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 Advisor  :  Dr. Eng Unggul Wasiwitono, ST., M.Eng.Sc. 

 

ABSTRACT 

 

Two-wheeled vehicles have many advantages over other concepts such as 

smaller size, more efficient, and more maneuverable. These advantages came at the 

lack of stability and safety. To improve the stability and safety of a two-wheeled 

vehicle, the Control Moment Gyroscopic Stabilization is considered. The control 

problem of stabilizing an inherently unstable body such as the inverted pendulum 

is a classical control theory problem. The idea of using the gyroscope effect for 

stabilizing is part of a much broader effort to implement with the inverted 

pendulum. This phenomenon is known as gyroscopic precession. As the vehicle 

leans from its upright position, we expect to generate sufficient gyroscopic reaction 

moment to bring the vehicle back and stabilize it. 

The research aims to develop and validate the system of gyroscopic 

stabilization to be implemented into a two-wheeled vehicle. The mathematical 

model by using the Lagrange equation is derived to descript the dynamic model of 

the system. We linearize the dynamics around an equilibrium, and then study the 

stability of the model. The feedback controller is applied to keep the system at 

upright position. In this study, we designed the cascade PID and the LQR controller. 

The proposed control technique is developed to reduce the roll effect the system. 

To validate the concept, a nonlinear modeling is developed using Simcape 

Multibody. 

The control strategy is proposed to stabilize the two-wheeled vehicle at the 

upright position. The performance comparison between the cascade PID and 

modern control Linear Quadratic Regulator (LQR) schemes for a two-wheeled 

vehicle is investigated. In the comparison of cascade PID controller, the response 
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in case 6 takes fastest time to bring the vehicle to balancing position in 0.75s. 

However, the cascade PID controller cannot bring the shaft motor close to zero 

position after stabilizing the vehicle then the gyro would not be efficient of 

producing its maximum precession torque for the next disturbance introduced into 

the system which could possibly not be enough to stabilize the vehicle. The LQR 

produced a better response compared to cascade PID control strategies. The 

weighting in case 2 has good performance with fast response. Nonlinear simulation 

showed that each weighting can bring shaft motor close to zero position with range 

less than ±5 degree. To determine the ability of disturbance rejection, the 

simulation of the LQR controller succeeds to deal with the disturbances and it 

ensures stabilized in its upright position. 

Keywords: Control moment gyroscope (CMG), Feedback control, Gyroscopic 

Stabilization, Unstable System 
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ABSTRAK 

 

Kendaraan roda dua memiliki banyak keunggulan dibandingkan dengan 

konsep lain seperti ukurannya yang lebih kecil, lebih efisien, dan lebih bermanuver. 

Keuntungan ini datang dari kurangnya stabilitas dan keamanan. Untuk 

meningkatkan stabilitas dan keselamatan kendaraan roda dua, Stabilisasi Giroskop 

Momen Kontrol dipertimbangkan. Masalah kontrol menstabilkan benda yang 

secara inheren tidak stabil seperti pendulum terbalik adalah masalah teori kontrol 

klasik. Gagasan menggunakan efek giroskop untuk menstabilkan merupakan 

bagian dari upaya yang lebih luas untuk diterapkan dengan pendulum terbalik. 

Fenomena ini dikenal sebagai presesi giroskopik. Saat kendaraan bersandar dari 

posisi tegaknya, kami berharap dapat menghasilkan momen reaksi giroskopik yang 

cukup untuk mengembalikan kendaraan dan menstabilkannya. 

Penelitian ini bertujuan untuk mengembangkan dan memvalidasi sistem 

stabilisasi giroskopik untuk diimplementasikan pada kendaraan roda dua. Model 

matematika dengan menggunakan persamaan Lagrange diturunkan untuk 

mendeskripsikan model dinamik sistem. Kami meluruskan dinamika di sekitar 

ekuilibrium, dan kemudian mempelajari stabilitas model. Pengontrol umpan balik 

diterapkan untuk menjaga sistem pada posisi tegak. Dalam studi ini, dirancang 

cascade PID dan pengontrol LQR. Teknik kontrol yang diusulkan dikembangkan 

untuk mengurangi efek roll sistem. Untuk memvalidasi konsep tersebut, 

dikembangkan pemodelan nonlinier menggunakan Simcape Multibody. 

Strategi pengendalian diusulkan untuk menstabilkan kendaraan roda dua 

pada posisi tegak. Perbandingan kinerja antara cascade PID dan skema kontrol 

modern Linear Quadratic Regulator (LQR) untuk kendaraan roda dua diselidiki. 
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Dalam perbandingan kontroler PID bertingkat, respon pada kasus 6 membutuhkan 

waktu tercepat untuk membawa kendaraan ke posisi balancing dalam 0,75 detik. 

Namun, kontroler PID bertingkat tidak dapat membawa motor poros mendekati 

posisi nol setelah menstabilkan kendaraan, maka giro tidak akan efisien dalam 

menghasilkan torsi presesi maksimumnya untuk gangguan berikutnya yang 

dimasukkan ke dalam sistem yang mungkin tidak cukup untuk menstabilkan 

kendaraan. . LQR menghasilkan respons yang lebih baik dibandingkan dengan 

strategi kontrol PID berjenjang. Pembobotan pada case 2 memiliki kinerja yang 

baik dengan respon yang cepat. Simulasi nonlinier menunjukkan bahwa setiap 

pembobotan dapat membawa motor poros mendekati posisi nol dengan jarak 

kurang dari ± 5 derajat. Untuk mengetahui kemampuan penolakan gangguan, 

simulasi pengontrol LQR berhasil mengatasi gangguan dan memastikan stabil pada 

posisi tegak. 

Kata kunci: Giroskop momen kontrol (CMG), Kontrol umpan balik, Stabilisasi 

Giroskopis, Sistem Tidak Stabil 
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CHAPTER 1 

INTRODUCTION 

1.1. Background 

The gyroscopic has been played an important role in many applications over 

a wide range of technical fields. Gyroscope is a device used for measuring or 

maintaining orientation and angular velocity. It is a spinning wheel in the spin axis. 

The idea using gyroscope movement is significant for applications in different 

fields of physics (e.g. Larmor precession in atomism) and astronomy (lunisolar 

precession of Earth), in technology (e.g. gyroscopic effect in transportation), in 

military (stabilization of missiles and bullets) and also in sport (flight disk), in 

energetics (kinetic energy accumulation by turbines, mechanical batteries). In [1], 

the implementation of gyroscopes can be divided into several groups: stabilizers, 

energy storage, gyrocompass, attitude and heading indicator, Pendulous Integrating 

Gyroscopic Accelerometer (PIGA), gyrostat, Control moment gyroscope (CMG), 

and MEMS Gyroscope. As mention above, they were known as two applications: 

passive (sensor) and actuator stabilization of the unstable dynamic system. Sensor 

applications such as navigation systems and passive stabilization systems used in 

ships while the gyroscope can also be used as an actuator by utilizing the precession 

phenomenon. 

The control moment gyro (CMG) is one of the angular momentum exchange 

devices which is the application of this research that can produce large output torque 

on the body. It consists of the motor-driven rotor and gimbal. The spin axis of the 

flywheel can vary about a perpendicular axis to its spin axis (the gimbal axis). 

Complex dynamic derivations are used to find a relationship between the torque 

input to the gimbal axis and a desired output torque on the body. The rate of change 

of angular momentum between the CMG and the body is dependent on the gimbal 

velocity. 
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Figure 1.1 The Shilovsky’s Gyrocar 

 

Figure 1.2 Brennan`s Monorail 

CMG stabilization has been implemented since the 20th century, but the 

achievement was very restricted because of the high cost of motors, limited electric 

motor technology and lacking sensor feedback at the time. Perhaps the first notable 

implementation of gyroscopic stabilization is attached with two particular names; 

Louis Brennan [2] and Pyotr Shilovsky [3][4],[5], who build large-scale prototypes. 

The most famous vehicles are the Schilovsky Gyro car (Figure 1.1) in 1912 from 

Russia and Brennan`s Monorail (Figure 1.2) in 1962 from the USA. 
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1.2. Research problem 

Based on the above background, several problems can be formulated as 

follows: 

• What is the relationship between the CMG dimension with the 

precession torque? 

• How is the performance of feedback control for CMG? 

• How to balance a two-wheeled vehicle using the phenomena of 

gyroscope? 

1.3. Research objectives 

The purposes of this research are formulated as the following: 

• Using Lagrange equation to describe dynamic model of the 

gyroscopic two-wheeled vehicle 

• Design full state-feedback control to observe the performance of the 

gimbal stabilize the vehicle 

• Compare the performance of PID and LQR controller 

1.4. Scope of research 

The scope of this research is descript as following: 

• Two active flywheels validated stabilizing only at the roll angle of 

the vehicle 

• The balancing vehicle used is the gyroscopic control moment 

• The designed controller of the gyroscope stabilization using the PID 

and LQR controller 

• Both flywheel spin at the same constant velocity 

• Modeling of the controller using Matlab/SIMULINK 
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CHAPTER 2 

LITERATURE REVIEW 

This section provides previous research and basic theory about the current 

technology available to construct gyroscope inverted pendulum. It also highlights 

various methods used that similar with this topic. 

2.1 Previous Research 

The two-wheeled Self-balancing vehicle, the idea based on the inverted pendulum 

model, has been being an essential and interesting project in the fields of robotics 

and control engineering. Over the last decade, the design and implementation of the 

self-balancing vehicle have been done and more work has already been done due to 

its natural unstable and nonlinearity dynamic system. In theory, there are several 

ways to stabilize a two-wheeled vehicle; but three methods have been proved to 

date. The most common method of stabilization is dynamic stabilization where the 

bicycle is actively steered to induce leans that oppose the bicycle’s instabilities 

while moving forward at constant velocity [6]–[8]. The second method is moving 

the center of mass [9], [10]. Another one is using the gyroscope effect based on 

Control Moment Gyroscopic (CMG) stabilization (see in ref. [11]–[13]), which is 

the area of this research. In [13], the advantage of such a system is that it is 

efficiently producing a large amount of torque and has no ground reaction forces, 

while the disadvantage is that such system consumes more energy and is heavier. 

Today much progress has been made in electric motor technology as compared to 

a near-century ago. Currently, a recent start-up company based out of San-

Francisco, CA, called Lit Motors, is using a set of 2 counter-rotating single-axis 

gimbal gyro’s to stabilize and autonomously balance an enclosed motorcycle [14]. 

This completed electric vehicle is shown in Figure 2.1, has proven through 

prototype success the capability to stabilize and self-balance a vehicle that can 

transport up to two people. 
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Figure 2.1 Lit Motor’s self-balancing prototype 

In applications of stabilizing the single-track vehicle using gyroscopes, 

Stephen and Anouck [12] derive the mathematic model using Lagrangian 

mechanics both single gyro and double gyro system. For the double gyro system, 

each of the two gyros and cages will have mass properties that are half those of the 

corresponding single gyro components. For simplicity, they assume that the center 

mass of the gyros and cages are collocated, each gyro spin opposite direction and 

the precession axes are the same. And then they linearize the dynamics about a set 

of equilibrium points and develop a linearized model. The full nonlinear dynamics 

were simulated, along with the linear feedback controller designed using Matlab. 

The stability conditions are dependent on turn rate and direction for the single gyro 

case, but not for the double gyro case. The full nonlinear dynamics were simulated, 

along with the linear feedback controller. The initial conditions for the vehicle’s 

roll angle 𝜙 and gimbal’s angle 𝛼 are 𝜙 = 10 𝑑𝑒𝑔 and 𝛼 = 25 𝑑𝑒𝑔. Two of 

controller gain are chosen to meet the stability condition. In Figure 2.2 shown the 

behavior of the gyro and cart angles for the different turn rates. With the same two 

values of turn rate, the double gyroscope system is stable for both cases. For the 

experiment a small-scaled model, the stability conditions are dependent on turn rate 

and direction for the single gyro case, but not for the double gyro case. This is also 

verified by simulation. 
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Figure 2.2 The Simulation: (a) Single Gyroscope (b) Double Gyroscope 

In ref. [11], Chu and Chen proposed the design of an active stabilizing system 

(ASAS) for a single-track vehicle. The mathematical model for the inverted 

pendulum is derived using Lagrange’s equation and then is verified by comparing 

the closed loop response with a model which is constructed using the commercial 

software ADAMS. To control the flywheel’s gimbals for generating stabilizing 

torque, a model predictive control algorithm is used to synthesize the controllers. 

The prediction model for MPC is obtained by linearizing the nonlinear inverted 

pendulum. They evaluated the performance the control strategies of MPC in three 

cases. There are straight running and disturbance rejection, circular motion, and 

path following. The operating point of the system is the upright position and the 

gimbal angles are zero. In Figure 2.3, the design of the gyroscopic inverted 

pendulum contains two spinning flywheels attached to gimbal frames, four electric 

motors, and bevel gears. Both flywheels are rotating at a constant speed of 4000 

rpm in the opposite direction. The results for the real-time implementation in this 

study demonstrate the feasibility of embedding the proposed controllers in common 

hardware. 

(a) (b)
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Figure 2.3 physical model of gyroscopic inverted pendulum 

Hsieh, Ming-Hung, et al [15] designed a riderless bicycle with a gyroscopic 

balancer by using fuzzy sliding mode control (FSMC). In order to perform a 

simulation, they derived the bicycle dynamics model with the gyroscopic balancer 

according to the bicycle system. The bicycle system is considered as an inverted 

pendulum system with two independent masses (the mass center of the bicycle and 

the mass center of the gyroscopic balancer). To verify the control stability of the 

bicycle with the gyroscopic balancer controlled by FSMC, they conducted the 

simulation run in Matlab environment. In Figure 2.4 shown the balancing the 

unmoving bicycle hit by impact disturbances. The maximum lean angles of the 

bicycle disturbed by Gaussian noise and impact disturbances are approximately 4.0o 

and 5.8o, respectively, and the bicycle can still be balanced. The control voltage 

increases rapidly at 10th and 15th seconds to prevent the bicycle from falling down 

under impact disturbances. For the experiment, the unmoving vehicle can be still 

stabilized even interfered by disturbances. 
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Figure 2.4 Unmoving bicycle with the balancer under disturbances 

2.2 Basic Theory 

2.2.1 Control Moment Gyroscope (CMG) 

Control moment gyroscope (CMG) was known as a gyroscopic stabilizer is 

a good choice as the short time response and the system can be stable even when 

the single-track vehicles are stationary. CMG consists of a spinning rotor with large 

constant angular momentum although angular momentum vector direction would 

change with respect to single-track vehicles by rotating the spinning rotor. The 

spinning rotor is attached on a gimbal, and applying torque to the gimbal results in 

a precessional, gyroscopic reaction torque orthogonal to both the rotor spin and 

gimbal axes. The CMG is a torque amplification device because small gimbal 

torque input produces large control torque on the bicycle. 

According to Newton’s 1st law of motion, an object in motion will stay in 

motion unless acted on by an external force. This statement holds true for rotating 

objects as well. Therefore, a spinning flywheel (constant spin rate) with no applied 

(a) Lean angle θ of the bicycle and disturbance.

(b) Rotation angle ϕ and angular velocity of the flywheel

(c) Control input voltage Uf of the flywheel rotation motor
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external forces or torques will continue to spin about its spin axis, in its current 

orientation, with no other rotational or translational motion relative to a stationary 

frame of reference. However, a spinning flywheel with a total of external forces or 

torques (about an axis other than its spin axis) not equal to zero exhibits an 

interesting phenomenon called precession [16]. To observe the precession effect 

caused by a rate of change of angular momentum, the flywheel must rotate about 

an axis perpendicular to its spin axis. 

 

Figure 2.5 Gyrospoce Phenomena 

In order to utilize this phenomenon for stabilization, the flywheel precession 

axis is supported to the frame such that the precession torque is transferred to the 

vehicle. In Figure 2.5, when there is an instability about the spin axis the spinning 

flywheel is turned or gimbaled. This results in a torque perpendicular to the gimbal 

and spin axis which can move the system back into a stable position. 

In Figure 2.5, the flywheel or rotor is spinning around the z-axis with a 

spinning velocity  . According to Newton’s second law, the angular momentum 

created by the spinning gyroscope is given by: 

 T I=  (2.2.1) 

Where I  is the moment of inertia of the gyroscopic flywheel around the z-

axis. I is derived as 

 21

2
I mR=  (2.2.2) 

Where m is mass of the flywheel, and R is its radius. From Newton’s third 

law we know that every action has its reaction. From Figure 2.5, gimbal rotates 
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around y-axis or precession angle at an angular velocity   with specific torque, 

and therefore the gyroscope tries to resist the applied torque. As a result, it produces 

gyro torque along x-axis that can represent as 

 T =   (2.2.3) 

The stable torque produced by the control moment gyroscope can be 

expressed by (2.2.4) When the gimbal rotates 90o
, there is no stable torque respect 

to the roll-axis. To efficiently stabilize roll-axis gimbal should have action within 

some small precession boundaries. 

 21
cos

2
stable

d
mR

dt


  =  (2.2.4) 

2.2.2 Lagrange Equation 

Lagrangian equation, well-known equation to deal with mechanical 

problems in physics, used to analyze equations of motion based on energy. 

Lagrangian mechanics related to the dynamics of behavior, when Newton's 

formulation of classical mechanics was not much difficult. Lagrange's equations are 

also used in optimization problems of dynamic systems. In mechanics, Lagrange's 

equations of the second kind are used much more than the first kind. The Lagrange 

equation combines the kinetic energy denoted by (T) and the potential energy 

denoted by (V). The relationship between both energies can be written in equation 

(2.2.5). 

 L T V= −  (2.2.5) 

2.2.3 State Space 

When systems become more complex, differential equations or transfer 

functions become inconvenient. It became true if the system has multiple inputs and 

outputs. In control engineering, a state-space is a mathematical model of a physical 

system as a set of input, output and state variables related difference equations. The 

state-space model of a system replaces an nth order differential equation with a 

single first-order matrix differential equation. The state-space of a system is given 

by two equations: 
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 x Ax Bu

y Cx Du

= +

= +
 (2.2.6) 

Where x  is derivative of the state vector, x  is the state vector, u is the input 

or control vector, A is state matrix contains the constant elements, B is input matrix 

contain constant element, C is output matrix, and D is the direct transition matrix, 

y is the output. The block diagram of the state space model is shown in Figure 2.6 

in the form of blocks. 

 

Figure 2.6 Block diagram of State Space 

2.2.4 System Characteristics 

In this section divided into three main parts. The first part contains important 

definitions of stability and necessary and sufficient conditions for stability. In the 

second part controllability of dynamical control system is described and, using the 

controllability matrix, necessary and sufficient conditions for controllability are 

presented. The third part is offered to a study of observability. In this part necessary 

and sufficient observability conditions are formulated using the observability 

matrix. Stability, controllability, and observability play an essential role in the 

development of modern mathematical control theory. There are notable 

associations between stability, controllability, and observability of linear control 

systems. 
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2.2.4.1 Controllability 

For linear systems, there is a simple controllability criterion known as 

Kalman’s controllability rank condition [17]. A linear system is a system defined 

by 

 ( , )

,u Un m

x X x u Ax Bu

x

= = +


  
 (2.2.7) 

where A and B are respectively n n  and n m  matrices. The model is 

controllability when the control set is 
mU = (there are no restrictions on the size 

of controls.). According to equation (2.2.7) is controllable, reachable from any point 

0

nx  , reachable accessible from the origin 0 0x = . The reachable set from the 

origin (0)A  is a linear subspace of n . It is the image of the linear map: 

 m n n+ →   

 
1

2 1 1

1 1
(u ,..., u ) (B,AB,A B,...,A B)

nn i

n ii

n

u

A Bu

u

− −

=

 
 

= 
 
 

    

The n m block matrix ( ) ( )2 1, , , , , nR A B B AB A B A B−=  whose columns 

are the columns of 
2 1, , , , nB AB A B A B−

  is called the Kalman controllability 

matrix. The controllability of the linear system (2.2.7) is related to the rank of this 

matrix as follows 

 ( ) ( )2 1, , , , , nR A B B AB A B A B−=   

is of rank n (the dimension of the state space). 

2.2.4.2 Stability 

In [18], it is well known that the controllability concept for dynamical 

system (2.2.6) is strongly related to its stability by the linear static state feedback of 

the following form 

 ( ) ( ) ( )u t Kx t v t= +   

where ( ) mv t R  is a new control, K is m n  dimensional constant state feedback 

matrix. 
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Introducing the linear static state feedback given by equality, we directly obtain the 

linear differential state equation for the feedback linear dynamical system of the 

following form 

 '( ) ( ) ( ) ( )x t A BK x t Bv t= + +   

which is characterized by the pair of constant matrices ( , )A BK B+ . The dynamical 

system (2.2.6) is said to be stabilizable if there exists a constant static state feedback 

matrix K such that the spectrum of the matrix (A+BK) entirely lies in the left-hand 

side of the complex plane. 

2.2.4.3 Observability 

In [17],the observability properties of linear systems are defined as 

 ( ) ( ) ( ),

( ) ( ),

( ) , ( ) , ( ) ,

, , , dim

n m q

x t Ax t Bu t

y t Cx t

x t u t U y t

A B and C are respectively n n n p and m n ention

= +


=


   
   

 (2.2.8) 

We remark that this condition is independent of the input. So the linear 

system (2.2.8) is uniformly input observable if and only if it is observable if and 

only if the matrix: 

 

2

( , )

1

C A

n

C

CA

O CA

CA −

 
 
 
 =
 
 
 
 

  

is of rank n. In this case we say that the system (2.2.8), or the pair (C, A), satisfies 

the Kalman rank condition for observability. 

 

2.2.5 Feedback Control System 

There are two main types of feedback control systems: negative feedback 

and positive feedback. In a positive feedback control system, the setpoint and output 

values are added. In a negative feedback control the setpoint and output values are 

subtracted. Negative feedback systems are more stable than positive feedback 

systems. Negative feedback also makes systems more immune to random variations 

in component values and inputs. 
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2.2.5.1 PID Controller 

The Proportional Integral Derivative (PID) control function shown 

in.(2.2.9) is the most popular choice in industry. 

 
P I D

de
u K e K edt K

dt

 
= + +  

 
  (2.2.9) 

where u  is the input signal to the plant model, the error signal e  defined 

as ( ) ( ) ( )e t r t y t= − , ( )r t  is the reference input signal, and there are three separate 

gain constants for the three terms. The result is a control variable value. PID block 

diagram is shown in Figure 2.7. 

 

Figure 2.7. Block diagram of PID controller 

2.2.5.2 LQR Controller 

The Linear Quadratic Regulator (LQR) is a well-known method that 

provides optimally controlled feedback gains to enable the closed-loop stable and 

high-performance design of systems. The principle of using this LQR method is to 

obtain an optimal control signal from the state feedback. For the derivation of the 

linear quadratic regulator consider a linear system state-space representation in 

equation (2.2.6). The feedback gain is a matrix K obtained by solving the Riccati 

equation as shown in (2.2.10). Solving the Riccati equation is done in software 

because it is quite complicated if solved manually. 

 1 0T TdP
A P PA Q PBR B P

dt

−= + + − =  (2.2.10) 
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Where A and B are obtained from state-space model. Q and R values are weighted 

whose value is tested using trial and error. The weight given to the ith element of 

the matrix Q is a measurement of the control effort to control the related state. The 

bigger element, the bigger control effort used for that state. In [19], the matrix R is 

a p p , real, symmetric, positive-definite matrix. The gain value K can be solved 

by the equation: 

 1( ) TK t R B P−=  (2.2.11) 

The performance index is used to minimizing both the control effort and the 

states can be given as: 

 

0

1
(x Qx u Ru)dt

2

T TJ



= +  (2.2.12) 

Block diagram of the optimal control system with state feedback values can be seen 

in Figure 2.8. 

 

Figure 2.8 Block Diagram of LQR controller 
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CHAPTER 3 

METHODOLOGY 

This chapter, the through process will describe in the flow chart. Then the 

concepts and the components of the gyroscopic two-wheeled vehicle will illustrate. 

Later, the vehicle’s equations of motion are derived based on Lagrangian 

mechanics. In addition, the linearized model together with the DC motors dynamics 

are merged into one unified state space model. 

3.1 Research flow chart 

The procedure of each part for this project are illustrated in Figure 3.1 

Flowchart of the processFigure 3.1. The concept of design PID and LQR controller 

showed in Figure 3.2 and Figure 3.3, respectively. 

 

Figure 3.1 Flowchart of the process 

Start

Study previous research

Derive equation of motion

Linearize the equation

Synthesis the controller 

(PID & LQR)

A

Test and check characteristic the 

response of both controllers

Conclusion

End

Yes

No

Build nonlinear model using 

Simmechanic (SIMULINK)

A

Compare the response of 

each controller
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Figure 3.2. The procedure of design PID controller 

Start

State space of the model

Design block diagram of PIDs 

for SIMO

Trial and error proportional action

Trial and error itegral action

A

A

Trial and error derivative action

Test and check the response
No

Compare and select good 

performance of PID gain

Start

Yes
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Figure 3.3. The procedure of design LQR controller 

3.2 Two-Wheeled Vehicle Models 

The design of the gyroscopic two-wheeled vehicle has been designed and 

produced as illustrated in Figure 3.4. The basic parts of this vehicle consist of the 

following: 

i. Base of the vehicle 

ii. Front and rear wheel 

iii. Two gyroscopes 

iv. Two brushless motors and two ESCs to spin the gyroscopic 

flywheels 

Start

State Space of the model

Check stability, 

controllability, and 

observability

Initialize Q and R

Compute Gain Klqr and check the 

response

No

A

A

Yes

Iteration element of Q and R to 

minimize the reaction of the 

system

Compare the responses to find 

optimize control

End
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v. A DC motors with encoder and motor driver to rotate the gyroscopes 

vi. Transmission system (Gears, belts, and pulley) 

vii. Microcontroller 

viii. Battery 

 

Figure 3.4 The basic parts of the system 

In order to require balancing torque to stabilize the vehicle, we could 

implement with single or double gyroscope. The reason why this project 

implemented with two gyroscopes instead of one was to have mass properties half 

of those corresponding to the single gyroscope case. By using smaller sized 

gyroscopes, the vehicle affected less the symmetry. 

3.3 Equation of Motion of Gyroscopic System 

There are two approaches to derive the equations of motion of a system: the 

Newtonian approach and the Lagrangian approach. The Newtonian approach 

considers each individual component of a system separately. Therefore, the 

calculation of interacting forces resulting from connections among these sub-parts 

is required. These connections lead to kinematic constraints. In most cases, these 

interacting forces can be eliminated by the equations of motion. In this study, the 

Euler-Lagrange approach is considered for modelling the whole system. The 

mathematical state-space mode will develop in order to significantly apply 

feedback controller. Based on the analytical model described in state space, 

feedback controller and control strategies will be designed in Matlab/Simulink to 

stabilize the system 
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Figure 3.5 is a modelling of a two-wheeled vehicle with a double gyroscope 

that will be derived from the formula with the Lagrange equation. 

 

Figure 3.5 Modeling a two-wheeled vehicle with a gyroscopic system 

The parameter is written as follows: 

1. b : the angular velocity of the body 

2. G : the angular velocity of the gimbal 

3. :
iF  the angular velocity of flywheel (i = 1 & 2) 

4. :bm  mass of body 

5. :Gm  mass of gimbal 

6. :
iFm  mass of flywheel (i = 1 & 2) 

7. :Bd  the height of the center of gravity of body 

8. :Gd  the height of the center of gravity of gimbal 

9. :
iFd  the height of center of gravity of flywheel (i = 1 & 2) 

10. :  the main body (pendulum) rotation angle 

11. :i  the angle of gimbal (i = 1 & 2) 
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The velocity that occurs in a two-wheeled vehicle with a gyroscope can be 

written as follows: 

 
B Bx =  (3.3.1) 

 ( cos ) ( sin )z
i i i iG i G i G i Gx y     = + +  (3.3.2) 

 ( cos ) x ( sin )z
i i i i iF i F i F i F Fy z      = + + +  (3.3.3) 

To obtain the system dynamics, an expression for the total kinetic energy 

and potential energy are required. The total kinetic energy is obtained as the 

following: 

 2 21 1
( d )

2 2 xxB B B BT m I = +  (3.3.4) 

 2 2 2 21 1
( d ) ( cos ) ( ) ( sin )

2 2i i i i i iG G G G x i G y i G zT m I I I      = + + +   (3.3.5) 

 2 2 2 21 1
( d ) ( cos ) ( ) ( sin )

2 2i i i i i iF F F F x i F y i F z i iT m I I I       = + + + +   (3.3.6) 

 
1 2 1 2B G G F FT T T T T T= + + + +  (3.3.7) 

where ,  ,  ,  ,  ,  ,   
x i i i i i iB G x G y G y F x F y F zI I I I I I and I  are the mass moment inertia for the 

main body, gimbal frame and flywheel (with i = 1, 2), respectively. The potential 

energy of each part of the inverted pendulum can be expressed as the following: 

 cosB B BV m gd =  (3.3.8) 

 cosG G GV m gd =  (3.3.9) 

 cos
i i iF F FV m gd =  (3.3.10) 

 
1 2 1 2B G G F FV V V V V V= + + + +  (3.3.11) 

where , and
i iB G Fd d d  are the height of each part measured from the pendulum’s 

pivot point to the center of gravity. The equation of motion by using the Lagrangian 

equation expressed as: 

L T V= −  
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(3.3.12) 

Apply Lagrange’s equations in the form 

i

i i

d L L
Q

dt q q

  
− = 

  
 

where the iq  and iQ  are the generalized coordinates and forces for the system, 

respectively. 

• 1 1& 0q Q= =  

 

1

1 1

d L L
Q

dt q q

  
− = 

  
 (3.3.13) 
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 (3.3.14) 

• 
12 1 2 2&q Q u u= = =  

 

2

2 2

d L L
Q

dt q q

  
− = 

  
 (3.3.15) 

 
1 1 1

1 1

1 1 1

2

1 1 1 1

2 2

1 1 1 1

2

1 1 1 1

cos sin

cos sin cos sin

cos sin cos

F yy F yy F xx

F zz G xx

G zz F zz

I I I

I I

I I u

    

     

    

+ +

− +

− − =

  

• 
23 2 3 3&q Q u u= = =  

 

3

3 3

d L L
Q

dt q q

  
− = 

  
 (3.3.16) 

 
2 2 2

2 2

2 2 2

2

2 2 2 2

2 2

2 2 2 2

2

2 2 2 2

cos sin

cos sin cos sin

cos sin cos

F yy G yy F xx

F zz G xx

G zz F zz

I I I

I I

I I u

    

     

    

+ +

− +

− − =

  

• 4 1 4& 0q Q= =  

 

4

4 4

d L L
Q

dt q q

  
− = 

  
 (3.3.17) 

 
1 1 11 1 1 1sin cos 0F zz F zz F zzI I I    + + =   
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• 5 2 5& 0q Q= =  

 

5

5 5

d L L
Q

dt q q

  
− = 

  
 (3.3.18) 

 
2 2 22 2 2 2sin cos 0F zz F zz F zzI I I    + + =   

Linearization is done to simplify the equation that has been derived so that 

it is easy to control and observe the dynamic system of the two-wheeled vehicle 

gyroscopic system. The equations taken in 1 2 1 3 2, ,andq q q  = = =  are due to the 

performance of the vehicle and the two gimbal that will be observed, we obtain the 

equation of motion is as follow 

 
1 2 1 2 1 2

1 1 2

1 2 1

2 2

1 2

2 2 2

1 2 2 1 1 2 2

1 2 1 0

Bx F x F x G x G x F F F F

G G G G B B F z F z

F F G G G G B B

I I I I I m d m d

m d m d m d I I

m gd m gd m gd m gd

      

      

   

+ + + + + +

+ + + + +

− − − − =

 (3.3.19) 

Let  

1 2 1 2 1 1 2 2 1 1 2 2

2 2 2 2 2

p Bx F x F x G x G x F F F F G G G G B BM I I I I I m d m d m d m d m d= + + + + + + + + +  

1 1 2 2 1 1 2 2V F F F F G G G G B BM m gd m gd m gd m gd m gd= + + + +  

 
1 21 2

1 2

F z F zV

P P P

I IM

M M M

 
   = − −  (3.3.20) 

1 1 1 11 2 2F y G y F zI I I u  + − =  

 
1

1

1 1 1 1

1

1

1 F z

F y G y F y G y

I
u

I I I I



 = +

+ +
 (3.3.21) 

2 2 2 22 2 2F y G y F zI I I u  + − =  

 
2

2

2 2 2 2

2

2

1 F z

F y G y F y G y

I
u

I I I I



 = +

+ +
 (3.3.22) 
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3.3.1 Gimbal Transmission System Motion Equation 

In this study, each gimbal is driven by a single DC motor attached with 

transmission system. Therefore, the magnitude of rotation of each gimbal has the 

same value but in the opposite direction. As shown in Figure 3.6, the shaft of the 

DC motor linked with gear 1, while gear 6 and 7 connected with each gimbal. 

 

Figure 3.6 gyroscope invert transmission system 

The parameters of transmission system are written as the following: 

1. iJ : the transmission gear inertia (i = 1, 2, ..., 7) 

2. :iR  the transmission gear ratio (i = 1, 2, ..., 7) 

3. :i  the angular acceleration of the transmission gear (i = 1, 2, 3, 4) 

4. :i  the angular acceleration of the transmission gear (i = 6, 7) 

5. 1 :
gCf  the contact force between gear 1 and gear 2 

6. 2 :
gCf  the contact force between gear 2 and gear 3 

7. :
bC if  the pulley and belt contact force (i = 1, 2, 3, 4) 

8. :Ta  is the external force exerted on the gear 

Therefore, we obtained the equation of the forces acting on the gimbal. The 

transmission system by following the free body diagram is shown in Figure 3.7. 
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3 5bCf R
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5 3J 

4 5gCf R
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6 6J 

2 6bCf R Gear 7

3 7bCf R

7 7J 

4 7bCf R

2
3

76

 

Figure 3.7 Free body diagram of the transmission system on the gyroscope 

The transmission equation can be written as follows: 

 
1 1 1 1gCJ f R Ta + =  (3.3.23) 

 
1 2 2 4 1 4 4 2 2 2 2 2g b b bC C C Cf R f R f R J J f R + = + + +  (3.3.24) 

 
5 3 3 3 1 5 2 3 4 5b g bC C CJ J f R f R f R + + = +  (3.3.25) 

 
6 6 2 6 1 6b bC CJ f R f R + =  (3.3.26) 

 
7 7 4 7 3 7b bC CJ f R f R + =  (3.3.27) 

Substitute (3.3.23) and (3.3.26) into (3.3.24), we obtain: 

 
6 6 2 61 1

2 2 4 4 4 2 2 2 2 2

1 6

b

b g

C

C C

J f RTa J
R f R R J J f R

R R


 

−−
+ = + + +  (3.3.28) 

Substitute (3.3.25) into (3.3.27) 

 
7 7 4 7

5 3 3 3 5 2 3 4 5

7

b

g g

C

C C

J f R
J J R f R f R

R


 

−
+ + = +  (3.3.29) 

For 54 2

6 7 3

1.5, 1.5,and 1
RR R

R R R
= = = ; replaced in (3.3.28) and (3.3.29) 
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 1 1
2 2 6 6 6 2 6 4 2 2 2

1

5 3 3 3 7 7 4 7 4 7

1.5 1.5( )

1.5( ) 1.5

b b

b b

C C

C C

Ta J
R f R J f R J J

R

J J J f R f R


  

  

−
+ = + + +

+ + + + −

 (3.3.30) 

For 32 1 1
1 2 2 3

1 2 1 1 2

, 1,and ,
RR

N N
R R N N N

 
 = = = = = , substitute into (3.3.30) 

 
4 2 5 3

1 ( ) 6 6 7 7 1 1 1

1

1.5 1.5a t

J J J J
N T J J N J

N
  

 + + +
− − = + 

 
 (3.3.31) 

Assumed that the angular acceleration of each gimbal (𝛼̈1 & 𝛼̈2) is each to 

the driven gear (𝛼̈6 & 𝛼̈7). Substitute (3.3.21) and (3.3.22) into (3.3.31) 
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 (3.3.32) 

By comparing the values of each gear in the transmission system, a 

comparison of input values is obtained 
1

0.8125u Ta =  and 
2
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 (3.3.33) 

Let 
2 3 4 5

1 1

1

n
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We obtain 
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The State-space equation can be written as follows: 

x Ax Bu= +  
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That the value of 𝑎43, 𝑎34, and 𝑏41 are: 
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3.3.2 Model DC Motor Dynamics 

In this study, the input torque is needed to apply for turning the gimbal of 

the gyroscopes. This torque is generated when we apply a certain voltage to the DC 

motors. In this study, we can directly consider the input of the whole system as the 

voltage applied to the DC motor. The dynamics of the DC motor which will later 

be merged with the state-space model. The electric equivalent circuit of the 

armature and the free body diagram of the rotor are shown in Figure 3.8. 
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Figure 3.8 The electric equivalent circuit of the armature and rotor 

The physical parameters of the model: 

1. :J   moment inertia of the rotor 

2. :b  motor viscous friction constant 

3. :Ke  electromotive force constant 

4. :Kt  motor torque constant 

5. :R  electric resistance 

6. :L  electric inductance 

For the mechanical, we obtain the following equation as below based on 

Newton’s 2nd law. 

 T b J − =  (3.3.36) 

In general, the torque generated by a DC motor is proportional to the 

armature current and the strength of the magnetic field. The motor torque is 

proportional to only the armature current i  by a constant factor tK  as shown in 

equation (3.3.27). 

 
tT K i=  (3.3.37) 

Substitute (3.3.37) into (3.3.36), we obtain 

 
tJ b K i + =  (3.3.38) 

For the electrical part, we can derive the following governing equation 

based on Kirchhoff’s voltage law. 
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0emf

di
V Ri L V

dt
− − − =  (3.3.39) 

The back emf, 
emfV , is proportional to the angular velocity of the shaft by a 

constant factor eK . 

 
emf eV K =  (3.3.40) 

Substitute (3.3.40) into (3.3.39), we obtain: 

 
0e

di
V Ri L K

dt
− − − =  (3.3.41) 

In the state-space form, the equation above can be expressed by choosing 

the rotational speed and electrical current as of the state variables. 
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 (3.3.42) 

 
 1 0y

i

 
=  

 
 (3.3.43) 

Where V is the voltage that will supply to the motor in order to produce the 

desired torque and y =  is the angular velocity output of the DC motor. Thus, the 

angular velocities of the DC-motors must be equal with the respective precession 

rates of the gyroscopes gy  = = . 

The angular velocity of the inertia connected to the motor is given by 

 1d
T

dt J


=  (3.3.44) 

Therefore, the torque that will be applied on the gyroscopes will be 

 
tT Ta b K i= = − +  (3.3.45) 
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3.3.1 State space full system 

Although a nonlinear model of the system is derived and verified in the 

previous section, and the linear model around an operating point is also obtained. 

In order to synthesize the controller, state space full system dynamic is required. A 

state-space formulation allows one to get more information about the system than 

the input/output formulation, which is described only by a transfer function. 

Specifically, if A, B, C, and D are known, then the internal states x(t) can be 

computed in addition to the input u(t) and output y(t). Since the operating point of 

the system is the upright position and the gimbal angles are zero, the flywheels are 

rotating at a constant speed in the inverse direction of 6000 rpm. The new state 

vector will be g g i    
   and the state space model of the full system 

described as the following: 

 x Ax Bu= +    
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where 

• 1x =  is the roll angle of the vehicle 

• 
2 gx =  is the motor shaft angle 

• 
3x =  is the roll rate 

• 
4 gx =  is the motor shaft angle rate 

• 5x i=  is the current in the motor’s armature 

The whole procedure of the closed loop system with the control scheme is 

illustrated in Figure 3.9. 

 

Figure 3.9. Procedure of the close-loop system 

3.3.2 Stability, controllability and observability check 

Before designing the controller, it is necessary to check the controllability 

and observability of the open-loop system. The parameters of the gyroscopic two-

wheeled vehicle are defined in Table 3.1. These values were used to model the 

dynamics of the physical system and the controllers. 

Table 3.1: Gyroscopic two-wheeled vehicle  parameter 

Parameter Symbol Value (Unit) 

Mass of the body, gimbal 
and flywheel [𝑚𝐵, 𝑚𝐺1,2

, 𝑚𝐹1,2
] [5.306, 1.106, 0.71](kg) 

Mass moment inertia of 
the body [𝐼𝐵𝑥

, 𝐼𝐵𝑦
, 𝐼𝐵𝑧

, ] [0.248, 0.260, 0.261](𝑘𝑔.𝑚2) 

Mass moment inertia of 
the gimbal [𝐼𝐺𝑥

, 𝐼𝐺𝑦
, 𝐼𝐺𝑧

] [0.198, 0.172, 0.332]
× 10−3(𝑘𝑔.𝑚2) 
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Mass moment inertia of 
the flywheel [𝐼𝐹𝑥

, 𝐼𝐹𝑦
, 𝐼𝐹𝑧

] [0.877, 0.877, 1.642]
× 10−7(𝑘𝑔.𝑚2) 

Height of each part at 
COG [𝑑𝐵, 𝑑𝐺1,2

, 𝑑𝐺1,2
] [0.152, 0.165, 0.171](𝑚) 

Angular velocity of the 
flywheel [𝜃̇1, 𝜃̇2] [628.31,−628.31](𝑟𝑎𝑑/𝑠) 

Mass moment inertia of 
each gear [𝐽1, 𝐽2,3, 𝐽6,7] 

[0.025, 0.539, 0.266]
× 10−5(𝑘𝑔.𝑚2) 

The electric resistance 𝑅 1.9(Ω) 

The electric inductance 𝐿 65 × 10−6(𝐻) 

The motor viscous 
friction constant 𝑏 10−3(𝑁𝑚) 

The moment inertia of 
the rotor 𝐽 5.7 × 10−7(𝑘𝑔.𝑚2) 

The motor torque 
constant 𝐾𝑡 0.023 × 10−3(𝑉/𝑟𝑎𝑑/𝑠) 

The back emf constant 𝐾𝑒 0.023 × 10−3(𝑉/𝑟𝑎𝑑/𝑠) 

 

3.3.2.1 Stability 

The stability of a system can be defined with respect to a given equilibrium 

point in state space. If the initial state 0x  is selected at an equilibrium state x  of the 

system, then the state will remain at x  for all future time. When the initial state is 

selected close to an equilibrium state, the system might remain close to the 

equilibrium state or it might move away. 

Numerically, we can determine the stability of a state space model by 

finding the eigenvalues of the state space A matrix. If all of the eigenvalues are 

negative, then the system is stable; if any single eigenvalue is positive, the system 

is unstable. Mathematically, the eigenvalues of the matrix are found from the roots 

of the characteristic polynomial: 

 det( ) 0I A − =  (3.3.47) 

where   is known as an eigenvalue, and I is the identify matrix. 



36 

 

 
1

2

3

4

5

1

2

3

4

5

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 58 0 0 4 0

0 0 0 0 0 0 0 343 4600

0 0 0 0 0 0 0 0.3538 29231

0 1 0 0

0 0 1 0

58 0 4 0

0 0 0 343 4600

0 0 0 0.3538 29231





















   
   
   
   − −
   

−   
   − −  

− 
 

−
 
 = −
 

+ − 
 + 

 (3.3.48) 

The roots can be found using the quadratic formula 
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All of the eigenvalues are negative; thus, the system is stable. 

3.3.2.2 Controllability 

A system is said to be controllable if all the states are completely 

controllable. A system can also be considered as controllable, if every state of 

system can be exercised control in such a manner that they are transferred from an 

initial state to desired state in some finite time. 

The state x(t) at t=0 is said to controllable, if the state can be driven to a 

desired state x(tf) in some finite time t = tf by application of continuous control 

input u(t). The controllable matrix cQ  is derived as 

 2 1

0 (Q )

n

c

c c

Q B AB A B A B

Q and rank n

− =  

 =
 (3.3.49) 

The controllability matric is calculated, and it is seen that it does not lose 

rank. Therefore, the system is controllable. 
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3.3.2.3 Observability 

A system is said to be observable if the state can be determined from the 

knowledge of the input u(t) and the output y(t) over a finite interval of time. 

The state 0( )x t  at 0t t=  for a system is said to be observable if a desired 

finite time 0t tf t= = , knowledge of input u(t) and output y(t) over the interval 

0t t tf   can be calculated. The observable matrix oQ  is derived as 

 2 1

0 (Q )

T
n

o

o o

Q C CA CA CA

Q and rank n

− =  

 =

 (3.3.50) 

The observability matric is calculated, and it is seen that it does not lose 

rank. It is possible to observe all the states. 
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CHAPTER 4 

CONTROL DESIGN 

In this chapter two different control techniques are studied. The purposes of 

each control strategy, the mathematical model describing the physical system is 

accordingly considered. PID and LQR are developed to validate the two-wheeled 

vehicle, and the SimMechanics model is built to verify nonlinear model. 

4.1 Cascade PID controller 

In this section the design of the cascade PID controller is presented. A 

simple control algorithm such as PID can be used to generated the closed loop 

responses [20]. The PID controller refers to a particular action taken on the error. 

The error is then used to adjust some input to the process in order to its defined set 

point. 

In control problems where we have single input and multiple measurement 

signals, cascade control is a reasonable choice. In advance, we know that when the 

roll angle   of the vehicle approached to equilibrium, the roll rate   also tended 

to zero. So, the roll angle   will be the first control variable. Meanwhile we would 

keep the motor shaft angles 
g  as close to zero as possible, so the gyroscopes will 

have enough space to process and generate the stabilizing counter-torque. 

Consequently, the shaft angle 
g  is the second control variable. 

 

Figure 4.1. PID control scheme 

The PID control scheme for the system for the system is shown in Figure 

4.1. Two PID controllers are used to control the gyroscopic two-wheeled vehicle. 

The PID controller in the outer loop minimizes the roll angle   and generates 
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reference for the inner loop (shaft angle 
g ). Since the two flywheels spin at a 

constant speed in opposite direction, the gimbal angles 1  and 2  are moved to 

produce balancing torque on the horizontal axis. 

It is important to determine appropriate parameters to guarantee stability 

and system performance. There are several methods for tuning PID parameters. 

However, in this study the six parameters of PID controller values are computed by 

trial and error. 

• Proportional: Error multiplied by a gain, PK . This is an adjustable 

amplifier. In many systems PK  is responsible for process stability. Too low 

and the PV can drift away. Too high and the PV can oscillate. 

• Integral: The integral of error multiplied by a gain, IK .  In many systems 

IK  is responsible for driving error to zero, but to set IK  too high is to 

invite oscillation or instability. 

• Derivative: The rate of change of error multiplied by a gain, DK . In many 

systems DK  is responsible for system response. Too high and the PV will 

oscillate. Too low and the PV will respond sluggishly. 

The way to tune the cascade PID controllers is the following. We first tuned 

the inner loop while having the outer loop in manual mode (open loop). Then, 

considering the inner loop as part of the plant, we closed and tuned the outer loop. 

We keep the inner loop at least five times faster than the outer one, so the inner is 

fast enough to keep the vehicle stable. 

Table 4.1 shows different six PID settings that will apply to evaluate the 

performance of each cascade controller. The cascade PID controller was designed 

and tuned, which reduced overshoot and minimized settling time of the response. 

Table 4.1: Cascade PID parameter with different settings 

Case Loop Kp Ki Kd 

1 Outer 1.2 25 1 
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Inner 22 0 0 

2 
Outer 1.2 45 3.3 

Inner 22 0 0.02 

3 
Outer 1.2 15 1.3 

Inner 22 0.8 0.2 

4 
Outer 1.5 30 1.2 

Inner 25 1 1.1 

5 
Outer 1.5 25 1.5 

Inner 22 0.5 0 

6 
Outer 2 35 3 

Inner 25 0.05 0.05 

 

(a) (b)  

Figure 4.2. Cascade PID response of: (a) roll displacement (b) roll rate 
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(a) (b)
 

Figure 4.3. Cascade PID response of: (a) shaft displacement (b) shaft rate 

In this comparison stage, we have ignored the external disturbances. Figure 

4.2 and Figure 4.3 illustrate the performance of each setting so that we can obtain a 

comparison on the effect of each PID gain. To prevent the shaft motor reaching 

close to the boundaries of the precession angles (−45°, 45°), we initialized our 

vehicle from a tilted position that never exceeded the range (−15°, 15°). When the 

setting is given in case 1 where a P controller for the inner loop, the response of the 

vehicle and the shaft is more oscillation than the other and the maximum amplitude 

for the vehicle is highest. In case 2, a PD controller is used in the inner loop, we 

noted that the maximum amplitude for the shaft motor is highest. However, the 

vehicle still takes time to reduce oscillation. The vehicle and the vehicle angular 

velocity take smallest amplitude when the setting is given in case 3, but the shaft 

motor is for different from the other. The vehicle takes the shortest time to return 

to the equilibrium position when the setting is given in case 6. 

However, all setting of the cascade PID controller not only cannot keep the 

shaft motor close to zero position, but the shaft motor remains rotating. In general, 

not only we want to stabilize the vehicle on its upright position, but we also want 

to drive the gyroscopes to the zero position as fast as possible, so they can offset 

disturbances that might happen. However, if the gimbal angle were not returned to 

zero after stabilizing the vehicle then the gyro would not be capable of producing 

its maximum reaction torque for the next disturbance introduced into the system 

which could possibly not be enough to stabilize the vehicle. 
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4.2 Linear Quadratic Regulation (LQR) controller 

In this section, LQR controllers will be designed, based on the analytical 

model described in equation (3.3.46). Given that we can full access the state vector, 

but not only on the measurable states. In order to disable some problems that faced 

by PID controller, the other type of control methods can be developed such as 

Linear-Quadratic Regulator (LQR) optimal control. LQR is a control scheme that 

gives the best possible performance with respect to some given measure of 

performance. The performance measure is a quadratic function composed of state 

vector and control input. 

Linear Quadratic Regulator (LQR) is the optimal theory of pole placement 

method. LQR algorithm defines the optimal pole location based on two cost 

function. To discover the optimal gains, one should define the optimal performance 

index firstly and then solve algebraic Riccati equation. LQR does not have any 

specific solution to identify the cost function to obtain the optimal gains and the 

cost function should be defined in iterative manner. LQR is a control scheme that 

provides the best possible performance with respect to some given measure of 

performance. The LQR design problem is to design a state feedback controller K 

such that the objective function J is minimized. In this method a feedback gain 

matrix is designed which minimizes the objective function in order to achieve some 

compromise between the use of control effort, the magnitude, and the speed of 

response that will guarantee a stable system. The LQR problem rests upon the 

following three assumptions [21]: 

• All the states ( )x t  are available for feedback, i.e. it can be measured by 

sensors etc. 

• The system is stabilizable which means that all of its unstable modes are 

controllable (see in 3.3.2). 

• The system is detectable having all its unstable modes observable (see in 

3.3.2). 
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Figure 4.4. LQR controller scheme 

Figure 4.4 illustrates the closed loop system with the LQR controller 

scheme. LQR design is a part of what in the control area is called optimal control. 

This regulator provides an optimal control law for a linear with quadratic 

performance index yielding a cost function on the form 

 
0

( ) ( ) ( ) ( )T TJ x t Qx t u t Ru t dt


= +  (4.2.1) 

where 
TQ Q=  and TR R=  are weight parameters that penalize the states and the 

control effort, respectively. These matrices are therefore controller tuning 

parameters. It is crucial that Q must be chosen in accordance to the emphasize we 

want to give the response of certain states, or in the word; how we will penalize the 

states. Likewise, the chosen value(s) of R will penalize the control effort u. Hence, 

in an optimal control problem the control system seeks to maximize the return from 

the system with minimize the return from system with minimum cost. In the LQR 

design, the system has a mathematical solution that yields an optimal control law 

because of the quadratic performance index of the cost function.  

 (t) ( )u Kx t= −  (4.2.2) 

where u is the control input and K is the gain given as 
1 TK R B S−= . And P can be 

found by solving the continuous time algebraic Riccati equation: 



44 

 

 1 0T TA P PA PBR B P Q−+ − + =  (4.2.3) 

 
11 12 13 14 15

21 22 23 24 25

31 32 33 34 35

41 42 43 44 45

51 52 53 54 55

11 12 13 14 15

21 22 23 24 25

31 32 33 34 35

4

0 0 58 0 0

0 0 0 0 0

1 0 0 0 0

0 1 3 343 0.3538

0 0 0 4600 2.9231

P P P P P

P P P P P

P P P P P

P P P P P

P P P P P

P P P P P

P P P P P

P P P P P

P

  
  
  
  
  

− − −   
  −   

+

1 42 43 44 45

51 52 53 54 55

11 12 13 14 15

21 22 23 24 25

31 32 33 34 35

41 42 43 44 45

51 52 53 54 55

0 0 1 0 0

0 0 0 1 0

58 0 0 4 0

0 0 0 343 4600

0 0 0 0.3538 29231

0

0

0

0

P P P P

P P P P P

P P P P P

P P P P P

P P P P P

P P P P P

P P P P P

   
   
   
   −
   

−   
   − −  

 
 
 
 −
 
 
  

 

11 12 13 14 15

21 22 23 24 25

11 31 32 33 34 35

41 42 43 44 45

51 52 53 54 55

11

22

33

44

55

0

0

0

0

15380 15380

0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0

T
P P P P P

P P P P P

r P P P P P

P P P P P

P P P P P

q

q

q

q

q

    
    
    
    
    
    
         

 
 
 
 + =
 
 
  

  

 

The process of minimizing of the cost function therefore involves to solve 

this equation, which is will be done with the use of MATLAB function LQR. In 

this study the parameters in Q  was initially chosen 

 

𝑄 =

[
 
 
 
 
𝑞1 0 0 0 0
0 𝑞2 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1]

 
 
 
 

 (4.2.4) 

and the control weight of the performance index R  was set to 1. 

Here we can see that the chosen values in Q  result in a relatively effect 

penalty in the states 1x  and 2x . This means that if 1x  and 2x  are large, the large 

values in Q  will amplify the effect of 1x  and 2x  in the optimization problem. Since 
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the optimization problem are to minimize J , the optimal control u  must force has 

states 1x  and 2x  to be small (which make sense physically since 1x  and 2x  represent 

the position of the vehicle and the angle of the gimbal, respectively). These values 

must be modified during subsequent iterations to achieve as good response as 

possible (refer to the next section for results). On the other hand, the small R  

relative to the max values in Q  involves very low penalty on the control effort u in 

the minimization of J , and the optimal control u can be large. For this small R , 

the gain K  can then be large resulting in a faster response. In the physical world 

this might involve instability problems, especially in systems with saturation [21]. 

To obtain good matrix gain K , the iteration the elements 𝑞1 and 𝑞2 in matrix Q  are 

conducted. 

4.2.1 Iteration by set initial position of the vehicle 

The goal of the LQR tuning is to vary the parameters 𝜙 and 𝛼𝑔 such as to 

minimize the cost [22]. In order to tune the good optimal control, the iteration the 

elements 𝑞1 and 𝑞2 in matrix Q  are conducted in state space linearize model. By 

set the initial position of the vehicle angle 𝜙 at 15°, We executed the iteration LQR 

algorithm 25 times. In particular, the algorithm was terminated after a fixed number 

of 𝑞1,𝑚𝑖𝑛 and 𝑞2,𝑚𝑖𝑛 = 1 to 𝑞1,𝑚𝑎𝑥 and 𝑞2,𝑚𝑎𝑥 = 500 with the increasement 125.75. 

In order to evaluate the performance of each resulting controller, we simulated each 

one 5 times in closed-loop on the linear system. At every iteration, a new controller 

is obtained in loop and plotted to evaluate the performance of each controller. 

Figure 4.5 and Figure 4.6 visualize the iteration results when the controller brings 

the vehicle from initial position 15° to the upright position and we compare the 

performance and the settling time to find the optimization. Based on these figures, 

we can demonstrate that the response of the vehicle and the shaft motor are strongly 

affect by the 𝑞2. The results show that the iteration algorithm resulted in improved 

controllers for each increasement of 𝑞2 while the 𝑞1 is small affect the controller. 
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(a) (b)  

(c) (d)  

Figure 4.5. The effect of the iteration with: (a) roll angle 3D view, (b) roll angle 

front view, (c) roll rate 3D view, and (d) roll rate front view 
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(a) (b)
 

(c) (d)
 

Figure 4.6. The effect of the iteration with the shaft angle: a) 3D view and b) front 

view 

4.2.2 Iteration by apply disturbance to the vehicle 

To obtain more efficient LQR controller in order to minimize the objective 

function, a pre-design LQR controller visualized the performance of the iteration 

methods. The idea is to display the optimal values of the weighting matrices of LQR 

controller with respect to an impulse disturbance. Therefore, the weights of states 

related with shaft angle and vehicle angle are estimated to find the optimal 

responses. Base on Figure 4.5 and Figure 4.6, we noted that all values of 𝑞1 and 𝑞2 

from 1 to 500 could bring the vehicle and the shaft motor back to the upright 

position. Then we use these ranks of 𝑞1 and 𝑞2 to observe the ability for reject 

disturbance. In this case, the vehicle is initially at upright position, and later we 

apply an unwanted input which affect our plant (vehicle) at 3s during balancing. 
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For the simulation study, we use a linearized model, which can be regarded as an 

abstraction of the nonlinear platform. 

Results in graph of the Figure 4.7 show the maximum angle of the vehicle 

and the shaft motor and the velocity of the shaft motor. The graphical results 

obtained by the iteration two elements of Q matrix with angular displacement 

vehicle and shaft motor and angular velocity of shaft motor, respectively. To verify 

the effectiveness of the improved the optimized LQR controller, the controller has 

benchmarked on the linear model. The graphs were obtained by uniformly gridding 

the parameter space, angular displacement with each grid point (𝑞1 𝑎𝑛𝑑 𝑞2), and 

evaluating the maximum angle from simulation data. Depend on the graphs, we can 

evaluate that the response of the impulse disturbance is strongly affect by the 𝑞1, 

while the 𝑞1 is small affect the controller. Moreover, the angular velocity of the 

shaft motor increased because it keeps the vehicle and the motor shaft in small angle 

due to the control system design process. 

(b)

(c)

(a)

 

Figure 4.7. The effect of weight that associated with the maximum reaction of: a) 

vehicle, b) shaft motor, and c) shaft rate 
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Table 4.2: LQR weight parameter with different settings 

Case Matrix Q Matrix R 

1 𝑑𝑖𝑎𝑔(100 100 1 1 1) [1] 

2 𝑑𝑖𝑎𝑔(100 200 10 1 10) [2] 

3 𝑑𝑖𝑎𝑔(300 250 10 10 1) [3] 

4 𝑑𝑖𝑎𝑔(270 350 1 10 10) [4] 

5 𝑑𝑖𝑎𝑔(350 450 10 10 10) [5] 

 

In order to evaluate the robustness of the controllers, the obtained state-

feedback controller then applied to a non-linear model developed using Simscape 

Multibody. Further, the effect of state weighting is studied for five different cases 

with nonlinear. Table 4.2 shows the weighting matrices to validate and compare the 

response of each design controller. While Figure 4.8 and Figure 4.9 show the 

comparison of the time response of the vehicle angle, vehicle angular velocity, shaft 

angle and shaft angular velocity from an initial position 15° of the vehicle. 

When the weighting is given in case 4, the maximum amplitude both for 

vehicle angle and shaft motor angle are the smallest among other cases. Moreover, 

the vehicle takes longest time to return to the equilibrium position. The vehicle and 

the shaft motor take the shortest time to return to the equilibrium position when the 

weighting is given in case 2, but shaft motor angular velocity for this case is very 

high. In case 5, largest weights for both state weight matrix Q and input weight R 

are given, but both the vehicle and the motor shaft return to the equilibrium position 

longer if compare to case 1 and case 2. 
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(a) (b)
 

Figure 4.8. Response of: (a) roll displacement (b) roll rate 

(a) (b)
 

Figure 4.9. Response of: (a) shaft displacement (b) shaft rate 

After tuning weighting factors, we noted that all tuning cases can 

correspond with the specified design goals given in the introduction. An adjustment 

of the weighting factors to get a controller more in line with the specified design 

goals must be performed. However, difficulty in finding the right weight factors 

limits the application of the LQR based controller synthesis. By tuning, the state 

weighting matrix is selected in case 2. 

However, the steady state error is not zero for both vehicle and shaft motor. 

In this particular project we want to stabilize the vehicle around its vertical 

orientation. That means we try to force the roll angle 𝜙 to track the zero-reference 

signal. Moreover, we should keep the precession angles as close to zero as possible. 
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Based on the selected weighting matrices, the optimal gain of LQR is obtain 

as follows 

  77.3451 10 10.3127 0.5371 1.0885K = − −  (4.2.5) 

4.2.3 Disturbance rejection test 

Depending on what one considers more important, one can choose any 

setting weights from the Table 3.1. At this point, we will check the robustness of 

the 2nd case. In order to evaluate the robustness of the controllers, the obtained state-

feedback controller then applied with an impulse disturbance. Figure 4.10 shows 

the performance of the vehicle angle and vehicle angular velocity to an initial 

position and an impulse disturbance at 5s. from an initial angle 18°, the vehicle 

takes take 2s to return to the equilibrium, moreover it takes to 2s to reject the 

disturbance. The performance of the shaft motor angle and shaft motor angular 

velocity are demonstrated in Figure 4.11. We try to increase lean angle of vehicle, 

but we also prevent the shaft motor not bigger than the boundaries of range ±45°. 

Our simulation succeeds to confront the disturbances and it gets stabilized 

in its upright position. Consequently, we can claim that the system successfully 

rejects disturbances. 

(a) (b)
 

Figure 4.10. Response of (a) vehicle angle and (b) vehicle angular velocity to an 

initial position and impulse disturbance 
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Figure 4.11. Response of (a) shaft angle and (b) shaft angular velocity to an initial 

position and impulse disturbance 
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CHAPTER 5 

CONCLUSION 

Two control strategies are developed to stabilize two-wheeled vehicle. 

Numerical simulations are used to illustrate the performance of the controller. In 

this section we review our research and suggest future work. 

5.1 Summary 

In this thesis presents the gyroscopic stabilization for the two-wheeled 

vehicle. The nonlinear equations of motion are developed to express the concept 

vehicle using Lagrangian mechanics. To simplify the equation of motion, we 

linearize the dynamics about an equilibrium at its upright position. Later, we marge 

together equation of transmission system that drive each gimbal and the model of 

DC motor. After analysing the stability and the controllable of the open loop 

system, the system was verified. Then we purpose two controllers; a cascade PID 

controller, and an LQR controller. For each controller, we initialized our vehicle 

from a tilted position that never exceeded the range ±15°, to avoid the shaft motor 

reaching close to the boundaries of range ±45°. 

After the vehicle turns to the equilibrium point, the cascade PID controller 

not only cannot maintain the shaft motor to zero position, then the shaft motor 

remains slowly moving. In most cases, not only we require to stabilize the vehicle 

on its upright position, but we also want to keep the gyroscopes to the zero position 

as much as possible, so they can offset disturbances that might happen. On the other 

hand, if the gimbal angle were not returned to zero after stabilizing the vehicle then 

the gyro would not be proficient of producing its maximum reaction torque for the 

next disturbance introduced into the system which could feasibly not be enough to 

stabilize the vehicle. In the comparison of six setting controls, the vehicle takes the 

shortest time about 0.85s to return to the equilibrium position when the setting is 

given in case 6. 

With the LQR controller, we achieved good response. In this particular 

project our task is to stabilize the static vehicle starting from some initial roll-angle. 

We have already proved the necessity of driving the precession angles of the 
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gyroscopes close to zero. Linear model is used to check performance of the 

performance of the weighting matrix. For the nonlinear model, the vehicle and the 

shaft motor take shortest time about 2 s to return to the equilibrium position when 

the weighting is given in case 2, but the shaft motor’s angular velocity is about 16 

rad/s. For the disturbance rejection test, the simulation succeeds to handle the 

disturbances and it secures stabilized in its upright position. As a result, the system 

can be ensured that it successfully rejects disturbances. 

5.2 Recommended Future Work 

The focus of this research was to model the two-wheeled vehicle by 

compare two feedback controllers: the cascade PID controller and the LQR 

controller. There are many areas that would be interesting to continue exploring 

with this system. Suggestions from gyroscopic two-wheeled vehicle system 

research are as follows: 

1. Having met all the above specifications, the next step is to study and 

investigate gyro-based stabilizing controllers with prototype. The prototype 

of the gyroscopic two-wheeled vehicle is already produced and installed. 

Synthesis these controllers to test and check the response for the actual 

experiment. 

2. In this thesis we only studied the control dynamics of the static vehicle. This 

is actually the most challenging feature of the active gyroscopic roll-

stabilizer with the trajectory tracking. After obtaining the proper controller 

for the static case (regulator problem), the next step is to investigate the full 

dynamics of the vehicle and track a trajectory. The faster the speed of the 

vehicle is, the less balancing torque will be required from the gyroscopes. 

3. In this project we have focused on the transportation perspective. However, 

there are several applications waiting for the gyro-stabilizers to implement. 

Self-balancing robots can also use gyro-stabilizers to maintain a reference 

orientation. 
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APPENDIX 

 

Figure 5.1. Model simulink two-wheeled vehicle 

Block DC motor Block velocity & torque  

Figure 5.2. Model simulink DC motor 
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Figure 5.3. Assembly part in Simcape Multibody 


