Pemodelan Persentase Anak Putus Sekolah Di Jawa Timur Menggunakan Regresi Nonparametrik Spline Truncated

Bidari, Delila Ramadanti (2020) Pemodelan Persentase Anak Putus Sekolah Di Jawa Timur Menggunakan Regresi Nonparametrik Spline Truncated. Other thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 06211640000103-Undergraduate_Thesis.pdf]
Preview
Text
06211640000103-Undergraduate_Thesis.pdf

Download (1MB) | Preview

Abstract

Dunia pendidikan Indonesia telah memberlakukan wajib belajar 12 tahun, sebagai upaya pemerintah dalam meningkatkan kesejahteraan dan kemajuan bangsa melalui bidang pendidikan, namun permasalahan di dunia pendidikan masih sering ditemui salah satunya adalah anak putus sekolah. Seorang anak dikatakan putus sekolah apabila anak tersebut tidak mampu menyelesaikan suatu jenjang pendidikan, sehingga tidak dapat melanjutkan study ke jenjang berikutnya. Meski peningkatan pendidikan sudah dilakukan oleh pemerintah namun permasalah putus sekolah masih banyak terjadi di Indonesia khususnya di Provinsi Jawa Timur. Penyebab permasalahan putus sekolah dipengaruhi beberapa faktor, untuk mengetahui faktor yang mempengaruhi dilakukan penelitian menggunakan Regresi Nonparametrik Spline Truncated. Karena pola hubungan yang ditunjukan antar anak putus sekolah dengan faktor-faktor yang diduga mempengaruhinya tidak mengikuti pola tertentu. Berdasarkan nilai GCV yang paling minimum, model terbaik adalah menggunakan kombinasi titik knot (2,3,3,2,1). Hasil pengujian signifikansi parameter menunjukkan bahwa seluruh variabel yang digunakan dalam penelitian berpengaruh signifikan terhadap persentase anak putus sekolah di Jawa Timur. Variabel yang digunakan adalah persentase penduduk miskin, besaran upah minimum rata-rata, angka melek huruf, rasio guru terhadap murid, dan rata-rata jumlah anggota keluarga. Hasil pengujian asumsi residual menunjukkan semua asumsi terpenuhi dengan nilai koefisien determinasi dari model ini sama dengan 77,67%.
=========================================================
Indonesia's education has imposed 12 years of compulsory study, as the government's effort to improve the welfare and progress through education. However, the problem in the world of education is still often encountered one of them is the school dropouts. A child is asserted to be dropped out if the child is unable to complete a level of education, so they cannot proceed with the study to the next level. Although the increase of education has been done by the government, but the problem of dropouts is still happening in Indonesia, especially in East Java province. The cause of the school dropout problem is influenced by several factors, to determine the factors influencing, the research carried out using nonparametric regression Spline Truncated. Because the pattern of the relationship shown between the children dropouts with the alleged factors influencing it does not follow a particular pattern. Based on the minimum GCV value, the best model is to use a combination of knots (2, 3, 3, 2.1). The results of the testing significance of the parameters show that all the variables used in the study significantly affect the percentage of school dropouts in East Java. The variables used are the percentage of poor people, the average minimum wage, the literacy rate, the ratio of teachers to learners, and the average number of family members. The test result of the residual assumption shows all the assumptions fulfilled with the coefficient of determination value of this model equal to 77.67%.

Item Type: Thesis (Other)
Additional Information: RSSt 519.536 Bid p-1 • Bidari, Delila Ramadanti
Uncontrolled Keywords: GCV, East Java, Knot points, Nonparametric Regression, School Cropouts, Spline Truncated, GCV, Jawa Timur, Titik Knot, Regresi Nonparametrik, Spline Truncated
Subjects: H Social Sciences > HA Statistics > HA31.3 Regression. Correlation
L Education > L Education (General)
Q Science > QA Mathematics > QA278.2 Regression Analysis. Logistic regression
Q Science > QA Mathematics > QA278.3 Structural equation modeling.
Divisions: Faculty of Science and Data Analytics (SCIENTICS) > Statistics > 49201-(S1) Undergraduate Thesis
Depositing User: Delila Ramadanti Bidari
Date Deposited: 26 Aug 2020 09:23
Last Modified: 24 May 2023 15:05
URI: http://repository.its.ac.id/id/eprint/81178

Actions (login required)

View Item View Item