Chheang, Samnang (2020) Modeling and Simulation of Series Active Variable Geometry Suspension on a Quarter-car Model. Masters thesis, InstitutTeknologi Sepuluh Nopember.
Preview |
Text
02111850087001-Master_Thesis.pdf Download (13MB) | Preview |
Abstract
Dalam laporan tesis ini, sistem suspensi alternatif kendaraan yang disebut Series Active Variable Geometry Suspension (SAVGS) dipelajari. SAVGS telah memperkenalkan konsep lain serta diusulkan untuk meningkatkan kinerja suspensi. Ini telah mempertahankan beberapa keunggulan sistem pasif dan berkontribusi untuk menghindari dampak dari solusi aktif lainnya, yang memiliki kekompakan yang lebih rendah dan konsumsi daya yang lebih tinggi. Tautan tunggal ekstra dipasang ke suspensi pasif. Tautan ini disambungkan antara sasis dan ujung atas suspensi alih-alih langsung bergabung dengan sasis. Ini secara aktif dikontrol pada rotasi yang berhubungan dengan sumbu longitudinal dengan mekanisme bertenaga dari aktuator elektromekanis untuk mengatur gaya penyangga suspensi sehingga tidak ada massa unsprung tambahan dan sedikit peningkatan massa sprung. Analisis lengkap keterkaitan kinematik dari susunan wishbone ganda dan keterkaitan SAVGS dapat digunakan sebagai tolok ukur untuk merancang sistem suspensi. Selain itu, kinerja dinamika sistem telah dibandingkan antara dua geometri tautan yang bervariasi untuk SAVGS dan geometri suspensi pasif, serta antara dua kasus rentang rotasi tautan tunggal.
Model linear ekuivalen mobil seperempat berdasarkan prinsip konservasi energi diadopsi untuk mensintesis skema kontrol Linear Quadratic Regulator (LQR). Pengontrol yang disintesis digabungkan dengan batasan bandwidth aktuator dan pengontrol motor DC. Kontroler diimplementasikan ke model linear ekuivalen mobil seperempat wishbone ganda, dan setelah itu diimplementasikan ke model prototipe virtual mobil kuartal tulang keinginan ganda. Model mobil seperempat wishbone ganda telah dibuat secara eksperimental di "Simscape Multibody" di bawah gangguan jalan yang ditimbulkan oleh cam eksentrik yang berputar.
Dalam kasus pasif, akar-rata-rata-kuadrat (rms) dari percepatan massa sprung vertikal telah dibandingkan dengan model non-linier, kesalahan absolut masing-masing sekitar 0,39% dan 0,26% untuk konfigurasi tautan 1 dan konfigurasi 2. Variasi geometri linkage mempengaruhi perusahaan-perusahaan tersebut menjadi lebih buruk atau lebih baik dibandingkan dengan geometri referensi tergantung pada jenis gangguan jalan. Pada representasi profil jalan raya, rms pada konfigurasi 2 lebih kecil 5,24% dari pada konfigurasi 1. Sebaliknya, representasi road smooth bump, nilai tersebut pada konfigurasi 2 lebih besar 1,21% dan 1,34% dibandingkan konfigurasi 1 untuk model linier dan non-linier. Selain itu, casing aktif dengan SAVGS, peningkatan kenyamanan berkendara yang terkait dengan casing pasif yang sesuai telah menggambarkan bahwa kualitas dalam konfigurasi linkage 2 ini sedikit lebih baik daripada konfigurasi 1. Secara fisik, ketinggian hub roda tengah dalam konfigurasi 2 memungkinkan untuk disetel lebih tinggi dari konfigurasi 1 di bawah posisi tautan tunggal yang diperintahkan yang sama yang berarti pengontrol dapat menangani besaran gangguan jalan yang lebih tinggi. Namun, rotasi tautan tunggal di antara dua casing menghasilkan sedikit perbedaan dalam peningkatan kenyamanan berkendara untuk model non-linier. Peningkatan kualitas pada jalan bump adalah 6,30% dan 7,01% untuk konfigurasi linkage 1 dan konfigurasi 2. Menariknya, kualitas penahan jalan juga telah ditingkatkan seiring dengan model linear ekuivalen dan non-linear.
====================================================================================================================
In this thesis report, an alternative suspension system of a vehicle called Series Active Variable Geometry Suspension (SAVGS) is studied. The SAVGS has been introduced another concept as well as proposed to enhance suspension performance. It has maintained some advantages of passive systems and contributed to avoid the impacts of other active solutions, of which it has lower compactness and higher power consumption. An extra single-link is retrofitted to the passive suspension. This link is jointed between the chassis and the upper-end of suspension instead of directly joining the chassis. It is actively controlled on the rotation respected to the longitudinal axle by a powered mechanism of the electromechanical actuator to regulate the force of suspension strut so that there is no added unsprung mass and little increase sprung mass. The full analysis of kinematic linkage of double wishbone arrangement and linkage of SAVGS can be served as a benchmark for designing the suspension system. Additionally, the performance of system dynamics has been compared between two varied linkage geometries for SAVGS and those of passive suspensions, as well as between two cases of single-link rotation ranges.
A linear equivalent model of the quarter car based on energy conservation principles is adopted to synthesize the Linear Quadratic Regulator (LQR) control scheme. The synthesized controller incorporated with actuator bandwidth limitation and controlling DC motor. The controller is implemented to a linear equivalent model of double wishbone quarter car, and after that implemented to the virtual prototype model of double-wishbone quarter car. The double-wishbone quarter-car model has been virtually experimental made in “Simscape Multibody” under road disturbance excited by the rotating eccentric cam.
In passive case, the root-mean-square (rms) of vertical sprung mass acceleration has been compared respect to non-linear models, the absolute errors are approximately 0.39% and 0.26% for linkage configuration 1 and configuration 2, respectively. The linkage geometry variation has affected on the aforementioned rms in which it becomes worse or better compared to the reference geometry depending on the road disturbance types. In highway road profile representation, the aforementioned rms in configuration 2 is smaller 5.24% than configuration 1’s. Conversely, road smooth bump representation, that value in configuration 2 is greater 1.21% and 1.34% than configuration 1’s for the linear and non-linear models, respectively. Furthermore, active case with SAVGS, the ride comfort improvement respected to corresponding passive case has illustrated that this quality in linkage configuration 2 is somehow slightly better than configuration 1’s. Physically, the center wheel-hub height in configuration 2 enabling to be adjusted higher than configuration 1’s under the same commanded single-link positions which means the controller can handle higher road disturbance magnitude. However, the single-link rotation among two cases result less differences in ride comfort improvement for non-linear models. The aforementioned quality improvement under bump road is 6.30% and 7.01% for linkage configuration 1 and configuration 2. Interestingly, the road holding quality also has been improved along with the linear equivalent and non-linear models.
Item Type: | Thesis (Masters) |
---|---|
Uncontrolled Keywords: | Quarter car model, active variable geometry (AVG), linear quadratic regulator (LQR) control, suspension performances, double wishbone ==================================================================================================================== Model seperempat kendaraan, aktif geometri variable (AGV), linear quadratic regulator (LQR) control, kinerja suspensi, Pengaturan double wishbone |
Subjects: | T Technology > TJ Mechanical engineering and machinery > TJ213 Automatic control. T Technology > TL Motor vehicles. Aeronautics. Astronautics > TL521.3 Automatic Control |
Divisions: | Faculty of Industrial Technology and Systems Engineering (INDSYS) > Mechanical Engineering > 21101-(S2) Master Thesis |
Depositing User: | Samnang Chheang |
Date Deposited: | 28 Aug 2020 01:40 |
Last Modified: | 03 Jan 2024 07:05 |
URI: | http://repository.its.ac.id/id/eprint/81387 |
Actions (login required)
View Item |