiringan lereng sebagai berikut,

Gambar 4.1 Peta Kemiringan Lereng (Sumber: Hasil Pengolahan)

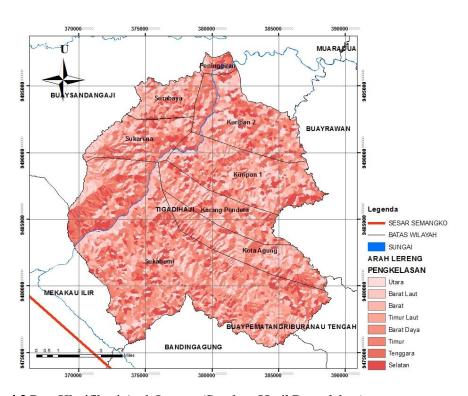
Gambar 4.1 merupakan peta kemiringan lereng dengan skala 1:60.000. Satu kelas ditambahkan yaitu <15% pada data di atas. Hal tersebut dilakukan agar semua kelas kemiringan dapat terekap pada **Gambar 4.1**. Berdasarkan **Gambar 4.1** di atas

dapat dilihat adanya topografi yang berbukit pada Kelurahan Sukabumi. Adapun kemiringan lereng menempati porsi terbesar dalam penentu kerentanan wilayah yaitu sebesar 30% sehingga kerentanan longsor tertinggi diduga pada Kelurahan Sukabumi.

Adapun luasan wilayah untuk masing-masing kelas kemiringan lereng dapat dilihat pada **Tabel 4.1** berikut,

Tabel 4.1 Luas Wilayah setiap Kelas Kemiringan

No	Kelurahan	Luas Wilayah pada Kelas Kemiringan (km²)						
	Kelurahan	<15%	15-30%	30-50%	50-70%	>70%		
1	Peninggiran	2,41	0,68	0,18	0,01	0,08		
2	Surabaya	2,31	6,44	4,28	0,22	0,17		
3	Sukarena	5,31	7,53	5,01	1,46	0,45		
4	Sukabumi	12,19	35,49	65,18	13,97	4,81		
5	Kota Agung	1,91	9,12	9,77	2,71	0,36		
6	Karang Pendeta	1,86	7,35	10,76	0,84	0,13		
7	Kuripan 1	7,37	16,58	12,86	1,03	0,38		
8	Kuripan 2	16,77	10,61	6,07	0,13	0,03		


Sumber: Hasil Pengolahan

Berdasarkan **Tabel 4.1** di atas dapat dilihat Kelurahan Sukabumi memiliki kemiringan di atas 30% paling tinggi sedangkan Peninggiran memiliki luas kemiringan di atas 30% paling rendah apabila dibandingkan dengan kelurahan lainnya. Adanya fenomena ini diduga karena keberadaan Sesar Besar Sumatera (Sesar Semangko) yang memanjang dari Aceh hingga Teluk Semangko sehingga menimbulkan relif pegunungan pada daerah yang dilaluinya.

4.1.2 Arah Lereng (Aspect)

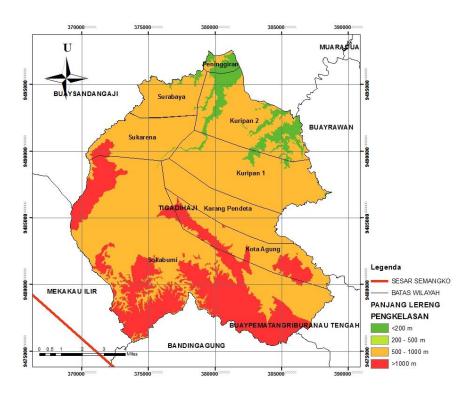
Penentuan arah lereng (Aspect) dilakukan dengan pengolahan Digital Elevation Model (DEM) pada wilayah studi. Adapun pengkelasan arah lereng

dilakukan berdasarkan parameter penyusun peta bahaya tanah longsor yang dikeluarkan oleh Badan Nasional Penanggulangan Bencana (BNPB) pada dokumen Risiko Bencana Indonesia tahun 2016 (**Tabel 2.3**). Adapun berdasarkan **Tabel 2.3** dibuatlah peta arah lereng (*aspect*) sebagai berikut,

Gambar 4.2 Peta Klasifikasi Arah Lereng (Sumber: Hasil Pengolahan)

Gambar 4.2 merupakan peta klasifikasi arah lereng dengan skala 1:60.000. Arah lereng ini menentukan bagaimana daerah itu terpapar oleh suatu fenomena. Seperti halnya hujan. Arah lereng ini membantu dalam menentukan daerah jatuhnya hujan, daerah bayangan hujan, banyaknya paparan sinar matahari yang diperoleh dan diskontinuitas (Captiani dkk, 2014). Dari Gambar 4.2 tersebut juga nampak jelas posisi sungai yaitu daerah lembah yang memanjang dari Kelurahan Peninggiran hingga Barat Daya Kelurahan Sukabumi.

Adapun luasan wilayah untuk masing-masing kelas arah lereng dapat dilihat pada **Tabel 4.2** berikut,


Tabel 4.2 Luas Wilayah setiap Kelas Arah Lereng

No	Kelurahan	Luas Wilayah pada Kelas Arah Lereng (km²)							
		U	BL	В	TL	BD	T	TG	S
1	Peninggiran	0,33	0,53	0,28	0,17	0,3	0,51	0,67	0,57
2	Surabaya	1,57	2,31	2,68	1,33	1,19	1,68	1,4	1,27
3	Sukarena	2,57	3,76	1,5	2,43	0,96	2,54	3,52	2,5
4	Sukabumi	13,76	15,69	15,06	16,61	16,69	18,46	17,72	17,65
5	Kota Agung	3,48	3,03	3,25	3,52	1,95	3,96	2,66	2,02
6	Karang	2,49	2,74	3,48	2,05	2,16	2,96	3,07	1,98
	Pendeta								
7	Kuripan 1	5,52	5,66	5,72	3,77	3,24	4,88	4,59	4,84
8	Kuripan 2	4,67	5,27	3,34	3,21	3,42	4,71	5,17	3,83

Sumber: Hasil Pengolahan

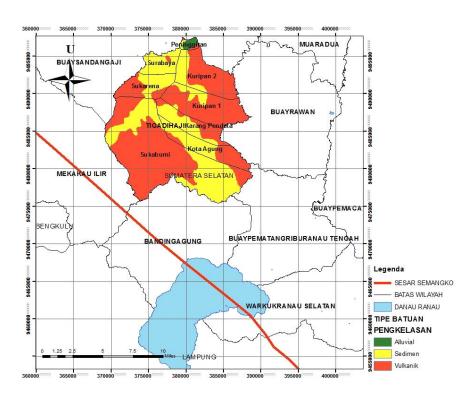
4.1.3 Panjang/Bentuk Lereng

Penentuan panjang/bentuk lereng dilakukan dengan mengolah *Digital Elevation Model* (DEM) pada wilayah studi. Adapun pengkelasan panjang/bentuk lereng dilakukan berdasarkan parameter penyusunan peta bahaya tanah longsor yang dikeluarkan oleh Badan Nasional Penanggulangan Bencana (BNPB) pada dokumen Risiko Bencana Indonesia tahun 2016 (**Tabel 2.3**). Adapun berdasarkan **Tabel 2.3** dibuatlah peta panjang/bentuk lereng sebagai berikut,

Gambar 4.3 Peta Klasifikasi Panjang/Bentuk Lereng (Sumber: Hasil Pengolahan)

Gambar 4.3 merupakan peta klasifikasi panjang/bentuk lereng dengan skala 1:60.000. Panjang lereng tersebut menentukan potensi pergerakan tanah. Semakin panjang dan curam suatu lereng, maka semakin tinggi potensi pergerakan tanahnya. Dapat dilihat dari gambar di atas bahwa bagian Selatan wilayah kajian memiliki skor kelerengan yang tertinggi (sebagian Kelurahan Sukabumi dan Kelurahan Kota Agung). Fenomena tersebut diduga dikarenakan adanya sesar Besar Sumatera di bagian Selatan wilayah kajian sehingga menimbulkan relif pegunungan. Hal tersebut juga sejalan dengan peta kemiringan lereng yang telah dibuat sebelumnya (Gambar 4.1).

Adapun luasan wilayah untuk masing-masing kelas panjang lereng dapat dilihat pada **Tabel 4.3** berikut,


Tabel 4.3 Luas Wilayah setiap Kelas Panjang Lereng

No	Kelurahan	Luas Wilayah pada Kelas Panjang Lereng (km²)						
	Kelurahan	<200m	200-500m	500-1000m	>1000m			
1	Peninggiran	2,33	1,02	0	0			
2	Surabaya	0,75	12,68	0	0			
3	Sukarena	0,08	18,34	1,35	0			
4	Sukabumi	0,02	76,54	54,98	0,1			
5	Kota Agung	0	16,36	7,51	0			
6	Karang Pendeta	0	20,93	0	0			
7	Kuripan 1	1,33	36,89	0	0			
8	Kuripan 2	10,63	22,99	0	0			

Sumber: Hasil Pengolahan

4.1.4 Tipe Batuan

Penentuan tipe batuan didasarkan peta geologi Lembar Baturaja skala 1:250.000 seperti yang tertera pada **Lampiran 1**. Adapun pengkelasan dilakukan berdasarkan parameter penyusun peta bahaya tanah longsor yang dikeluarkan oleh Badan Nasional Penanggulangan Bencana (BNPB) pada dokumen Risiko Bencana Indonesia tahun 2016 (**Tabel 2.3**). Adapun berdasarkan **Tabel 2.3** dibuatlah peta tipe batuan sebagai berikut,

Gambar 4.4 Peta Klasifikasi Tipe Batuan (Sumber: Pusat Penelitian dan Pengembangan Geologi, 1993)

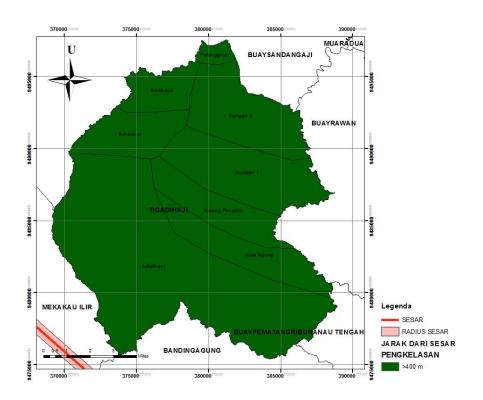
Berdasarkan peta klasifikasi tipe batuan di atas dapat diketahui di Kelurahan Peninggiran memiliki tipe batuan alluvium seluas 2,32 km². Wilayah dengan tipe batuan sedimen terdapat pada bagian tengah wilayah kajian yang memotong kelurahan-kelurahan di Kecamatan Tiga Dihaji dengan luas total 109,44 km². Sedangkan wilayah dengan tipe batuan vulkanik berada pada tepian wilayah kajian yang juga memotong sebagian besar kelurahan di Kecamatan Tiga Dihaji dengan luas total 173,04 km².

Besarnya lapisan vulkanik ini diduga karena adanya gunung api aktif. Perlu diketahui bahwa danau Ranau sendiri merupakan danau purba yang terbentuk karena adanya letusan gunung berapi. Hal ini juga sesuai dengan Laporan Geologi Bendungan Tiga Dihaji (2019) yang menyatakan sebagian besar wilayah tertutup oleh batuan vulkanik.

Adapun luasan wilayah untuk masing-masing kelas tipe batuan dapat dilihat pada **Tabel 4.4** berikut,

Tabel 4.4 Luas Wilayah setiap Kelas Tipe Batuan

No	Kelurahan	Luas Wilayah pada Kelas Tipe Batuan (km²)				
110	Keluralian	Alluvial	Sedimen	Vulkanik		
1	Peninggiran	2,32	0,47	0,57		
2	Surabaya	0	12,97	0,46		
3	Sukarena	0	9,68	10,09		
4	Sukabumi	0	47,43	84,21		
5	Kota Agung	0	13,18	10,69		
6	Karang Pendeta	0	12,14	8,8		
7	Kuripan 1	0	5,34	32,87		
8	Kuripan 2	0,03	8,22	25,37		

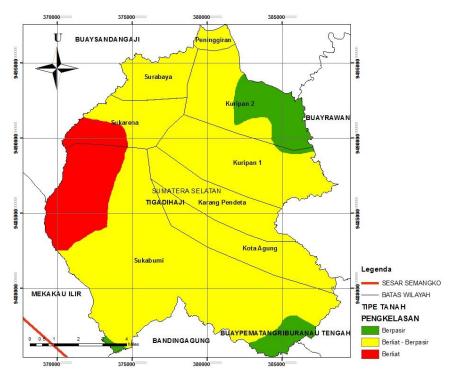

Sumber: Hasil Pengolahan

4.1.5 Jarak dari Patahan/Sesar Aktif

Laporan Geologi Bendungan Tiga Dihaji (2019) menyatakan bahwa telah ditemukan patahan (lebih lanjut dinamai sebagai sesar Pauh) yang terletak di wilayah kajian. Hasil pemetaan dari sesar Pauh tersebut dapat dilihat pada **Lampiran 2**.

Namun, setelah dikaji lebih lanjut, penulis tidak menemukan adanya sejarah yang mencatat kejadian gempa pada lokasi yang diduga sebagai sesar aktif tersebut. Sehingga patahan yang dijadikan acuan dalam pemetaan ini adalah patahan Besar Sumatera atau Semangko.

Data keberadaan sesar Semangko ini diperoleh melalui interpretasi citra Landsat 8 band 5 6 7 yang divalidasi dengan data sesar di portal INARISK (geoportal BNPB). Data sesar tersebut kemudian di-*buffer* untuk memperoleh radius berdasarkan ketentuan BNPB seperti yang tertuang dalam dokumen Risiko Bencana Indonesia tahun 2016 (**Tabel 2.3**). Berdasarkan **Tabel 2.3** dibuatlah peta jarak dari patahan/sesar aktif sebagai berikut,



Gambar 4.5 Peta Klasifikasi Jarak dari Patahan/Sesar Aktif (Sumber: Hasil Pengolahan)

Gambar 4.5 di atas merupakan peta klasifikasi jarak dari parahan/sesar aktif dengan skala 1:60.000. Berdasarkan analisis yang telah dilakukan, keseluruhan wilayah kajian berjarak lebih dari 400 meter dari sesar aktif (Sesar Besar Sumatera/Semangko). Berdasarkan dokumen Risiko Bencana Indonesia yang dikeluarkan BNPB (2016), keberadaan sesar aktif dapat meningkatkan kerentanan pergerakan tanah pada daerah tersebut.

4.1.6 Tipe Tanah (Tekstur Tanah)

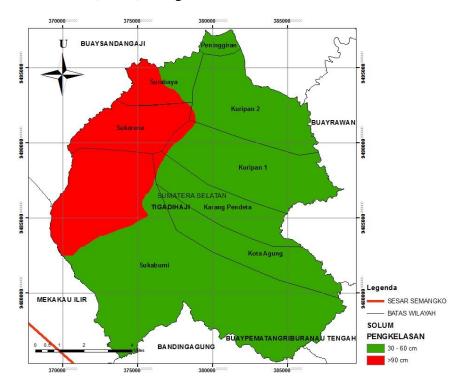
Data tipe tanah didapat dari Bappeda (Badan Pembangunan Daerah) melalui geoportal Sumatera Selatan pada tahun 2019 dengan skala 1:50.000. Adapun pengkelasan dilakukan berdasarkan parameter penyusun peta bahaya tanah longsor yang dikeluarkan oleh Badan Nasional Penanggulangan Bencana (BNPB) pada dokumen Risiko Bencana Indonesia tahun 2016 (**Tabel 2.3**). Adapun berdasarkan **Tabel 2.3** dibuatlah peta tipe tanah/tekstur tanah sebagai berikut,

Gambar 4.6 Peta Klasifikasi Tipe/Tekstur Tanah (Sumber: Geoportal Sumatera Selatan, 2018)

Berdasarkan peta klasifikasi tipe/tekstur tanah di atas dapat diketahui wilayah kajian yang terklasifikasi sebagai wilayah dengan tipe tanah berliat adalah di bagian Barat (sebagian wilayah Kelurahan Sukarena dan Sukabumi), tipe tanah berliat – berpasir berada di sebagian besar wilayah kajian (tersebar di seluruh kelurahan) dan wilayah dengan tipe tanah berpasir berada di sebagian kecil wilayah kajian (Kelurahan Sukabumi, Kuripan 1 dan Kuripan 2).

Adapun luasan wilayah untuk masing-masing kelas tipe tanah dapat dilihat pada **Tabel 4.5** berikut,

Tabel 4.5 Luas Wilayah setiap Kelas Tipe Tanah


No	Kelurahan	Luas Wilayah pada Kelas Tipe Tanah (km²)				
110		Berpasir	Berliat-Berpasir	Berliat		
1	Peninggiran	0	3,35	0		
2	Surabaya	0	13,43	0		

No	Kelurahan	Luas Wilayah pada Kelas Tipe Tanah (km²)				
110	ixciui aliali	Berpasir	Berliat-Berpasir	Berliat		
3	Sukarena	0	13,64	6,13		
4	Sukabumi	6,90	99,73	25,01		
5	Kota Agung	0	23,87	0		
6	Karang Pendeta	0	20,94	0		
7	Kuripan 1	0,78	37,43	0		
8	Kuripan 2	14,85	18,77	0		

Sumber: Hasil Pengolahan

4.1.7 Kedalaman Tanah (Solum)

Data kedalaman solum didapat dari Bappeda (Badan Pembangunan Daerah) melalui geoportal Sumatera Selatan dengan skala 1:50.000. Adapun pengkelasan dilakukan berdasarkan parameter penyusun peta bahaya tanah longsor yang dikeluarkan oleh Badan Nasional Penanggulangan Bencana (BNPB) pada dokumen Risiko Bencana Indonesia tahun 2016 (**Tabel 2.3**). Berdasarkan **Tabel 2.3** dibuatlah peta kedalaman tanah (solum) sebagai berikut,

Gambar 4.7 Peta Klasifikasi Kedalaman Tanah (Solum) (Sumber: Geoportal Sumatera Selatan, 2018)

Berdasarkan peta klasifikasi kedalaman tanah (solum) di atas dapat diketahui di wilayah kajian terklasifikasi sebagai wilayah dengan kedalaman solum 30-60 cm adalah pada sebagian besar wilayah (meliputi semua kelurahan kecuali Kelurahan Sukarena) dan kedalaman solum >90 cm ada pada seluruh Kelurahan Sukarena, sebagian Kelurahan Surabaya dan Sukabumi, serta sebagian kecil Kelurahan Kuripan 1, Kuripan 2 dan Karang Pendeta. Hal tersebut juga sejalan dengan penelitian yang dilakukan Widjaya dkk (2003) yang menyatakan bahwa kedalaman tanah di wilayah Ogan Komering adalah bervariasi dari 50 cm hingga lebih dari 100 cm.

Adapun luasan wilayah untuk masing-masing kelas solum dapat dilihat pada **Tabel 4.6** berikut,

Tabel 4.6 Luas Wilayah setiap Kelas Solum

No	Kelurahan	Luas Wilayah pada Kelas Solum (km²)				
NO	Keluranan	<30 cm	30-60 cm	60-90 cm	>90 cm	
1	Peninggiran	0	3,35	0	0	
2	Surabaya	0	5,72	0	7,71	
3	Sukarena	0	0,07	0	19,7	
4	Sukabumi	0	97,39	0	34,24	
5	Kota Agung	0	23,87	0	0	
6	Karang Pendeta	0	20,18	0	0,75	
7	Kuripan 1	0	36,78	0	1,43	
8	Kuripan 2	0	33,40	0	0,22	

Sumber: Hasil Pengolahan

4.1.8 Komponen Hidrologi (Curah Hujan Tahunan)

Data curah hujan yang digunakan adalah data curah hujan bulanan (mm) sepanjang tahun 2019 yang diperoleh dari satelit TRMM resolusi 30 km. Adapun data pada masing-masing bulan adalah sebagai berikut,

Tabel 4.7 Data Curah Hujan Bulanan Tahun 2019

Bulan	Januari	Februari	Maret	April	Mei	Juni
Curah	389,69	347,56	304,75 mm	331,70	101,61	66,47 mm
Hujan	mm	mm		mm	mm	

Bulan	Juli	Agustus	September	Oktober	November	Desember
Curah	120,51	19,33	41,83 mm	38,41	89,97 mm	370,48
Hujan	mm	mm		mm		mm

Sumber: TRMM, 2019

Berdasarkan data yang telah dihimpun didapatkan nilai curah hujan tahunan pada tahun 2019 di Kecamatan Tiga Dihaji adalah sebesar 2222,30 mm/tahun. Pada analisis ini tidak dilakukan interpolasi karena keseluruhan wilayah kajian berada pada grid yang sama. Adapun berdasarkan **Tabel 2.3**, curah hujan pada wilayah kajian dapat dikategorikan dalam kelas 2. Berdasarkan **Tabel 2.3** dibutlah peta curah hujan tahunan seperti berikut,

Sukarena

Sukarena

Sukarena

Sukarena

Sukarena

Kuripan 1

Kota Agung

Kota Agung

Sukabumi

MEKA KAU ILIR

Sukabumi

BANDINGA GUNG

BANDINGA GUNG

BANDINGA GUNG

ST5000

S

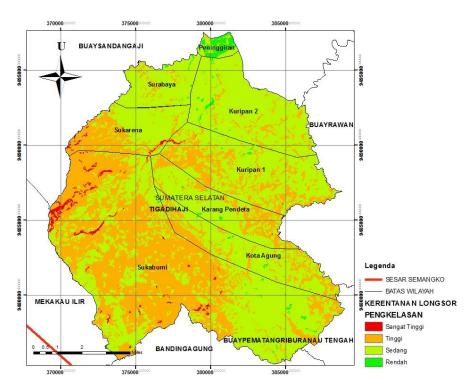
Gambar 4.8 Peta Klasifikasi Curah Hujan Tahunan (Sumber: Hasil Pengolahan)

Gambar 4.8 merupakan peta klasifikasi curah hujan tahunan di Kecamatan Tiga Dihaji dengan skala 1:60.000.000. Berdasarkan Gambar 4.8 dapat dilihat bahwa curah hujan pada daerah kajian berkisar antara 2000 mm hingga 3000 mm per tahun. Hal tersebut tidak berbeda jauh dari Laporan Hidrologi Bendungan Tiga Dihaji (2019) yang menyatakan bahwa wilayah kajian memiliki curah hujan tahunan rata-rata berkisar 2000 – 3000 mm/tahun yang menurut BNPB (2016) termasuk dalam kelas 2. Adapun bila menurut Laporan Hidrologi Bendungan Tiga Dihaji (2019) data curah hujan pada masing-masing bulan adalah sebagai berikut,

Tabel 4.8 Data Curah Hujan Lokasi Kajian

Bulan	Stasiun Simpang	Stasiun Banding	Stasiun Negara
	Capang	Agung	Batin
Januari	307,1 mm	274,5 mm	330,7 mm
Februari	265,7 mm	294,8 mm	283,2 mm
Maret	255,7 mm	290,6 mm	282,9 mm
April	273,2 mm	264,5 mm	150,2 mm
Mei	250,9 mm	220,8 mm	144,6 mm
Juni	163,7 mm	107,6 mm	88,6 mm
Juli	157,1 mm	124,1 mm	101,3 mm
Agustus	131,0 mm	120,9 mm	149,8 mm
September	155,1 mm	149,3 mm	135,7 mm
Oktober	194,5 mm	172,9 mm	174,9 mm
November	276,8 mm	279,3 mm	235,1 mm
Desember	309,4 mm	270,9 mm 262,4 mm	
Jumlah	2740,2 mm	2570,2 mm	2339,4 mm

Sumber: Laporan Hidrologi Bendungan Tiga Dihaji, 2019


Dapat dilihat jumlah data dari masing-masing stasiun juga masuk dalam kategori kelas 2 (**Tabel 2.3**) yaitu kelas dengan curah hujan tahunan 2000 – 3000 mm/tahun. Pada Laporan Hidrologi tersebut tidak menjelaskan tahun akusisi data

di atas. Sehingga data di atas hanya digunakan sebagai validasi pengkelasan berdasarkan hasil pembacaan data curah hujan satelit TRMM.

4.1.9 Pemetaan Kerentanan Longsor

Pemetaan kerentanan longsor dilakukan dengan teknik *overlay* delapan faktor yang telah dihitung dan dipetakan sebelumnya. Adapun pembobotan masingmasing parameter didasarkan atas parameter penyusun peta bahaya tanah longsor yang dikeluarkan oleh Badan Nasional Penanggulangan Bencana (BNPB) pada dokumen Risiko Bencana Indonesia tahun 2016 (**Tabel 2.3**)

Adapun hasil dari pemetaan kedelapan parameter tersebut adalah sebagai berikut,

Gambar 4.9 Peta Kerentanan Longsor (Sumber: Hasil Pengolahan)

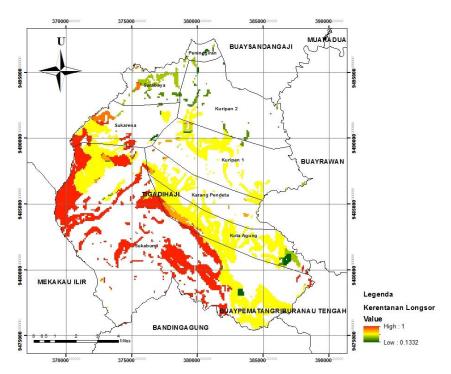
Berdasarkan **Gambar 4.9** di atas dapat dilihat daerah dengan kerentanan tertinggi adalah pada Kelurahan Sukabumi dan sebagian Kelurahan Sukarena. Hal tersebut sesuai dengan hipotesa penulis yang didasarkan atas peta kemiringan

lereng (**Gambar 4.1**) yang mana memiliki pembobotan tertinggi apabila dibandingkan dengan parameter lainnya.

Daerah dengan kerentanan rendah adalah Kelurahan Peninggiran. Hal tersebut dikarenakan semakin ke Utara wilayah tersebut, semakin menjauhi Sesar Besar Sumatera, sehingga memiliki topografi yang lebih datar dibandingkan daerah di bagian Selatan (daerah Kelurahan Sukabumi).

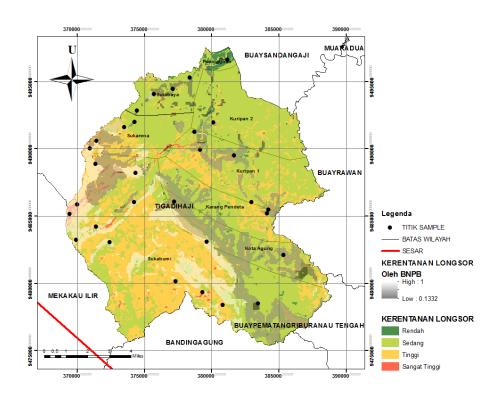
Adapun luasan wilayah untuk masing-masing kelas kerentanan dapat dilihat pada **Tabel 4.9** berikut,

Tabel 4.9 Luas Wilayah setiap Kelas Kerentanan


		Luas Wilayah pada Kelas Kerentanan (km²)					
No	Kelurahan	Sangat Rendah	Rendah	Sedang	Tinggi	Sangat Tinggi	
1	Peninggiran	0	1,82	1,44	0,1	0	
2	Surabaya	0	0,14	12,13	1,16	0	
3	Sukarena	0	0	11,42	8,03	0,31	
4	Sukabumi	0	0,33	56,88	72,18	2,24	
5	Kota Agung	0	0,13	17,13	6,61	0	
6	Karang Pendeta	0	0,1	15,06	5,75	0,032	
7	Kuripan 1	0	0,12	25,74	12,25	0,1	
8	Kuripan 2	0	0,43	30,37	2,81	0	

Sumber: Hasil Pengolahan

4.1.10 Validasi


Validasi dilakukan dengan menghitung koefisien korelasi (R²) antara peta kerentanan longsor yang telah dibuat (**Gambar 4.9**) dengan peta kerentanan longsor yang diterbitkan oleh Badan Nasional Penanggulanan Bencana (BNPB) yang di-*download* melalui portal INARISK (geoportal BNPB) dengan resolusi 100 meter atau skala 1:200.000. Peta tersebut juga merupakan *output* dari pemrosesan data berdasarkan dokumen Risiko Bencana Indonesia yang dikeluarkan oleh BNPB (2016) dengan teknik *scoring* dan *overlaying*. Sehingga, peta yang diunduh dari

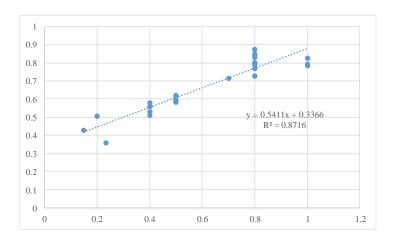
INARISK tersebut dapat digunakan sebagai referensi validasi peta kerentanan yang telah dibuat dalam penelitian ini. Adapun peta kerentanan longsor yang dikeluarkan oleh BNPB adalah sebagai berikut,

Gambar 4.10 Peta Kerentanan Longsor (Sumber: BNPB, 2019)

Dapat dilihat dari **Gambar 4.10** data yang ditampilkan tidak lengkap. Data tersebut hanya meliputi beberapa area saja dan ada beberapa yang kosong. Sehingga penulis menentukan 30 titik sebaran berdasarkan ketersedian data yang terdapat pada peta kerentanan longsor yang dikeluarkan BNPB (**Gambar 4.10**). Penentuan jumlah titik tersebut didasarkan atas klasifikasi data statistika yang mengkategorikan lebih dari sama dengan 30 data sebagai data besar. Adapun lokasi titik sampel adalah sebagai berikut,

Gambar 4.11 Sebaran Titik Sampel (Sumber: Hasil Pengolahan)

Adapun nilai dari masing-masing titik sampel tersebut dilihat dari peta kerentanan yang telah dibuat pada penelitian ini dan peta kerentanan yang dikeluarkan oleh BNPB dengan menggunakan dokumen acuan yang sama (dokumen Risiko Bencana Indonesia yang dikeluarkan oleh BNPB tahun 2016) adalah sebagai berikut,


Tabel 4.10 Nilai Titik Sampel

	X	Y	BNPB	PENELITIAN
NO	(m)	(m)	(Tanpa Satuan)	(Tanpa Satuan)
1	369439	9485170	0.800000012	0.799650073
2	369999	9485860	0.800000012	0.874650061
3	372406	9483050	1	0.785099983
4	379642	9483100	0.800000012	0.728850007
5	374227	9486040	0.800000012	0.797600031
6	374330	9488220	0.800000012	0.76850003
7	379132	9489930	0.5	0.622600019
8	378742	9491260	0.5	0.593500018
9	380123	9491960	0.5	0.616350055

	X	Y	BNPB	PENELITIAN
NO	(m)	(m)	(Tanpa Satuan)	(Tanpa Satuan)
10	381664	9489520	0.5	0.593500018
11	382955	9486040	0.5	0.585100055
12	384245	9485490	0.5	0.616350055
13	384119	9485190	0.5	0.585100055
14	380834	9478390	0.800000012	0.728850007
15	379332	9479350	0.800000012	0.803849995
16	377323	9480160	0.800000012	0.791350007
17	381194	9496620	0.233100012	0.357950032
18	378393	9495280	0.399800003	0.58100003
19	377100	9494470	0.399800003	0.562250018
20	375711	9494080	0.199800014	0.506000042
21	374442	9492850	0.399800003	0.512250006
22	374267	9492000	0.399800003	0.531000018
23	373505	9491620	0.699800014	0.716350019
24	371439	9490600	0.800000012	0.830900073
25	370960	9490030	0.800000012	0.843400061
26	371360	9488880	0.800000012	0.849650085
27	371401	9484220	1	0.824650049
28	369922	9483260	1	0.795550048
29	383443	9478510	0.149849996	0.431000054
30	385343	9482120	0.5	0.585100055
31	377211	9486090	0.5	0.593500018

Sumber: Hasil Pengolahan

Berdasarkan nilai titik sampel di atas maka didapat grafik korelasi sebagai berikut,

Gambar 4.12 Grafik Korelasi Mitigasi Bencana (Sumber: Hasil Pengolahan)

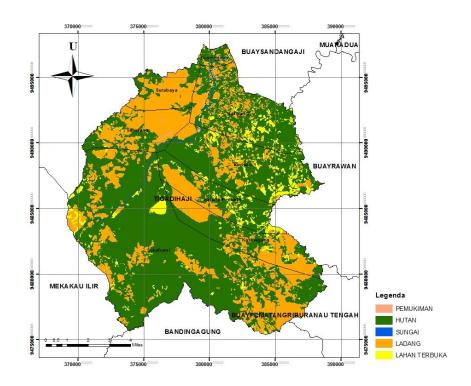
Berdasarkan perhitungan yang telah dilakukan didapatkan nilai R² sebesar 0,8716. Mengacu pada **Tabel 2.9**, nilai tersebut menunjukkan hubungan yang sangat kuat antara peta kerentanan yang dikeluarkan oleh Badan Nasional Penanggulangan Bencana (BNPB) dan peta kerentanan yang dibuat dalam penelitian ini. Sehingga, peta kerentanan longsor pada penelitian ini dapat digunakan untuk analisis selanjutnya.

4.2 Aspek Tutupan Lahan

Pemetaan aspek tutupan lahan dilakukan dengan digitasi manual (*on screen*) pada citra SPOT 7 akusisi tanggal 9 Januari 2019 dan 14 Juni 2019 yang telah terortorektifikasi. Hal ini dilakukan dikarenakan klasifikasi terbimbing belum mampu membedakan lahan terbuka dan ladang. Kedua tutupan lahan tersebut harus dibedakan karena memiliki bobot yang berbeda kaitannya dengan perencanaan jalan.

Penentuan kelas lahan didasarkan pada peraturan PU Bina Marga (1997) terkait perencanaan jalan dan Lapan (2014) terkait kelas tutupan lahan yang dapat dicantumkan pada digitasi citra resolusi tinggi (citra SPOT 7 resolusi 1,5 meter). Berdasarkan kajian peraturan PU Bina Marga (1997) dan Lapan (2014) maka dibuatlah 5 kelas klasifikasi lahan sebagai berikut,

Tabel 4.11 Kelas Tutupan Lahan


No	Keterangan	Skor
1	Lahan Terbuka	1,0
2	Ladang	0,8
3	Sungai	0,6
4	Hutan	0,4
5	Pemukiman	0,2

Sumber: PU Bina Marga, 1997; Lapan, 2014

Penelitian ini menggunakan metode AHP yang mana nilai skoring didasarkan atas skala prioritas. Skor tertinggi menunjukkan lokasi yang paling diprioritaskan untuk perencanaan jalan dan sebaliknya. Skoring tersebut ditentukan berdasarkan studi literatur dan *expert judgement* pada bidang perencanaan jalan.

Menurut *expert* judgement, lahan terbuka lebih disukai daripada ladang karena tidak memerlukan waktu yang berbelit untuk pembebasan lahan. Ladang lebih dipriorotaskan dari sungai karena meminimalisir kebutuhan jembatan. Sungai lebih diprioritaskan dari hutan karena meminimalisir panjang jalan dan pembebasan lahan yang harus dilakukan serta sebagai wujud menjaga kelestarian alam yang ada. Pemukiman memiliki prioritas terendah karena memerlukan proses yang berbelit dan biaya ganti rugi yang cukup tinggi saat pembebasan lahan.

Adapun hasil pemetaan tutupan lahan adalah sebagai berikut,

Gambar 4.13 Pemetaan Tutupan Lahan (Sumber: Hasil Pengolahan)

Gambar 4.13 merupakan peta tutupan lahan dengan skala 1:30.000. Dapat dilihat dari Gambar 4.13 sebagian besar tutupan lahan di Kecamatan Tiga Dihaji merupakan ladang dan hutan. Hal tersebut dikarenakan daerah kajian merupakan

daerah yang masih alami. Adapun lahan terbuka tidak banyak ditemukan. Berdasarkan keterangan *supervisor* jalan akses Bendungan Tiga Dihaji, hal tersebut dikarenakan masyarakat di lokasi kajian segera akan memanfaatkan lahan yang mereka miliki atau lahan kosong yang ada sebagai ladang guna mendapatkan keuntungan. Pemukiman juga masih jarang ditemukan pada lokasi kajian. Berdasarkan keterangan *supervisor* jalan akses Bendungan Tiga Dihaji, hal tersebut dikarenakan wilayah tersebut berada di luar Pulau Jawa yang notabene masih jarang penduduk dan Kecamatan Tiga Dihaji sendiri memiliki topografi yang kurang sesuai sebagai lokasi pemukiman.

Adapun luasan wilayah untuk masing-masing kelas tutupan lahan dapat dilihat pada **Tabel 4.12** berikut,

Tabel 4.12 Luas Wilayah setiap Kelas Tutupan Lahan

		Luas W	Wilayah pada Kelas Tutupan Lahan (km²)				
No	Kelurahan	Lahan Terbuka	Ladang	Sungai	Hutan	Pemukiman	
1	Peninggiran	0,21	0,78	0,13	2,15	0,09	
2	Surabaya	0,05	9,66	0	3,72	0	
3	Sukarena	0,35	12,22	0,06	6,96	0,18	
4	Sukabumi	4,40	30,08	0,39	96,72	0,05	
5	Kota Agung	0,92	11,42	0	11,48	0,04	
6	Karang	2,7	6,04	0	12,21	0,01	
	Pendeta						
7	Kuripan 1	5,02	6,8	0,16	26,18	0,06	
8	Kuripan 2	3,10	8,07	0,29	21,75	0,41	

Sumber: Hasil Pengolahan

Hasil pemetaan tutupan lahan tersebut kemudian divalidasi menggunakan teknik *ground truth* dan *confusion matrix*. Adapun dikarenakan wabah COVID 19 yang melanda pada tahun 2020 menyebabkan penulis tidak dapat melakukan

ground truth pada lokasi kajian. Sehingga ground truth dilakukan dengan bantuan aplikasi Google Earth Pro menggunakan basemap citra yang diakusisi pada tanggal 11 Agustus 2019 dan peta Rupa Bumi (RBI) skala 1:50.000. Adapun peta tutupan lahan yang dimiliki Bappeda Sumatera Selatan dinilai kurang lengkap sehingga tidak bisa dijadikan referensi validasi data.

Titik-titik sampel disebar sebanyak 30 titik tiap kelas klasifikasi lahannya. Hal tersebut dikarenakan lebih dari sama dengan 30 data dianggap sebagai data besar dalam statistika. Hasil dari *ground truth* tersebut kemudian dihitung menggunakan *confusion matrix* sebagai berikut,

Tabel 4.13 Confusion Matrix (Google Earth Pro)

		Lahan Terbuka	Ladang	Sungai	Hutan	Pemukiman	Jumlah
	Lahan Terbuka	21	4	1	4	0	30
	Ladang	1	29	0	0	0	30
Penelitian	Sungai	0	0	24	6	0	30
	Hutan	0	1	0	29	0	30
	Pemukiman	0	0	0	1	29	30
Jumlah		22	34	25	40	29	150

Sumber: Hasil Pengolahan

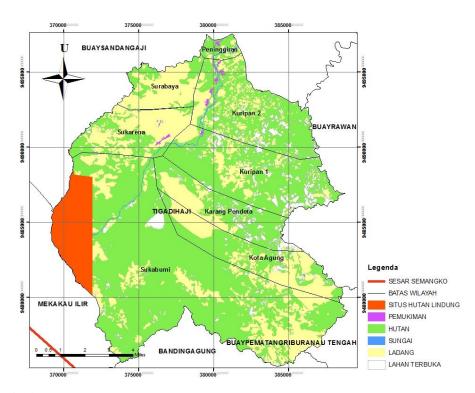
Berdasarkan hasil dari perhitungan *confusion matrix* di atas didapatkan nilai *overall accuracy* sebesar 88% dan nilai kappa sebesar 0,85.

Dalam RBI skala 1:50.000 lahan terbuka tidak didefinisikan. Sehingga perhitungan *confusion matrix* yang dilakukan hanya meliputi 4 jenis tutupan lahan yaitu ladang, sungai, hutan, dan pemukiman.

Tabel 4.14 Confusion Matrix (RBI)

		Lahan Terbuka	Ladang	Sungai	Hutan	Pemukiman	Jumlah
	Lahan Terbuka	1	-	-	ı	-	-
	Ladang	-	29	0	0	1	30
Penelitian	Sungai	-	0	30	0	0	30
	Hutan	-	1	0	29	0	30
	Pemukiman	1	1	0	0	29	30
Jumlah		-	31	30	29	30	120

Sumber: Hasil Pengolahan


Berdasarkan hasil dari perhitungan *confusion matrix* di atas didapatkan nilai *overall accuracy* sebesar 97,5% dan nilai kappa sebesar 0,96.

Perhitungan menunjukkan nilai *overall accuracy* dan kappa dengan dua data referensi berbeda (citra pada *Google Earth Pro* dan RBI skala 1:50.000) telah lebih tinggi sama dengan nilai minimal yang ditentukan yaitu sebesar 85%. Sehingga hasil pemetaan tutupan lahan tersebut dapat digunakan untuk proses analisis selanjutnya.

4.3 Situs

Lokasi kajian juga berpotongan dengan situs hutan lindung Taman Nasional Bukit Barisan. Data ini didapatkan dari Bappeda Sumatera Selatan. Pada metadata terkait informasi geografis terkait tidak dijelaskan skala bawaan data bersangkutan. Perencanaan jalan yang akan dibuat tidak diperbolehkan melewati wilayah hutan lindung. Sehingga lebih lanjut wilayah tersebut akan diberi bobot 0 dan dikalikan dengan peta tutupan lahan yang telah dibuat.

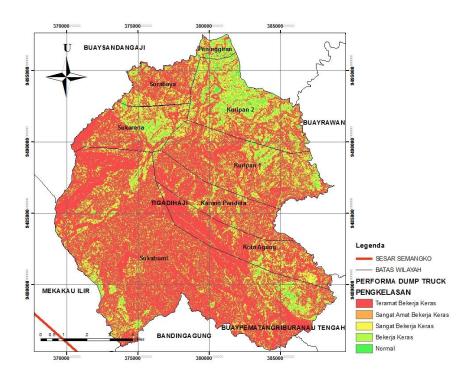
Adapun pemetaan gabungan antara situs hutan lindung dan pemetaan tutupan lahan yang telah dilakukan adalah sebagai berikut,

Gambar 4.14 Pemetaan Situs Hutan Lindung dan Tutupan Lahan Setempat (Sumber: Hasil Pengolahan)

4.4 Faktor-Faktor Pra Konstruksi

Berdasarkan kajian literatur yang telah dilakukan terdapat tiga faktor pra konstruksi yang harus dipetakan sebelum melakukan perencanaan jalan. Adapun ketiga faktor tersebut adalah faktor kinerja *dump truck* dengan memperhitungkan kemiringan lereng, faktor biaya dengan memperhitungkan kemungkinan *cut and fill* serta faktor kemanan dengan memperhitungkan jarak lokasi ke badan air.

4.4.1 Performa Dump Truck


Performa *Dump Truck* ini didasarkan atas kemiringan lereng pada medan kaitannya dengan kemampuan mobilisasi *dump truck*. Perhitungan dan skoring didasarkan atas penelitian terdahulu Kang & Seo (2013) yang tercantum pada **Tabel 2.6**. Skor tersebut kemudian dimodifikasi sesuai dengan kaidah AHP (prioritas diwakili oleh bobot dengan nilai tertinggi) sebagai berikut,

Tabel 4.15 Skoring Performa Dump Truck

No	Kemiringan Lereng (%)	Keterangan	Skor
1	0-3	Normal	1
2	3-5	Bekerja Keras	0,8
3	5 – 10	Sangat Bekerja Keras	0,6
4	10 – 20	Sangat Amat Bekerja Keras	0,4
5	> 20	Teramat Bekerja Keras	0,2

Sumber: Kang & Seo, 2013

Nilai skoring menunjukkan tingkatan prioritas. Semakin tinggi nilai skoring suatu kelas maka semakin diprioritaskan sebagai area perencanaan jalan begitu juga sebaliknya. Berdasarkan tabel di atas kemudian dilakukan pemetaan dengan mengolah data *Digital Elevation Model* (DEM) seperti berikut,

Gambar 4.15 Pemetaan Performa *Dump Truck* (Sumber: Hasil Pengolahan)

Gambar 4.15 merupakan pemetaan performa *dump truck* dengan skala 1:60.000. Berdasarkan Gambar 4.15 dapat terlihat sebagian besar wilayah

merupakan daerah dengan kemiringan lebih dari 20%. Hal tersebut dikarenakan wilayah kajian terletak di daerah dataran tinggi dan pegunungan. Adapun Kelurahan Peninggiran dan Kuripan 2 memiliki daerah yang lebih landai bila dibandingkan dengan kelurahan lainnya. Hal tersebut dikarenakan adanya Sesar Besar Sumatera pada wilayah Selatan daerah kajian yang menyebabkan wilyah tersebut memiliki topografi yang lebih terjal.

Adapun luasan wilayah untuk masing-masing kelas performa *dump truck* dapat dilihat pada **Tabel 4.16** berikut,

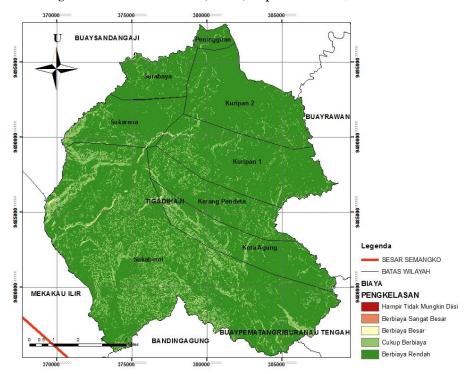
Tabel 4.16 Luas Wilayah setiap Kelas Performa Dump Truck

	Luas Wilayah pada Kelas Performa					ruck (km²)
No	Kelurahan	Normal	Bekerja Keras	Sangat Bekerja Keras	Sangat Amat Bekerja Keras	Teramat Bekerja Keras
1	Peningiran	0,27	0,3	0,8	1,03	0,92
2	Surabaya	0,16	0,28	1,11	3,28	8,5
3	Sukarena	0,42	0,62	2,18	4,94	11,54
4	Sukabumi	1,1	1,81	2,54	8,37	117,48
5	Kota Agung	0,13	0,23	1,09	4,5	17,87
6	Karang Pendeta	0,18	0,29	1,24	3,84	15,37
7	Kuripan 1	0,57	0,91	3,49	9,17	23,99
8	Kuripan 2	1,59	2,13	6,36	9,91	13,53

Sumber: Hasil Pengolahan

4.4.2 Biaya Konstruksi

Biaya konstruksi di sini dihitung berdasarkan kebutuhan *cut and fill*. Besarnya *cut and fill* ini sendiri dapat dipetakan dengan mengolah *Digital Elevation Model* (DEM) berdasarkan klasifikasi **Tabel 2.7**. Perhitungan dan skoring didasarkan atas penelitian terdahulu yang dilakukan Kang & Seo (2013) yang


kemudian dimodifikasi sesuai dengan kaidah AHP (prioritas diwakili oleh bobot dengan nilai tertinggi) sebagai berikut,

Tabel 4.17 Skoring Biaya Konstruksi (Kebutuhan Cut and Fill)

No	Kemiringan Lereng (%)	Keterangan	Skor
1	0-20	Berbiaya Rendah	1,0
2	20 – 50	Cukup Berbiaya	0,8
3	50 – 100	Berbiaya Besar	0,6
4	100 – 200	Berbiaya Sangat Besar	0,4
5	> 200	Hampir Tidak Mungkin Diisi	0,2

Sumber: Hasil Pengolahan

Berdasrkan **Tabel 4.17** di atas, kemudian dilakukan pemetaan dengan mengolah data *Digital Elevation Model* (DEM) seperti berikut,

Gambar 4.16 Pemetaan Biaya Konstruksi (Kebutuhan *Cut and Fill*) (Sumber: Hasil Pengolahan)

Gambar 4.16 merupakan pemeraan biaya konstruksi dengan skala 1:60.000. Berdasarkan Gambar 4.16 dapat dilihat bahwa daerah berwarna hijau merupakan daerah dengan bobot tertinggi yang mana lebih diprioritaskan untuk dijadikan alternatif perencanaan jalan dibandingkan dengan daerah berwarna merah. Daerah dengan kelandaian kategori normal berada di wilayah kajian bagian Utara (Kelurahan Peninggiran dan Kuripan 2). Sedangkan daerah yang kurang diprioritaskan karena memiliki kemiringan yang lebih curam berada di wiayah kajian bagian Selatan (Kelurahan Sukabumi, Kelurahan Sukarena dan Kelurahan Kota Agung). Hal tersebut dikarenakan sisi Selatan wilayah kajian berdekatan dengan Sesar Besar Sumatera/Semangko yang berdampak dengan adanya topografi pegunungan.

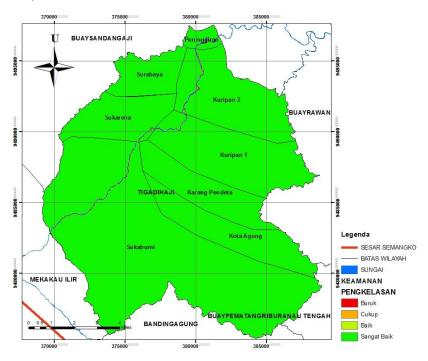
Adapun luasan wilayah untuk masing-masing kelas biaya dapat dilihat pada **Tabel 4.18** berikut,

Tabel 4.18 Luas Wilayah setiap Kelas Biaya

	Luas Wilayah pada Kelas Biaya (km²)					n ²)
No	Kelurahan	Berbiaya Rendah	Cukup Berbiaya	Berbiaya Besar	Berbiaya Sangat Besar	Hampir Tidak Mungkin Diisi
1	Peningiran	2,41	0,77	0,13	0,01	0
2	Surabaya	4,88	7,5	0,93	0,03	0
3	Sukarena	8,22	9,24	2,16	0,09	0
4	Sukabumi	32,16	71,58	26,67	0,86	0,02
5	Kota Agung	6,00	13,85	3,9	0,07	0
6	Karang Pendeta	5,62	12,71	2,55	0,03	0
7	Kuripan 1	14,28	20,56	3,20	0,09	0,01
8	Kuripan 2	20,12	11,85	1,54	0,02	0

Sumber: Hasil Pengolahan

4.4.3 Keamanan (Jarak ke Badan Air)


Salah satu parameter keamanan yang harus diperhitungkan sebelum perencanaan trase jalan adalah jarak lokasi ke badan air. Perhitungan dan skoring didasarkan atas penelitian terdahulu yang dilakukan Kang & Seo (2013) yang tercantum pada **Tabel 2.8.** Skor tersebut kemudian dimodifikasi sesuai dengan kaidah AHP (prioritas diwakili oleh bobot dengan nilai tertinggi) sebagai berikut,

Tabel 4.19 Skoring Jarak Lokasi ke Badan Air

No	Jarak ke Badan Air (m)	Keterangan	Skor
1	0 – 10	Buruk	0,25
2	10 – 20	Cukup	0,5
3	20 – 30	Baik	0,75
4	> 30	Sangat Baik	1

Sumber: Kang & Seo, 2013

Adapun hasil pemetaan parameter kemanan (jarak ke badan air) adalah sebagai berikut,

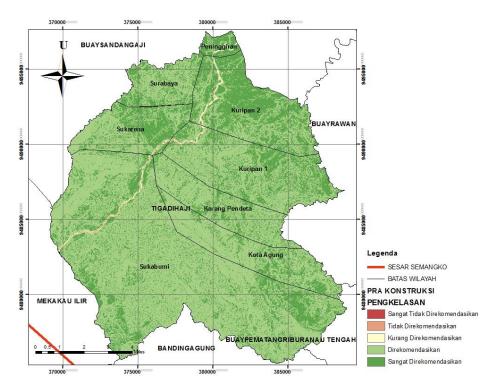
Gambar 4.17 Pemetaan Jarak Lokasi ke Badan Air (Sumber: Hasil Pengolahan)

Gambar 4.17 adalah pemetaan jarak lokasi ke badan air dengan skala 1:50.000. Adapun berdasarkan Gambar 4.17 di atas terlihat wilayah dengan bobot yang rendah adalah wilayah di sekitar DAS Sungai Selabung. Selebihnya merupakan wilayah yang memiliki jarak dengan badan air lebih dari 30 meter.

4.4.4 Faktor Pra Konstruksi

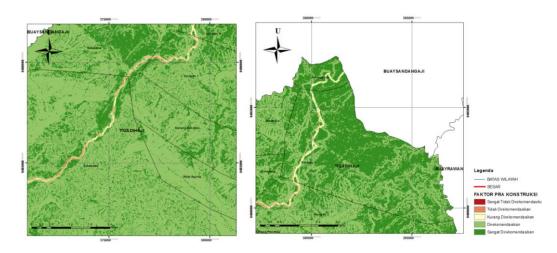
Pemetaan faktor pra konstruksi didasarkan atas ketiga faktor yang telah dijabarkan sebelumnya yaitu performa *dump truck* yang dihitung berdasarkan kemiringan kereng, biaya konstruksi yang dihitung berdasarkan kebutuhan *cut and fill* serta faktor keamanan yang dihitung berdasarkan jarak lokasi ke badan air (Kang & Seo, 2013).

Masing-masing faktor tersebut dibobotkan menggunakan metode AHP dengan hasil pada **Tabel 4.20**. Bobot tersebut didapatkan melalui *expert judgement*.


Tabel 4.20 Pembobotan Faktor Pra Konstruksi

No	Faktor	Bobot
1	Performa Dump Truck	0,2
2	Biaya (Kebutuhan Cut and Fill)	0,3
3	Keamanan (Jarak ke Badan Air)	0,5

Sumber: Kang & Seo, 2013; Expert Judgement, 2020


Biaya sedikit lebih diprioritaskan apabila dibandingkan dengan performa dump truck. Hal tersebut dikarenakan besarnya biaya yang akan dikeluarkan untuk kebutuhan cut and fill termasuk dalam salah satu biaya pokok pada pekerjaan jalan. Performa dump truck sendiri secara tidak langsung mempengaruhi besarnya biaya pekerjaan terkait dengan tingkat efisiensi penggunaan alat berat. Namun, biaya tersebut masih berada pada taraf di bawah cut and fill. Keamanan memiliki bobot paling tinggi dikarenakan aspek ini memiliki dampak jangka panjang dan mempengaruhi keselamatan pengguna jalan kedepannya.

Adapun hasil pemetaan faktor pra konstruksi berdasarkan pembobotan yang telah dilakukan tersebut adalah sebagai berikut,

Gambar 4.18 Pemetaan Faktor Pra Konstruksi (Sumber: Hasil Pengolahan)

Gambar 4.18 merupakan pemetaan faktor konstruksi dengan skala 1:60.000. Berdasarkan Gambar 4.18 dapat terlihat warna merah mewakili daerah berbobot rendah (kurang diprioritaskan) dan hijau mewakili daerah berbobot tinggi (lebih di prioritaskan). Daerah sekitar DAS Sungai Selabung berwarna merah dikarenakan wilayah tersebut dekat dengan badan air. Wilayah pada Kelurahan Sukabumi, Sukarena dan Kota Agung memiliki gradasi hujau kekuningan yang diduga akibat topografi wilayah tersebut lebih curam apabila dibandingkan dengan Kelurahan Peninggiran dan sekitarnya.

Gambar 4.19 Wilayah Curam (kiri) dan Wilayah Kurang Curam (kanan) (Sumber: Hasil Pengolahan)

Adapun luasan wilayah untuk masing-masing kelas pra konstruksi dapat dilihat pada **Tabel 4.21** berikut,

Tabel 4.21 Luas Wilayah setiap Kelas Pra Konstruksi

		Luas Wilayah pada Kelas Pra Konstruksi (km²)				
N o	Kelurahan	Sangat Di- rekomenda si-kan	Di- rekomenda si-kan	Kurang Di- rekomenda si-kan	Tidak Di- rekomenda si-kan	Sangat Tidak Di- rekomenda si-kan
1	Peningiran	2,23	0,91	0,18	0	0
2	Surabaya	5,05	8,29	0	0	0
3	Sukarena	8,42	11,14	0,09	0,06	0
4	Sukabumi	33,64	96,77	0,54	0,31	0,02
5	Kota Agung	6,21	17,60	0	0	0
6	Karang Pendeta	5,91	15	0	0	0
7	Kuripan 1	14,79	23,01	0,21	0,12	0,01
8	Kuripan 2	20,21	12,78	0,46	0,06	0

Sumber: Hasil Pengolahan

4.5 Pemetaan Gabungan Aspek Mitigasi Bencana, Tutupan Lahan dan Faktor Pra Konstruksi

Ketiga pemetaan yang telah dilakukan meliputi aspek mitigasi bencana (Gambar 4.9), tutupan lahan yang telah disesuaikan dengan keberadaan situs hutan lindung Taman Nasional Bukit Barisan (Gambar 4.14) dan faktor pra konstruksi (Gambar 4.18) digabungkan dengan menggunakan teknik *overlay* dengan bobot yang diperoleh berdasarkan wawancara *supervisor* jalan akses Bendungan Tiga Dihaji kemudian dihitung dengan teknik *Analytical Hierarchy Process* (AHP). Adapun hasil dari pembobotan tersebut adalah sebagai berikut,

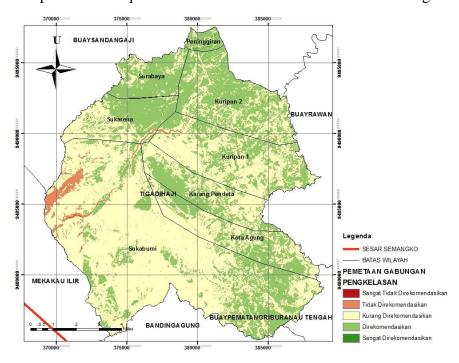
Tabel 4.22 Pemobotan Pemetaan Gabungan

No	Parameter	Bobot
1	Kerentanan Bencana Longsor	0,45
2	Tutupan Lahan	0,20
3	Pra Konstruksi	0,35

Sumber: Expert Judgement, 2020

Mitigasi bencana longsor lebih diprioritaskan dibandingkan dengan faktorfaktor lainnya. Hal tersebut karena mitigasi bencana memiliki dampak yang
berkelanjutan. Selain itu, mitigasi bencana mempengaruhi biaya *maintenance*kedepannya, di mana biaya *maintenance* dapat lebih besar daripada biaya
konstruksi itu sendiri apabila tidak diantisipasi sejak awal. Mitigasi ini juga perlu
dibuat karena adanya sebuah bencana dapat menyebabkan hilangnya nyawa, harta
benda serta kerusakan alat berat. Apabila longsor ini terjadi pada saat proses
pelaksanaan konstruksi, hal tersebut dapat menyebabkan akses jalan terbatas serta
menghambat pekerjaan dari dan menuju suatu titik.

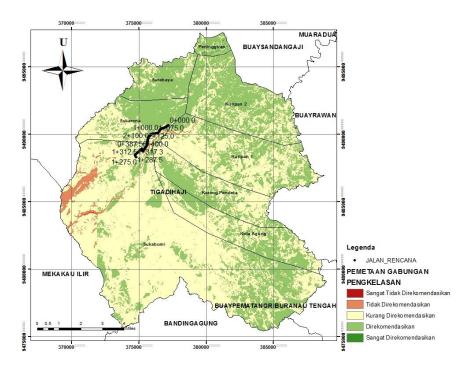
Faktor pra konstruksi perlu untuk diperhatikan. Berdasakan faktor-faktor penyusunnya, parameter tersebut dapat mempengaruhi:


 Tingkat keamanan jalan yang mana perlu untuk diantisipasi sejak awal untuk menjamin keselamatan pengguna jalan;

- Biaya cut and fill yang mana memiliki porsi pembiayaan yang cukup besar pada pembukaan rute jalan baru di daerah pegunungan; serta
- Performa dump truck mengingat jalan ini diperuntukkan sebagai jalan akses alat berat dalam rangka pembangunan Bendungan Tiga Dihaji.

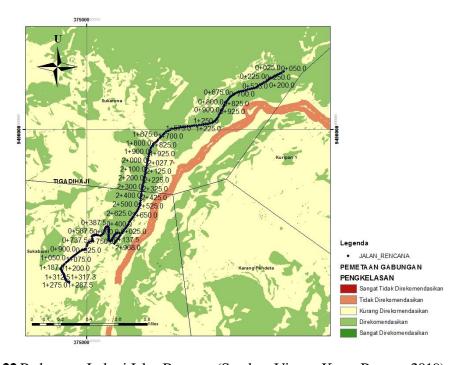
Faktor pra konstruksi tersebut memiliki pengaruh besar terhadap kontraktor yang bertanggung jawab mengerjakan rute jalan baru tersebut. Faktor pra konstruksi tersebut juga memiliki dampak yang lebih berkelanjutan dibandingkan dengan faktor tutupan lahan namun memiliki tingkat urgensi di bawah mitigasi bencana.

Aspek tutupan lahan memiliki hubungan dengan perencanaan Tata Ruang yang berlaku sehingga perlu diperhatikan sedari awal agar tidak menyalahi aturan yang telah ditetapkan. Aspek ini juga mempengaruhi besarnya biaya untuk pembebasan lahan. Adapun pada proses konstruksi jalan, utamanya jalan baru, pembebasan lahan seringkali menyebabkan molornya pekerjaan. Hal tersebut dikarenakan proses pembebasan lahan berhubungan langsung dengan masyarakat sekitar. Sehingga aspek ini perlu diperhitungan sedari awal. Aspek ini sendiri tidak memiliki urgensi jangka panjang seperti halnya aspek-aspek lainnya.


Gambar 4.20 Pemetaan Gabungan (Sumber: Hasil Pengolahan)

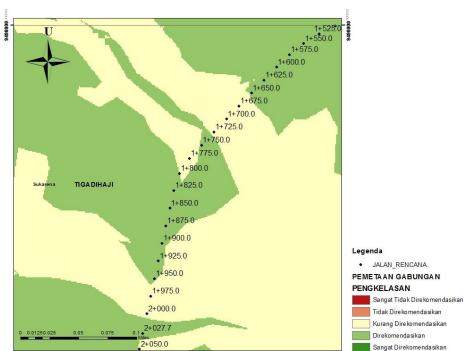
Gambar 4.20 merupakan pemetaan gabungan dengan skala 1:50.000 (mengacu pada peta rupabumi yang digunakan). Skala ini telah sesuai dengan ketentuan Peraturan Kepala Badan Nasional Penanggulangan Bencana Nomor 2 tahun 2012 tentang Pedoman Umum Pengkajian Risiko Bencana yang menyatakan skala peta untuk Kabupaten/Kota di pulau Sumatera adalah 1:50.000.

Daerah hijau merupakan daerah yang paling sesuai dengan gradasi menuju warna merah yang menandakan daerah yang kurang sesuai. Berdasarkan **Gambar 4.20** dapat terlihat bahwa Kelurahan Sukabumi didominasi dengan kategori wilayah kurang direkomendasikan. Di sisi lain, Kelurahan Peninggiran, Surabaya dan Kuripan 2 merupakan daerah yang didominasi dengan kategori wilayah direkomendasikan. Hal tersebut diakibatkan semakin ke Selatan, topografi pada Kecamatan Tiga dihaji semakin terjal mengingat keberadaan sesar aktif (Sesar Besar Sumatera/Semangko) pada bagian Selatan Kecamatan Tiga Dihaji.


Terlihat di **Gambar 4.20** daerah yang memiliki warna paling merah membentuk sebuah alur dan menandakan adanya sungai Selabung. Daerah yang nampak merah juga berada pada Kelurahan Sukabumi bagian barat yang menunjukkan keberadaan hutan lindung Bukit Barisan.

Validasi dilakukan dengan *ground truth* berdasarkan data lapangan yang didapat dari *supervisor* jalan akses Bendungan Tiga Dihaji. Adapun lokasi *ground truth* ini sendiri dilakukan pada topografi yang menonjol sepanjang jalan rencana. Adapun lokasi jalan rencana tersebut berada di Kelurahan Sukarena dan Sukabumi seperti berikut,

Gambar 4.21 Lokasi Jalan Rencana pada Pemetaan Gabungan (Sumber: Virama Karya Persero, 2019)


Apabila dilakukan perbesaran pada lokasi jalan rencana tersebut hasilnya adalah sebagai berikut,

Gambar 4.22 Perbesaran Lokasi Jalan Rencana (Sumber: Virama Karya Persero, 2019)

Jalan tersebut terbagi atas dua seksi. Seksi pertama merupakan jalan yang menghubungkan desa terdekat ke lokasi tapak bendung sedangkan seksi dua merupakan jalan yang menghubungkan area tapak bendung menuju fasilitas umum (fasum) Bendungan Tiga Dihaji.

Adapun *ground truth* didasarkan atas 5 titik sampel. Jumlah tersebut didasarkan atas data yang penulis peroleh dari *supervisor* jalan akses Bendungan Tiga Dihaji yang hanya meliputi 5 titik STA paling menonjol sepanjang jalan rencana. Lokasi tersebut adalah pada titik STA 1+975; STA 2+000; STA 1+650; STA 1+675 – STA 1+750; dan STA 1+725. Adapun perbesaran pada titik STA yang bersangkutan adalah sebagai berikut,

Gambar 4.23 Perbasaran Lokasi Titik STA (Sumber: Virama Karya Persero, 2019)

Berdasarkan keterangan *supervisor* jalan akses Bendungan Tiga Dihaji, STA 1+975 merupakan jurang yang pada **Gambar 4.23** merupakan titik STA yang berlokasi pada daerah bergradasi hijau menuju ke kuning. Adapun foto lapangan pada STA 1+975 adalah sebagai berikut,

Gambar 4.24 Dokumentasi STA 1+975 (Sumber: Virama Karya Persero, 2019)

STA 2+000 merupakan dasar jurang (*creek*) yang pada **Gambar 4.24** ditunjukkan pada daerah dengan gradasi kuning. Adapun foto lapangan pada STA 2+000 adalah sebagai berikut,

Gambar 4.25 Dokumentasi STA 2+000 (Sumber: Virama Karya Persero, 2019)

STA 1+650 merupakan daerah menuju jurang yang pada **Gambar 4.23** terlihat berlokasi pada daerah gradasi warna hijau kekuningan tepat sebelum daerah gradasi kuning. Adapun foto lapangan pada STA 1+650 adalah sebagai berikut,

Gambar 4.26 Dokumentasi STA 1+650 (Sumber: Virama Karya Persero, 2019)

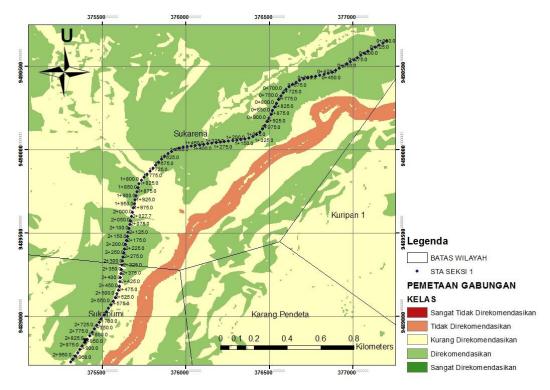
STA 1+675 sampai dengan STA 1+750 merupakan dasar jurang (*creek*) yang pada **Gambar 4.23** menunjukkan STA tersebut memotong daerah bergradasi kuning. Adapun foto lapangan pada STA 1+675 sampai dengan STA 1+750 adalah sebagai berikut,

Gambar 4.27 Dokumentasi STA 1+675 sd STA 1+750 (Sumber: Virama Karya Persero, 2019)

Serta, STA 1+725 merupakan daerah tengah sungai yang pada **Gambar 4.23** merupakan daerah bergradasi kuning. Adapun foto lapangan pada STA 1+725 adalah sebagai berikut,

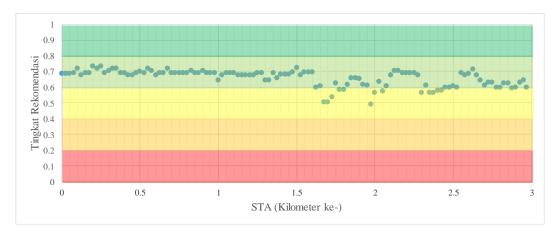
Gambar 4.28 Dokumentasi STA 1+725 (Sumber: Virama Karya Persero, 2019)

Setelah dianalisis dengan metode kualitatif dan *expert judgement*, pemetaan tersebut lebih lanjut dapat digunakan pada proses analisis berikutnya. Validasi ini pun menggunakan pendekatan secara kualitatif dikarenakan tidak adanya metode kuantitatif yang dapat mewakili. Hal tersebut dikarenakan keterbatasan data mengingat penulis tidak dapat melaksanakan *ground truth* di lapangan sehingga data yang digunakan sebatas data pengecekan lapangan yang telah dilakukan oleh *supervisor* Bendungan Tiga Dihaji berserta tim dan *expert judgement*.


4.6 Perencanaan Geometrik Jalan

4.6.1 Perencanaan Awal

Perencanaan Jalan Akses Bendungan Tiga Dihaji OKU Selatan terdiri dari dua seksi. Diantaranya: (1) seksi pertama, menghubungkan Desa Sukabumi dengan tapak bendungan, dan (2) seksi kedua, menghubungkan tapak bendungan dengan fasilitas umum bendungan. Koordinat seksi pertama adalah dari 4° 36' 26,235" LS dan 103° 53' 34,689" BT menuju 4° 37' 28,657" LS dan 103° 52' 33,163" BT secara respektif. Jalan rencana seksi 1 adalah sepanjang 2,97 km.


Menurut keterangan *supervisor* jalan akses Bendungan Tiga Dihaji, jalan rencana seksi 1 merupakan jalan yang pertama kali direncanakan sebelum perencanaan Bendungan Tiga Dihaji secara utuh. Jalan ini mengubungkan

bendungan dengan desa terdekat. Adapun apabila digambarkan *layout* perencanaan jalan seksi 1 adalah sebagai berikut,

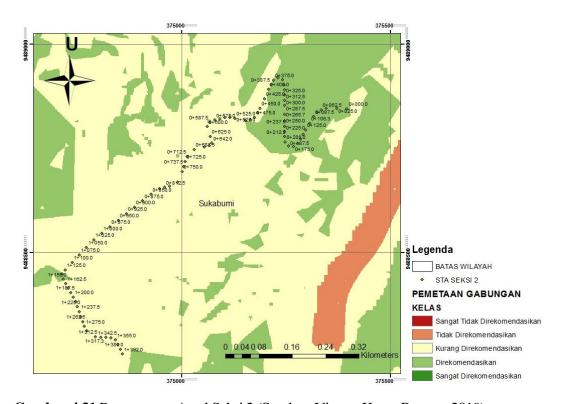
Gambar 4.29 Perencanaan Awal Seksi 1 (Sumber: Virama Karya Persero, 2019)

Setiap STA akan dihitung *value*-nya kemudian dimodelkan dalam grafik. Adapun grafik *value* pada masing-masing STA jalan rencana awal seksi 1 adalah sebagai berikut,

Gambar 4.30 Grafik Perencanaan Awal Seksi 1 (Sumber: Hasil Pengolahan)

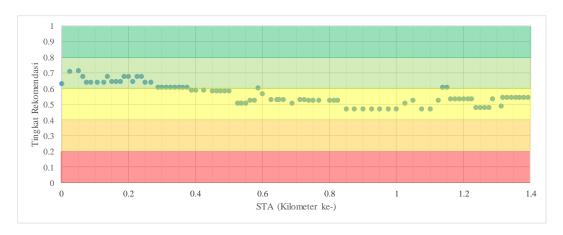
Adapun keterangan grafik di atas dapat dijabarkan oleh tabel sebagai berikut,

Tabel 4.23 Keterangan Kelas Gradasi


Kelas	Gradasi	Rentang	Keterangan Kelas
1		0 - 0.2	Sangat Tidak Direkomendasikan
2		0,2-0,4	Tidak Direkomendasikan
3		0,4-0,6	Kurang Direkomendasikan
4		0,6-0,8	Direkomendasikan
5		0,8 – 1,0	Sangat Direkomendasikan

Sumber: Hasil Pengolahan

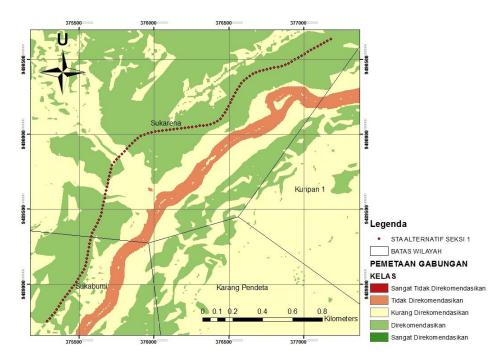
Dari **Gambar 4.30** dan **Tabel 4.23** dapat dilihat perencanaan jalan seksi 1 ada pada rentang kelas 3 (kurang direkomendasikan) hingga kelas 4 (direkomendasikan). STA yang masuk dalam kategori kurang direkomendasikan adalah pada STA 1+675 hingga 2+050 yang memang melewati sungai; serta STA 2+300 hingga STA 2+525. Berdasarkan **Gambar 4.29**, STA 2+300 hingga STA 2+525 masih memungkinkan untuk direlokasikan ke lokasi yang lebih direkomendasikan. Sehingga, kedepannya penentuan alternatif jalan akses menggunakan metode manual yang diusulkan bermaksud memperbaiki STA 2+300 hingga 2+525. Adapun perubahan harus diselaraskan dengan rute sebelumnya sehingga relokasi akan dilakukan dari STA 2+175,0 kemudian diperpanjang hingga STA 2+968.


Perencanaan jalan seksi kedua adalah dari koordinat 4° 37' 25,08" LS dan 103° 52' 35,959" BT menuju 4° 37' 43,938" LS dan 103° 52' 18,47" BT. Jalan rencana seksi 2 adalah sepanjang 1,39 km. Menurut keterangan *supervisor* jalan akses Bendungan Tiga Dihaji, jalan ini direncanakan setelah dibuat lokasi pasti dari fasilitas umum bendungan. Sehingga seksi 2 ini berfungsi untuk menghubungkan jalan akses seksi 1 (tapak bendungan) menuju fasilitas umum.

Supervisor jalan akses Bendungan Tiga Dihaji juga menyatakan jalan ini dibuat dengan memilih trase yang dinilai baik oleh Konsultan Perencana. Sehingga, jalan dibelokkan menuju bukit tumpuan kiri. Pada seksi ini jalan dibuat berkelokkelok mengikuti topografi lahan yang ada pada tapak bendungan. Apabila digambarkan *layout* perencanaan jalan seksi 2 adalah sebagai berikut,

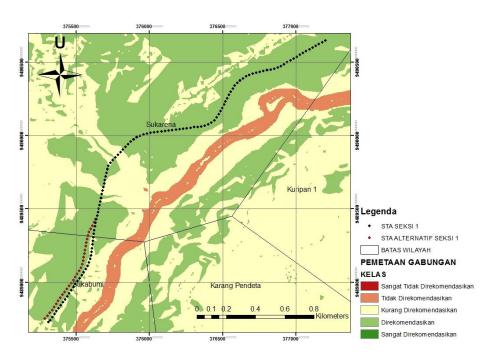
Gambar 4.31 Perencanaan Awal Seksi 2 (Sumber: Virama Karya Persero, 2019)

Masing-masing STA akan dihitung *value*-nya kemudian dimodelkan dalam grafik. Adapun grafik *value* pada masing-masing STA jalan rencana awal seksi 2 adalah sebagai berikut,



Gambar 4.32 Grafik Perencanaan Awal Seksi 2 (Sumber: Hasil Pengolahan)

4.32 dan Tabel 4.24 perencanaan jalan seksi 2 juga ada pada rentang kelas 3 (kurang direkomendasikan) dan kelas 4 (direkomendasikan). STA yang masuk dalam rentang kelas 3 (kurang direkomendasikan) adalah dari STA 0+387,5 hingga STA paling akhir yaitu STA 1+392,5. Hal tersebut juga dapat dilihat dari Gambar 4.31 bahwa STA tersebut melewati daerah yang bergradasi kuning. Adapun relokasi masih dapat dilakukan sepanjang STA 0+387,5 hingga STA 1+392,5. Melihat dari pola jalan akses seksi 2 pada Gambar 4.31, jalan akses ini sebenarnya masih bisa meneruskan seksi 1 kemudian dipilihkan rute dengan lokasi yang lebih direkomendasikan. Sehingga, alternatif geometrik jalan akses dengan metode manual yang akan diusulkan untuk seksi 2 ini adalah memperbaiki STA 0+000 hingga STA 1+392,5 dengan catatan pengusulan alternatif ini dianggap sebelum dilakukan pembebasan lahan.


4.6.2 Alternatif Manual

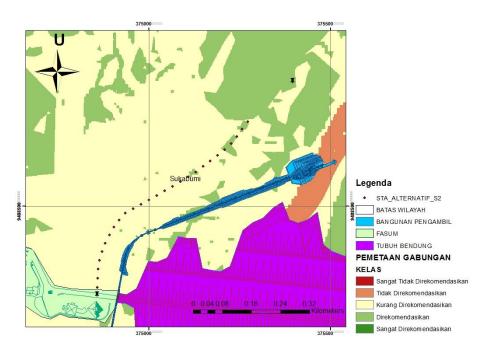
Alternatif perencanaan jalan akses untuk seksi 1 dengan metode manual adalah dengan merelokasi STA 2+175,0 hingga STA 2+968. Adapun apabila digambarkan pada *layout* alternatif perencanaan jalan akses seksi 1 adalah sebagai berikut,

Gambar 4.33 Alternatif Manual Seksi 1 (Sumber: Hasil Pengolahan)

Adapun perbandingan dengan perencanaan sebelumnya dapat dilihat dari **Gambar 4.34** berikut,

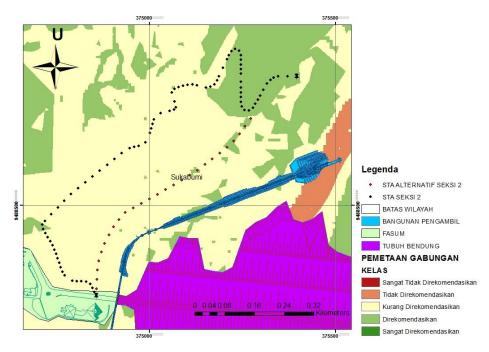
Gambar 4.34 Perbandingan Lokasi Perencanaan Awal dan Alternatif Seksi 1 (Sumber: Hasil Pengolahan)

Masing-masing STA dihitung *value*-nya kemudian dimodelkan dalam grafik. Adapun grafik *value* pada masing-masing STA jalan alternatif seksi 1 adalah sebagai berikut,

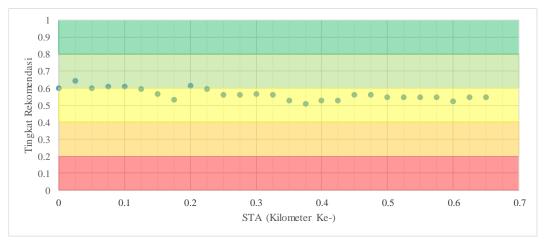

Gambar 4.35 Grafik Alternatif Perencanaan dengan Metode Manual Seksi 1 (Sumber: Hasil Pengolahan)

Dari **Gambar 4.30** dan **Gambar 4.35** dapat dilihat terdapat perbedaan di atas STA 2+175. Pada **Gambar 4.35** nilai pada titik STA bersangkutan relatif lebih tinggi apabila dibandingkan dengan **Gambar 4.30**. Sehingga dapat disimpulkan nilai titik STA di atas STA 2+175 pada alternatif perencanaan jalan seksi 1 menunjukkan pemilihan rute yang lebih baik dibandingkan dengan perencanaan awal seksi 1. Hal ini didapat setelah menggeser lokasi STA 2+175 sedikit ke arah Barat Laut. Adapun panjang dari alternatif perencanaan jalan seksi 1 ini adalah sepanjang 2,925 km. Sehingga dapat disimpulkan alternatif perencanaan yang diusulkan penulis lebih pendek 0,045 km daripada perencanaan awal.

Alternatif perencanaan jalan akses dengan metode manual untuk seksi 2 adalah dengan merombak keseluruhan rute jalan. Hal ini dilakukan menilik rute perencanaan jalan seksi 2 yang kurang efektif. Berdasarkan **Gambar 4.31**, penulis menduga, mulanya konsultan memilih membelokkan STA 0+000 seksi 2 pada arah Barat Daya perencanaan jalan seksi 1 karena menganggap daerah Barat Daya titik terakhir seksi 1 memiliki topografi yang lebih landai. Namun, faktanya kelandaian itu tidak menyeluruh di sepanjang rute yang ditentukan. Rute tetap harus melewati daerah yang terjal dengan catatan rute juga menjadi lebih panjang. Hal tersebut juga


dibenarkan oleh *Supervisor* Bendungan Tiga Dihaji yang menyatakan perencanaan rute jalan seksi 2 dilakukan secara kurang baik.

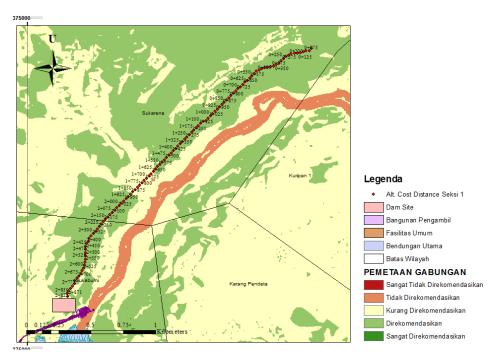
Apabila diasumsikan penelitian ini dilakukan pada saat perencanaan awal, maka penulis ingin menawarkan rute perencaan jalan akses seksi 2 dengan metode manual sebagai berikut,


Gambar 4.36 Alternatif Perencanaan Jalan Akses dengan Metode Manual Seksi 2 (Sumber: Hasil Pengolahan)

Adapun perbandingan dengan perencanaan sebelumnya dapat dilihat dari **Gambar 4.37** berikut,

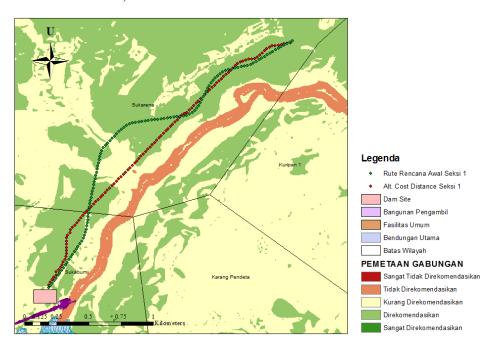
Gambar 4.37 Perbandingan Lokasi Perencanaan Awal dan Alternatif dengan Metode Manual Seksi 2 (Sumber: Hasil Pengolahan)

Masing-masing STA akan dihitung *value*-nya kemudian dimodelkan dalam grafik. Adapun grafik *value* pada masing-masing STA jalan alternatif dengan metode manual seksi 2 adalah sebagai berikut,

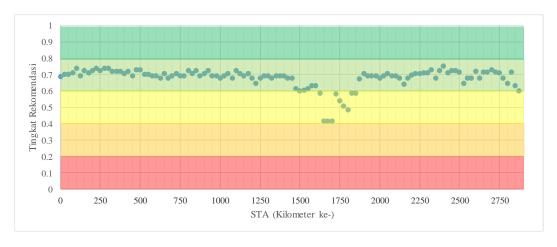

Gambar 4.38 Grafik Alternatif Perencaan dengan Metode Manual Seksi 2 (Sumber: Hasil Pengolahan)

Dengan membandingkan **Gambar 4.32** dan **Gambar 4.38**, dapat dilihat alternatif perencanaan jalan seksi 2 lebih sederhana apabila dibandingkan dengan

perencanaan awal. Panjang alternatif perencanaan jalan akses seksi 2 adalah 0,695 km, lebih pendek 0,695 km dibandingkan dengan perencanaan awal. Adapun secara geometrik juga, dilihat dari **Gambar 4.36**, alternatif perencanaan jalan seksi 2 menunjukkan pola yang lebih baik dibandingkan dengan **Gambar 4.31**. Adapun melalui grafik yaitu **Gambar 4.36** dan **Gambar 4.38** dapat dilihat alternatif perencanaan jalan akses seksi 2 menunjukkan nilai yang lebih tinggi dan stabil apabila dibandingkan dengan **Gambar 4.31** dan **Gambar 4.32**. Sehingga dapat disimpulkan bahwa alternatif jalan rencana seksi 2 berlokasi pada topografi yang lebih baik dibandingkan dengan perencanaan awal.

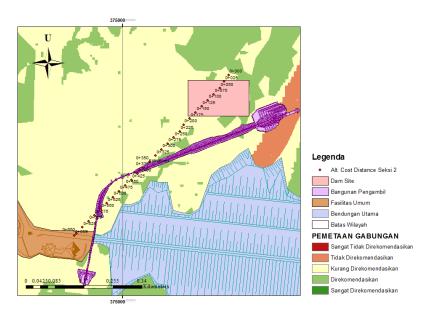

4.6.3 Alternatif Cost Distance

Rute alternatif kedua dilakukan menggunakan perhitungan *cost distance*. Perhitungan alternatif dilakukan pada seksi 1 dan seksi 2. Di sini, ditetapkan lokasi akhir seksi 1 merupakan lokasi awal seksi 2. Adapun dengan perhitungan *cost distance* didapatkan rute alternatif sebagai berikut,

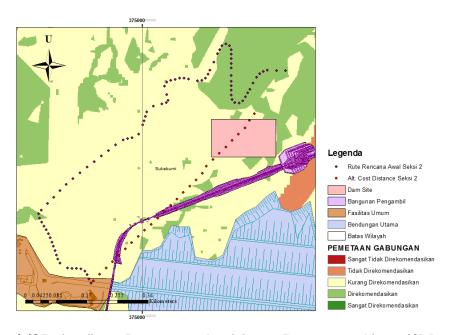

Gambar 4.39 Alternatif Perencanaan dengan Metode *Cost Distance* Seksi 1 (Sumber: Hasil Pengolahan)

Adapun perbandingan dengan perencanaan sebelumnya dapat dilihat dari **Gambar 4.40** berikut,

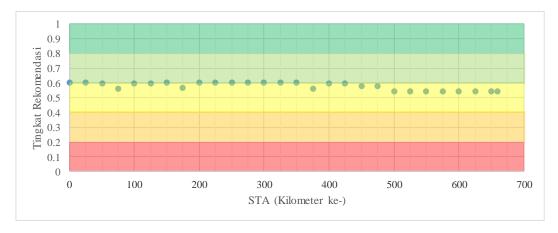
Gambar 4.40 Perbandingan Perencanaan Awal dengan Perencanaan Alternatif Metode *Cost Distance* Seksi 1 (Sumber: Hasil Pengolahan)


Masing-masing STA akan dihitung *value*-nya kemudian dimodelkan dalam grafik. Adapun grafik *value* pada masing-masing STA jalan alternatif menggunakan metode *cost distance* seksi 1 adalah sebagai berikut,

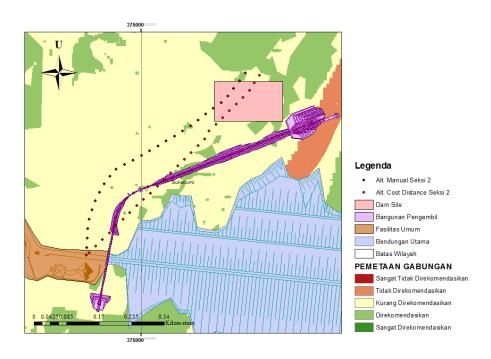
Gambar 4.41 Grafik Alternatif Perencanaan Metode *Cost Distance* Seksi 1 (Sumber: Hasil Pengolahan)


Dapat dilihat dari Gambar 4.41 di atas, metode cost distance mampu menghasilkan rute dengan gradasi yang lebih baik dari perencanaan awal (Gambar 4.30) dan perencanaan dengan metode manual (Gambar 4.35). Adapun gradasi pada tingkatan kurang direkomendasikan hanya pada lokasi yang membutuhkan jembatan. Namun, di samping nilai gradasi ini terdapat beberapa pertimbangan lainnya menyangkut persyaratan perencanaan jalan yang dipersyaratkan oleh Dinas Pekerjaan Umum. Dapat dilihat dari **Gambar 4.39**, rute jalan dengan metode *cost* distance belum mampu menjembatani antara penilaian berdasarkan pemetaan dan peryaratan yang dipersyaratkan Dinas Pekerjaan Umum. Rute dengan metode cost distance memiliki jalur lurus hampir 2 km. Padahal, Dinas Pekerjaan Umum telah mempersyaratkan pada topografi dan lalu lintas rencana terkait, lurus maksimal jalan adalah 1,5 km. Kebutuhan jembatan pada rute dengan metode cost distance adalah 1 jembatan. Kebutuhan ini dinilai lebih sedikit apabila dibandingkan dengan kebutuhan jembatan perencanaan awal. Namun, pertimbangan jembatan tidak sebatas jumlahnya, melainkan juga meliputi panjang jembatan, kemungkinan kekuatan struktur, kekuatan aliran, dalamnya pondasi, kemungkinan settlement, dan lain sebagainya. Dinas Pekerjaan Umum bahakan mensyaratkan jembatan diusahakan untuk tidak dibangun pada wilayah hilir (termasuk hilir anak sungai) dan persimpangan dengan arus yang lebih besar karena tanah di lokasi tersebut cenderung mudah tererosi sehingga membahayakan konstruksi jembatan.

Apabila diasumsikan penelitian ini dilakukan pada saat perencanaan awal, maka penulis ingin menawarkan rute perencaan jalan akses seksi 2 dengan metode *cost distance* sebagai berikut,


Gambar 4.42 Alternatif Perencanaan dengan Metode *Cost Distance* Seksi 1 (Sumber: Hasil Pengolahan)

Adapun perbandingan dengan perencanaan sebelumnya dapat dilihat dari **Gambar 4.43** berikut,


Gambar 4.43 Perbandingan Perencanaan Awal dengan Perencanaan Alternatif Metode *Cost Distance* Seksi 2 (Sumber: Hasil Pengolahan)

Masing-masing STA akan dihitung *value*-nya kemudian dimodelkan dalam grafik. Adapun grafik *value* pada masing-masing STA jalan alternatif menggunakan metode *cost distance* seksi 2 adalah sebagai berikut,

Gambar 4.44 Grafik Alternatif Perencanaan Metode *Cost Distance* Seksi 2 (Sumber: Hasil Pengolahan)

Dapat dilihat dari **Gambar 4.44** di atas, metode *cost distance* mampu memilihkan rute dengan gradasi yang lebih baik dengan panjang jalan lebih pendek apabila dibandingkan dengan perencanaan awal (**Gambar 4.32**) dan perencanaan alternatif manual (**Gambar 4.38**). Perencanaan dengan metode manual dan dengan metode *cost distance* memiliki rute yang hampir berdekatan satu sama lain seperti yang digambarkan pada **Gambar 4.45** di bawah ini,

Gambar 4.45 Perbandingan Alternatif Metode Manual dengan Alternatif Metode *Cost Distance* (Sumber: Hasil Pengolahan)

Dapat dilihat dari **Gambar 4.45** di atas, lokasi keduanya berdekatan. Seperti halnya pada seksi 1, rute berdasarkan perhitungan *cost distance* dinilai kurang dapat menjembatani persyaratan yang ditentukan oleh Dinas Pekerjaan Umum seperti panjang lurus maksimal, radius minimal belokan, dan keselarasan antara alinyemen vertikal dan horizontal. Rute tersebut bahkan berpotongan dengan konstruksi bangunan pengambil, sehingga rute ini jelas tidak dapat direalisasikan. Namun, rute ini dapat menjadi justifikasi bahwa rute awal memiliki panjang jalan yang tidak optimum dibandingkan dengan kedua alternatif yang diajukan.

4.7 Pengambilan Keputusan

Pengambilan keputusan dilakukan berdasarkan penilaian melalui metode Analytical Hierarchy Process (AHP) dengan bantuan software Super Decision berdasarkan ketentuan yang dipersyaratkan Dinas Pekerjaan Umum dan expert judgement (expert: Supervisior Jalan Akes Bendungan Tiga Dihaji). Pengambilan keputusan didasarkan atas kesesuaian rute dengan pemetaan gabungan yang telah dilakukan, Rencana Tata Ruang Wilayah (RTRW) dan faktor-faktor konstruksi

meliputi panjang lurus maksimal, kemungkinan jembatan, radius minimal, jarak pandang, koordinasi antar alinyemen, serta panjang jalan. Adapun berdasarkan perhitungan didapatkan hasil sebagai berikut,

Graphic	Alternatives	Total	Normal	Ideal	Ranking
	Alt. Cost Distance	0.1752	0.3504	0.7564	2
	Alt.Manual	0.2316	0.4633	1.0000	1
	Perencanaan Awal	0.0931	0.1863	0.4021	3

Gambar 4.46 Report Analisis Analytical Hierarchy Process (AHP) (Sumber: Hasil Pengolahan)

Berdasarkan **Gambar 4.46** di atas dapat dikethui bahwa perencanaan rute terbaik jalan akses Bendungan Tiga Dihaji adalah melalui pemilihan rute manual berdasarkan pemetaan gabungan yang telah dilakukan sejalan dengan Rencana Tata Ruang Wilayah (RTRW) setempat dan faktor konstruksi. Adapun laporan lengkap analisis AHP terdapat pada **Lampiran 4**.

BAB 5

PENUTUP

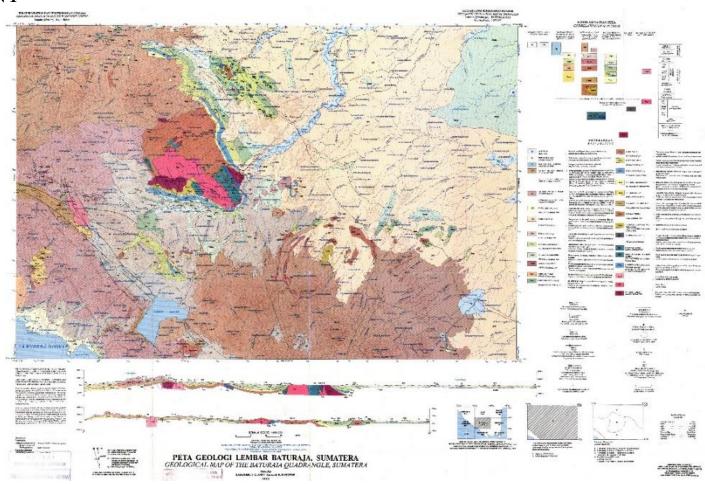
5.1 Kesimpulan

Adapun kesimpulan dari penelitian ini adalah sebagai berikut,

- 5.1.1 Pemetaan lokasi kajian (Kecamatan Tiga Dihaji, Kabupaten Ogan Komering Ulu Selatan (OKUS), Sumatera Selatan) adalah dengan melakukan *overlay* berjenjang tiga parameter. Pembobotan untuk kerentanan bencana didasarkan atas ketentuan Badan Nasional Penanggulangan Bencana; sedangkan untuk tutupan lahan dan faktor konstruksi pembobotan didasarkan penelitian terdahulu, ketentuan Dinas Pekerjaan Umum dan *expert judgement*. Adapun besar bobot untuk pemetaan akhir adalah: kerentanan bencana longsor sebesar 0,45; tutupan lahan sebesar 0,20 dan faktor pra konstruksi sebesar 0,35.
- 5.1.2 Adapun analisis hasil pemetaan lokasi kajian dengan mempertimbangkan kerentanan bencana longsor sejalan dengan tutupan lahan setempat dan faktor-faktor konstruksi menunjukkan Kelurahan Sukabumi didominasi dengan kategori wilayah kurang direkomendasikan. Di sisi lain, Kelurahan Peninggiran, Surabaya dan Kuripan 2 merupakan daerah yang didominasi dengan kategori wilayah direkomendasikan. Hal tersebut diakibatkan semakin ke Selatan, topografi pada Kecamatan Tiga dihaji semakin terjal mengingat keberadaan sesar aktif (Sesar Besar Sumatera/Semangko) pada bagian Selatan Kecamatan Tiga Dihaji.
- 5.1.3 Alternatif perencanaan geometrik jalan akses Desa Sukabumi menuju Damsite Bendungan Tiga Dihaji, Kabupaten Ogan Komering Ulu Selatan, Sumatera Selatan yang paling sesuai adalah dengan melakukan perencanaan manual berdasarkan pemetaan gabungan yang telah dilakukan selaras dengan Rencana Tata Ruang Wilayah (RTRW) dan ketentuan yang dikeluarkan oleh Dinas Pekerjaan Umum. Hal tersebut diakibatkan penentuan rute secara manual berdasarkan pemetaaan yang telah dibuat dapat menjembatani pendekatan perencanaan jalan baik secara kuantitatif maupun kualitatif.

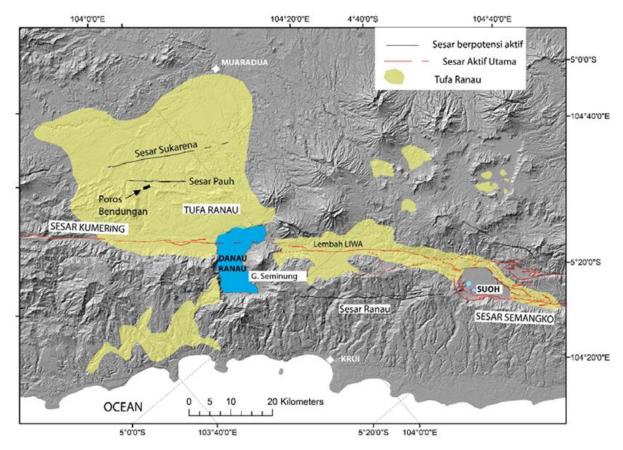
5.2 Saran

- Adapun saran untuk penelitian ini adalah sebagai berikut,
- 5.2.1 Kedepannya *ground truth* dapat dilaksanakan melalui peninjauan lokasi kajian secara langsung.
- 5.2.2 Penggunaan *Network Analyst: Location-Allocation* dapat dipertimbangkan untuk mendapatkan luaran perhitungan *cost distance* yang lebih realistis.
- 5.2.3 Pengkajian parameter-parameter lainnya yang terkait seperti sosial ekonomi, kerentanan gempa bumi dan banjir dapat dipertimbangkan untuk mendapat luaran yang lebih baik.


DAFTAR PUSTAKA

- AASHTO. (2001), A Policy on Geometric Design of Highways and Street, Washington, D.C: AASHTO.
- Al Kabir, Alimuddin Hasan. 2017. "Analisis Sentimen Data Kritik dan Saran Pelatihan Aplikasi Teknologi Informasi (PATI) Menggunakan Algortima Support Vector Machine. Tesis. Universitas Muahammadiyah Malang
- Aronoff, S. (1989). *Geographic Information System: A Management Perspektive*. Canada: WDL Publications
- Astrium. (2013). SPOT 6 & SPOT 7 Imagery User Guide. Eads Company SI/DC/13034-v1.0. https://www.spaceoffice.nl
- Bansal, V. K. (2007), "Potential of GIS to Find Solutions to Space Related Problem in Construction Industry", World Academy of Science Engineering and Technologi International Journal of Civil and Environmental Engineering, Vol:1, No:8, 2007.
- Badan Nasional Penanggulangan Bencana, (2016), "Resiko Bencana Indonesia". Jakarta: Badan Nasional Penanggulangan Bencana.
- Bappeda Sumatera Selatan, (2006), *Rencana Tata Ruang Wilayah Provinsi Sumatera Selatan Tahun 2005-2019*, Palembang: Bappeda Sumatera Selatan.
- Butler, M.J.A., M.C. Mouchot, V. B., and C Le Blanc. (1988). The Aplication of Remote Sensing Technology to Marine Fisheries: An Introduction Manual. FAO Fisheries Technical Paper.
- Capitani, M., et al. (2013). "The slope aspect: A predisposing factor for landsliding?" Comptes Rendus Geoscience 345(11-12): 427-438.
- Chandio, A. F., Shu, L. Y., Memon, N. M., & Khawaja, A. (2006), "GIS Based Route Guiding System for Optimal Path Planning in Disaster/Crisis Management". IEEE, 06.
- Dahal, R. K., Hasegawa, S., Nonomura, A., Yamanaka, M., Masuda, T., & Nishino, K. (2007), "GIS-based weights-of-evidence modelling of rainfall-induced landslides in small catchments for landslide susceptibility mapping", Environmental Geology, 54(2), 311-324. doi:10.1007/s00254-007-0818-3
- Doyle, F.J. (1978). *Digital Terrain Model: An Overview*. Photogrammetric Engineering and Remote Sensing. Vol 44
- Elachi, C., & Zyl, J. v. (2005). Introduction to the Physics and Techniques of Remote Sensing (Vol. Second Edition). Canada: A JOHN WILEY & SONS, INC., PUBLICATION.
- Firdaus, Zamal. 2009. Korelasi antara Pelatihan Teknis Perpajakan, Pengalaman dan Motivasi Pemeriksa Pajak dengan Kinerja Pemeriksa Pajak pada Kantor Pelayanan Pajak di Jakarta Barat. Fakultas Ekonomi dan Ilmu Sosial Universitas Islam Negeri Syarif Hidayatullah: Jakarta
- Herviani, Vina dan Febriansyah, Angky. (2016). Tinjuan atas Proses Penyusunan Laporan Keuangan pada *Young Enterpreneur Academy* Indonesia Bandung. Jurnal Riset Akuntansi Vol VIII/No.2/Oktober 2016
- Kang, S., & Seo, J. (2004), "GIS-Based Roadway Construction Planning", Paper dipublikasikan dalam Korean Society of Civil Engineers, Korea.

- Kang, S., & Seo, J. (2013), "GIS Method for Haul Road Layout Planning in Large Earthmoving Projects: Framework and Analysis", Jurnal Construction Engineering and Management, 139(2), 236-246. Doi:10.1061/(asce)co.1943-7862.0000561
- Kementrian Pekerjaan Umum. (2009). Peraturan Menteri Pekerjaan Umum Nomor 16/PRT/M/2009 tentang Pedoman Penyusunan Rencana Tata Ruang Wilayah Kabupaten. Pemerintah Republik Indonesia. Jakarta.
- Loyd, Charlie. (2013). *Landsat 8 Bands*. https://landsat.gsfc.nasa.gov/landsat-8/landsat-8-bands/
- Lapan. (2014). Penyusunan Pedoman Pengolahan Digital Klasifikasi Penutup Lahan Menggunakan Penginderaan Jauh. Jakarta: Lapan
- Lilesand T. M dan Kiefer, R. W. (1976). *Fifth Edition: Remote Sensing and Image Interpretation*. United States America UG/GCS Information Services, Inc.
- Marini, Yennie dkk. 2014. "Perbandingan Metode Klasifikasi *Supervised Maximum Likelihood* dengan Klasifikasi Berbasis Objek untuk Inventarisasi Lahan Tambak di Kabupaten Maros". Seminar Nasional Penginderaan Jauh
- Mogal, J. (1993). VR Technologies: Full Immersion. Iris Universe.
- Munthafa, A. E. and H. Mubarok (2017). "Penerapan Metode Analytical Hierachy Process dalam Sistem Pendukung Keputusan Penentuan Mahasiswa Berprestasi." Seri Sains dan Teknologi Vol 3.
- Ndruru, R. E., et al. (2014). "Analisa Faktor-Faktor yang Mempengaruhi Hasil Produksi Padi di Deli Serdang." Saintia Matematika Vol 2.
- Peraturan Pemerintah Republik Indonesia Nomor 21 Tahun 2008 tentang Penyelenggaraan Penanggulangan Bencana, (2008), Jakarta
- Peraturan Pemerintah Republik Indonesia Nomor 34 Tahun 2006 tentang Jalan, (2006), Jakarta
- Peraturan Kepala Badan Nasional Penganggulangan Bencana Nomor 2 tahun 2012 tentang Pedoman Umum Pengkajian Risiko Bencana
- Poullis, C., & You, S. (2010). Delineation and geometric modeling of road networks. ISPRS Journal of Photogrammetry and Remote Sensing, 65. doi:10.1016/j.isprsjprs.2009.10.004
- Prahasta, Eddy. 2009. Sistem Informasi Geografis: Konsep-konsep Dasar (Perspektif Geodesi dan Geomatika). Bandung: Informatika
- Peraturan Menteri Pekerjaan Umum Nomor 11/PRT/M/2011 tentang Pedoman Penyelenggaraan Jalan Khusus
- PU Bina Marga. (1997). Tata Cara Perencanaan Geometrik Jalan Antar Kota. No. 038/TBM/1997
- PUPR. (2017). Modul 3: Perencanaan Jaringan Jalan dan Perencanaan Teknis Terkait Pengadaan Tanah. Bandung: PUPR
- Purwadhi, F., dan Hardiyanti, S. (2001). Interpretasi Citra Digital. Jakarta: PT Grasindo
- Ramadhan, F. D. (2018). Analisis Pola Curah Hujan pada Kondisi Cuaca Ekstrem Bulan Oktober hingga Desember 2017 melalui Citra Modis Level 1B di Provinsi Jawa Timur. Departemen Teknik Geomatika. Surabaya, Institut Teknologi Sepuluh Nopember. Undergraduate.
- Richards, J. A., & Jia, X. (2006). Remote Sensing Digital Image Analysis, An Introduction (Vol. 4th Edition). Germany: Springer.


- Respati, Y. S., Putranto, A. M., Suwardi, A., Akinina, I., Fatkhiandari, & Husein, S. (2015). Analisis GIS Terhadap Gerakan Tanah di Girimulyo, Kulonprogo, D.I. Yogyakarta, dan Kajian Faktor Faktor Pengontrolnya. Thesis. Yogyakarta: Universitas Gajah Mada.
- Ridwan, M. A., Radzi, N. A. M., Ahmad, W. S. H. M. W., Mustafa, I. S., Din, N. M., Jalil, Y. E., . . . Zaki, W. M. D. W. (2018). Applications of Landsat-8 Data: a Survey. International Journal of Engineering & Technology, 7(4.35), 436. doi:10.14419/ijet.v7i4.35.22858
- Rosari, T. O. (2014). Evaluasi Rencana Tata Ruang Wilayah (RTRW) Kabupaten Sleman berdasarkan Analisis Risiko Bencana Gunung Merapi. (Sarjana), Universitas Muhammadiyan Surakarta, Surakarta.
- Sampurno, Rizki Mulya dan Thoriq, Ahmad. 2016. "Klasifikasi Tutupan Lahan Menggunakan Citra Landsat 8 Operational Land Imager (OLI) di Kabupaten Sumedang. Jurnal Teknotan Vol.10 No.2
- Sekaran, Uma dan Bougie, R., 2010. *Research Methods for Business:* A Skill Building Approach, John Wiley and sons, inc: London
- Siga, B.L. (2012), "Analisis Alinyemen Horizontal pada Tikungan Ring Road Selatan KM. 6 Taman Tirto Kasihan, Bantul, DIY", Universitas Atma Jaya Yogyakarta, Yogyakarta.
- Sukirman, S. (1999). Dasar Dasar Perencanaan Geometrik Jalan. Bandung: Nova.
- Susilo, Yunus. (2017). Kajian Sumber Data Elevasi pada Proses Orthorektifikasi Citra Resolusi Tinggi (Studi Kasus: Kota Trenggalek, Jawa Timur). Departemen Teknik Geomatika. Surabaya, Institut Teknologi Sepuluh Nopember. Postgraduate
- Taufik, M., Kurniawan, A., & Putri, A. R. (2016). Identifikasi Daerah Rawan Tanah Longsor Menggunakan SIG (Sistem Informasi Geografis). JURNAL TEKNIK ITS, 5.
- Tempfli, K. (1991). DTM and Different Modelling in: Proceeding ISPRS and OEEPE Joint Workshop on Updating Data by Photogrametric Record. Oxford, England: P.R.T. Newby.
- Ting, K. M. (2017). *Confusion Matrix*. Springer. doi:10.1007/978-1-4899-7687-1
- USGS. 2013. https://landsat.usgs.gov/what-are-best-spectral-bands-use-my-study> Dikunjungi pada 11 April 2020, Pukul 21:34.
- Varghese, K., & O'Connor, J. T. (1995). ROUTING LARGE VEHICLES ON INDUSTRIAL CONSTRUCTION SITES. ASCE.
- Virama Karya, (2019), Sertifikasi Bendungan Tiga Dihaji Kabupaten Ogan Komering Ulu Selatan. Retrieved from Palembang: PT Virama Karya (KSO).
- Widjaya, Thomas dkk. (2003). Evaluasi Lahan untuk Pengembangan Tanaman Karet di Kabupaten Ogan Komering Ulu Sumatera Selatan. Jurnal Penelitian Karet.
- Wijayanti, R. F. (2019). Penerapan Metode Klasifikasi Digital untuk Menyusun Neraca Sumber Daya Lahan (Studi Kasus: BWP Lumajang Kabupaten Lumajang). Departemen Teknik Geomatika. Surabaya, Institut Teknologi Sepuluh Nopember. Undergraduate.

LAMPIRAN 1

Gambar 1 Peta Geologi Lembar Baturaja (Sumber: Pusat Penelitian dan Pengembangan Geologi, 1993)

LAMPIRAN 2

Gambar 2 Pemetaan Sesar Pauh (Sumber: Laporan Geologi Bendungan Tiga Dihaji, 2019)

LAMPIRAN 3KOORDINAT PERENCANAAN AWAL SEKSI 1

Latitude	Longitude	STA
377202.865	9490648.002	0+000.0
377180.924	9490636.019	0+025.0
377158.983	9490624.036	0+050.0
377137.043	9490612.052	0+075.0
377115.102	9490600.069	0+100.0
377093.161	9490588.086	0+125.0
377071.315	9490575.931	0+150.0
377049.75	9490563.285	0+175.0
377028.245	9490550.536	0+200.0
377006.74	9490537.787	0+225.0
376985.235	9490525.036	0+250.0
376963.73	9490512.289	0+275.0
376942.225	9490499.54	0+300.0
376920.72	9490486.792	0+325.0
376899.215	9490474.043	0+350.0
376876.639	9490462.95	0+375.0
376853.01	9490455.474	0+400.0
376828.577	9490450.18	0+425.0
376804.141	9490444.899	0+450.0
376779.725	9490439.526	0+475.0
376755.269	9490434.338	0+500.0
376730.67	9490428.89	0+525.0
376706.722	9490422.436	0+550.0
376683.186	9490414.034	0+575.0
376660.603	9490403.335	0+600.0
376639.2	9490390.435	0+625.0
376619.193	9490375.463	0+650.0
376600.779	9490358.568	0+675.0
376584.145	9490339.92	0+700.0
376569.451	9490319.706	0+725.0
376556.514	9490298.319	0+750.0
376544.554	9490276.367	0+775.0
376532.787	9490254.309	0+800.0
376521.02	9490232.251	0+825.0
376509.254	9490210.193	0+850.0
376497.487	9490188.135	0+875.0
376485.721	9490166.078	0+900.0
376473.653	9490144.185	0+925.0
376460.016	9490123.246	0+950.0
376443.607	9490104.422	0+975.0
376424.311	9490088.573	1+000.0

Latitude	Longitude	STA
376402.653	9490076.144	1+025.0
376379.236	9490067.47	1+050.0
376354.822	9490062.145	1+075.0
376330.071	9490058.637	1+100.0
376305.272	9490056.474	1+125.0
376280.473	9490052.312	1+150.0
376255.674	9490049.149	1+175.0
376230.874	9490045.986	1+200.0
376206.075	9490042.824	1+225.0
376181.276	9490039.661	1+250.0
376156.477	9490036.499	1+275.0
376131.678	9490033.336	1+300.0
376106.879	9490030.173	1+325.0
376082.08	9490027.011	1+350.0
376057.28	9490023.848	1+375.0
376032.481	9490020.686	1+400.0
376007.698	9490017.401	1+425.0
375983.065	9490013.05	1+450.0
375958.831	9490007.127	1+475.0
375935.398	9489998.447	1+500.0
375912.995	9489987.378	1+525.0
375891.864	9489974.04	1+550.0
375872.233	9489958.577	1+575.0
375853.984	9489941.492	1+600.0
375836.655	9489923.47	1+625.0
375819.328	9489905.448	1+650.0
375802.001	9489887.427	1+675.0
375784.674	9489869.405	
375767.347	9489851.384	1+725.0
375750.02	9489833.363	1+750.0
375733.125	9489814.946	1+775.0
375719.661	9489793.955	1+800.0
375711.538	9489770.36	1+825.0
375706.146	9489745.949	1+850.0
375700.888	9489721.508	1+875.0
375695.629	9489697.067	1+900.0
375690.37	9489672.627	1+925.0
375685.112	9489648.186	1+950.0
375679.853	9489623.746	1+975.0
375674.594	9489599.305	2+000.0

Latitude	Longitude	STA
375668.767	9489572.225	2+027.7
375664.076	9489550.424	2+050.0
375658.817	9489525.983	2+075.0
375653.558	9489501.543	2+100.0
375648.299	9489477.102	2+125.0
375643.04	9489452.661	2+150.0
375637.781	9489428.221	2+175.0
375632.56	9489403.772	2+200.0
375627.809	9489379.228	2+225.0
375623.677	9489354.573	2+250.0
375620.162	9489329.822	2+275.0
375616.94	9489305.03	2+300.0
375613.719	9489280.239	2+325.0
375610.498	9489255.447	2+350.0
375607.277	9489230.656	2+375.0
375604.018	9489205.869	2+400.0
375600.13	9489181.175	2+425.0
375594.606	9489156.801	2+450.0
375586.762	9489133.075	2+475.0
375576.588	9489110.25	2+500.0
375564.282	9489088.497	2+525.0
375550.64	9489067.55	2+550.0
375536.528	9489046.914	2+575.0
375522.396	9489026.291	2+600.0
375508.264	9489005.669	2+625.0
375494.132	9488985.047	2+650.0
375480	9488964.424	2+675.0
375465.868	9488943.802	2+700.0
375451.736	9488923.179	2+725.0
375437.604	9488902.557	2+750.0
375423.405	9488881.981	2+775.0
375409.0035	9488861.545	2+800.0
375394.4	9488841.254	2+825.0
375379.634	9488821.081	2+850.0
375364.854	9488800.918	2+875.0
375350.074	9488780.754	2+900.0
375335.294	9488760.591	2+925.0
375320.515	9488740.428	2+950.0
375309.6299	9488725.607	2+968.0

KOORDINAT PERENCANAAN AWAL SEKSI 2

Latitude	Longitude	STA
375396.461	9488844.09	0+000.0
375371.4889	9488845.282	0+025.0
375346.5191	9488845.574	0+050.0
375334.5085	9488842.293	0+062.5
375324.9835	9488835.489	0+075.0
375316.0985	9488825.916	0+087.5
375306.6372	9488809.716	0+106.3
375297.3852	9488793.424	0+125.0
375291.2125	9488782.554	0+137.5
375285.0386	9488771.685	0+150.0
375278.0606	9488761.342	0+162.5
375267.8966	9488754.336	0+175.0
375255.8465	9488755.553	0+187.5
375248.2017	9488765.142	0+200.0
375246.034	9488777.393	0+212.5
375245.9849	9488789.892	0+225.0
375246.0166	9488802.392	0+237.5
375246.0482	9488814.892	0+250.0
375246.0879	9488830.596	0+265.7
375246.1431	9488852.392	0+287.5
375246.1747	9488864.892	0+300.0
375246.2063	9488877.392	0+312.5
375246.238	9488889.892	0+325.0
375245.9488	9488902.382	0+337.5
375241.7245	9488913.972	0+350.0
375230.8454	9488918.965	0+362.5
375220.1804	9488913.048	0+375.0
375213.7573	9488902.378	0+387.5
375208.4992	9488891.037	0+400.0
375197.9865	9488868.355	0+425.0
375187.4737	9488845.673	0+450.0
375182.1356	9488834.371	0+462.6
375174.9031	9488824.25	0+475.0
375164.346	9488817.727	0+487.5
375152.0519	9488816.03	0+500.0
375127.6254	9488821.224	0+525.0
375115.4075	9488823.81	0+537.5
375102.9768	9488823.132	0+550.0
375127.6254	9488821.224	0+525.0
375115.4075	9488823.81	0+537.5
375102.9768	9488823.132	0+550.0

Latitude	Longitude	STA
375090.8325	9488820.172	0+562.5
375078.7026	9488817.154	0+575.0
375067.3644	9488812.076	0+587.5
375060.9513	9488801.727	0+600.0
375067.7726	9488778.094	0+625.0
375071.6147	9488762.009	0+642.0
375066.2973	9488756.283	0+650.0
375054.3079	9488752.872	0+662.5
375030.1477	9488746.574	0+687.5
375012.411	9488729.713	0+712.5
375008.1893	9488717.967	0+725.0
375004.6969	9488705.962	0+737.5
375001.2055	9488693.959	0+750.0
374989.9409	9488667.995	0+767.2
374971.1021	9488658.779	0+800.0
374958.9386	9488655.898	0+812.5
374946.9428	9488652.434	0+825.0
374925.935	9488639.104	0+850.0
374906.3337	9488623.587	0+875.0
374886.7323	9488608.07	0+900.0
374867.131	9488592.552	0+925.0
374847.5296	9488577.035	0+950.0
374827.9282	9488561.518	0+975.0
374808.3269	9488546.003	1+000.0
374789.2787	9488529.817	1+025.0
374771.4337	9488512.316	1+050.0
374754.1991	9488494.206	1+075.0
374736.9645	9488476.096	1+100.0
374719.7301	9488457.986	1+125.0
374712.8459	9488447.713	1+137.5
374714.8733	9488435.685	1+150.0
374721.1223	9488424.86	1+162.5
374727.4441	9488414.077	1+175.0
374733.7658	9488403.293	1+187.5
374739.9381	9488392.425	1+200.0
374745.2691	9488381.123	1+212.5
374749.6662	9488369.425	1+225.0
374753.7718	9488357.618	1+237.5
374757.8774	9488345.812	1+250.0
374761.9829	9488334.005	1+262.5

Latitude	Longitude	STA
374766.1062	9488322.205	1+275.0
374772.3092	9488311.411	1+287.5
374792.8759	9488297.923	1+312.5
374805.2473	9488296.437	1+317.3
374817.7432	9488296.115	1+330.0
374830.1696	9488295.484	1+342.5
374841.0705	9488289.604	1+355.0
374847.0624	9488278.844	1+367.5
374852.3767	9488267.53	1+380.0
374857.691	9488256.216	1+392.0

KOORDINAT ALTERNATIF DENGAN METODE MANUAL SEKSI 1

Latitude	Longitude	STA
377181	9490640	0+000.0
377159	9490620	0+025.0
377137	9490610	0+050.0
377115	9490600	0+075.0
377093	9490590	0+100.0
377071	9490580	0+125.0
377050	9490560	0+150.0
377028	9490550	0+175.0
377007	9490540	0+200.0
376985	9490530	0+225.0
376964	9490510	0+250.0
376942	9490500	0+275.0
376921	9490490	0+300.0
376899	9490470	0+325.0
376877	9490460	0+350.0
376853	9490460	0+375.0
376829	9490450	0+400.0
376804	9490450	0+425.0
376780	9490440	0+450.0
376755	9490430	0+475.0
376731	9490430	0+500.0
376707	9490420	0+525.0
376683	9490410	0+550.0
376661	9490400	0+575.0
376639	9490390	0+600.0
376619	9490380	0+625.0
376601	9490360	0+650.0
376584	9490340	0+675.0
376569	9490320	0+700.0
376556	9490300	0+725.0
376545	9490280	0+750.0
376533	9490250	0+775.0
376521	9490230	0+800.0
376509	9490210	0+825.0
376497	9490190	0+850.0
376486	9490170	0+875.0
376474	9490140	0+900.0
376460	9490120	0+925.0
376443	9490100	0+950.0
376424	9490090	0+975.0
376402	9490080	1+000.0

Latitude	Longitude	STA
376379	9490070	1+025.0
376355	9490060	1+050.0
376330	9490060	1+075.0
376305	9490060	1+100.0
376280	9490050	1+125.0
376255	9490050	1+150.0
376231	9490050	1+175.0
376206	9490040	1+200.0
376181	9490040	1+225.0
376156	9490040	1+250.0
376131	9490030	1+275.0
376107	9490030	1+300.0
376082	9490030	1+325.0
376057	9490020	1+350.0
376032	9490020	1+375.0
376007	9490020	1+400.0
375983	9490010	1+425.0
375959	9490010	1+450.0
375935	9490000	1+475.0
375913	9489990	1+500.0
375892	9489970	1+525.0
375872	9489960	1+550.0
375854	9489940	1+575.0
375836	9489920	1+600.0
375819	9489910	1+625.0
375802	9489890	1+650.0
375784	9489870	1+675.0
375767	9489850	1+700.0
375750	9489830	1+725.0
375733	9489820	1+750.0
375720	9489790	1+775.0
375711	9489770	1+800.0
375706	9489750	1+825.0
375701	9489720	1+850.0
375696	9489700	1+875.0
375690	9489670	1+900.0
375685	9489650	1+925.0
375680	9489620	1+950.0
375675	9489600	1+975.0
375669	9489570	2+000.0

Latitude	Longitude	STA
375664	9489550	2+025.0
375659	9489530	2+050.0
375653	9489500	2+075.0
375648	9489480	2+100.0
375643	9489450	2+125.0
375633	9489430	2+150.0
375622	9489410	2+175.0
375610	9489390	2+200.0
375598	9489360	2+225.0
375586	9489340	2+250.0
375579	9489320	2+275.0
375573	9489290	2+300.0
375569	9489270	2+325.0
375564	9489240	2+350.0
375559	9489220	2+375.0
375555	9489200	2+400.0
375551	9489170	2+425.0
375547	9489150	2+450.0
375540	9489120	2+475.0
375532	9489100	2+500.0
375519	9489080	2+525.0
375506	9489060	2+550.0
375493	9489030	2+575.0
375480	9489010	2+600.0
375465	9488990	2+625.0
375450	9488970	2+650.0
375435	9488950	2+675.0
375419	9488930	2+700.0
375404	9488910	2+725.0
375390	9488890	2+750.0
375376	9488870	2+775.0
375363	9488850	2+800.0
375350	9488830	2+825.0
375336	9488810	2+850.0
375320	9488790	2+875.0
375304	9488770	2+900.0
375286	9488750	2+925.0

KOORDINAT ALTERNATIF DENGAN METODE MANUAL SEKSI 2

Latitude	Longitude	STA
375272	9488730	0+000.0
375257	9488710	0+025.0
375242	9488690	0+050.0
375227	9488670	0+075.0
375209	9488660	0+100.0
375189	9488640	0+125.0
375169	9488620	0+150.0
375149	9488610	0+175.0
375129	9488590	0+200.0
375108	9488580	0+225.0
375087	9488570	0+250.0
375066	9488560	0+275.0
375044	9488540	0+300.0
375023	9488530	0+325.0
375001	9488520	0+350.0
374979	9488510	0+375.0
374957	9488490	0+400.0
374935	9488480	0+425.0
374919	9488460	0+450.0
374904	9488440	0+475.0
374892	9488420	0+500.0
374880	9488400	0+525.0
374872	9488370	0+550.0
374865	9488350	0+575.0
374861	9488330	0+600.0
374860	9488300	0+625.0
374859	9488280	0+650.0

LAMPIRAN 4

7/16/2020

ANP File PEMILIHAN ALTERNATIF TERBAIK JALAN AKSES BENDUNGAN TIGA DIHAJI.sdmod

Main menu for PEMILIHAN ALTERNATIF TERBAIK JALAN AKSES BENDUNGAN TIGA DIHAJI.sdmod

- Outline
- Main Structures
- Report

Outline for PEMILIHAN ALTERNATIF TERBAIK JALAN AKSES BENDUNGAN TIGA DIHAJI.sdmod

- PEMILIHAN ALTERNATIF TERBAIK JALAN AKSES BENDUNGAN TIGA DIHAJI.sdmod Model alternatives follow:
 - Alt. Cost Distance
 - Alt.Manual
 - Perencanaan Awal

Main structure of toplevel network

What follows a brief recap of this network.

If you would like to, you can return to the main menu.

Alternative(s) in it:	Alt. Cost Distance Alt.Manual
	Perencanaan Awal
Network Type:	Bottom level
Formula:	Not applicable
Clusters/Nodes	ALTERNATIVE: Alternatif yang diajukan Alt. Cost Distance: Pemilihan rute didasarkan pemetaan akhir 3 parameter dengan metode Cost Distance Alt.Manual: Perencanaan berdasarkan parameter yang telah dilakukan dengan digitasi manual Perencanaan Awal: Perencanaan yang dilakukan oleh Konsultan Perencana CRÎTERIA: Parameter yang dipertimbangkan Jarak Pandang: Memperhitungan adanya titik buta bagi pengendara Jembatan: banyaknya jembatan yang dibutuhkan sepanjang jalan Koor. Align.: Koordinasi antara alinyemen vertikal dan horizontal Lurus Maks: Lurus maksimal yang diperbolehkan oleh dinas PU Bina Marga

file:///C:/Users/User/AppData/Local/Temp/anp_image_temp0.html

1/2

- Panjang Jalan: Panjang jalan yang dibutuhkan untuk berpindah dari satu titik ke titik lainnya
- Pemetaan: Pemetaan 3 aspek yang dilakukan meliputi kerentanan longsor, tutupan lahan dan faktor konstruksi
- Radius Minimal: radius minimum yang diperlukan kendaraan untuk berbelok dengan kondisi aman
- RTRW: Tata ruang yang berlaku di lokasi kajian
- TUJUAN: Output yang diharapkan
 - RUTE TERBAIK: Pemilihan rute terbaik jalan akses bendungan Tiga Dihaji

Report for toplevel

This is a report for how alternatives fed up through the system to give us our synthesized values. Return to main menu.

Alternative Rankings

Graphic	Alternatives	Total	Normal	Ideal	Ranking
	Alt. Cost Distance	0.1752	0.3504	0.7564	2
	Alt.Manual	0.2316	0.4633	1.0000	1
	Perencanaan Awal	0.0931	0.1863	0.4021	3

Aspek	Perencanaan Awal	Alternatif					
Faktor Pasca Konstruksi							
Panjang Lurus Maksimal	Panjang lurus maksimum	Panjang lurus maksimum					
	pada daerah pegunungan	pada daerah pegunungan					
	adalah 1.500 m	adalah 1.500 m					
	sedangkan lurus	sedangkan lurus					
	terpanjang pada rute ini	terpanjang pada rute ini					
	adalah 674 m.	adalah 1000 m.					
Kemungkinan Jembatan	2 buah jembatan	2 buah jembatan					
Radius Minimal	Radius minimal diacukan	Radius minimal diacukan					
	pada kemampuan	pada kemampuan					
	kendaraan besar untuk	kendaraan besar untuk					
	melalui rute tersebut.	melalui rute tersebut.					
	Sehingga rute ini dinilai	Sehingga rute ini dinilai					
	memiliki radius minimal	memiliki radius minimal					
	yang baik	yang baik					
Jarak Pandang	Baik; alinyemen stabil	Baik; alinyemen stabil					
Koordinasi Alinyemen	Alinyemen vertikal	Alinyemen vertikal lebih					
Vertikal dan Horizontal	cukup stabil; Alinyemen	stabil; Alinyemen					
	horizontal stabil; Tidak	horizontal stabil; Tidak					
	ada sudut buta akibat	ada sudut buta akibat					
	keselahan perencanaan	keselahan perencanaan					
	alinyemen pada jalan	alinyemen pada jalan					
	tersebut.	tersebut.					
Panjang Jalan	Tidak ada perubahan	Lebih pendek 0,045 km					
	panjang rute.						
Rencana Tata Ruang Wilayah (RTRW)							
Rencana Tata Ruang	– Rute jalan masuk	– Rute jalan masuk					
Wilayah (RTRW)	dalam wilayah	dalam wilayah					
	peruntukan	peruntukan					
	perkebunan.	perkebunan.					

- Rute jalan
 bersinggungan
 dengan rencana
 transportasi pada STA
 1+700 hingga 1+775.
- Rute jalan tidak
 bersinggungan
 dengan rencana jalan
 Kereta Api
- Rute jalan tidak
 melewati wilayah
 konservasi

- Rute jalan
 bersinggungan
 dengan rencana
 transportasi pada STA
 1+700 hingga 1+775.
- Rute jalan tidakbersinggungandengan rencana jalanKereta Api
- Rute jalan tidak
 melewati wilayah
 konservasi

Expert Judgement

Expert Judgement

Dengan pemilihan rute sesuai perencanaan awal, kebutuhan backfill pada Seksi 1 dinilai lebih Backfill banyak. ini membutuhkan tenaga kerja dan alat berat yang lebih memadai untuk memangkas tubuh bukit, dan mengurug lokasi yang relatif besar. Pekerjaan tambahan ini dinilai tidak efektif dari segi waktu dan biaya.

Dengan pemilihan rute sesuai jalan alternatif, kebutuhan *backfill* dinilai lebih sedikit, hal ini dapat dilihat pada indeks yang sebelumnya telah disajikan. Apabila rute ini dipilih, kebutuhan tenaga kerja dan alat memungkinkan berat untuk dapat dikurangi. Sehingga, dinilai lebih efektif dari segi waktu dan biaya

Aspek	Perencanaan Awal	Alternatif					
Faktor Pasca Konstruksi							
Panjang Lurus Maksimal	Panjang lurus maksimum	Panjang lurus maksimum					
	pada daerah pegunungan	pada daerah pegunungan					
	adalah 1.500 m	adalah 1.500 m					
	sedangkan lurus	sedangkan lurus					
	terpanjang pada rute ini	terpanjang pada rute ini					
	adalah 310 m.	adalah 250 m.					
Kemungkinan Jembatan	Tidak ada jembatan	Tidak ada jembatan					
Radius Minimal	Radius minimal diacukan	Radius minimal diacukan					
	pada kemampuan	pada kemampuan					
	kendaraan besar untuk	kendaraan besar untuk					
	melalui rute tersebut.	melalui rute tersebut.					
	Rute ini dinilai memiliki	Rute ini memiliki radius					
	radius yang kurang baik	yang baik karena					
	kerena banyak memiliki	alinyemen horizontal					
	kelokan tajam	yang lebih stabil					
Jarak Pandang	Kurang baik; karena	Baik; alinyemen lebih					
	terlalu berkelok pada rute	stabil					
	yang terjal						
Koordinasi Alinyemen	Alinyemen kurang stabil	Alinyemen stabil					
Vertikal dan Horizontal							
Panjang Jalan	Tidak ada perubahan	Lebih pendek 0,695 km					
	panjang rute.						
Rencana Tata Ruang Wilayah (RTRW)							
Rencana Tata Ruang	– Rute jalan masuk	– Rute jalan masuk					
Wilayah (RTRW)	dalam wilayah	dalam wilayah					
	peruntukan	peruntukan					
	perkebunan.	perkebunan.					

Rute jalan tidak Rute bersinggungan bersinggungan dengan rencana dengan transportasi. transportasi. - Rute tidak jalan - Rute bersinggungan bersinggungan dengan rencana jalan dengan rencana jalan Kereta Api Kereta Api - Rute jalan tidak - Rute melewati wilayah melewati konservasi konservasi **Expert Judgement** Pemilihan Expert Judgement rute sesuai Pemilihan dengan perencanaan

awal, dinilai memiliki rute yang relatif panjang dan berkelok kelok. Rute ini dinilai tidak efektif karena harus berputar melalui bukit tumpuan kiri. Melalui perputaran rute ini, diperkirakan membutuhkan tenaga, waktu dan biaya yang lebih besar.

rute sesuai dengan jalan alternatif, dinilai lebih baik, karena jalan tidak perlu berkelok-kelok menuju bukit tumpuan kiri. Rute yang tidak berkelokkelok juga memberikan kemudahan dalam proses konstruksi. Sehingga, diperkirakan tenaga, waktu dan biaya juga lebih efektif.

jalan

jalan

jalan

tidak

rencana

tidak

tidak

wilayah

BIOGRAFI PENULIS

Nama lengkap penulis adalah Niswah Selmi Kaffa yang biasa dipanggil Selmi. Penulis lahir di Jombang pada tanggal 8 Desember 1995. Sehingga, pada saat penyelesaian tesis ini penulis berumur 24 tahun. Penulis menempuh pendidikan dasar di MI Muhammadiyah 1 Jombang, kemudian melanjutkan ke SMP Negeri 1 Jombang dan SMA Negeri 3 Jombang. Penulis

mendapatkan gelar sarjana sains terapan (S.S.T) dari Politeknik Negeri Malang pada tahun 2018 setelah 4 tahun menempuh pendidikan sarjana terapan pada program pendidikan Manajemen Rekayasa Konstruksi, jurusan Teknik Sipil. Setelah lulus penulis melanjutkan pendidikan pascasarjana di Departemen Teknik Geomatika, Institut Teknologi Sepuluh Nopember, Surabaya.