

TUGAS AKHIR - RF 184838

PEMODELAN 3D KONDISI BAWAH PERMUKAAN BERDASARKAN DATA GAYA BERAT LAUTAN PASIR TENGGER

RADITYA YUDHA PERMANA NRP. 03411640000042

Dosen Pembimbing Anik Hilyah S.Si, M.T NIP. 19790813 200812 2 002

M. Haris Miftakhul Fajar, S.T., M.Eng. NIP. 1989 0208 2018 03 1001

DEPARTEMEN TEKNIK GEOFISIKA Fakultas Teknik Sipil, Perencanaan, dan Kebumian Institut Teknologi Sepuluh Nopember Surabaya 2020

TUGAS AKHIR - RF 184838

PEMODELAN 3D KONDISI BAWAH PERMUKAAN BERDASARKAN DATA GAYA BERAT LAUTAN PASIR TENGGER

RADITYA YUDHA PERMANA NRP. 03411640000042

Dosen Pembimbing Anik Hilyah S.Si, M.T

NIP. 19790813 200812 2 002

M. Haris Miftakhul Fajar, S.T., M.Eng. NIP. 19890208 201803 1 001

DEPARTEMEN TEKNIK GEOFISIKA Fakultas Teknik Sipil, Perencanaan, dan Kebumian Institut Teknologi Sepuluh Nopember Surabaya 2020

TUGAS AKHIR - RF 184838

3D MODELLING OF TENGGER SAND SEA SUBSURFACE CONDITION BASED ON GRAVITY DATA

RADITYA YUDHA PERMANA NRP. 03411640000042

Supervisors Anik Hilyah S.Si, M.T NIP. 19790813 200812 2 002

M. Haris Miftakhul Fajar, S.T., M.Eng. NIP. 19890208 201803 1 001

GEOPHYSICAL ENGINEERING DEPARTMENT Faculty of Civil, Planning, And Geoengineering Sepuluh Nopember Institute of Technology Surabaya 2020

HALAMAN PENGESAHAN

Tugas akhir ini diajukan oleh Nama NRP Departemen Judul Tugas Akhir

- : Raditya Yudha Permana
- : 03411640000042
- : Teknik Geofisika

: Pemodelan 3D Kondisi Bawah Permukaan Berdasarkan Data Gaya Berat Lautan Pasir Tengger

Telah berhasil dipertahankan di hadapan tim penguji dan diterima sebagai bagian persyaratan yang diperlukan untuk memperoleh gelar Sarjana Teknik pada Departemen Teknik Geofisika, Fakultas Teknik Sipil, Lingkungan dan Kebumian, Institut Teknologi Sepuluh Nopember.

Surabaya, 27 Juli 2020

Anik Hityah, S.Si., M.T. NIP. 19790813 200812 2 002

1.

2. <u>M. Haris Miftakhul Fajar, S.T., M.Eng.</u> NIP. 19890208 201803 1 001

(Pembimbing II)

(Pembimbing I)

3. Dr. Dwa Desa Warnana, S. Si, M. Si NIP. 19760, 23 200003 1 001

4. <u>Mariyanto, S.Si., M.T.</u> NIP. 19911002 201711 0 044

(Penguji I)

(Penguji II)

Menyetujui, Kopala Depurtenen Feknik Geofisika Fakunas Teknik Sipil, Berencanaan dan Kebumian Instrut Teknologi Sipuluh Nopember

> Warmana, S. Si, M. Si 760123 200003 1 001

PERNYATAAN KEASLIAN

Dengan ini saya menyatakan bahwa isi sebagian maupun keseluruhan Tugas Akhir saya dengan judul "PEMODELAN 3D KONDISI BAWAH PERMUKAAN BERDASARKAN DATA GAYA BERAT LAUTAN PASIR TENGGER" adalah benar-benar hasil karya intelektual mandiri, diselesaikan tanpa menggunakan bahan-bahan yang tidak diijinkan dan bukan merupakan karya pihak lain yang saya akui sebagai karya sendiri. Semua referensi yang dikutip maupun dirujuk telah ditulis secara lengkap pada daftar pustaka. Apabila ternyata pernyatana ini tidak benar, saya bersedia menerima sanksi sesuai peraturan yang berlaku.

Surabaya, 22 Juni 2020

Km

Raditya Yudha Permana NRP. 03411640000042

PEMODELAN 3D KONDISI BAWAH PERMUKAAN BERDASARKAN DATA GAYA BERAT LAUTAN PASIR TENGGER

- Nama NRP Departemen Pembimbing 1 Pembimbing 2
- : Raditya Yudha Permana
- : 03411640000042
- : Teknik Geofisika
- : Anik Hilyah S.Si, M.T
- : M. Haris Miftakhul Fajar, S.T., M.Eng.

ABSTRAK

Gunung Bromo terbentuk akibat aktivitas magmatisme pada periode pasca pembentukan Kaldera Lautan pasir yang terbentuk akibat erupsi eksplosif yang terjadi pada Gunung Cemorolawang. Seiring berjalannya waktu, kaldera Lautan pasir terisi dengan endapan abu piroklastik dan pasir, sehingga diperlukan metode geofisika untuk mengetahui kondisi di bawah permukaan. Salah satu metode geofisika yang bagus untuk mengetahui kondisi bawah permukaan adalah metode gaya berat. Metode ini melihat adanya anomali gaya berat akibat adanya kontras densitas batuan di bawah permukaan. Data mentah gaya berat dilakukan proses reduksi dan didapatkan nilai anomali bouguer lengkap. Anomali bouguer kemudian dipisahkan menjadi anomali residual untuk selanjutnya digunakan dalam pemodelan inversi secara 3D. Dari pola anomali Boguer dan hasil pemodelan 3D kemudian dilakukan interpretasi. Berdasarkan pola anomali Bouguer terdapat area dengan nilai anomali tinggi dan rendah. Anomali tinggi berada di sekitar bagian tepi kaldera Lautan pasir diduga merupakan batuan basalt. Sedangkan pola anomali rendah diperkirakan merupakan endapan piroklastik hasil erupsi Gunung Cemoro Lawang yang menutupi hampir keseluruhan area kaldera. Hasil pemodelan inversi 3D metode gaya berat menunjukkan adanya batuan basalt yang terlihat pada bagian tepi area pengukuran atau dalam hal ini kaldera Lautan pasir. Kemudian terdapat aliran lava basal yang muncul ke permukaan pada daerah tenggara area pengukuran.

Kata Kunci : Gaya berat, kaldera Lautan pasir, pemodelan 3D, SVD

3D MODELLING OF TENGGER SAND SEA SUBSURFACE CONDITION BASED ON GRAVITY DATA

Name Student ID Departement Advisor 1 Advisor 2

- : Raditya Yudha Permana
- : 03411640000042
- : Geophysical Engineering
- : Anik Hilyah S.Si, M.T
- : M. Haris Miftakhul Fajar, S.T., M.Eng.

ABSTRACT

Mount Bromo was formed due to the activity of magmatism in the post-caldera formation Sea of sand formed by explosive eruptions that occurred on *Cemorolawang Mountain. Over time, the Tenger sand sea filled with pyroclastic* ash and sand deposits, so that the geophysical method is needed to determine the structure beneath the surface. One of the geophysical method to delineate subsurface structures is the gravity method. This method measures off gravity anomaly due to rock density contrast below the surface. The raw gravity data is carried out in the reduction process and a complete bouguer anomaly value is obtained. The bouguer anomaly is then separated into a residual anomaly for later use in 3D modeling inversion. From Boguer's anomaly pattern and the results of 3D modeling, interpretation is done. Based on the Bouguer anomaly pattern there are areas with high and low anomaly values. High anomaly around the edge of the caldera Sand sea is thought to be basalt rock. While the low anomaly pattern is estimated to be pyroclastic deposits eruption of Mount Cemoro Lawang which covered almost the entire caldera area. The 3D inversion modeling results the gravity method shows the presence of basalt rocks which are visible on the edge of the measurement area or in this case the Tengger sand sea. Then there is a basalt lava flow that appears to the surface in the southeast area of the measurement area.

Key Words: Gravity, Tengger sand sea, 3D modelling, SVD

KATA PENGANTAR

Segala puji bagi Allah, Tuhan Yang Maha Esa karena atas rahmat dan karunia-Nya sehingga laporan Tugas Akhir ini bisa diselesaikan dengan baik. Penelitian Tugas Akhir ini meliputi analisis model 3 dimensi (3D) pada data gaya berat di Kompleks Kaldera Tengger.

Pelaksanaan dan penyusunan Laporan Tugas Akhir ini tidak terlepas dari bimbingan, bantuan, dan dukungan berbagai pihak. Oleh karena itu, penulis ingin mengucapkan teirma kasih yang sebesar-besarnya kepada:

- 1. Ibu, Ayah serta keluarga atas dukungan yang sangat besar selama penulis menjalani Tugas Akhir ini.
- 2. Ibu Anik Hilyah S.Si, M.T dan Bapak M. Haris Miftakhul Fajar, S.T., M.Eng. selaku pembimbing di perguruan tinggi yang telah meluangkan banyak waktu untuk memberikan bimbingan dan arahan kepada penulis.
- 3. Seluruh jajaran Dosen, staf, dan karyawan Departemen Teknik Geofisika ITS yang telah banyak memeberikan ilmu selama penulis melakukan studi di Departemen Teknik Geofisika ITS.
- 4. Teman-teman mahasiswa Teknik Geofisika ITS, terutama untuk angkatan 2016, TG5 untuk kebersamaan selama perkuliahan.
- 5. Tim penelitian Bromo dan Umbulan serta Hanif Fajrul Falah yang senantiasa membantu penulis selama pengerjaan tugas akhir.
- 6. Aisya Nur Hafiyya yang membantu penulis sehingga tugas akhir ini terselesaikan.
- 7. Semua Pihak yang tidak dapat dituliskan satu per satu oleh penulis.

Terima kasih atas doa dan dukungaannya. Semoga Allah membalas semua kebaikan yang telah diberikan. Penulis menyadari masih banyak terdapat kekurangann dalam penulisan laporan Tugas Akhir ini. Untuk itu, saran dan kritik sangat penulis harapkan untuk memperbaiki penulisan. Semoga laporan ini dapat bermanfaat bagi pembaca.

Surabaya, 27 Juli 2020

Raditya Yudha Permana

03411640000042

DAFTAR ISI

HALAN	MAN F	PENGESAHAN	i
PERNY	ATAA	AN KEASLIAN	ii
ABSTR	AK		v
ABSTR	ACT		vii
KATA	PENG	ANTAR	ix
DAFTA	R ISI		xi
DAFTA	R TA	BEL	xv
DAFTA	R GA	MBAR	.xvii
BABI.	•••••		1
PENDA	HULU	JAN	1
1.1	Latar	Belakang	1
1.2	Rumu	san Masalah	1
1.3	Batasa	an Masalah	1
1.4	Tujua	n	1
1.5	Manfa	aat	2
BAB II	TINJA	AUAN PUSTAKA	3
2.1	Dasar	Teori	3
	2.1.1	Geologi Regional	3
	2.1.2	Metode Gravity	8
2.2	Peneli	itian Terdahulu	18
BAB II	І МЕТ	ODE PENELITIAN	24
3.1	Lokas	i Penelitian	24
3.2	Perala	ıtan dan Data	24
	3.2.1	Peralatan	24
	3.2.2	Data	25
3.3	Alur I	Penelitian	25
3.4	Langk	ah kerja	27
	3.4.1	Pengumpulan Data	27
	3.4.2	Pemisahan Anomali	27
	3.4.3	Pemodelan 3D	27
BAB IV	HAS	IL DAN PEMBAHASAN	30
4.1	Anom	ali Bouguer	30
4.2	Hasil	Pemisahan Anomali	31
4.3	Analis	sis Spektrum	33
4.4	Hasil	Pemodelan	34
	4.4.1	Model Awal	34

4.4.2 Hasil Pemodelan Inversi 3D	
Interpretasi Penampang Model 2 Dimensi (2D)	
Interpretasi Model 3 Dimensi (3D)	
SIMPULAN DAN SARAN	
Kesimpulan	
Saran	
AR PUSTAKA	
IRAN	
	4.4.2 Hasil Pemodelan Inversi 3D Interpretasi Penampang Model 2 Dimensi (2D) Interpretasi Model 3 Dimensi (3D) SIMPULAN DAN SARAN Kesimpulan Saran AR PUSTAKA IRAN

DAFTAR TABEL

Tabel 2. 1 Rentang densitas beberapa batuan dan bijih (Kearey dkk	., 2013)10
Tabel 2. 2 Nilai densitas batuan daerah penelitian	10
Tabel 2. 3 Tabel pembacaan koreksi terrain (Kearey dkk., 2013)	13
Tabel 2. 4 Bobot grid kartesius (Heinrichs Jr dkk., 1967)	17

DAFTAR GAMBAR

Gambar 2. 1 Peta pembagian zona fisiografi daerah Jawa Tengah dan Jawa
Timur, kotak berwarna merah menunjukkan lokasi penelitian (modifikasi dari
Van Bemmelen, 1949, dalam Hartono, 2010)
Gambar 2. 2 Peta geologi daerah penelitian (dimodifikasi dari Dwi Nugroho,
2019)7
Gambar 2. 3 Sejarah geologi pasca pembentukan kaldera Lautan pasir hingga
terbentuknya Gunung Bromo (Achmad Nazar Abrory, 2019)8
Gambar 2. 4 Zona-zona pada Hammer chart12
Gambar 2. 5 Hubungan antara lingkaran rata-rata dan titik koordinat kartesius
untuk jari-jari kecil (Heinrichs Jr dkk., 1967)16
Gambar 2. 6 A) Anomali bouguer (mGal) model gravity lintasan AA'. B) Hasil
rekonstruksi gravity pada lintasan AA' dengan anomali bouguer, eigenimage
pertama and kedua (Ganguli dan Dimri, 2013)20
Gambar 2.7 A) Anomali bouguer (mGal) model gravity lintasan DD'. B) Hasil
rekonstruksi gravity pada lintasan DD' dengan anomali bouguer, eigenimage
pertama and kedua (Ganguli dan Dimri, 2013)21
Gambar 2. 8 Peta anomali SVD (Single Vertical Derivative) (Hafidah dkk.,
2019)
Gambar 3. 1 Desain akuisisi pengukuran metode gravity
Gambar 3. 2 Alur kegiatan penelitian
Gambar 4. 1 Peta anomali Bouguer lengkap yang dioverlay dengan peta geologi
daerah penelitian Kaldera Tengger
Gambar 4. 2 Peta anomali regional yang <i>dioverlay</i> dengan peta geologi daerah
penelitian Kaldera Tengger
Gambar 4. 3 Peta anomali residual yang <i>dioverlay</i> dengan peta geologi dearah
penelitian Kaldera Tengger
Gambar 4. 4 Plot ln Amplitudo (ln A) dengan bilangan gelombang (k) pada (a)
lintasan arah barat laut-tenggara dan (b) lintasan arah timur laut-barat daya 34
Gambar 4. 5 Model awal menggunakan Grablox 1.6: (a) blok penampang pada
sumbu y (b) blok penampang pada sumbu x (c) blok penampang kedalaman z
(d) model 3D35
Gambar 4. 6 Hasil komputasi dasar
Gambar 4. 7 Hasil optimasi densitas
Gambar 4. 8 Hasil optimasi occam d
Gambar 4. 9 Hasil optimasi height
Gambar 4. 10 Model hasil akhir optimasi occam h
Gambar 4. 11 Peta lintasan sayatan 2D40

Gambar 4. 12 Sayatan penampang densitas model 2D lintasan A-A'	41
Gambar 4. 13 Sayatan penampang densitas model 2D lintasan B-B'	42
Gambar 4. 14 Sayatan penampang densitas model 2D lintasan C-C'	42
Gambar 4. 15 Sayatan penampang densitas model 2D lintasan D-D'	43
Gambar 4. 16 Model 3 dimensi (3D) distribusi densitas	44

BAB I PENDAHULUAN

1.1 Latar Belakang

Aktivitas vulkanik yang terjadi pada Gunung Bromo berhubungan dengan sejarah geologi pada Kompleks Tengger (Zaennudin, 2011). Gunung Bromo terbentuk akibat aktivitas magmatisme pada periode pasca pembentukan Kaldera Lautan pasir. Kaldera Lautan pasir sendiri terbentuk akibat erupsi eksplosif yang terjadi pada Gunung Cemorolawang. Seiring berjalannya waktu, kaldera Lautan pasir terisi dengan endapan abu dan pasir (Zaenudin, 1990). Hal ini mengakibatkan morfologi kaldera tua tertutup lautan pasir. Oleh karena itu, perlu dilakukan penelitian menggunakan metode geofisika untuk mengetahui kondisi bawah permukaan lautan pasir tersebut.

Metode geofisika yang sering digunakan untuk mengetahui kondisi bawah permukaan adalah metode gaya berat. Metode gaya berat merupakan metode pasif. Metode ini dilakukan berdasarkan pada anomali gaya berat yang muncul akibat adanya variasi densitas batuan di bawah permukaan (Raehanayati dkk., 2013). Metode gaya berat memberikan informasi yang cukup detail tentang struktur bawah permukaan (Nouraliee dkk., 2015). Informasi tentang struktur bawah permukaan tersebut kemudian divisualisasikan menggunakan pemodelan inversi 3 dimensi (3D) lalu diinterpretasi guna mengetahui kondisi bawah permukaan area penelitian.

1.2 Rumusan Masalah

Permasalahan yang dihadapi dalam penelitain ini yaitu:

- a. Bagaimana pola anomali Bouguer berdasarkan interpretasi data gaya berat daerah penelitian?
- b. Bagaimana kondisi bawah permukaan berdasarkan distribusi nilai densitas hasil pemodelan inversi 3D data gaya berat daerah penelitian?

1.3 Batasan Masalah

Penelitian ini dibatasi oleh beberapa hal yaitu:

- a. Data yang digunakan dalam penelitian ini adalah data sekunder.
- b. Pemisahan anomali dilakukan dengan second vertical derivative.
- c. Inversi yang digunakan dalam pemodelan 3D merupakan inversi *singular value decomposition* dan inversi *occam*.

1.4 Tujuan

Adapun tujuan dari penelitian ini adalah:

- a. Mengetahui pola anomali Bouguer berdasarkan interpretasi data gaya berat daerah penelitian
- b. Menentukan kondisi bawah permukaan berdasarkan distribusi nilai densitas hasil pemodelan inversi 3D data gaya berat daerah penelitian.

1.5 Manfaat

Adapun manfaat dari penelitian ini adalah:

- a. Menambah referensi tentang kondisi bawah permukaan daerah penelitian.
- b. Menjadi eksplorasi awal yang dapat dimanfaatkan untuk eksplorasi selanjutnya.
- c. Menjadi salah satu acuan dalam pemodelan 3D data gaya berat Kaldera Lautan pasir.

BAB II TINJAUAN PUSTAKA

2.1 Dasar Teori

2.1.1 Geologi Regional

2.1.1.1 Fisiografi Regional

Provinsi Jawa Timur berada pada Pulau Jawa yang membentang dengan arah barat-timur. Berdasarkan pola relief permukaannya Jawa Timur dibagi menjadi 7 zona fisiografi, yaitu Zona Dataran Aluvial bagian Utara Jawa, Zona Antiklinorium Rembang-Madura, Zona Sinklinorium Randublatung, Zona Antiklinorium Kendeng, Zona Depresi bagian Tengah Jawa, Zona Gunungapi Kuarter, dan Zona Pegunungan Selatan (van Bemmelen, 1949). Berdasarkan pembagian zona fisiografi ini, daerah penelitian masuk ke zona Solo.

Gambar 2. 1 Peta pembagian zona fisiografi daerah Jawa Tengah dan Jawa Timur, kotak berwarna merah menunjukkan lokasi penelitian (modifikasi dari Van Bemmelen, 1949, dalam Hartono, 2010)

Menurut van Bemmelen, 1949 zona fisiografi Jawa Tengah-Jawa Timur dari utara ke selatan sebagai berikut:

- a. Zona Dataran Aluvial Pantai Utara Jawa, Zona Dataran Aluvial Pantai Utara Jawa bagian barat membentang dari sekitar Teluk Bantam sampai ke Cirebon dan di Jawa Tengah membentang dari timur Cirebon sampai ke Pekalongan.
- b. Zona Depresi Semarang Rembang, merupakan dataran yang berada diantara Semarang dan Rembang.

- c. Zona Rembang, di bagian utara dibatasi oleh Paparan Laut Jawa Utara kearah selatan berhubungan dengan Depresi Randublatung yang dibatasi oleh Sesar Kujung, kearah barat berhubungan dengan Depresi Semarang Pati, dan kearah timur berhubungan dengan bagian utara Pulau Madura. Zona ini merupakan daerah dataran yang berundulasi dengan jajaran perbukitan yang berarah barat-timur dan berselingan dengan dataran fluvial. Lebar zona ini berkisar 50 km dengan puncak tertinggi Gading (515 m) dan Tungangan (419 m) dengan litologi karbonat yang mendominasi zona ini. Jalur dari Zona Rembang ini terdiri dari pegunungan lipatan berbentuk Antiklinorium yang memanjang ke arah barat-timur dari Purwodadi, Blora, Jatirogo, Tuban, sampai dengan Pulau Madura.
- d. Zona Randublatung, merupakan daerah lembah dengan bagian tengah memanjang barat timur. Zona ini memisahkan Zona Kendeng dan Zona Rembang.
- e. Zona Kendeng, menurut (De Genevraye dan Samuel, 1972) membagi Zona Kendeng berdasarkan Fisiografi menjadi 3 bagian utama yaitu :
 - Bagian barat, antara Ungaran dan Purwodadi. Bagian bawah tersusun oleh Formasi Pelang merupakan batuan yang berumur Oligosen – Miosen, sedangkan bagian atas tersusun atas sedimen dari Formasi Pucangan.
 - 2. Bagian tengah, antara Purwodadi dan Gunung Pandan. Bagian bawah tersusun atas endapan berumur Miosen Formasi Kerek, pada bagian ini struktur sesar dan lipatan banyak dijumpai. Bagian atas didominasi oleh material gunung api Formasi Kerek Anggota Sentul.
 - 3. Bagian timur, memperlihatkan umur Neogen, pada inti antiklinorium yang terlihat antara G. Pandan menuju ke arah timur sumbu antiklinorium semakin turun, sedimen yang muncul berumur Pliosen Plistosen.
- f. Zona Solo tersusun oleh endapan Kuarter dan ditempati oleh Gunungapi Kuarter. Zona Solo dibedakan menjadi 3 sub-zona, yaitu: Sub - Zona Blitar, Sub - Zona Solo, dan Sub - Zona Ngawi.
- g. Zona Pegunungan Selatan Jawa terbentang dari wilayah Jawa Tengah yang berada di selatan Yogyakarta dengan lebar kurang lebih 55 km. Zona ini membentang hingga Jawa Timur dengan lebar kurang lebih 25 km yang berada di selatan Blitar. Zona Pegunungan Selatan dipisahkan menjadi 3 sub Zona, yaitu: Sub-Zona Baturagung, Sub-Zona Wonosari, dan Sub-Zona Gunung Sewu.

Daerah penelitian berada pada Zona Solo yang tersusun oleh endapan kuarter dan ditempati oleh gunungapi-gunungapi berumur kuarter.

2.1.1.2 Stratigrafi Regional

Zaenuddin, dkk (1995) dalam Peta Geologi Gunungapi Bromo-Tengger, Jawa Timur membagi stratigrafi regional daerah penelitian menjadi beberapa bagian yaitu:

A. Hasil Kegiatan Kaldera Lautan pasir

- Jatuhan Piroklastik Komplek Kerucut Muda (CMjp): terdiri dari endapan jatuhan piroklastik dari beberapa kerucut vulkanik pasca kaldera Lautan pasir yang terdapat di dalam kaldera.
- Endapan Jatuhan Piroklasstik Bromo (Bojp): terdiri dari batuapung, lithic, scoria, bom vulkanik, pasir dan abu gunung api serta endapan freatik dengan atau tanpa accretionary lapilli berdiameter 2 3 mm serta terdapat leleran lava.
- Aliran Lava Basalt Bromo (BOI) : terdiri dari lava basalt berwarna hitam, struktur vesikuler, porfiritik dengan fenokris plagioklas, olivin dalam massa-dasar mikrolit-mikrolit plagioklas, piroksen, olivin dan gelas, terdapat xenolith andesit dan basalt, serta xenocryst piroksen.
- Endapan Jatuhan Piroklastik Batok (Bajp) : sebagian besar endapan tersusun dari scoria berukuran 2-20 cm.
- Endapan Jatuhan Piroklastika Segarawedi (SWjp) : terdiri dari selangseling lapisan berwarnaabu-abu sampai kuning kecoklat-coklatan dan kehitam-hitaman dari endapan-endapan piroklastika jatuhan, freatik dan "surge".
- Endapan Abu Hitam Widodaren (Wjph): didominasi oleh material halus sdari abu, hitam sampai ke abu-abuan beberapa litik gelas berukuran kerakal, agak terkonsolidasi sampai lepas, mengandung arang kayu.
- Endapan Piroklastika Kursi (KUjp) : terdiri dari selang-seling jatuhan piroklastika, surge dan freatik, berbutir kasar sampai halus, *graded bedding*, umumnya teralterasi hidrotermal.
- Endapan Jatuhan Piroklastika Widodaren (Wjp) : didominasi oleh jatuhan piroklastika yang berukuran dari lapilli sampai bongkah, terbentuk dari batuapung dan scoria yang kadang-kadang terdapat bom kerak roti.
- B. Hasil Kegiatan Kaldera Ngadisari
 - Endapan Jatuhan Piroklastika Ngadas (Njp) : batuapung, accretionary lapilli dan arang kayu.

- Endapan Jatuhan Piroklastika Wonokitri (WOjp) : terdiri dari perlapisan endapan jatuhan piroklastika dari batuapung berwarna abuabu tua sampai abu-abu muda.
- Endapan Aliran Piroklastika Ngadas (Nap) : terdiri dari selang-seling antara endapan aliran, jatuhan piroklastika, surge dan freatik, berukuran bervariasi dari abu sampai bongkah, lepas sampai terkonsolidasi.
- Aliran Lava Basalt Ngadas (Nlb): berbutir halus, abu-abu tua sampai hitam, vesikuler, porfiritik dengan fenokris plagioklas, olivine dan piroksen pada masa dasar gelas dan mikrolit-mikrolit plagioklas.
- Aliran Lava Andesit Ngadas (Nla): berbutir sedang-kasar, vesikuler, berwarna abu-abu tua sampai tua dan abu-abu kecoklatan bila lapuk.
- Aliran Lava Berfeldspar Besar Ngadas (Nlf): Berbutir kasar, vesikuler, porfiritik dengan fenokris yang didominasi oleh plagioklas berukuran besar serta sugit.
- Sukapura (Suig) : terdiri dari batuapung berwarna abu-abu berukuran 2-32 cm dengan litik andesit dan gelas.
- Kerucut Piroklastika Sombo (SOkp): terdiri dari beberapa kerucut scoria yang terdapat di lereng timur Peg. Tengger, umumnya terdiri dari scoria, bom vulkanik dan abu.
- Aliran Lava Andesit Sombo (SO.l): berbutir halus sampai sedang, berwarna abu-abu tua, porfiritik dengan fenokris plagioklas.
- C. Hasil Kegiatan Tengger Tua
 - Retas Dinding Kaldera (DKr): terdiri dari basalt berbutir halus, berwarna abu-abu muda sampai tua, tebal 1-2 m.
 - Kerucut Vuklanik Sedaeng (Skv): terdiri dari kerucut lava dan piroklastika yang terdiri dari scoria berwarna hitam sampai abu-abu kemerahan, vesikuler, umumnya lapuk.
 - Aliran Lava Andesit Kedawung (KE.I): merupakan lava bongkahbongkah, berwarna abu-abu kehitaman, berbutir halus sedang
 - Aliran Lava Andesit Duk (DU.I)
 - Aliran Lava Pakel (PI): umumnya lapuk, abu-abu muda sampai abu-abu tua.
 - Aliran Lava Andesit Jatisari (JI)
 - Aliran Lava Andesit Pronggol (PR.I)
 - Aliran Lava Gemito (GI) : terdiri dari leleran lava andesit berwarna abuabu dan abu-abu kemeraban bila lapuk.

- Aliran Lava Branggah (BRI) : lava pada satuan ini berwarna abu abu tua dan coklat bila lapuk, porfiritik dengan fenokris utama plagioklas dan beberapa piroksen
- Aliran Lava Kronto (KI): kekar berlembar, lapuk.
- Aliran Lava Bulukandang (BI)
- Satuan Dinding Kaldera Tengger (DK) : terdiri dari selang seling antara lava dan endapan piroklastika, freatik dan retas-retas

Gambar 2. 2 Peta geologi daerah penelitian (dimodifikasi dari Dwi Nugroho, 2019)

2.1.1.3 Sejarah Geologi

Sejarah pembentukan gunung Bromo terbagi menjadi tiga periode utama yang masing-masing dibatasi oleh dua kejadian pembentukan Kaldera yakni Kaldera Ngadisari dan Kaldera Lautan pasir. Subduksi lempeng samudra ke bawah lempeng benua menghasilkan aktivitias magmatisme yang membentuk Gunung Tengger. Aktivitas Gunung Tengger berakhir dengan erupsi eksplosif yang membentuk Kaldera Ngadisari pada kala Pleistosen. Setelah pembentukan Kaldera Ngadisari, aktivitas vulkanisme mulai kembali aktif dengan tumbuhnya gunungapi Argowulan pada Kaldera Ngadisari. Aktivitas magmatisme pada pembentukan Gunungapi Argowulan menyebabkan erupsi eksplosif dan efusif yang terjadi menghasilkan produk-produk gunungapi berupa aliran lava, aliran piroklastik, dan jatuhan piroklastik. Aktivitas gunungapi Argowulan ini berakhir dengan terbentuknya kawah Gunung Argowulan. Aktivitas vulkanisme berlanjut hingga membentuk Gunung Cemorolawang. Aktivitas magmatisme yang terjadi adalah diferensiasi magma berupa fraksionasi kristal, pencampuran magma dan/atau asimilasi. Erupsi eksplosif dan efusif pada Gunung Cemorolawang ini menghasilkan produk-produk gunungapi berupa aliran lava, aliran piroklastik,

dan jatuhan piroklastik. Aktivitas Gunung Cemorolawang berakhir dengan erupsi eksplosif yang membentuk Kaldera Lautan pasir.

Setelah pembentukan Kaldera Lautan pasir, aktivitas vulkanisme kembali muncul di dalam Kaldera Lautan pasir. Aktivitas ini dimulai pada kala Holosen hingga saat ini. Aktivitas di dalam kaldera ini dimulai dengan pembentukan Gunung Widodaren. Kemudian erupsi Gunung Widodaren menyebabkan aktivitas pada gunung ini berakhir dan terbentuk Gunung Kursi. Gunung Kursi mengalami erupsi dan terbentuk Gunung Segarawedi. Erupsi dari Gunung Segarawedi mengakibatkan aktivitas gunung berakhir dan terbentuk Gunung Batok. Erupsi Gunung Batok ini kemudian menyebabkan terbentuknya Gunung Bromo. Aktivitas magmatisme selama pembentukan Gunung Bromo didominasi oleh fraksionasi kristal, pencampuran magma dan/atau asimilasi. Pada awalnya erupsi Gunung Bromo menghasilkan produk berupa aliran lava.

Gambar 2. 3 Sejarah geologi pasca pembentukan kaldera Lautan pasir hingga terbentuknya Gunung Bromo (Achmad Nazar Abrory, 2019)

2.1.2 Metode Gravity

Pada survei gaya berat, kondisi geologi bawah permukaan didapatkan berdasarkan variasi medan gravitasi bumi yang disebabkan adanya perbedaan densitas batuan bawah permukaan. Konsep yang perlu digaris bawahi adalah ide mengenai benda kausatif (*causative body*), yang merupakan batuan dengan densitas berbeda dari batuan sekitarnya. Benda kausatif menunjukkan anomali bawah permukaan dan menyebabkan gangguan (perturbasi) lokal pada medan gravitasi yang disebut sebagai anomali gravity. Nilai anomali gravity meningkat

akibat berbagai kondisi geologi. Dalam skala kecil, relief yang terkubur di bawah permukaan, seperti lembah bawah permukaan, dapat memperbesar anomali. Pada skala yang besar, nilai anomali negatif akibat *salt domes*, selain itu cekungan sedimen juga menyebabkan perubahan pada anomali gravity. Interpretasi anomali gaya berat dapat menunjukkan perkiraan kedalaman dan bentuk *causative body* pada bawah permukaan (Kearey dkk., 2013).

2.1.2.1 Densitas Batuan

Perbedaan densitas batuan merupakan acuan di dalam penyelidikan gaya berat. Sumber dan tempat akumulasi panas di bawah permukaan bumi dapat menyebabkan perbedaan densitas dengan masa batuan di sekitarnya. Hasil dari penyelidikan gaya berat memberikan gambaran bawah permukaan yang dapat digunakan untuk penafsiran struktur (Djudjun, 2005). Menurut Hinze dkk., (2013) dalam Parapat (2017), nilai densitas setiap batuan dapat dibedakan sesuai dengan jenisnya. Dengan membandingkan persebaran densitas hasil pengolahan data anomali (dalam penelitian ini anomali residual) dengan nilai densitas referensi, maka kita bisa menginterpretasikan batuan penyusun di bawah.

Pada penelitian ini nilai densitas yang digunakan untuk pemodelan sebesar 2.6 g/cm³. Nilai tersebut merupakan hasil rata-rata densitas batuan secara umum di daerah penelitian. Penentuan nilai densitas batuan ini dilakukan dengan mencocokkan jenis batuan daerah penelitian dengan referensi densitas batuan. Penelitian ini melewati area kaldera lautan pasir (CMjp) dengan endapan abu dan pasir dan lava basal Bromo (BOI) dengan batuan lava basal serta dinding kaldera (DK) yang berumur lebih tua, sehingga nilai densitas batuan-batuan tersebut yang digunakan dalam pemodelan. Pada penelitian ini digunakan lebih dari satu referensi nilai densitas batuan yang sesuai dengan kondisi daerah penelitian jika hanya digunakan satu referensi saja. Nilai densitas batuan daerah penelitian diperlihatkan pada tabel 2.2.

Dari tabel 2.2 dapat dilihat dapat dilihat bahwa variasi nilai densitas batuan di daerah penelitian yaitu berkisar antara 2,12 - 2.95 g/cm³. Densitas tertinggi terdapat pada batuan basalt dengan nilai densitas 2,95 g/cm³, sedangkan densitas terendah terdapat pada endapan fall tuf dengan nilai densitas 2,12 g/cm³. Nilai densitas batuan di atas kemudian dirata-ratakan dan dihasilkan nilai densitas 2.6 g/cm³. Nilai densitas ini nanti akan dijadikan parameter pada pemodelan inversi 3D.

Alluvium (wet)	1.96-2.00
Clay	1.63-2.60
Shale	2.06-2.66
Sandstone	
Cretaceous	2.05-2.35
Triassic	2.25-2.30
Carboniferous	2.35-2.55
Limestone	2.60-2.80
Chalk	1.94-2.23
Dolomite	2.28-2.90
Halite	2.10-2.40
Granite	2.52-2.75
Granodiorite	2.67-2.79
Anorthosite	2.61-2.75
Basalt	2.70-3.20
Gabbro	2.85-3.12
Gneiss	2.61-2.99
Quartzite	2.60-2.70
Amphibolite	2.79-3.14
Chromite	4.30-4.60
Pyrrhotite	4.50-4.80
Magnetite	4.90-5.20
Pyrite	4.90-5.20
Cassiterite	6.80-7.10
Galena	7.40-7.60

Tabel 2. 1 Rentang densitas beberapa batuan dan bijih (Kearey dkk., 2013)

Tabel 2. 2 Nilai densitas batuan daerah penelitian

NO	Tipe Batuan	Range densitas (gr/cm ³)	Densitas (gr/cm ³)	Referensi
1	Lava basalt	2,70-	2.75	(Utami dkk.,
		2,80		2016)
2	Endapan fall		2.12	(Susanti dkk.,
	tuff			2006)
3	Basalt	2.70-	2.95	(Kearey dkk.,
		3.20		2013)
2.1.2.2 Percepatan Gravitasi

Teori yang mendukung Ilmu gravitasi terapan adalah hukum Newton yang menyatakan bahwa gaya tarik menarik antara dua partikel bergantung dari jarak dan massa masing-masing partikel tersebut, yang dinyatakan sebagai berikut:

$$F = G \frac{m_1 \cdot m_2}{r^2} \tag{1}$$

dimana, F adalah gaya tarik menarik (N), m_1 dan m_2 adalah massa benda 1 dan massa benda 2 (kg), r adalah jarak antara dua buah benda (m), G adalah konstanta gravitasi universal (6,67 x 10⁻¹¹ m³ kg⁻¹ s⁻²).

Newton juga mendefinisikan hubungan antara gaya dan percepatan. Hukum II Newton tentang gerak menyatakan gaya sebanding dengan perkalian massa benda dengan percepatan yang dialami benda tersebut.

$$F = m. g \tag{2}$$

Percepatan sebuah benda bermassa m2 yang disebabkan oleh tarikan benda bermassa M1 pada jarak R secara sederhana dapat dinyatakan dengan:

$$g = \frac{F}{m} \tag{3}$$

Bila ditetapkan pada percepatan gaya tarik bumi persamaan di atas menjadi:

$$g = \frac{F}{m} = G \frac{M \cdot m}{m \, x \, r^2} = G \frac{M}{r^2} \tag{4}$$

dimana, g adalah percepatan gaya tarik bumi, M adalah massa bumi, m adalah massa benda, F adalah gaya berat dan R adalah jari-jari bumi (Telford dkk., 1990). Berdasarkan referensi dari Octonovrilya 2009 menyatakan bahwa pengukuran percepatan gravitasi pertama kali dilakukan oleh Galileo, sehingga untuk menghormati Galileo, kemudian didefinisikan:

$$1 \text{ Gal} = 1 \text{ cm/s2} = 10-2 \text{ m/s2} \text{ (dalam c.g.s)}$$
 (5)

Satuan anomali gaya berat dalam kegiatan eksplorasi diberikan dalam orde miligal (mGal):

$$1 \text{ mGal} = 10-3 \text{ Gal}$$
 (6)

$$1 \,\mu\text{Gal} = 10^{-3} \,\text{mGal} = 10^{-6} \,\text{Gal} = 10^{-8} \,\text{m/s}^2 \tag{7}$$

Dalam satuan m.k.s, gravitasi diukur dalam g.u. (gravity unit) atau µm/s²:

 $1 \text{ mGal} = 10 \text{ g.u.} = 10^{-5} \text{ m/s}^2$

2.1.2.3 Anomali Bouguer

Anomali Buoguer disuatu titik amat dapat didefinisikan sebagai selisih antara harga gaya berat pengamatan (gobs) terhadap gaya berat normal teoritis. Besarnya harga gaya berat di titik tersebut diperkirakan dari gaya berat normal dengan memasukkan nilai koreksi udara bebas, ketinggian dan koreksi medan. Rumus Anomali Bouguer :

(8)

$$\Delta g = g_{obs} - (g_n - FAC + BC - TC) \tag{9}$$

dimana, Δg adalah anomaly Bouguer, g_{obs} adalah percepatan Gaya berat teramati, gn adalah percepatan Gaya berat setelah dikoreksi lintang, FAC adalah koreksi udara bebas, BC adalah koreksi Bouguer dan TC adalah koreksi medan.

2.1.2.4 Koreksi Medan (Terrain)

Gambar 2. 4 Zona-zona pada Hammer chart

Koreksi medan mengakomodir ketidakteraturan pada topografi sekitar titik pengukuran. Gambar 2.4 menunjukkan beberapa zona yang nantinya digunakan untuk menghitung nilai koreksi terrain dengan mencocokan yang ada pada tabel pembacaan pada koreksi terrain. Cara penghitungannya adalah dengan mengasumsikan titik pusat adalah titik pengukuran kita. Kemudian kita berjalan ke empat arah mata angin sejauh seperti yang tertulis pada tabel 2.3, kemudian kita lihat kira-kira seberapa besar perbedaan antara elevasi kita dengan titik pengukuran. Kemudian nilai perbedaan elevasi tersebut dikonversikan berdasarkan tabel. Pada gambar diatas nantinya tiap kotakan akan menyumbang nilai dan Koreksi Terrain dihitung dengan cara menjumlahkan semua angka yang ada di graticule tersebut.

$$T = 0.4191 \frac{\rho}{n} (r_2 - r_1 + \sqrt{r_1^2 + z^2} - \sqrt{r_2^2 + z^2}$$
(10)

Zone	<i>r</i> ₁	<i>r</i> ₂	п	Zone	<i>r</i> ₁	<i>r</i> ₂	n
В	2.0	16.6	4	Н	1529.4	2614.4	12
С	16.6	53.3	6	I	2614.4	4468.8	12
D	53.3	170.1	6	J	4468.8	6652.2	16
E	170.1	390.1	8	К	6652.2	9902.5	16
F	390.1	894.8	8	L	9902.5	14740.9	16
G	894.8	1529.4	12	М	14740.9	21943.3	16

Tabel 2. 3 Tabel pembacaan koreksi terrain (Kearey dkk., 2013)

Selain metode perhitungan menggunakan hammer chart, ada cara lain yang bisa digunakan dalam pencarian koreksi terrain yaitu menggunakan peta DEM (*Digital Elevation Modelling*) yang diolah menggunakan perangkat lunak *Geosoft*. Metode ini digunakan pada penelitian ini. Langkah yang dilakukan adalah memotong peta DEM tersebut menjadi dua bagian untuk wilayah regional (*outer core*) dan local (*inner core*). Untuk wilayah lokal peta dipotong sekitar 5 km dari daerah penelitian (mencakup empat arah mata angin yaitu utara, barat, selatan dan timur). Sedangkan untuk wilayah regional peta dipotong sekitar 20 km dari daerah penelitian. Setelah itu, kedua peta yang sudah dipotong tadi diolah menggunakan perangkat lunak *Geosoft* untuk mendapatkan nilai *Terrain* masing-masing titik pengukuran (A'la, 2016).

2.1.2.5 Analisis Spektrum

Analisis spektrum dilakukan untuk mengestimasi lebar jendela dan mengestimasi kedalaman dari anomali gayaberat. Selain itu analisa spektrum juga dapat digunakan untuk membandingkan respon spektrum dari berbagai metode filtering. Analisa spektrum dilakukan dengan mentransformasi Fourier lintasan-lintasan yang telah ditentukan. Secara umum, suatu transformasi Fourier adalah menyusun kembali/ mengurai suatu bentuk gelombang sembarang ke dalam gelombang sinus dengan frekuensi bervariasi dimana hasil penjumlahan gelombang-gelombang sinus tersebut adalah bentuk gelombang aslinya (Sihombing, 2017).

Proses analisis spektrum biasanya dilakukan dalam satu dimensi, dimana anomali Bouguer yang terdistribusi pada penampang cross section 1D diekspansi dengan deret Fourier. Proses Transformasi Fourier dilakukan dengan tujuan mengubah data dari domain waktu atau spasial menjadi domain frekuensi atau bilangan gelombang. Dengan menganalisis bilangan gelombang (k) dan amplitudo (A), kita dapat memperkirakan besar kedalaman estimasi anomali regional dan residual serta dapat menentukanlebar jendela filter dari perhitungan frekuensi cutoff dari analisis spektrum.

2.1.2.6 Filter Second Vertical Derivative

Second Vertical Derivative (SVD) dilakukan untuk memunculkan efek dangkal dari pengaruh regionalnya dan untuk menentukan batas-batas struktur yang ada di daerah penelitian, sehingga filter ini dapat menyelesaikan anomali residual yang tidak mampu dipisahkan dengan metode pemisahan regionalresidual yang ada. Secara teoritis, metode ini diturunkan dari persamaan Laplace's Telford dkk., 1976):

$$\nabla^2 \Delta g = 0 \text{ dimana } \nabla^2 \Delta g = \frac{\partial^2 (\Delta g)}{\partial x^2} + \frac{\partial^2 (\Delta g)}{\partial y^2} + \frac{\partial^2 (\Delta g)}{\partial z^2}$$
(11)

Sehingga persamaannya menjadi:

$$\frac{\partial^2(\Delta g)}{\partial x^2} + \frac{\partial^2(\Delta g)}{\partial y^2} + \frac{\partial^2(\Delta g)}{\partial z^2} = 0$$
(12)

$$\frac{\partial^2(\Delta g)}{\partial z^2} = -\left[\frac{\partial^2(\Delta g)}{\partial x^2} + \frac{\partial^2(\Delta g)}{\partial y^2}\right]$$
(13)

Dari persamaan-persamaan di atas dapat diketahui bahwa *second vertical derivative* dari suatu anomali gaya berat permukaan adalah sama dengan negatif dari *derivative* dapat melalui *derivative* orde dua horizontalnya yang lebih praktis dikerjakan. SVD bersifat sebagai *highpass filter*, sehingga dapat menggambarkan anomali residual yang berasosiasi dengan struktur dangkal yang dapat digunakan untuk mengidentifikasi jenis patahan turun atau patahan naik (Hartati, 2012).

Untuk mendapatkan anomali residual, dilakukan pengalian anomali Bouguer dengan konvolusi 2 dimensi atau bobot yang diberikan pada tiap titik grid kartesius oleh Elkins (1951). Bobot radial $W(r_1)$ diaplikasikan pada nilai data rata-rata $\bar{\phi}(r_1)$ sekitar lingkaran dengan radius r_1 berpusat pada titik dimana output hasil filter diinginkan.

$$\phi'(x,y) = \sum_{1=0}^{N} \bar{\phi}(r_1) W(r_1)$$
(14)

dimana N + 1 adalah jumlah rata-rata lingkaran yang digunakan dan lingkaran r_0 adalah titik (x, y) dimana titik output hasil filter. Pengoperasian harus diubah menjadi koordinat kartesius dengan mendistribusikan bobot radial untuk lingkaran tertentu di antara poin grid diskrit yang masuk dalam perhitungan data rata-rata tentang lingkaran itu.

$$\bar{\phi}(r) = \frac{1}{m} \sum_{p} \sum_{q} \phi(p, q) \tag{15}$$

dimana m merupakan jumlah poin-poin data pada lingkaran tertentu dan penjumlahan ditunjukkan dengan p dan q, $\sqrt{p^2 + q^2} = r$. Dari persamaan (15), $\bar{\phi}(r)W(r)$ dapat ditulis

$$\bar{\phi}(r)W(r) = \sum_{p} \sum_{q} \phi(p,q)W(p,q)$$
(16)

dimana

$$W(p,q) = \frac{1}{m}W(r); r = \sqrt{p^2 + q^2}$$
(17)

Hubungan antara lingkaran rata-rata dan titik-titik grid kartesian ditunjukkan secara grafis di Gambar 2.4. Dengan transformasi ke koordinat kartesius, output hasil filter secara ringkas ditunjukkan oleh konvolusi diskrit dua dimensi,

$$\phi'(k,n) = \sum_{p=-Y}^{Y} \sum_{q=-X}^{X} \phi(k-p,n-q) W(p,q)$$
(18)

dimana X dan Y adalah koordinat dari bobot bukan nol (*nonzero weight*) yang terjauh dihilangkan dari poin (k, n). Dimana pemilihan lingkaran rata-rata oleh penulis (Elkins, 1951) menghasilkan suatu titik grid tertentu diabaikan dalam perhitungan, titik itu memiliki bobot kartesius nol (Heinrichs Jr dkk., 1967).

Gambar 2. 5 Hubungan antara lingkaran rata-rata dan titik koordinat kartesius untuk jari-jari kecil (Heinrichs Jr dkk., 1967)

Second derivative										
Operator	W (0, 0)	W(1, 0)	17(2, 0)	W(3, 0)	W(0, 1)	W(1, 1)	W(2, i)	W(3, 1)	W(0, 2)	W(1, 2)
H and Z eqn. (10) H and Z eqn. (13) H and Z eqn. (13) Peters eqn. (27)* Elkins eqn. (13) Elkins eqn. (14) Elkins eqn. (14) Center-point, 1-ring	6.184 6.000 7.000 1.156 1.068 0.572 0.710 4.000 4.000	-2.094 -2.000 -2.667 0.064 -0.034 0.071 0.065 -0.750 -1.000	-0.083	0.025	-2.094 -2.000 -2.667 0.064 -0.034 0.071 0.065 -0.750 -1.000	0.548 0.500 1.000 -0.111 -0.067 -0.049 -0.334	-0.171 -0.083 -0.107 -0.097 0.042	0.025	-0.083	-0.171 -0.083 0.107 -0.097 0.042
			F	ourth deriva	ative					
Peters eqn. (28)*	1.752	0.041		0.094	0.041	-0.259	-0.298	0.094		-0.298
-				Residua	1			~		
Center-point, 1-ring Center-point, 2-ring Nine point	1.000 1.000 0.888	-0.250 -0.125 -0.111			-0.250 -0.125 -0.111	-0.125 -0.111				

Tabel 2. 4 Bobot grid kartesius (Heinrichs Jr dkk., 1967)

* Peters' operators include the further weights tabulated below:

	W(2, 2)	W(0, 3)	W(1, 3)
Peters eqn. (27)	0.025	0.025	0.025
Peters eqn. (28)	0.094	0.094	0.094

2.1.2.7 Pemodelan Inversi 3D

Menke (1984) dalam Grandis (2009) mendefinisikan teori inversi sebagai suatu kesatuan teknik antara metode matematika dan statistika untuk memperoleh informasi yang berguna mengenai suatu sistem fisika berdasarkan observasi terhadap sistem tersebut. Menurut Grandis (2009), pemodelan inversi sering pula disebut sebagai pencocokan data (data fitting) karena dalam prosesnya adalah mencari parameter model yang menghasilkan respon yang cocok dengan data pengamatan. Pemodelan inversi merupakan fokus kebanyakan atau hampir semua bidang geofisika karena kita dituntut untuk dapat memperkirakan model atau parameter model berdasarkan hasil pengamatan atau pengukuran data lapangan. Salah satu contoh pemodelan inversi yang diaplikasikan dalam penelitian ini adalah memperkirakan model struktur bawah permukaan dalam bentuk persebaran nilai densitas dari data pengukuran metode gaya berat.

Pemodelan struktur bawah permukaan ini dilakukan dengan teknik inversi 3 dimensi (3D). Data gaya berat anomali residual diinversikan menggunakan perangkat lunak *Grablox 1.6* dari Pirttijarvi (2004) sehingga menghasilkan model penampang densitas berbentuk 3D. Model 3D yang dihasilkan bisa ditampilkan sebagai penampang 2D maupun 3D. Perangkat lunak *Grablox 1.6* ini menggunakan dua metode inversi yaitu inversi *Singular Value Decomposition* (SVD) dan inversi Occam (Hjelt, 1992) yang diproses secara berurutan.

Singular Value Decomposition (SVD) adalah suatu metode pemfaktoran matriks yang berkaitan erat dengan nilai singular dari matriksnya. Inversi Singular Value Decomposition adalah suatu teknik pemfaktoran matriks dengan menguraikan suatu matriks ke dalam dua matriks (Zhao, 2011), Dengan analisis SVD, solusi dari persamaan selalu dapat dicari meskipun matriks koefisien yang terbentuk bukanlah matriks persegi maupun matriks yang tidak mempunyai invers. Kelebihan lain dari metode ini adalah solusi SPL (Sistem Persamaan Linier) tetap dapat dicari meskipun SPL tersebut tidak mempunyai pemecahan, dalam hal ini solusi yang diperoleh merupakan solusi pendekatan terbaik (Manrulu dan Wahyudi, 2014). Secara matematis, persamaannya dapat ditulis sebagai:

$$A = USV^T \tag{18}$$

dimana U adalah matriks ortogonal sebelah kiri, S adalah suatu matriks diagonal, dan V adalah matriks ortogonal sebelah kanan (Parapat, 2017).

Metode inversi Occam dilakukan untuk memaksimalkan kecocokan antara data hasil pengukuran dan data hasil perhitungan sehingga memperkecil nilai kesalahan antara hasil pengukuran dan hasil perhitungan. Fungsi lain dari metode inversi Occam yaitu memperkecil tingkat kekasaran model yang dihasilkan. Metode inversi Occam memberikan nilai lebih pada suatu model jika dibandingkan dengan metode SVD (*Singular Value Decomposition*), karena terdapat batasan (*constrain*) pada nilai parameter model (Manrulu dan Wahyudi, 2014). Pada penelitian ini dilakukan *Occam height* untuk meminimalkan kesalahan pada ketinggian blok model yang dibuat. *Occam height* adalah inversi yang digunakan untuk mengoptimalkan nilai ketinggian blok (kedalaman lapisan). *Occam height* memberikan kejelasan batas antar lapisan jika dibandingkan dengan inversi SVD.

2.2 Penelitian Terdahulu

Penelitian dilakukan oleh (Ganguli dan Dimri, 2013) menggunakan metode dekomposisi SVD untuk memisahkan struktur geologi local dengan struktur regional. Gambar-gambar yang dihasilkan dari proses rekonstruksi eigen berdasarkan data gravity sesuai dengan ditemukannya struktur patahan. Patahan terebut berada dominan di wilayah Jabera-Damoh. Struktur geologis regional ditunjukkan dengan sinyal gravity positif akibat adanya basemen yang dilapisi oleh lapisan batuan Proterozoikum Mahakoshal/Bijawar. Adanya basemen kristalin pada profil DD' lebih tebal pada kedalaman yang dangkal daripada

profil AA' yang mempunyai nilai eigen yang lebih rendah daripada profil DD'. Oleh karena itu dapat disimpulkan bahwa bagian utara wilayah Jabera-Damoh terdapat lapisan basemen yang tebal dibandingkan dengan bagian selatan. Hal ini mungkin disebabkan adanya peningkatan lapisan yang membawa lapisan berkecapatan tinggi ke kedalaman dangkal.

Anomali lokal ditunjukkan dengan sinyal negatif dan memungkinkan untuk mencari cekungan sedimen di bagian selatan kubah Jabera. Patahan pada NW wilayah Jabera-Damoh mungkin adalah salah satu penyebab utama yang membagi wilayah menjadi dua bagian utama dan divalidasi dengan nilai eigen yang lebih tinggi di bagian NE & NW wilayah tersebut.

Gambar 2. 6 A) Anomali bouguer (mGal) model gravity lintasan AA'. B) Hasil rekonstruksi gravity pada lintasan AA' dengan anomali bouguer, eigenimage pertama and kedua (Ganguli dan Dimri, 2013).

Gambar 2. 7 A) Anomali bouguer (mGal) model gravity lintasan DD'. B) Hasil rekonstruksi gravity pada lintasan DD' dengan anomali bouguer, eigenimage pertama and kedua (Ganguli dan Dimri, 2013).

Penelitian yang dilakukan (Hafidah dkk., 2019) dilakukan untuk mengidentifikasi reservoir suatu lapangan panas bumi berdasarkan metode gravity. Penelitian ini menggunakan analisis SVD (*Single Vertical Derivative*) dan FHD (*First Horizontal Derivative*) untuk mendapatkan struktur patahan

secara jelas serta melakukan inversi 3D untuk merekonstruksi model bawah permukaan. Hasil analisis derivative (Gambar 2.8) menunjukkan adanya patahan ke arah barat daya-timur laut dan struktur kaldera sebagai reservoir dengan struktur keseluruhan adalah patahan normal. Inversi 3D yang dilakukan menunjukkan tiga lapisan utama yang diidentifikasi sebagai lapisan penudung, reservoir, dan *heat source*.

Gambar 2. 8 Peta anomali SVD (Single Vertical Derivative) (Hafidah dkk., 2019)

HALAMAN INI SENGAJA DIKOSONGKAN

BAB III METODE PENELITIAN

3.1 Lokasi Penelitian

Gambar 3. 1 Desain akuisisi pengukuran metode gravity

Berikut adalah titik akuisisi data gaya berat (Gambar 3.1). Titik-titik pengukuran gaya berat tersaji dalam desain akuisisi (Gambar 3.1) ditunjukkan dengan titik berwarna hitam yang tersebar pada kaldera Lautan pasir. Pada penelitian ini, terdapat 74 titik pengukuran.

3.2 Peralatan dan Data

3.2.1 Peralatan

Peralatan dan perangkat lunak yang digunakan dalam penelitian tugas akhir ini adalah:

- 1. Komputer/laptop
- 2. Surfer 14
- 3. Grablox 1.6
- 4. Bloxer 1.6
- 5. Global Mapper

- 6. ArcGIS 10.3.1
- 7. Voxler 4
- 8. Microsoft Excel 365
- 9. Microsoft Word 365

3.2.2 Data

Data-data yang digunakan dalam penelitian tugas akhir ini adalah:

- Data anomali Bouguer daerah Kaldera Tengger Data anomali Bouguer ini adalah hasil penyelidikan metode gaya berat yang dilakukan pada tahun 2017 lalu dan merupakan data sekunder. Data anomali Bouguer ini dihasilkan dari 74 titik pengukuran menggunakan alat LaCoste & Romberg.
- 2. Peta geologi daerah penelitian
- 3. Data DEM SRTM UTM zona 49S

3.3 Alur Penelitian

Adapun diagram alir dalam pelaksanaan penelitian ini adalah:

Gambar 3. 2 Alur kegiatan penelitian

3.4 Langkah kerja

3.4.1 Pengumpulan Data

Prosedur pengerjaan penelitian Tugas Akhir ini dimulai dengan melakukan pengumpulan data. Pengumpulan data dilakukan untuk mendapatkan data-data yang dibutuhkan seperti yang telah disebutkan pada subbab sebelumnya (3.2). Data yang dihasilkan antara lain:

1. Data Anomali Buguer

Data anomali Bouguer yang telah didapatkan setelah dilakukan koreksi-koreksi kemudian disalin koordinat X, Y, dan nilai anomali bouguernya pada Microsoft Excel. Data tersebut kemudian dimasukkan ke dalam perangkat lunak Surfer 14 untuk dilakukan grid metode kriging. Hasilnya berupa peta kontur anomali Bouguer.

2. Peta Geologi

Peta geologi dari berbagai sumber terbuka dilakukan proses digitasi menggunakan perangkat lunak ArcGIS 10.3. Kemudian hasil digitasi tersebut dibuatlah peta geologi yang baru.

3.4.2 Pemisahan Anomali

Pada penelitian ini, pemisahan anomali dilakukan menggunakan filter *second vertical derivative* dengan memanfaatkan perangkat lunak Surfer 14. Data anomali residual dihasilkan langsung dari proses pemisahan anomali ini. Data anomali residual ini akan dimaanfaatkan dalam proses pemodelan. Anomali residual ini kemudian dibuat menjadi peta kontur menggunakan perangkat lunak Surfer 14 dan hasilnya ditampilkan pada gambar 4.3. Data anomali residual ini akan dimodelkan secara 3 dimensi untuk menampilkan model densitas bawah permukaan daerah penelitian.

3.4.3 Pemodelan 3D

Pemodelan inversi 3D pada penelitian ini dilakukan menggunakan perangkat lunak Grablox 1.6. Data yang diinput pada perangkat lunak ini adalah data anomali residual (*.dat) dan model awal (*.inp) yang perlu dibuat terlebih dahulu. Model yang dihasilkan berupa model sayatan penampang 2 dimensi dan 3 dimensi. Model 2 dimensi (2D) yang dihasilkan merupakan sayatan penampang X dan Y. Selain itu didapatkan juga model penampang 2D per kedalaman. Model 3D yaitu sayatan model yang tegak lurus terhadap sumbu Z (berdasarkan kedalaman) dan tampilan model keseluruhan. Perangkat lunak Grablox 1.6 tidak dapat menampilkan hasil dari pemodelan sehingga untuk menampilkan dan melakukan pengubahan pada model digunakan perangkat lunak Bloxer 1.6. Data yang diinput pada perangkat lunak Bloxer 1.6 adalah data model akhir (*.inp) yang disimpan setelah proses pemodelan inversi berakhir. Kemudian model 2D dan 3D ini dilakukan interpretasi.

Tahapan inversi yang digunakan pada program ini yaitu optimasi Base, Density, Occam d, Height, dan Occam h. Optimasi Base bertujuan untuk mengoptimalkan nilai-nilai parameter dasar anomali. Optimasi densitas bertujuan untuk mengoptimasi nilai densitas agar nilai densitas antara data pengukuran dan data perhitungan lebih mendekati atau cocok. Occam's dbertujuan untuk mengoptimasi model dengan cara mengurangi nilai misfit dan tingkat kekasaran model. Metode inversi yang digunakan pada perangkat lunak ini adalah Singular Value Decompostion (SVD) dan occam. Metode inversi ini dilakukan secara berurutan (dilakukan komputasi kemudian dioptimasi). Model yang dihasilkan setelah proses komputasi biasanya masih belum cocok dengan data observasi yang sudah diinput sebelumnya. Sehingga setelah komputasi dilakukan, selanjutnya dilakukan optimasi Occam hingga mendapatkan nilai error minimum. HALAMAN INI SENGAJA DIKOSONGKAN

BAB IV HASIL DAN PEMBAHASAN

4.1 Anomali Bouguer

Akusisi pada tiap titik dilakukan dengan pengulangan sebanyak 3 kali dengan tujuan untuk mengurangi tingkat kesalahan (error) pada data. Data yang didapatkan kemudian dirata-rata dan dikonversi ke satuan milligal sesuai dengan panduan pemakaian alat. Data yang sudah dikonversi kemudian direduksi dengan koreksi-koreksi yang biasanya dilakukan hingga didapatkan nilai anomali Bouguer lengkap (ABL). Setelah didapatkan nilai anomali bouguernya, data yang berisikan nilai-nilai bouguer tersebut kemudian di grid menggunakan perangkat lunak Surfer 14. Data yang dimasukkan adalah data XYZ atau dalam hal ini data XY merupakan koordinat UTM dan data Z adalah data anomali bouguer lengkap (ABL). Metode gridding yang digunakan dalam penelitian ini adalah metode kriging. Hasil anomali bouguer lengkap ditunjukkan pada gambar 4.2.

Gambar 4. 1 Peta anomali Bouguer lengkap yang *dioverlay* dengan peta geologi daerah penelitian Kaldera Tengger

Pada gambar 4.1 dapat dilihat bahwa sebaran anomali bouguer lengkap pada daerah penelitian yang di*overlay* dengan peta geologi. Nilai anomali boguer bervariasi antara 290-304 mGal. Data gaya berat tersebar melewati area kaldera

Lautan pasir dan lava basal Bromo. Anomali bouguer ini dapat dikelompokkan menjadi dua bagian yaitu anomali tinggi dan anomali rendah. Pada kaldera Lautan pasir bagian utara terdapat nilai anomali rendah dengan nilai antara 290-294 mGal. Nilai anomali rendah diduga berasal dari batuan yang memiliki densitas yang rendah dan berkaitan dengan endapan piroklastik dan abu hasil erupsi Gunung Cemoro Lawang. Kemudian pada bagian pinggir kaldera Lautan pasir terdapat area dengan nilai anomali tinggi dengan nilai 298-304 mGal. Nilai tersebut diduga berasal dari batuan dengan densitas yang tinggi. Pola yang tinggi ini diduga berkaitan dengan adanya batuan basalt yang merupakan batuan penyusun kaldera.

4.2 Hasil Pemisahan Anomali

Setelah didapatkan sebaran anomali bouguer lengkap pada daerah penelitian, selanjutnya dilakukan pemisahan anomali. Anomali Bouguer merupakan penjumlahan atau gabungan dari anomali regional dan residual. Anomali Bouguer perlu dipisahkan untuk mendapatkan daerah interpretasi target yang sudah ditentukan. Anomali regional merupakan anomali yang dipengaruhi oleh sumber-sumber anomali gravitasi yang berada pada posisi dalam. Sedangkan anomali residual merupakan anomali lokal yang dipengaruhi oleh sumber-sumber anomali gravitasi yang berada pada posisi dangkal.

Pemisahan anomali dilakukan pada penelitian ini dilakukan dengan metode filter *second vertical derivative* seperti yang dijelaskan pada subbab 2.1.2.6. Pemisahan anomali dilakukan menggunakan perangkat lunak Surfer 14. Dari filter *second vertical derivative* ini didapatkan langsung peta anomali residual yang bisa dilihat pada gambar 4.3 dibawah. Pada penelitian tugas akhir ini data anomali residual digunakan untuk pemodelan inversi 3D.

Hasil pemisahan anomali bouguer ditampilkan pada gambar 4.2 (anomali regional) dan gambar 4.3 (anomali residual). Peta anomali regional tidak jauh berbeda dengan peta anomali Bouguer pada gambar 4.1. Pada bagian utara kaldera Lautan Pasir terdapat nilai anomali rendah. Berdasarkan peta geologi, anomali rendah tersebut diperkirakan adalah abu dan endapan piroklastik. Sedangkan pada bagian pinggir kaldera Lautan pasir terdapat area dengan nilai anomali tinggi dengan nilai 298-304 mGal. Nilai tersebut diduga berasal dari batuan dengan densitas yang tinggi. Pola yang tinggi ini diduga berkaitan dengan adanya batuan basalt yang merupakan batuan penyusun kaldera. Sedangkan pada peta anomali residual dapat dilihat adanya nilai anomali 2 hingga -2.8 mGal. Pola anomali residual ini didominasi dengan nilai anomali -0.4 mGal serta terdapat anomali lebih tinggi yang tersebar mulai dari bagian utara menuju ke arah tenggara kaldera Lautan pasir. Daerah penelitian merupakan daerah gunung

berapi sehingga pola anomali tinggi diduga merupakan batuan-batuan beku hasil dari erupsi yang terletak pada kedalaman dangkal.

Gambar 4. 2 Peta anomali regional yang *dioverlay* dengan peta geologi daerah penelitian Kaldera Tengger

Gambar 4. 3 Peta anomali residual yang *dioverlay* dengan peta geologi dearah penelitian Kaldera Tengger

4.3 Analisis Spektrum

Proses ini dilakukan untuk mengetahui informasi kedalaman regional maupun residual pada daerah penelitian dengan menggunakan persamaan gradien hasil dari plot antara lnA dengan bilangan gelombang k yang menyatakan kedalaman. Dengan menganalisis bilangan gelombang (k) dan amplitudo (A), kita dapat memperkirakan besar kedalaman estimasi anomali regional dan residual. Dengan analisis spektrum dapat diketahui frekuensi dari data, sehingga kedalaman dari anomali gaya berat dapat diestimasi. Frekuensi rendah yang berasosiasi denganpanjang gelombang panjang mengindikasikan daerah regional yang mewakili struktur dalam dan luas. Sedangkan sebaliknya, frekuensi tinggi yang berasosiasi dengan panjang gelombang pendek mengindikasikan daerah residual (lokal) yang mewakili struktur dangkal.

Gambar 4.4 menunjukkan grafik yang menunjukkan kedalaman regional dan residual. Dari masing-masing grafik diperoleh dua gradient garis utama yang menunjukkan kedalaman regional dan residual. Grafik dengan frekuensi rendah menggambarkan kedalaman yang lebih dalam (regional), sedangkan grafik dengan frekuensi tinggi menunjukkan kedalaman yang lebih dangkal (residual). Hasil dari analisis spektrum pada lintasan barat laut-tenggara menunjukkan kedalaman anomali regional -2238.3 m dan kedalaman anomali residual -78.62 m. Hasil dari analisis spektrum pada lintasan timur laut-barat daya menunjukkan

kedalaman anomali regional -1814.4 m dan kedalaman anomali residual -70.261 m.

Gambar 4. 4 Plot ln Amplitudo (ln A) dengan bilangan gelombang (k) pada (a) lintasan arah barat laut-tenggara dan (b) lintasan arah timur laut-barat daya

4.4 Hasil Pemodelan

4.4.1 Model Awal

Pemodelan inversi 3 dimensi (3D) dilakukan dengan membuat model awal terlebih dahulu. Model awal yang dibuat adalah sepanjang 6.3 km pada sumbu x

(barat-timur) dan 6.9 km pada sumbu y (utara-selatan) dan 2.2 km pada sumbu z (vertikal). Kedalaman model dibatasi 2.2 km saja karena berdasarkan analisis spektrum jangkauan kedalaman berdasarkan data hingga 2.2 km. Model awal yang dihasilkan ditunjukkan pada gambar 4.5.

Gambar 4.5 Model awal menggunakan Grablox 1.6: (a) blok penampang pada sumbu y (b) blok penampang pada sumbu x (c) blok penampang kedalaman z (d) model 3D

4.4.2 Hasil Pemodelan Inversi 3D

Peta anomali residual yang sudah didapatkan kemudian disimpan informasi mengenai geometri grid-nya untuk dimasukkan sebagai data input (*.inp).

Informasi geometri grid ini berisikan koordinat X, koordinat Y, dan spasi antar data. Kemudian dari peta kontur anomali residual tadi dilakukan juga penyimpanan data koordinat X dan Y serta nilai anomali residualnya (*.dat) yang nanti akan diinput juga sebelum dilakukan proses komputasi. Data anomali yang sudah diinterpolasi dengan metode kriging ini berjumlah sebanyak 4480 titik data.

Proses komputasi tersebut menghasilkan rentang nilai gravitasi dengan satuan mGal. Tahapan inversi yang digunakan pada program ini yaitu optimasi Base, Density, Occam d, Height, dan Occam h. Optimasi Base bertujuan untuk mengoptimalkan nilai-nilai parameter dasar anomali. Optimasi densitas bertujuan untuk mengoptimasi nilai densitas agar nilai densitas antara data pengukuran dan data perhitungan lebih mendekati atau cocok. Occam's dbertujuan untuk mengoptimasi model dengan cara mengurangi nilai misfit dan tingkat kekasaran model. Pada gambar 4.6 hingga gambar 4.10 memperlihatkan peta persebaran anomali hasil pengukuran (kiri) dan peta persebaran anomali hasil komputasi (kanan). Dari kedua gambar tersebut dapat dilihat bahwa hasil observasi (measured) tidak terlalu jauh berbeda dengan hasil perhitungan (computed), sehingga bisa dikatakan bahwa kedua model dianggap sesuai atau mendekati.

Gambar 4. 6 Hasil komputasi dasar

Dari proses komputasi dasar didapatkan nilai error (rms) sebesar 6 %. Hasil dari komputasi dasar dapat dilihat pada gambar 4.6. Kemudian dilanjutkan dengan optimasi densitas didapatkan nilai error sebesar 8 %. Hasil optimasi densitas ditampilkan pada gambar 4.7. Hasil dari optimasi densitas tadi kemudian dioptimasi occam densitas dan didapatkan nilai error (rms) data sebesar 2.4 % dan nilai error (rms) model sebesar 2.9 %. Optimasi ini akan membuat nilai error (antara data observasi dengan data hasil perhitungan) menjadi semakin kecil baik dari sisi nilai densitas maupun dimensinya. Hasil optimasi occam densitas ini dapat dilihat pada gambar 4.8.

Gambar 4.7 Hasil optimasi densitas

Proses selanjutnya yaitu optimasi Heights. Optimasi ketinggian blok bertujuan untuk mendapatkan posisi blok yang memiliki ketinggian yang sesuai. Nilai error sebesar 7.7 %. Hasil dari optimasi ketinggian ini ditampilkan pada gambar 4.9. Setelah optimasi ketinggian, dilakukan optimasi occam h dan didapatkan nilai error (rms) data sebesar 2.2 % dan nilai error (rms) model sebesar 3.1 %.

Gambar 4.8 Hasil optimasi occam d

Gambar 4.9 Hasil optimasi height

Gambar 4. 10 Model hasil akhir optimasi occam h

4.5 Interpretasi Penampang Model 2 Dimensi (2D)

Dalam pembuatan model awal sumbu X dibagi menjadi 25 blok sehingga pada model akhir dihasilkan 28 penampang sayatan 2D. Demikian halnya dengan sumbu Y juga dibagi menjadi 25 blok dan sumbu Z dibagi menjadi 10 blok sehingga menghasilkan 10 penampang sayatan. Total penampang yang dapat dilakukan analisis dan interpretasi sebanyak 60 penampang sayatan. Tetapi pada penelitian ini proses interpretasi penampang sayatan 2D hanya dilakukan pada beberapa penampang sayatan saja. Penampang sayatan yang diambil nanti merupakan penampang yang dianggap dapat memberikan gambaran kondisi bawah permukaan lokasi penelitian.

Gambar 4. 11 Peta lintasan sayatan 2D

Penampang sayatan 2D diambil sebanyak 4 sayatan penampang. Keempat penampang sayatan tersebut diambil menyesuaikan dengan posisi persebaran data gaya berat. Keempat sayatan penampang tersebut yaitu: A-A', B-B', C-C', dan D-D' pada koordinat X,Y= (713.87, 9124,51 - 719.36, 9120,35); (713.17, 9120.35 - 719.35, 9119.67); (719.36, 9121.05 - 715.57, 9117.61); dan (719.36, 91200.21 – 716.75, 9117.61). Lintasan sayatan penampang ini ditampilkan pada gambar 4.11. Lintasan penampang dipilih sayatan ini dengan mempertimbangkan posisi persebaran data gaya berat, dikarenakan posisi data tersebar pada kaldera lautan pasir, maka lintasan sayatan penampang yang diambil juga berada pada area tersebut. Sayatan penampang yang diambil melewati penampang lainnya sehingga hasilnya dapat dijadikan model 3D. Sayatan penampang A-A' dengan arah lintasan barat laut – tenggara, bersilangan dengan sayatan penampang C-C' dengan arah lintasan timur laut – barat daya. Sayatan penampang B-B' dengan arah lintasan barat laut – tenggara, bersilangan dengan sayatan penampang C-C' dan D-D' dengan arah lintasan timur laut barat daya. Sedangkan sayatan penampang D-D' hanya bersilangan dengan sayatan penampang B-B' saja.

Penampang model 2D lintasan A-A' hingga D-D' melewati kaldera Lautan pasir yang terbentuk akibat erupsi eksplosif dan efusif dari Gunung Cemoro Lawang. Hasil erupsi tersebut adalah endapan abu dan pasir yang menutupi permukaan Kaldera Lautan pasir (Zaenudin, 1990). Selain itu, merujuk dari

zaenuddin, dkk (1949) penelitian ini juga melewati aliran lava basal Bromo yang berumur lebih muda daripada endapan pasca kaldera Lautan pasir. Dari keempat sayatan penampang model 2D ini dapat dilihat struktur bawah permukaan daerah penelitian berdasarkan distribusi nilai densitas batuan. Sayatan penampang model 2D A-A' dan B-B' dengan arah barat laut – tenggara ditampilkan pada gambar 4.12 dan 4.13. Berdasarkan referensi densitas tabel 2.2, batuan basalt memiliki rentang 2.7-3.2 gr/cm³. Pada gambar tersebut, batuan basalt terletak pada area tepi kanan dan kiri pada kedalaman 1 km di bawah permukaan. Kemudian batuan lava basal memiliki rentang 2.7-2.8 gr/cm³ ditunjukkan pada area lingkaran merah yang muncul ke permukaan terletak pada bagian tengah dan bagian kanan penampang. Berdasarkan peta geologi, batuan lava basal ini terbentuk akibat aliran lava basal Gunung Bromo. Aliran lava basal tersebut juga menyelimuti batuan basalt yang ada di bawahnya.

Sayatan penampang model 2D C-C' dan D-D' dengan arah timur laut – barat daya ditampilkan pada gamabr 4.14 dan 4.15. Berdasarkan referensi densitas tabel 2.2, batuan basalt terletak pada area tepi kanan dan kiri pada kedalaman 0.6 - 0.8 km di bawah permukaan. Batuan lava basal memiliki rentang 2.7-2.8 gr/cm³ menyelimuti batuan basalt yang berada di bawahnya. Berdasarkan peta geologi, batuan lava basal ini terbentuk akibat aliran lava basal Gunung Bromo.

Gambar 4. 12 Sayatan penampang densitas model 2D lintasan A-A'

Gambar 4. 13 Sayatan penampang densitas model 2D lintasan B-B'

Gambar 4. 14 Sayatan penampang densitas model 2D lintasan C-C'

Gambar 4. 15 Sayatan penampang densitas model 2D lintasan D-D'

4.6 Interpretasi Model 3 Dimensi (3D)

Hasil pemodelan inversi 3 dimensi (3D) ditampilkan dengan perangkat lunak *Voxler 4*. Model penampang 3 dimensi merupakan gambar hasil pengolahan data gaya berat berupa penampang 2 dimensi yang direkonstruksi menjadi bentuk 3 dimensi. Hasil pemodelan 3D ditampilkan pada gambar 4.16. Pada gambar tersebut dapat dilihat bahwa rentang nilai densitas antara 2.1 - 3 gr/cm³. Berdasarkan referensi densitas tabel 2.2, batuan basalt terletak pada area tepi kanan dan kiri mulai dari kedalaman 0.6 - 1 km di bawah permukaan. Batuan lava basal memiliki rentang 2.7 - 2.8 gr/cm³ yang menyelimuti batuan basalt yang berada di bawahnya. Berdasarkan peta geologi, batuan lava basal ini terbentuk akibat aliran lava basal Gunung Bromo.

Gambar 4. 16 Model 3 dimensi (3D) distribusi densitas

BAB V SIMPULAN DAN SARAN

5.1. Kesimpulan

Berdasarkan hasil penelitian Tugas Akhir ini, dapat disimpulkan beberapa hal sebagai berikut.

- 1. Berdasarkan pola anomali Bouguer terdapat area dengan nilai anomali tinggi dan rendah. Anomali tinggi berada di sekitar bagian tepi kaldera Lautan pasir diduga merupakan batuan basalt. Sedangkan pola anomali rendah diperkirakan merupakan endapan piroklastik hasil erupsi Gunung Cemoro Lawang.
- 2. Hasil pemodelan inversi 3D metode gaya berat menunjukkan adanya batuan basalt yang berada pada bagian tepi area pengukuran atau dalam hal ini kaldera Lautan pasir mulai dari kedalaman 0.6 1 km di bawah permukaan. Kemudian terdapat aliran lava basal yang muncul ke permukaan pada daerah tenggara area pengukuran.

5.2. Saran

Saran yang dapat diberikan setelah penelitian Tugas Akhir ini adalah:

- 1. Hasil penelitian ini dapat digunakan sebagai informasi awal dalam pembuatan model konseptual daerah penelitian
- 2. Perlu adanya pengukuran petrofisika pada area pengukuran supaya didapatkan hasil analisis densitas yang lebih baik.
- 3. Perlu dilakukan penelitian lebih lanjut dengan metode geofisika lainnya untuk mendukung metode gaya berat ini seperti misalnya metode magnetik atau mikrotremor untuk mendapatkan ketebalan sedimen.

HALAMAN INI SENGAJA DIKOSONGKAN
DAFTAR PUSTAKA

- Achmad Nazar Abrory, N. (2019), Volcano stratigraphy and Petrogenesis Bromo Volcano and its surrounding area, Probolinggo distric, East Java Province, Indonesia., Skripsi, Institut Teknologi Bandung.
- A'la, M. (2016), "Pemodelan Anomali Gravitasi Daerah Manifestasi Panasbumi Parangwedang Bantul DIY", Skripsi, UIN Sunan Kalijaga Yogyakarta,.
- van Bemmelen, R.W. (1949), "General Geology of Indonesia and adjacent archipelagoes", The geology of Indonesia,.
- De Genevraye, P. dan Samuel, L. (1972), Geology of The Kendeng Zone (Central & East Java),.
- Djudjun, A. (2005), "Penyelidikan Gaya Berat Daerah Panas Bumi Sipoholon-Tarutung Kabupaten Tapanuli Utara Propinsi Sumatera Utara", Pemaparan Hasil Kegiatan Lapangan Subdit Panas Bumi,.
- Ganguli, S.S. dan Dimri, V. (2013), "Interpretation of gravity data using eigenimage with Indian case study: A SVD approach", Journal of Applied Geophysics, Vol.95, hal. 23–35.
- Hafidah, A.D., Daud, Y. dan Usman, A. (2019), "Reservoir Identification Based on Gravity Method at "AUN" Geothermal Field", E3S Web of Conferences, EDP Sciences, hal. 14008,.
- Hartati, A. (2012), "Identifikasi struktur Patahan berdasarkan analisa Derivative metode gaya berat di Pulau Sulawesi", FMIPA UI, hal, Vol.30.
- Heinrichs Jr, W.E., Holmer, R.C., MacDougall, R.E., Rogers, G.R., Sumner, J.S. dan Ward, S.H. (1967), Mining Geophysics, Volume 2, Theory, Society of Exploration Geophysicists.
- Hinze, W.J., Von Frese, R.R. dan Saad, A.H. (2013), Gravity and magnetic exploration: Principles, practices, and applications, Cambridge University Press.
- Kearey, P., Brooks, M. dan Hill, I. (2013), An introduction to geophysical exploration, John Wiley & Sons.
- Manrulu, R.H. dan Wahyudi, W. (2014), "Pembentukan Karakter Melalui Aplikasi Sains (Pemodelan 3d Anomali Gravitasi Magma Gunungapi Merapi dengan Software Grablox, Bloxer dan Rockwork", Prosiding, Vol.1, No.1, hal. 107–115.
- Nouraliee, J., Porkhial, S., Mohammadzadeh-Moghaddam, M., Mirzaei, S., Ebrahimi, D. dan Rahmani, M. (2015), "Investigation of density contrasts and geologic structures of hot springs in the Markazi Province of Iran using the gravity method", Russian Geology and Geophysics, Vol.56, No.12, hal. 1791–1800.
- Parapat, J. (2017), Analisis dan Pemodelan Inversi 3D Struktur Bawah Permukaan Daerah Panas Bumi Sipoholon Berdasarkan Data Gaya Berat, Skripsi, Institut Teknologi Sepuluh Nopember.

- Raehanayati, R., Rachmansyah, A. dan Maryanto, S. (2013), "Studi Potensi Energi Geothermal Blawan-Ijen, Jawa Timur Berdasarkan Metode Gravity", Jurnal Neutrino: Jurnal Fisika dan Aplikasinya, hal. 31–39.
- Sihombing, R.B. (2017), PEMODELAN DAN ANALISA STRUKTUR BAWAH PERMUKAAN DAERAH PROSPEK PANASBUMI KEPAHIANG BERDASARKAN METODE GAYABERAT,.
- Susanti, D.N., Suyanto, I. dan Wahyudi, W. (2006), "Interpretasi Struktur Bawah Permukaan Kompleks Gunungapi Muria dan sekitarnya berdasarkan Analisis Data Gravitasi", Prosiding PIT ke 31 HAGI 2006, hal. 319– 328.
- Telford, W.M., Telford, W., Geldart, L., Sheriff, R.E. dan Sheriff, R. (1990), Applied geophysics, Cambridge university press.
- Utami, R.R., Setyawan, A. dan Gernowo, R. (2016), "Interpretasi Struktur Bawah Permukaan Data Gayaberat Menggunakan Algoritma Jaringan Saraf Tiruan Studi Kasus Daerah Panas Bumi Ungaran, Jawa Tengah", Youngster Physics Journal, Vol.5, No.4, hal. 373–380.
- Zaennudin, A. (2011), "Perbandingan antara erupsi Gunung Bromo Tahun 2010– 2011 dan erupsi Kompleks Gunung Tengger", Jurnal Lingkungan dan Bencana Geologi, Vol.2, No.1, hal. 21–37.
- Zaenudin, A. (1990), "Stratigrafi dan Genesis Kerucut Cemoro Lawang di Kaldera Bromo Tengger Jawa Timur", Pertemuan Ilmiah Tahunan IAGI XIX, hal, hal. 19–34.

LAMPIRAN

LAMPIRAN 1: Data Gaya berat daerah Lautan pasir Tengger, Jawa Timur

					-				_		-	-		
	• Ha	ari pe	rtam	na										
			WAKTU		Waktu			NORTHING	EASTING		REA	DING COUI	NTER	
	STASIUN	JAM	MENIT	DETIK	(menit)	LONGITUDE	LATITUDE	(Y)	(X)	ELEVASI	1	2	3	g terbaca
1	BASE1-1	8	42	33	522.55	112.967309	-7.92986	9122942	716874	2251	1345.36	1345.43	1345.475	1345.421667
2	BR-1	9	53	15	593.25	112.990094	-7.95585	9120056	719373	2089	1379.14	1379.02	1379.04	1379.066667
4	BR 03	10	36	20	636.3333	112.988848	-7.95887	9119722	719234	2092	1371.142	1371.261	1371.5	1371.301
5	BR 4	11	0	40	660.6667	112.986625	-7.96234	9119340	718987	2092	1380.21	1380.33	1380.33	1380.29
6	BR5	11	20	33	680.55	112.982627	-7.9645	9119103	718545	2091	1379.749	1379.824	1379.859	1379.810667
7	BR6	11	36	42	696.7	112.979956	-7.96714	9118812	718249	2092	1382.7	1382.71	1382.65	1382.686667
8	BR7	11	48	40	708.6667	112.977357	-7.96989	9118509	717961	2091	1383.47	1383.375	1383.489	1383.444667
9	BR8	12	6	20	726.3333	112.974085	-7.97215	9118261	717599	2088	1383.099	1383.18	1383.208	1383.162333
10	BR9	12	15	21	735.35	112.974097	-7.97456	9117994	717599	2071	1381.593	1381.688	1381.702	1381.661
11	BR10	12	52	21	772.35	112.96749	-7.97539	9117906	716870	2090	1383.554	1383.571	1383.654	1383.593
12	BR11	13	14	17	794.2833	112.963661	-7.97695	9117735	716447	2107	1380.295	1379.931	1380.297	1380.174333
13	BR12	13	35	4	815.0667	112.960937	-7.97823	9117595	716146	2103	1383.252	1383.349	1383.4	1383.333667
14	BR22	13	58	26	838.4333	112.965506	-7.97402	9118059	716652	2096	1383.543	1383.609	1385.47	1384.207333
15	BR21	14	1	14	841.2333	112.969084	-7.97126	9118362	717048	2094	1385.68	1385.729	1385.71	1385.706333
16	BR20	14	10	13	850.2167	112.97192	-7.96883	9118629	717362	2095	1385.035	1384.332	1384.393	1384.586667
17	BR19	14	24	54	864.9	112.975534	-7.96603	9118937	717762	2093	1384.61	1384.53	1384.59	1384.576667
18	BR18	14	37	33	877.55	112.978795	-7.96339	9119228	718123	2096	1383.13	1383.09	1383.109	1383.109667
19	BR17	14	49	27	889.45	112.982213	-7.96126	9119461	718501	2091	1382.205	1382.171	1382.143	1382.173
20	BR16	15	2	35	902.5833	112.983051	-7.95836	9119782	718595	2081	1381.605	1381.49	1381.712	1381.602333
21	BR15	15	17	23	917.3833	112.985703	-7.95538	9120110	718889	2087	1381.18	1381.23	1381.05	1381.153333
22	BR14	15	28	23	928.3833	112.969967	-7.93583	9122281	717164	2093	1380.86	1380.289	1380.839	1380.662667
23	BR13	15	40	46	940.7667	112.967515	-7.93312	9122582	716895	2090	1380.37	1380.361	1380.405	1380.378667
24	BR23	15	53	28	953.4667	112.987458	-7.95084	9120611	719085	2092	1382.42	1382.391	1382.05	1382.287
25	BR34	16	8	25	968.4167	112.967309	-7.92986	9122942	716874	2095	1384.51	1384.4	1384.313	1384.4075
26	BASE-1	16	20	5	980.0833	112.967309	-7.92986	9122942	716874	2251	1345.45	1345.699	1345.689	1345.612667

	g terkoreksi	Drift	g terkoreksi		g Absolut	Latitude	Free Air	Free Air	Bouguer	Anomali
Koreksi Tidal	Tidal	Correction	Drift	Delta G	977977.9	(radian)	Correction	Anomaly	Correction	Bouguer
0.09547	1364.452132	0	1364.452132	0	977977.9	978130.8945	694.6586	541.6641	251.94633	289.7178
0.16259	1398.634609	0.003540179	1398.631068	34.17894	978012.08	978131.5407	644.6654	525.2036	233.81425	291.3894
0.18533	1390.783118	0.005697501	1390.77742	26.32529	978004.23	978131.6161	645.5912	518.2004	234.15003	284.0504
0.1906	1399.903054	0.00691595	1399.896138	35.44401	978013.34	978131.7024	645.5912	527.2328	234.15003	293.0827
0.19068	1399.4171	0.007911573	1399.409188	34.95706	978012.86	978131.7563	645.2826	526.3833	234.0381	292.3452
0.18792	1402.330546	0.008720256	1402.321826	37.86969	978015.77	978131.8223	645.5912	529.5386	234.15003	295.3886
0.18423	1403.095453	0.009319466	1403.086134	38.634	978016.53	978131.8909	645.2826	529.9257	234.0381	295.8876
0.17617	1402.801113	0.010204093	1402.790909	38.33878	978016.24	978131.9473	644.3568	528.6483	233.70232	294.946
0.17105	1401.273671	0.010655587	1401.263015	36.81088	978014.71	978132.0075	639.1106	521.8139	231.79957	290.0144
0.14309	1403.20472	0.012508297	1403.192212	38.74008	978016.64	978132.0282	644.974	529.5859	233.92618	295.6597
0.12199	1399.717161	0.013606571	1399.703554	35.25142	978013.15	978132.0673	650.2202	531.3044	235.82892	295.4754
0.09948	1402.898151	0.01464726	1402.883504	38.43137	978016.33	978132.0992	648.9858	533.218	235.38122	297.8368
0.07295	1403.757502	0.015817304	1403.741685	39.28955	978017.19	978131.9939	646.8256	532.0213	234.59773	297.4235
0.06938	1405.273888	0.01595751	1405.25793	40.8058	978018.71	978131.9251	646.2084	532.9891	234.37388	298.6152
0.05864	1404.127828	0.016407334	1404.111421	39.65929	978017.56	978131.8645	646.517	532.2118	234.48581	297.726
0.0418	1404.100848	0.017142576	1404.083706	39.63157	978017.53	978131.7946	645.8998	531.6368	234.26196	297.3748
0.02621	1402.59775	0.017776003	1402.579974	38.12784	978016.03	978131.7286	646.8256	531.1248	234.59773	296.5271
0.01202	1401.633799	0.018371875	1401.615427	37.1633	978015.06	978131.6757	645.2826	528.6702	234.0381	294.6321
-0.00297	1401.040164	0.019029503	1401.021134	36.569	978014.47	978131.6033	642.1966	525.0623	232.91884	292.1435
-0.01954	1400.568317	0.019770587	1400.548546	36.09641	978014	978131.5291	644.0482	526.5155	233.5904	292.9251
-0.03101	1400.059321	0.020321393	1400.038999	35.58687	978013.49	978131.0426	645.8998	528.3441	234.26196	294.0821
-0.04283	1399.75953	0.020941467	1399.738589	35.28646	978013.19	978130.9753	644.974	527.1852	233.92618	293.259
-0.0547	1401.682672	0.021577397	1401.661095	37.20896	978015.11	978131.4161	645.5912	529.2841	234.15003	295.1341
-0.06681	1403.820707	0.022325992	1403.798381	39.34625	978017.25	978130.8945	646.517	532.8688	234.48581	298.383
-0.07529	1364.475042	0.02291018	1364.452132	0	977977.9	978130.8945	694,6586	541,6641	251,94633	289.7178

• Hari kedua

STASUM JAM MENT DETI Image in the mention in the mentin the mention in the mentin the mention in the mention i				WAKTU		Maktu			NORTHING	EASTING		R			
I BASE2 7 1 7 42.11167 112.07500 7.9286 9122942 7.16370 2051 1344.012 1346.012 1346.119 2 BR33 8 10 26 490.4331 112.06586 7.9705 9113444 716530 2094 1384.913 1344.493 1344.591 1344.491 1343.591 1344.135 1348.131 1384.138 1344.59 1344.51 1344.491 1333.9 1383.891 1383.895 1383.89 1383.895 1383.82		STASIUN	JAM	MENIT	DETIK	(menit)	LONGITUDE	LATITUDE	(Y)	(X)	ELEVASI	1	2	3	g terbaca
2 8R.33 8 0 29 48.483 112.49680 -7.9704 91187.0 71003 2005 188.493 118.48.83 138.49.2 138.49.133 3 8R.3 8 20 54 400.333 12.06680 -7.9060 91187.44 71633 2091 138.423 138.48.35 138.435 138.435 138.435 138.435 138.435 138.435 138.345 138	1	BASE2	7	1	7	421.1167	112.967309	-7.92986	9122942	716874	2251	1346.21	1346.055	1346.092	1346.119
3 BR22 8 10 26 490.433 112.06206 -7.9056 91184/4 71639 2094 138.4.23 138.4.59 138.4.753 138.4.7357 5 BR30 8 31 5 511.0833 112.08690 -7.9062 9118746 717372 2094 1383.19 1383.105 1383.105 1383.105 1383.105 1383.105 1383.105 1383.105 1383.105 1383.01 1383.01 1383.01 1383.01 1383.01 1383.01 1383.056 1382.04 1382.016 1382.04 1382.04 1382.04 1382.04 1382.04 1382.04 1382.04 1382.04 1382.04 1382.04 1382.04 1382.04 1382.04 1382.04 1382.04 1382.04 1382.04 1382.04	2	BR33	8	0	29	480.4833	112.959861	-7.97304	9118170	716030	2095	1384.931	1384.883	1384.92	1384.91133
4 BR31 8 22 54 502 112.08000 7.0800 9.118714 7.1660 9.020 138.4128 138.4188 138.4105 138.4125 5 BR30 8 31 55 5110.633 112.049007 7.0040 1303.20 133.8305 133.8205 133.8205 133.8205 133.8205 138.221 138.226 138.225 138.241 13	3	BR32	8	10	26	490.4333	112.962869	-7.97055	9118444	716363	2094	1384.423	1384.459	1384.539	1384.47367
5 BR30 8 31 5 511.0833 112.08050 7.9662 9118986 71.037 2094 1838.89 1838.89 1838.89 1838.89 1838.89 1838.89 1838.89 1838.89 1838.89 1838.89 1838.89 1838.89 1838.89 1838.89 1838.89 1838.89 1838.89 1838.89 1838.80 1838.81 1838.81 1838.80 1838.80 1838.80 1838.80 1838.81 1838.80 1838.80 1838.80 1838.80 1838.80 1838.80 1338.20 1382.43 1382.43 1382.43 1382.43 1382.43 1382.41 1382.41 1382.41 1382.41 1382.41 1382.41 1	4	BR31	8	22	54	502.9	112.965904	-7.96809	9118714	716699	2092	1384.123	1384.188	1384.055	1384.122
6 8R.29 8 99 55 519.583 112.97108 7.9701 71770 2094 138.88 138.305 138.3283 138.3283 7 8R.28 8 48 22 28.3667 112.97008 7.9010 71170 2003 138.309 138.305 138.305 138.305 138.246 138.248 9 8R26 9 12 15 552.5 112.949116 7.9632 71383 2091 138.246 138.248 138.248 138.248 138.248 138.451 138.4461 10 8R42 9 41 48 511.8 112.98458 7.9463 912.106 7.1850 2.01 138.461 138.448 138.448 138.448 138.448 138.448 138.448 138.448 138.448 138.446 138.451 138.448 138.446 138.451 138.446 138.451 138.446 138.451 138.446 138.451 138.446 138.451 138.446 138.451 138.446 138.	5	BR30	8	31	5	511.0833	112.968957	-7.96562	9118986	717037	2094	1383.895	1383.9	1383.89	1383.895
7 8R.28 8 48 22 52.8667 112.97029 79.070 711709 712.07 1282.09 1283.07 1283.07 1383.075 1383.07	6	BR29	8	39	35	519.5833	112.971984	-7.96316	9119256	717372	2094	1383.81	1383.845	1383.83	1383.82833
8 BR.27 8 58 10 58.1667 112.07021 7.95019 9119602 718172 2093 1382.6 1382.50 1382.64 1382.64 1382.64 1382.64 1382.64 1382.64 1382.64 1382.64 1382.64 1382.64 1382.64 1382.64 1382.64 1382.64 1382.64 1382.44 1384.51 1384.471 1384.51 1384.471 1384.51 1384.471 1384.51 1384.48 1384.451 1384.48 1384.48 1384.48 1384.48 1384.48 1384.48 1384.48 1384.48 1384.48 1384.48 1384.48 1384.48 1384.48 1384.48 1384.48 1384.48 1384.48	7	BR28	8	48	22	528.3667	112.975028	-7.96071	9119526	717709	2102	1383.099	1383.025	1383.079	1383.06767
9 R26 9 12 15 55.22 112.04111 -7.9578 920008 718.33 2091 1382.45 1382.40 1382.43 1382.44 1382.44 1382.44 1382.44 1382.44 1382.44 1382.44 1382.44 1382.44 1382.44 1382.44 1382.44 1382.44 1382.44 1382.44 1382.44 1382.14 12 BR42 9 25 22 565.367 112.98088 -7.9619 912.049 718607 2011 1384.63 1384.641 1384.647 1384.647 1384.647 1384.647 1384.647 1384.647 1384.648 1384.647 1384.648 1384.647 1384.648 1384.647 1384.648 1384.6457 1384.648 1384.6457 1384.648 1384.6457 1384.648 1384.6457 1384.648 1384.648 1384.648 1384.645 1384.648 1382.51 1382.51 1382.51 1382.51 1382.51 1382.418 1384.4957 1384.4957 1384.4957 1384.4957 1384.645 1384.6451	8	BR27	8	58	10	538.1667	112.979219	-7.95919	9119692	718172	2093	1382.62	1382.59	1382.64	1382.61667
10 RPS 9 19 38 596.333 112.07407 716373 2020 1382.48 1382.44 1382.46 1382.46 1382.41 1382.46 1382.41 1382.46 1382.41 1384.451 1384.41 1384.451 1384.451 1384.481 1384.451 1384.481 1384.451 1384.481 1384.451 1384.481 1384.451 1384.481 1384.451	9	BR26	9	12	15	552.25	112.981116	-7.95578	9120068	718383	2091	1382.45	1382.51	1382.49	1382.48333
Int BR24 9 25 22 565.3667 112.80868 -7.6979 92.0494 71800 2094 1382.46 1382.07 1384.65 14 BR44 9 49 13 595.3167 112.907507 -94606 912.001 718110 2101 1384.62 1382.451 1384.488 1384.489 1384.485 1384.489 1382.12 1382.512	10	BR25	9	19	38	559.6333	112.967457	-7.95332	9120347	716878	2092	1382.38	1382.44	1382.43	1382.41667
12 BR42 9 41 48 SEL8 112.08216 7.9269 9212486 718502 2101 1384.651 1384.511 1384.571 1384.571 1384.571 1384.571 1384.571 1384.571 1384.571 1384.571 1384.571 1384.571 1384.571 1384.571 1384.571 1384.571 1384.571 1384.451 1384.511 1384.51 <td>11</td> <td>BR24</td> <td>9</td> <td>25</td> <td>22</td> <td>565.3667</td> <td>112.985858</td> <td>-7.95191</td> <td>9120494</td> <td>718908</td> <td>2094</td> <td>1382.44</td> <td>1382.05</td> <td>1382.062</td> <td>1382.184</td>	11	BR24	9	25	22	565.3667	112.985858	-7.95191	9120494	718908	2094	1382.44	1382.05	1382.062	1382.184
13 8R43 9 49 13 589,2167 112,80037 7-9649 9121200 718110 2131 1384,671 1384,671 1384,671 1384,671 1384,671 1384,671 1384,671 1384,671 1384,671 1384,671 1384,671 1384,671 1384,671 1384,671 1384,751 1384,751 1384,751 1384,751 1384,751 1384,751 1384,751 1384,751 1384,751 1384,751 1384,751 1384,751 1384,751 1384,751 1384,751 1384,751 1384,751 1384,751 1384,751 1384,7	12	BR42	9	41	48	581.8	112.982116	-7.94296	9121486	718500	2101	1384.635	1384.541	1384.547	1384.57433
14 BR44 9 55 19 555.117 11.278507 7.9463 9121081 71110 2101 138.438 138.4.38 138.4.485 138.4.485 138.4.485 138.4.485 138.4.485 138.4.485 138.4.485 138.4.485 138.4.485 138.4.485 138.4.485 138.2.2 138.2.2 138.2.51	13	BR43	9	49	13	589.2167	112.980331	-7.94519	9121240	718302	2113	1384.62	1384.671	1384.704	1384.665
Instructure BR45 10 8 17 608.2833 112.97568 -7.9407 91.20813 71.774 2107 1382.2 1382.35 1382.2 <td>14</td> <td>BR44</td> <td>9</td> <td>55</td> <td>19</td> <td>595.3167</td> <td>112.978597</td> <td>-7.94663</td> <td>9121081</td> <td>718110</td> <td>2101</td> <td>1384.489</td> <td>1384.51</td> <td>1384.488</td> <td>1384.49567</td>	14	BR44	9	55	19	595.3167	112.978597	-7.94663	9121081	718110	2101	1384.489	1384.51	1384.488	1384.49567
16 8R.46 10 30 5 630.083 112.97260 7.9512 9120544 712164 7110 1382.51 1382.515 1382.512 1381.03 1381.93 1381.93 1381.93 1381.93 1381.93 1381.93 1381.93 1381.93 1381.93 1381.55 1382.52 1382.52 1382.52 1382.52 1382.52 1382.52 1382.52 1382.51 1382.51 1382.51 1382.51 1380.51 1380.125 1380.125 1380.125 1380.125 1380.126 1380.126 1380.126 1380.126 1380.126 1380.126 1380.126 1380.126 1380	15	BR45	10	8	17	608.2833	112.975562	-7.94907	9120813	717774	2107	1382.22	1382.35	1382.2	1382.25667
BR47 10 49 51 649.8 112.08693 9.920267 717.04 2110 138.193 138.133 138.133 138.133	16	BR46	10	30	5	630.0833	112.972508	-7.95152	9120544	717436	2113	1382.51	1382.515	1382.512	1382.51233
18 8R48 11 2 4 662.0667 112.06668 7.96628 9119994 716770 2110 1380.18 1380.18 1380.1857 19 BR56 11 44 14 704.206686 7.94488 9121281 716718 2122 1381.06 1380.18 1380.01857 20 BR56 11 44 14 704.233 112.066967 7.94488 9121281 716138 2124 1384.69 1384.085 1384.049 1380.208 1382.088 1382.088 1382.088 1382.088 1382.088 1382.088 1382.088 1382.088 1382.088 1382.088 1384.019 1386.139 1386.138 1384.019 1386.139 1386.637 1386.637 1386.637 1386.637 1386.637 1386.637 1386.637 1386.2597 24 BR65 12 21 10 7.11667 12.07947 7.9099 1212267 17.0799 1277.13 1377.13 1377.13 1377.13 1377.13 1377.13 1377.1	17	BR47	10	49	51	649.85	112.96951	-7.95404	9120267	717104	2110	1381.93	1381.939	1381.955	1381.94133
19 RF99 11 Z5 10 685.167 112.08508 -74.488 92.1282 716.78 2222 138.1.04 138.1.47 138.1.47 138.1.916.7 20 R858 11 44 14 714.238 12.08700 7.4484 91.21282 716.533 2.22 138.1.04 138.1.47 138.1.916.7 21 887.5 11 59 12 712.03 122.08700 7.4448 91.21285 717.61 138.1.94 138.4.85 138.4.45 138.4.45 138.4.39 138.4.35 138.4.35 138.4.31 138.4.32 138.6.31 138.6.31 138.6.31 138.6.31 138.6.31 138.6.31 138.6.32 138.6.31 138.6.31 138.6.32 138.6.32 138.6.31 138.6.31 138.6.32 138.6.32 138.6.31 138.2.65 138.2.65 138.2.65 138.2.65 138.2.65 138.2.65 138.2.65 138.2.65 138.2.65 138.2.65 138.2.65 138.2.63 137.7.1 137.7.8 137.7.8 137.7.8 137.7.8	18	BR48	11	2	4	662.0667	112.966493	-7.95652	9119994	716770	2110	1380.187	1380.19	1380.18	1380.18567
200 BR58 11 44 14 704.233 112.9670 -7.9488 912.1281 716.38 726 188.1948 138.208 1382.088 1386.637 1386.637 1386.637 1386.637 1386.637 1386.637 1386.637 1386.638 1386.637 1386.637 1386.637 1386.637 1386.637 1386.637 1386.637 1386.637 1386.637 1386.637 1386.638 137.781 1377.55	19	BR59	11	25	10	685.1667	112.965966	-7.94488	9121282	716718	2122	1381.06	1381.045	1381.47	1381.19167
21 BR57 11 59 12 712.9 112.06091 7.9426 921558 717.61 122.4 1384.455 1384.455 1384.485 1384.485 1384.388 22 BR55 12 2 1 728.067 112.9729 7.9089 9121283 717493 211 1386.63 1386.63 1386.63 1386.63 1386.63 1386.63 1386.63 1386.63 1386.63 1386.63 1386.63 1386.63 1386.53 1386.53 1386.53 1386.73 1387.55 1377.13 1377.13 1377.93 1377.65 1377.83 1377.65 1377.83 1377.84 1377.81	20	BR58	11	44	14	704.2333	112.967009	-7.94488	9121281	716833	2126	1381.948	1382.08	1382.088	1382.03867
22 BR56 1.2 8 4 728.0667 112.9783 7.9993 9121826 717493 21/1 1386.63 1386.637 1386.637 1386.637 1386.631 23 BR55 12 21 10 741.1667 112.97431 .7989 9121826 717493 1386.32 1387.43 1377.49 1377.49 1377.45 1377.49 1377.81 1377.81 1377.81 1377.81 1377.81 1377.81 1377.81 1377.81 1377.81 1377.81 1377.81 1378.78 1386.32 1388.32 1388.32 1388.32 1388.32 1388.32 1388.32 1388.32 1388.32 1378.78 1378.78 1378.78	21	BR57	11	59	12	719.2	112.969971	-7.94236	9121558	717161	2124	1384.29	1384.485	1384.419	1384.398
23 BR55 12 21 10 741.1667 112.97431 77.986 9121983 71.699 2118 1386.382 1386.387 1386.387 1386.387 1386.387 1386.387 1386.387 1386.387 1386.387 1386.387 1386.387 1386.387 1386.387 1386.387 1386.387 1386.387 1386.387 1386.387 1377.13 1377.33 1377.35 1377.83 1377.85 1377.81 1378.78 26 BR67 13 38 32 813.33 112.084074 -7.9374 9122062 716562 132.9 1374.31 1374.34 1374.34 1374.34 1374.34 1374.34 1374.34 1374.34 1374.34 1374.3	22	BR56	12	8	4	728.0667	112.97297	-7.93993	9121826	717493	2117	1386.63	1386.637	1386.628	1386.63167
24 BR66 12 49 58 769.967 112.0803 -7.938 921.986 71.089 21.37 1377.551 1377.4293 25 BR65 13 0 56 780.933 112.08408 -7.9385 912.986 71.6561 24.42 1377.851 1377.4293 1377.4293 26 BR67 13 16 30 796.5 112.08408 -7.9374 912.2062 716362 2126 1382.55 1382.465 1382.455 1382.465 1382.456 1382.465 1382.465 1382.465 1382.465 1382.465 1382.465 1382.465 1382.465 1374.8 1374.8 1374.8 1374.8 1374.85 1374.8 1374.85 1374.8 1374.455 1372.48 1374.8 1374.8 1374.405 1374.405 1374.405 1374.405 1374.405 1374.405 1374.405 1374.405 1374.405 1374.405 1374.405 1374.405 1374.405 1374.405 1374.405 1374.405 1374.405 1374.405 1374.	23	BR55	12	21	10	741.1667	112.974831	-7.9385	9121983	717699	2118	1386.382	1386.308	1386.2879	1386.32597
25 BR65 13 0 56 780.933 112.044.98 -7.9372 912256 716561 2142 1377.87 1377.88 1377.81 <th< td=""><td>24</td><td>BR66</td><td>12</td><td>49</td><td>58</td><td>769.9667</td><td>112.9693</td><td>-7.9385</td><td>9121986</td><td>717089</td><td>2137</td><td>1377.13</td><td>1377.593</td><td>1377.565</td><td>1377.42933</td></th<>	24	BR66	12	49	58	769.9667	112.9693	-7.9385	9121986	717089	2137	1377.13	1377.593	1377.565	1377.42933
26 BR67 13 16 30 79.5 112.08/270 7.9784 912/2062 716361 2126 1382.55 1382.465 1382.455	25	BR65	13	0	56	780.9333	112.964498	-7.93572	9122296	716561	2142	1377.827	1377.785	1377.818	1377.81
27 BR68 13 27 2 BV7.0331 112.044.98 -7.9372 912256 715561 2134 1378.8 1378.7 1378.78 28 BR69 13 38 32 B18333 112.044.98 -7.9374 9122564 715562 2159 1373.8 1374.85 1377.84 1377.84 29 BR82 14 4 3 840.05 112.98204 -7.9374 9122574 715362 2159 1377.55 1377.55 1377.54 1377.24833 30 BR80 14 40 7 880.1167 112.98564 -7.9304 9122574 715369 2155 1377.55 1377.57 1377.57 1377.57 1377.57 1377.54 1377.54 1377.54 1377.54 1377.74 1379.04 1379.04 1379.04 1379.04 1379.04 1379.04 1379.04 1379.04 1379.04 1379.04 1379.04 1379.04 1379.04 1379.04 1379.04 1379.04 1379.04 1379.04	26	BR67	13	16	30	796.5	112.962704	-7.93784	9122062	716362	2126	1382.55	1382.556	1382.465	1382.52367
28 88-99 13 38 32 818.333 112.962704 -7.9374 912.2062 7.15347 2159 137.43 1374.405 1374.34 1374.34833 29 BR82 14 4 3 844.05 12.95348 -7.9374 912.2062 715347 2156 1372.98	27	BR68	13	27	2	807.0333	112.964498	-7.93572	9122296	716561	2143	1378.84	1378.7	1378.8	1378.78
29 BR32 1.4 4 3 84.05 1/2.9534 -7.9371 9122534 715347 2155 1372.98 1372.025 1372.04 1372.34833 0 BR81 1.4 0.7 7 B801167 112.95664 -7.9371 9122534 715359 1375.59 1375.52 1375.751 1375.52 1375.751 1375.52 1375.751 1375.54 1375.42 31 BR80 1.4 5.2 45 892.75 112.96900 -7.900 912307 715290 2130 1377.531 1377.54 1377.54 32 BR79 1.5 5 50 905.833 112.96709 -7.9206 912307 716200 2130 1377.951 1347.01 1379.1743 33 base 15 50 906.5167 112.96709 -7.9269 912307 716300 2130 1376.72 1376.01 1379.1743 33 base 15 46 31 946.5167 112.967709 72.9269	28	BR69	13	38	32	818.5333	112.962704	-7.93784	9122062	716362	2159	1374.3	1374.405	1374.34	1374.34833
30 BR81 14 40 7 88.01167 112.955641 -7.9314 9122778 715589 21.45 1375.595 1375.52 1375.57 1375.562 31 BR80 1.4 5.2 45 89.75 112.95696 -7.9206 7192306 715599 21.85 1375.595 1375.52 1377.54 1377.542 32 BR79 15 5 5.0 905.8333 112.965998 -7.9206 9123036 715290 2130 1379.733 1377.521 1377.54 1377.54 33 base 15 46 31 945.517 112.96798 -7.9266 9122307 716230 2137 1379.733 1374.699 1379.731 1379.735 1379.735 1379.735 1379.735 1379.735 1379.735 1379.735 1379.735 1379.735 1374.699 1357.718	29	BR82	14	4	3	844.05	112.95348	-7.93371	9122524	715347	2156	1372.98	1372.025	1372.04	1372.34833
31 BR80 14 52 45 B82.75 112.455000 -7.9205 912305 715290 2138 1377.531 1377.551 1377.542 32 BR79 15 5 50 905.833 112.950198 -7.9206 912306 716290 2138 1377.351 1377.51 1377.54 1377.542 33 base 15 46 31 946.5167 112.967309 -7.9206 9123047 716290 2130 1379.733 1379.02 1379.11 1377.742 33 base 15 46 31 946.5167 112.967309 -7.92086 9122342 716874 2137 1346.72 1379.735 1346.699 1357.718	30	BR81	14	40	7	880.1167	112.955664	-7.9314	9122778	715589	2145	1375.595	1375.52	1375.571	1375.562
32 BR79 15 5 50 905.8333 112.961998 -7.92659 9123307 716290 2130 1379.793 1379.02 1379.01 1379.71433 33 base 15 46 31 946.5167 112.967309 -7.92866 9122942 716874 2137 1346.72 1379.015 1346.699 1357.718	31	BR80	14	52	45	892.75	112.959008	-7.92905	9123036	715959	2138	1377.535	1377.551	1377.54	1377.542
33 base 15 46 31 946.5167 112.967309 -7.92986 9122942 716874 2137 1346.72 1379.735 1346.699 1357.718	32	BR79	15	5	50	905.8333	112.961998	-7.92659	9123307	716290	2130	1379.793	1379.02	1379.01	1379.27433
	33	base	15	46	31	946.5167	112.967309	-7.92986	9122942	716874	2137	1346.72	1379.735	1346.699	1357.718

Koreksi	g terkoreksi	Drift	g terkoreksi		g Absolut	Latitude	Free Air	Free Air	Bouguer	Anomali
Tidal	Tidal	Correction	Drift	Delta G	977977.9	(radian)	Correction	Anomaly	Correction	Bouguer
					577577.5	(,		,		8
-0.05771	1365.006034	0	1365.006034	0	977977.9	978130.8945	694.6586	541.6641287	251.9463264	289.7178
0.00158	1404.399974	1.33424425	1403.06573	38.0596959	978015.9597	978131.9695	646.517	530.5071897	234.485808	296.0214
0.01312	1403.967729	1.55786689	1402.409862	37.40382802	978015.3038	978131.9073	646.2084	529.6049073	234.3738816	295.231
0.02725	1403.625276	1.83805069	1401.787225	36.78119125	978014.6812	978131.8461	645.5912	528.4263385	234.1500288	294.2763
0.03798	1403.405832	2.02196813	1401.383864	36.37783035	978014.2778	978131.7843	646.2084	528.7018806	234.3738816	294.328
0.04755	1403.347803	2.21300254	1401.134801	36.12876727	978014.0288	978131.7231	646.2084	528.5140482	234.3738816	294.1402
0.05831	1402.587263	2.41040477	1400.176858	35.17082426	978013.0708	978131.6619	648.6772	530.0861199	235.2692928	294.8168
0.07018	1402.141828	2.6306562	1399.511171	34.50513784	978012.4051	978131.624	645.8998	526.6809359	234.2619552	292.419
0.08647	1402.02292	2.947174	1399.075746	34.06971271	978011.9697	978131.5391	645.2826	525.7132341	234.0381024	291.6751
0.09436	1401.963212	3.11311173	1398.8501	33.84406631	978011.7441	978131.4779	645.5912	525.8573949	234.1500288	291.7074
0.10112	1401.734052	3.24196632	1398.492086	33.48605238	978011.3861	978131.4426	646.2084	526.151856	234.3738816	291.778
0.1182	1404.174883	3.61129951	1400.563583	35.55754938	978013.4575	978131.2199	648.3686	530.6062908	235.1573664	295.4489
0.12628	1404.274897	3.7779864	1400.49691	35.49087668	978013.3909	978131.2754	652.0718	534.1872835	236.5004832	297.6868
0.1321	1404.109016	3.91508168	1400.193934	35.18790079	978013.0879	978131.3114	648.3686	530.1451364	235.1573664	294.9878
0.14398	1401.850595	4.2065028	1397.644092	32.63805845	978010.5381	978131.372	650.2202	529.386236	235.8289248	293.5573
0.16141	1402.127266	4.69644988	1397.430816	32.42478226	978010.3248	978131.4329	652.0718	530.9636566	236.5004832	294.4632
0.17338	1401.560253	5.14069852	1396.419555	31.41352103	978009.3135	978131.4956	651.146	528.9638795	236.164704	292.7992
0.17977	1399.786432	5.41526367	1394.371169	29.365135	978007.2651	978131.5575	651.146	526.8536573	236.164704	290.689
0.18723	1400.813956	5.93442777	1394.879528	29.87349478	978007.7735	978131.2676	654.8492	531.3550514	237.5078208	293.8472
0.18955	1401.675117	6.36294417	1395.312173	30.30613943	978008.2061	978131.2677	656.0836	533.0219939	237.9555264	295.0665
0.18886	1404.066744	6.69931457	1397.367429	32.36139585	978010.2614	978131.2051	655.4664	534.5226909	237.7316736	296.791
0.18738	1406.330157	6.89858968	1399.431568	34.42553407	978012.3255	978131.1445	653.3062	534.487232	236.9481888	297.539
0.18387	1406.016674	7.19300741	1398.823666	33.81763265	978011.7176	978131.109	653.6148	534.223437	237.0601152	297.1633
0.17098	1396.982775	7.84027694	1389.142498	24.13646485	978002.0365	978131.109	659.4782	530.4056915	239.1867168	291.219
0.16404	1397.361824	8.08674879	1389.275075	24.26904139	978002.169	978131.0399	661.0212	532.1503609	239.7463488	292.404
0.15222	1402.129568	8.43660397	1393.692964	28.68692994	978006.5869	978131.0927	656.0836	531.5778612	237.9555264	293.6223
0.14299	1398.324334	8.6733368	1389.650998	24.64496398	978002.545	978131.0399	661.3298	532.8348835	239.8582752	292.9766
0.13298	1393.820703	8.93179512	1384.888908	19.88287429	977997.7829	978131.0927	666.2674	532.9576055	241.6490976	291.3085
0.10663	1391.766393	9.50527293	1382.26112	17.25508648	977995.1551	978130.99	665.3416	529.506734	241.3133184	288.1934
0.0658	1394.984157	10.3158582	1384.668299	19.66226498	977997.5623	978130.9327	661.947	528.5766096	240.082128	288.4945
0.05162	1396.977657	10.5997877	1386.377869	21.37183581	977999.2718	978130.8743	659.7868	528.1842948	239.2986432	288.8857
0.03621	1398.718799	10.8938309	1387.824968	22.818934	978000.7189	978130.8132	657.318	527.2237669	238.403232	288.8205
-0.01069	1376.814208	11.808174	1365.006034	0	977977.9	978130.8945	659,4782	506.4837287	239.1867168	267.297

• Hari ketiga

			WAKTU		Maktu			NORTHING FASTING			READING COUNTER			
	STASIUN	JAM	MENIT	DETIK	(menit)	LONGITUDE	LATITUDE	(Y)	(X)	ELEVASI	1	2	3	g terbaca
2	BASE 3	7	26	28	446.4667	112.9673089	-7.929863624	9122942	716874	2235	1346.798	1346.755	1346.776	1346.776
5	BR112	8	17	30	497.5	112.9479096	-7.915679837	9124521	714742	2140	1371.195	1371.1	1371.125	1371.14
6	BR113	8	24	29	504.4833	112.9448925	-7.918125822	9124252	714408	2141	1370.831	1370.815	1370.795	1370.814
7	BR114	8	32	58	512.9667	112.9417939	-7.920590254	9123981	714065	2139	1370.51	1370.485	1370.473	1370.489
8	BR115	8	43	4	523.0667	112.938804	-7.923063206	9123709	713734	2139	1370.471	1370.515	1370.46	1370.482
9	BR116	8	51	31	531.5167	112.9358768	-7.925364082	9123456	713410	2143	1369.805	1369.835	1369.35	1369.663
10	BR117	9	1	52	541.8667	112.9330055	-7.927990148	9123167	713092	2144	1367.845	1367.741	1367.731	1367.772
11	BR100	9	32	35	572.5833	112.9530501	-7.922870119	9123723	715305.2	2131	1367.93	1367.931	1368	1367.954
12	BR101	9	45	34	585.5667	112.9499437	-7.924764188	9123515.1	714961.6	2144	1367.524	1367.412	1367.451	1367.462
13	BR99	10	4	9	604.15	112.9465612	-7.927065903	9123262.3	714587.4	2134	1368.548	1368.62	1368.478	1368.549
14	BR98	10	26	4	626.0667	112.9419788	-7.929232163	9123025	714080.9	2138	1368.3	1369.89	1369.64	1369.277
15	BASE4	13	36	55	816.9167	112.9673089	-7.929863624	9122942	716874	2235	1347.29	1347.19	1347.1	1347.193

Koreksi	g terkoreksi	Drift	g terkoreksi		g Absolut	Latitude	Free Air	Free Air	Bouguer	Anomali
Tidal	Tidal	Correction	Drift	Delta G	977977.9	(radian)	Correction	Anomaly	Correction	Bouguer
-0.06215	1365.66812	0	1365.668116	0	977977.9	978130.9	689.721	536.7265	250.1555	286.571
-0.01739	1390.41715	0.08813491	1390.329012	24.6609	978002.56	978130.5	660.404	532.4223	239.5225	292.8998
-0.01018	1390.09346	0.10019518	1389.993267	24.32515	978002.23	978130.6	660.7126	532.3346	239.63442	292.7001
-0.0017	1389.77307	0.11484595	1389.658228	23.99011	978001.89	978130.7	660.0954	531.3212	239.41057	291.9106
0.01028	1389.77762	0.13228872	1389.64533	23.97721	978001.88	978130.7	660.0954	531.2469	239.41057	291.8364
0.01918	1388.95641	0.14688193	1388.809525	23.14141	978001.04	978130.8	661.3298	531.5884	239.85828	291.7302
0.03045	1387.05024	0.16475645	1386.885484	21.21737	977999.12	978130.8	661.6384	529.9078	239.9702	289.9376
0.06574	1387.2694	0.21780434	1387.051595	21.38348	977999.28	978130.7	657.6266	526.1892	238.51516	287.674
0.08017	1386.78563	0.24022664	1386.5454	20.87728	977998.78	978130.8	661.6384	529.6478	239.9702	289.6776
0.10044	1387.90742	0.27232019	1387.635097	21.96698	977999.87	978130.8	658.5524	527.5944	238.85094	288.7434
0.12209	1388.66724	0.31017042	1388.357074	22.68896	978000.59	978130.9	659.7868	529.497	239.29864	290.1983
0.15479	1366.30789	0.63976966	1365.668116	0	977977.9	978130.9	689.721	536.7265	250.1555	286.571

LAMPIRAN 2: Proses inversi 3D menggunakan Grablox 1.6

Masukan pada perangkat lunak *Grablox 1.6* berupa anomali residual (*.dat) dan model awal (*.inp) yang sudah dibuat lebih dulu.

Pembuatan model awal dilakukan dengan memasukkan parameter 1. seperti pada gambar di bawah ini. Gambar bagian kiri berturut-turut adalah: X-posit adalah posisi awal sumbu X, Y-posit adalah posisi awal sumbu Y, Z-posit adalah posisi awal sumbu Y nilai Z-posit dapat dikosongkan, X-size adalah panjang sumbu X, Y-size adalah panjang sumbu Y, Z-size adalah panjang sumbu Z, X-divis adalah banyaknya blok yang membagi sumbu X, Y-divis adalah banyaknya blok yang membagi sumbu Y, Z-divis adalah banyaknya blok yang membagi sumbu Z, Bg dens. adalah densitas yang digunakan pada perhitungan anomali Bouguer. Sedangkan Param. adalah densitas rata-rata kerak bumi. Pada gambar bagian kanan, X-step adalah panjang blok minor pada sumbu X, Y-step adalah panjang blok minor pada sumbu Y, Xstart adalah posisi awal sumbu X, Y-start adalah posisi awal sumbu Y, X-ending adalah posisi akhir sumbu X, Y-ending adalah posisi akhir sumbu Y, sedangkan Z-level adalah posisi permukaan sumbu Z.

Block model:		Data area:	
X-posit	713.092	X-step	0.1
Y-posit	9117.6	Y-step	0.1
Z-posit	0	X-start	713.092
X-size	6.281	Y-start	9117.6
Y-size	6.926	X-ending	719.373
Z-size	5	Y-ending	9124.52
X-divis	25	Z-level	0
Y-divis	25		
Z-divis	10		
Density:			
Bg dens.	2.53		
Param.	2.67		

2. Model awal disimpan dalam format *.inp dengan nama tertentu. Selanjutnya data anomali residual yang sudah didapatkan dikonversi ke dalam format (*dat) dengan melakukan penambahan header terlebih dahulu.

1	2	0	3	0
9117.595	0.0681503			
9117.595	0.0914134			
9117.595	0.1009899			
9117.595	0.1033958			
9117.595	0.1058761			
9117.595	0.1084367			
9117.595	0.1110843			
9117.595	0.1138263			
9117.595	0.1166715			
9117.595	0.1196298			
9117.595	0.1227126			
	1 9117.595 9117.595 9117.595 9117.595 9117.595 9117.595 9117.595 9117.595 9117.595 9117.595	1 2 9117.595 0.0681503 9117.595 0.0914134 9117.595 0.1009899 9117.595 0.1033958 9117.595 0.1058761 9117.595 0.1084367 9117.595 0.110843 9117.595 0.1138263 9117.595 0.1136298 9117.595 0.1227126	1 2 0 9117.595 0.0681503 9117.595 0.0914134 9117.595 0.1009899 9117.595 0.1033958 9117.595 0.1058761 9117.595 0.1084367 9117.595 0.1108433 9117.595 0.1138263 9117.595 0.1166715 9117.595 0.1196298 9117.595 0.1227126	1 2 0 3 9117.595 0.0681503

dimana:

Baris 1 kolom 1

: nama file *.dat yang akan kita buat (harus sama dengan nama model format *.inp)

Baris 3 kolom 1	:	banyak data residual hasil filtering dari anomali Bouguer
Baris 3 kolom 2	:	indeks kolom koordinat X (timur)
Baris 3 kolom 3	:	indeks kolom koordinat Y (utara)
Baris 3 kolom 4	:	indeks kolom koordinat Z (topografi)
Baris 3 kolom 5	:	indeks kolom data residual
Baris 3 kolom 6	:	menunjukkan tidak ada medan regional
Baris 5 kolom 1	:	koordinat X dalam UTM (satuan km)
Baris 5 kolom 2	:	koordinat Y dalam UTM (satuan km)
Baris 5 kolom 3	:	nilai anomali residual (satuan mgal)

- 3. Kemudian model awal (*.inp) tadi dimasukkan ke Grablox lalu masukkan file (*.dat)
- 4. Parameter densitas model yang akan dihasilkan diubah rentangnya, sesuai dengan rentang nilai densitas batuan yang menjadi target penelitian.
- 5. Data ini diproses dengan mengklik tombol *Compute* yang dimulai dengan jenis optimasi *Base*. Pada saat ini proses inversi sudah dimulai.
- 6. Setalah proses optimasi Base selesai, kemudian meng-klik tombol *Optimize* secara terus menerus hingga nilai *RMS* nya tidak berubah lagi
- Selanjutnya dilakukan optimasi *Density, Occam d, Height, dan Occam h* secara berurutan dan bergantian sehingga dihasilkan model 2D dan 3D
- 8. Setelah selesai, tutup Grablox kemudian akan ada perintah untuk menyimpan hasil inversi dengan format yang sama (*.inp). Simpan model yang sudah jadi dengan nama berbeda dari model awal.
- 9. Model yang sudah disimpan kemudian dibuka pada perangkat lunak Bloxer untuk menampilkan hasil sayatan penampang 2D dan juga model 3D-nya.

BIOGRAFI PENULIS

Penulis bernama Raditya Yudah Permana lahir di Surabaya, 15 Juli 1998. Penulis merupakan anak kedua dari tiga bersaudara. Pendidikan formal penulis dimulai di SD Muhammadiyah 15, Surabaya (2004-2010), SMP-IT Al Uswah, Surabaya (2010-2013), SMAN 6 Surabaya (2013-2016) lalu penulis menempuh perkuliahan di Teknik Geofisika ITS pada 2016. Selama menjadi mahasiswa Teknik Geofisika ITS, penulis aktif dalam organisasi dan mendapatkan beberapa pengalaman. Penulis aktif di organisasi antara lain: Jama'ah Masjid Manarul Ilmi ITS (JMMI) ITS sebagai staff Badan Pelayanan Umat (2017-2018) dan Kepala Divisi

Mentor Al-Ardh (2017-2018). Penulis juga memiliki beberapa pengalaman dalam kepanitian antara lain: sebagai pemateri di Geotrain 2016 yang diadakan oleh Departemen Teknik Geofisika ITS dan staff Sie staff Sie Akomodasi di GEOSPHERE 2019 yang diadakan oleh HMTG ITS. Selain itu penulis juga mempunyai riwayat pelatihan antara lain: LKMM tingkat Pra-TD yang diselenggarakan oleh BEM FTSP ITS (2016); LMM Tingkat Dasar yang diselenggarakan HMTG ITS; dan LKMW yang diselenggarakan oleh BEM ITS (2016). Pada bidang akademik, penulis juga memliki pengalaman pelatihan antara lain: Field Trip Wringinanom (2017) yang diselenggarakan oleh Departemen Teknik Geofisika ITS; Kuliah Lapangan Geologi, Karang Sambung (2018); dan Kuliah Lapangan Terpadu Gondang, Bojonegoro (2019) yang diselenggarakan oleh Departemen Teknik Geofisika ITS. Selain itu penulis juga mendapatkan pengalaman menjadi Asisten praktikum fisika dasar pada tahun ajaran 2018/2019. Pada tahun 2019, penulis juga sempat mengikuti kegiatan akuisisi data mpenelitian dosen. Apabila pembaca ingin berdiskusi lebih lanjut terkait Tugas Akhir dapat menghubungi penulis melalui alamat e-mail yradiit@gmail.com