Analisa Arc Flash Pada Sistem Tegangan Menengah Di PT. Semen Padang Dengan Menggunakan Metode Perhitungan Yang Dimodifikasi

Jumaras Situngkir, Ardyono Priyadi, Margo Pujiantara Jurusan Teknik Elektro, Fakultas Teknologi Industri, Institut Teknologi Sepuluh Nopember (ITS) Jl. Arief Rahman Hakim, Surabaya 60111 Indonesia

e-mail: jumaras.situngkir13@mhs.ee.its.ac.id, priyadi@ee.its.ac.id, margo@ee.its.ac.id

Abstrak— Bahaya arc flash (busur api) yang terjadi pada sistem kelistrikan menimbulkan kerugian yang sangat besar. Insiden energi yang dilepaskan dapat merusak peralatan dan terutama dapat membahayakan pekerja yang bekerja di lingkungan tersebut. Sehingga diperlukan batas aman bagi pekerja, salah satunya dengan menggunakan standar IEEE 1584-2002 yang mengatur tentang analisa bahaya arc flash pada sistem tegangan rendah dan menengah. Besar kecilnya insiden energi arc flash dapat dihitung dengan menggunakan bolted three-phase fault ataupun arc-clearing time yang didapat dari waktu dimana arus gangguan saat itu terjadi akan menghasilkan nilai insiden energi arc flash yang lebih rendah. Hal ini memunculkan metode perhitungan modifikasi yang didasarkan pada perhitungan kontribusi arus hubung singkat dan waktu pemadaman busur api (arc-clearing time).

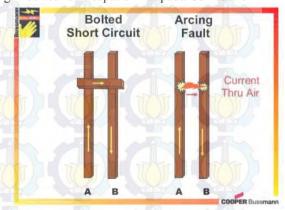
Dari hasil simulasi untuk analisa bahaya arc flash di sistem kelistrikan tegangan 6,3 kV PT. Semen Padang, Sumatera Barat, dengan menggunakan perhitungan metode modifikasi, diperoleh nilai insiden energi arc flash lebih rendah dibandingkan dengan menggunakan standar IEEE 1584-2002. Kata Kunci— Arc Flash, Metode Modifikasi, Standar IEEE 1584-2002

I. PENDAHULUAN

PT. Semen Padang (persero) merupakan salah satu anggota PT. Semen Indonesia yang berlokasi di Padang, Sumatera Barat. PT. Semen Padang saat ini memiliki pabrik dengan kapasitas produksi sebesar 6,9 juta ton per tahun. Untuk menunjang proses produksi PT. Semen Padang memiliki pabrik dengan total beban 90 MW. Dengan beban yang sangat besar tersebut, membuat tingkat bahaya sistem kelistrikannya semakin meningkat, dalam hal ini adalah adanya bahaya arc flash (busur api). Oleh sebab itu, demi menjaga keamanan dan keselamatan pekerja dari bahaya arc flash, perlu diketahui besarnya energi yang dihasilkan.

Besarnya insiden energi yang dihasilkan tergantung dari waktu kerja sistem pengaman akibat gangguan arus hubung singkat. Semakin cepat rele pengaman bekerja semakin kecil pula tingkat insiden energi arc flash yang ditimbulkan. Oleh karena itu, perlu dikaji atau dipelajari tingkat insiden energi arc flash yang ditimbulkan guna memberikan peringatan kepada para pekerja maupun orang disekitarnya, seperti alat pelindung diri yang harus dikenakan sebagai langkah pencegahan agar terhindar dari jatuhnya korban jiwa.

Berdasarkan standar IEEE 1584-2002 yang berkaitan tentang masalah busur api, analisa bahaya busur api harus dilakukan dengan melakukan studi terhadap hubung singkat dan koordinasi proteksi. Studi hubung singkat diperlukan untuk mendapatkan nilai arus bolted gangguan tiga fasa. Sedangkan studi koordinasi proteksi diperlukan untuk


menentukan waktu pada peralatan proteksi dalam mengisolasi ketika terjadi gangguan hubung singkat. Tetapi pada standar ini, tidak dipertimbangkan berkurangnya kontribusi arus hubung singkat pada tiap satuan waktu, dan waktu pemutusan masing-masing CB (Circuit Breaker) dalam melokalisir gangguan. Oleh sebab itu akan digunakan metode modifikasi dengan mengkombinasikan perhitungan keduanya dalam menganalisa insiden energi arc flash.

Dengan hasil analisa insiden energi arc flash yang diperoleh, akan digunakan untuk menentukan batasan jarak dari titik yang berpotensi terjadinya busur api terhadap pekerja. Selain itu juga akan ditentukan kategori bahaya arc flash sekaligus jenis perlindungan diri sesuai standar NFPA 70E yang dipakai oleh pekerja.

II. URAIAN PENELITIAN

A. Definisi Busur Api Listrik

Terjadinya arc flash diakibatkan dari adanya arcing-fault maupun bolted fault [1]. Arcing-fault sendiri dapat didefinisikan sebagi busur api yang diakibatkan oleh arus gangguan yang mengalir melalui udara antara konduktor dengan konduktor atau konduktor dengan tanah. Arus tersebut menciptakan sebuah plasma busur listrik dan melepaskan sejumlah energi yang berbahaya. Sedangkan bolted fault terjadi akibat adanya perantara konduktor sebagai jalur arus gangguannya. Umumnya terjadinya bolted fault diakibatkan adanya kegagalan mekanik, kegagalan isolasi, debu dan korosi, serta kesalahaan operator. Besar arcing fault biasanya lebih rendah dari bolted fault. Berdasarkan refrensi [2], perbedaan atara arcing fault dengan bolted fault dapat dilihat pada Gambar 1.

Gambar 1 Perbedaan arcing fault dengan bolted fault

Efek yang dihasilkan arc flash dapat berupa ledakan, radiasi panas, cahaya yang menyilaukan, dan tekanan yang sangat besar. Temperatur dari radiasi panas yang dihasilkan dapat mencapai sekitar 35.0000F, atau sekitar empat kali panas permukaan matahari. Temperatur yang tinggi juga

merubah keadaan konduktor dari padat ke logam cair panas dan uap. Berdasarkan refrensi [2] Gambar 2 menunjukan efek yang ditimbulkan oleh arc fault..

Gambar 2 Efek yang ditimbulkan arc fault

Besarnya energi arc flash diakibatkan dari besarnya arus bolted fault atau arus hubung singkat maksimum, level tegangannya, jarak pekerja dengan titik arc flash, jarak antar dan waktu peralatan konduktor. proteksi menghilangkan dan mengisolir gangguan.

Perhitungan Insiden Energi Busur Arc Flash Standar IEEE 1584-2002

Perhitungan insiden energi arc flash sesuai dengan standar IEEE 1584-2002 diperoleh berdasarkan arus hubung singkat pada kondisi tertentu dengan level tegangan rendah maupun menengah. Perbedaan level tegangan ini akan mempengaruhi perhitungan menentukan insiden energi arc flash [3].

Perhitungan standar energi arc flash pada sistem tegangan menengah dapat diperoleh dengan mencari nilai arus arcing terlebih dahulu. Berdasarkan standar IEEE 1584-2002 nilai arus arcing diperoleh dengan menggunakan persamaan berikut:

$$\lg Ia - 0.983 \lg Ibf = 0.00402 \dots (1)$$

Atau dapat ditulis ulang menjadi:

Atau dapat dituns thang menjadi.
$$Ia = 1,00929 \, Ibf^{0,983} \, \dots$$
dimana

log10 lg

Ia arus arcing (kA)

arus bolted gangguan tiga fasa simetris RMS (kA)

Dari perhitungan nilai arus arcing akan diperoleh nilai insiden energi normalisasi dengan menggunakan persamaan berikut.

$$En = Ia^{1,081} \cdot 10^{(K_1 + K_2 + 0,0011 G)}$$
 (3) dimana,

En insiden energi normalisasi (cal/cm²)

- K_1 -0,792 untuk konfigurasi peralatan terbuka -0,555 untuk konfigurasi peralatan tertutup (dengan
- K_2 0 untuk sistem yang tidak ditanahkan atau sistem dengan pentanahan tahanan tinggi -0.113 untuk sistem yang ditanahkan
- jarak antar konduktor (gap) (mm)

Adanya variabel waktu , (x) faktor dan jarak antara peralatan dengan pekerja maka akan menghasilkan jumlah energi yang dilepaskan ke udara. Besarnya insiden energi dapat dituliskan dalam persamaan berikut:

$$E = 4,184 Cf En \left(\frac{t}{0,2}\right) \left(\frac{610}{D}\right)^{x} \qquad (4)$$

Dengan mensubstitusikan persamaan (2), (3) dan (4), maka persamaan besar insiden energi untuk tegangan menengah dapat disederhanakan dengan persamaan (2.5)

$$E = \frac{Cf}{(1,00929 \text{ Ibf}} \frac{0.983}{0.983} \right)^{1.081} 10^{\left(\frac{K_1 + K_2 + 0.0011 \text{ G}}{0.2}\right) \left(\frac{t}{0.2}\right) \left(\frac{610}{D}\right)^x} (5)$$

dimana,

Einsiden energi (J/cm²)

faktor perhitungan bernilai 1.0 untuk tegangan Cf diatas 1 kV faktor perhitungan bernilai 1.5 untuk tegangan dibawah 1 kV

waktu arcing (detik)

jarak dari titik *arc flash* ke pekerja (mm) D

eksponen jarak, dapat dilihat pada Tabel 1 x

Tabel 1 Faktor untuk peralatan dan kelas tegangan

Sistem Tegangan (kV)	Tipe konfigurasi peralatan	Tipikal gap antar konduktor (mm)	Eksponen jarak (x)
BY III	Open air	10-40	2,000
0,208-1	Switchgear	32	1,473
0,208-1	MCC and panels	25	1,641
	Cable	13	2,000
	Open air	13-102	2,000
>1-5	Switchgear	13-102	0,973
	Cable	13	2,000
	Open air	13-153	2,000
>5-15	Switchgear	153	0,973
	Cable	13	2,000

Perhitungan Insiden Energi Arc Flash Dengan Metode **Modifikasi**

Kapasitas Perhitungan insiden energi dengan metode standar IEEE 1584-2002. Akan tetapi dalam metode modifikasi dipertimbangkan berkurangnya arus gangguan tiga fasa dan juga waktu pemutusan masing-masing circuit breaker dalam menghilangkan gangguan (Arc Clearing Time) [1].

Untuk perhitungannya, digunakan pengelompokan domain waktu berdasarkan konstanta waktu tipikal mesin berputar untuk fase peralihan hubung singkat tertentu. Adapun domain waktu tersebut seperti ditunjukkan pada Tabel 2.

Tabel 2 Pengelompokan domain waktu perhitungan metode modifikasi

Domain Waktu	Fase Perlaihan	Komponen y <mark>ang</mark> Menyumbang Aru <mark>s Hubung</mark> Singkat
0-0.035	Subtransient	Utility, Mesin Sinkron, Motor Induksi > 1000 HP, Motor Induksi 50 – 1000 HP, Motor Induksi < 50 HP
0.035 - 0.08	Transient	Utility, Mesin Sinkron, Motor Induksi > 1000 HP, Motor Induksi 50 – 1000 HP
0.08 - 0.8	Transient	Utility, Mesin Sinkron, Motor Induksi > 1000 HP
0.8 – t (Arc Clearing Time)	Steady State	Utility, Generator Sinkron

Sedangkan perhitungan insiden energi total merupakan penjumlahan dari insiden energi tiap domain waktu yang bisa dilihat dari persamaan berikut :

$$E_{total} = E_{0,035 \,\text{sec}} + E_{0,08 \,\text{sec}} + E_{0,8 \,\text{sec}} + E_{t \,\text{sec}} \dots (6)$$

D. Perhitungan Flash Protection Boundary

Dalam menentukan batasan perlindungan arc flash, diperlukan suatu perhitungan agar mengetahui batasan aman bagi pekerja terhadap peralatan bertegangan. Berikut persamaannya sesuai standar IEEE 1584-2002 [1].

$$D_{B} = \left[4,184 \, Cf \, En \left(\frac{t}{0,2} \right) \left(\frac{610^{x}}{E_{B}} \right) \right]^{\frac{1}{x}} \tag{7}$$

dimana:

 D_B = jarak batasan dari titik *arcing* (mm)

t = waktu (detik)

 E_B = insiden energi dalam J/cm² pada jarak batasan.

Dapat di-set pada nilai 5.0 J/cm2

atau dapat juga dihitung dengan menggunakan metode Lee

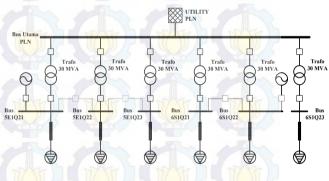
$$D_B = \sqrt{2,412 \times 10^6 \, V \, lbf\left(\frac{t}{En}\right)} \tag{8}$$

E. Pengelompokkan Kategori Insiden Energi Arc Flash dengan Perlengkapan Keselamatan Diri sesuai Standart NFPA 70E

Kategori bahaya atau resiko arc flash ditentukan menggunakan nomor yang mewakili tingkat bahaya berdasarkan insiden energinya. Kategori 0 merepresentasikan adanya bahaya sedikit atau bahkan tidak ada. Sedangkan kategori 4 adalah yang paling berbahaya. Tabel 3 menunjukkan klasifikasi resiko yang mengacu pada standar NFPA 70E berdasarkan referensi [4]. Para pekerja harus mempersiapkan diri dengan peralatan maupun perlengkapan (Personal Protective Equipment) sesuai dengan kategori resiko sebelum memulai pekerjaan atau inspeksi di sekitar area yang bertegangan. Dokumentasi dan label peringatan juga diperlukan.

Tabel 3 Kategori perlengkapan pelindung diri

Kategori	Level Energi (Cal/cm²)	PPE – PPC yang Dibutuhkan
0	<2	Bahan yang tidak meleleh, mudah terbakar (Contoh : kain katun, wol, sutra, atau campuran bahan – bahan tersebut)
1	2 - 4	Pakaian dan celana yang tahan api
2	4 – 8	Pakaian dalam dengan kain katun, serta pakaian luar dan celana yang tahan api
3	8-25	Pakaian dalam kain katun ditambah baju dan celana yang tahan api ditambah pakaian tahan api yang mencakup seluruh tubuh
4	25 – 40	Pakaian dalam katun ditambah baju dan celana tahan api ditambah mantel dan celana tahan api double layer


Dari tabel diatas, bentuk nyata pakaian pelindung berdasarkan pengelompokan alat pelindung diri yang disesuaikan dengan kategori PPE, dapat dilihat pada Gambar 3.

Gambar 3 Klasifikasi alat perlindungan diri berdasarkan kategori

III. SISTEM KELISTRIKAN

Sistem kelistrikan pada PT. Semen Padang dirancang guna memenuhi operasional perusahaan yang memanfaatkan energi listrik. Energi listrik ini digunakan untuk menggerakan berbagai mesin serta operasional lainya. Oleh sebab itu, diperlukan sistem kelistrikan yang handal agar kontinuitas operasional perusahaan tetap terjaga. Salah satu faktor yang diperhatikan guna menjaga kontinuitas pelayanan listrik yaitu meminimalisir dampak buruk akibat adanya gangguan hubung singkat. Gangguan tersebut akan menimbulkan arc flash (busur api). Oleh sebab itu diperlukan analisa terhadap sistem kelistrikan di perusahaan ini. Sistem jaringan distribusi utama pada sistem ini menggunakan level tegangan 6,3 kV. Adapun Single Line Diagram sistem kelistrikan pada PT. Semen Padang yang dapat dilihat pada Gambar 4.

Gambar 4 Sistem kelistrikan PT. Semen Padang

IV. SIMULASI DAN ANALISIS

A. Hasil Simulasi Insiden Energi Arc Flash Menggunakan Perangkat Lunak ETAP 12.6.0 (Existing)

Simulasi insiden energi arc flash (busur api) dilakukan pada perangkat lunak ETAP 12.6.0 dengan menggunakan standar IEEE 1584-2002. Simulasi dilakukan pada single line diagram PT. Semen Padang Existing dengan level tegangan 6,3 kV. Pada sub bab ini, akan ditampilkan data hasil simulasi besarnya insiden energi arc flash pada bus-bus sistem serta besarnya arus bolted fault, arus arcing, FCT (Fault Clearing Time), dan kategori bahaya. Dan untuk working destance atau jarak titik arc flash terhadap pekerja berdasarkan level tegangan 6,3 kV, tipikalnya menurut standar IEEE 1584-2002, yaitu sebesar 91 cm. Hasil simulasi besarnya insiden energi arc flash pada masingmasing bus dapat dilihat pada Tabel 4.

Tabel 4 Hasil simulasi insiden energi *arc flash* pada sistem existing PT. Semen Padang

BUS ID	Arus Bolted (kA)	Arus Arcing (kA)	FCT (s)	Insiden Energi (cal/cm	Kategori
Bus 5E1Q22	31,196	29,698	0,77	41,67	> Level 4
BUS 21 KILN ID FAN	30,353	28,908	0,37	19,45	Level 3
Bus 5E1Q23	31,999	30,448	1,07	59,49	> Level 4
BUS 5R1 RAWMILL ID FAN	30,93	29,449	0,33	17,7	Level 3
Bus 6S1Q21	31,288	29,784	0,77	41,8	> Level 4
BUS 348 RAWMILL DRIVE	25,384	24,249	0,33	14,34	Level 3
Bus 6S1Q23	25,84	24,678	1,07	47,4	> Level 4
BUS 548 CEMENT MILL	21,323	20,43	0,55	19,98	Level 3

Dari hasil simulasi insiden energi arc flash pada sistem existing PT. Semen Padang masih terdapat beberapa bus yang memiliki nilai insiden energi arc flash melebihi kategori 4. Sedangkan berdasarkan standar NFPA 70E, alat pelindung diri untuk kategori diatas 4 tidak tersedia. Sehingga dalam kasus ini diperlukan resetting pada sistem koordinasi proteksi sistem kelistrikan PT. Semen Padang guna mendapatkan nilai insiden energi arc flash yang lebih rendah.

Reseting koordinasi proteksi sistem kelistrikan GI PT. Semen Padang dilakukan pada Bus 5E1Q22, Bus 5E1Q23, Bus 6S1Q21, dan Bus 6S1Q23. Bus-bus tersebut merupakan bus utama pada GI PT. Semen Padang. Sehingga akan terdapat 4 tipikal di-setting ulang sistem koordinasi proteksinya yang akan dipaparkan pada sub bab selanjutnya.

B. Hasil Simulasi Insiden Energi Arc Flash Pada Sistem Resetting

Setelah dilakukan resetting koordinasi proteksi pada empat tipikal yang telah dihitung pada sub-bab sebelumnya, dengan menggunakan program simulasi ETAP 12.6.0, besarnya insiden energi arc flash pada tiap-tiap bus dapat dilihat pada.

Tabel 5 Hasil simulasi insiden energi arc flash pada sistem existing PT. Semen Padang

BUS ID	Arus Bolted (kA)	Arus Arcin g (kA)	FCT (s)	Insiden Energi (cal/cm 2)	Kategor i
Bus 5E1Q22	31,196	29,698	0,57	30,85	Level 4
BUS 21 KILN ID FAN	30,353	28,908	0,37	19,45	Level 3
Bus 5E1Q23	31,999	30,448	0,57	31,69	Level 4
BUS 5R1 RAWMILL ID FAN	30,93	29,449	0,37	19,84	Level 3
Bus 6S1Q21	31,288	29,784	0,57	30,94	Level 4
BUS 348 RAWMILL DRIVE	25,384	24,249	0,37	16,08	Level 3
Bus 6S1Q23	25,84	24,678	0,57	25,25	Level 4
BUS 548 CEMENT MILL	21,323	20,43	0,37	13,36	Level 3

Dari hasil simulasi tersebut, dapat dilihat beberapa bus mengalami peningkatan maupun penurunan nilai insiden energi arc flash dari sistem resetting terhadap sistem existing. Bus yang mengalami penurunan nilai insiden arc flash diakibatkan setting waktu sistem koordinasi proteksi pada sistem existing kurang tepat. Atau dengan kata lain, setting waktu yang diterapkan pada sistem proteksi terlalu lama. Hal ini mengakibatkan kinerja peralatan proteksi ikut melambat dalam melokalisir gangguan. Terlambatnya peralatan proteksi dalam melokalisir gangguan akan

mengakibatkan gangguan semakin besar serta menimbulkan arc flash.

Sama halnya dengan bus-bus yang mengalami peningkatan nilai insiden energi arc flash pada sistem resetting terhadap sistem existing. Setting waktu sistem proteksi yang diterapkan pada sistem existing kurang tepat. Letak perbedaanya adalah setting waktu yang diterapkan pada sistem existing lebih cepat dibandingkan dengan sistem resetting. Sehingga ada beberapa peralatan proteksi yang bekerja terlebih dahulu tanpa sesuai dengan gradding time atau bahkan bekerja secara bersamaan antara peralatan proteksi yang satu dengan yang lainnya. Sehingga, peralatan proteksi yang satu dengan yang lainnya. Sehingga, peralatan proteksi dalam hal ini rele, dikoordinasi ulang (resetting) yang mengakibatkan waktu kerja rele pada sistem resetting terhadap sistem existing lebih lama.

C. Perhitungan Insiden Energi Arc Flash Sistem Resetting Dengan Metode Modifikasi

Pada perhitungan metode modifikasi, insiden energi arc flash diperoleh dengan beberapa pertimbangan, antara lain berkurangnya besar kontribusi arus hubung singkat berdasarkan periode gelombang arus hubung singkat, waktu pemutusan masing-masing circuit breaker yang menuju titik gangguan, dan juga kontribusi arus hubung singkat dari motor induksi berdasarkan kapasitasnya.

Dengan metode modifikasi perhitungan, kontribusi arus hubung singkat masing-masing beban akan dikelompokkan kedalam beberapa domain waktu seperti yang telah ditunjukkan dalam Tabel 2.5 Berikut perhitungan insiden energi arc flash pada masing-masing bus:

Bus 5E1Q22 (FCT = 0.57)

Domain waktu 0 - 0,035 detik

 $E_{0,035} = 1,39814 \times (3,987 + 0,776 + 1,311 + 4,603 + 1,511 + 4,603 + 1,511 + 4,603 + 1,511 + 4,603 + 1,511 + 4,603 + 1,511 + 4,603 + 1,511 + 4,603 + 1,511 + 4,511$

0.128 + 20.413)^{1,062623} × 0.035

 $E_{0.035} = 1,895 \text{ cal/cm}^2$

Domain waktu 0,035 – 0,08 detik

 $E_{0.08} = 1,39814 \times (2,646 + 0.34 + 0.757 + 2.95 +$

 $0.053 + 20.4)^{1.062623} \times 0.045$

 $E_{0.08} = 2.1 \text{ cal/cm}^2$

Domain waktu 0,08 – 0,57 detik

 $E_{0.57} = 1,39814 \times (2,618 + 0,57 + 2,74 +$

 $(20,396)^{1,062623} \times 0,49$

 $E_{0.57} = 22,133 \text{ cal/cm}^2$

Total Insiden Energi Bus 5E1Q22

 $E_{total} = 1,895 + 2,1 + 22,133$

 $E_{total} = 26,128 \text{ cal/cm}^2$

BUS 21 KILN ID FAN (FCT = 0.37)

Domain waktu 0 – 0,035 detik

 $E_{0.035} = 1,39814 \times (25,722 + 0,13 + 0,191 + 0,213 + 0,213$

 $1,634 + 1,634 + 0,856)^{1,062623} \times 0,035$

 $E_{0.035} = 1,841 \text{ cal/cm}^2$

Domain waktu 0,035 – 0,08 detik

 $E_{0.08} = 1.39814 \times (23.470 + 0.054 + 0.08 + 0.09 + 0.08 + 0.0$

 $1,089 + 1,089 + 0,571)^{1,062623} \times 0,045$

 $E_{0.08} = 2,042 \text{ cal/cm}^2$

Domain waktu 0,08 – 0,37 detik

 $E_{0.37} = 1,39814 \times (22,904 + 1,089$

 $(0.571)^{1.062623} \times 0.29$

 $E_{0.37} = 12,745 \text{ cal/cm}^2$

```
Total Insiden Energi BUS 21 KILN ID FAN
E_{total} = 1,841 + 2,042 + 12,745
E_{total} = 16,628 \text{ cal/cm}^2
Bus 5E1Q23 (FCT = 0,57)
Domain waktu 0 – 0,035 detik
 E_{0,035} = 1.39814 \times (3.997 + 0.401 + 0.601 + 4.053 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001 + 0.001
 2,593 + 20,413)^{1,062623} \times 0,035
E_{0.035} = 1.949 \text{ cal/cm}^2
Domain waktu 0,035 – 0,08 detik
 E_{0,08} = 1,39814 \times (2,65 + 0,166 + 0,25 + 2,116 + 0,08)
 1,547 + 20,4)^{1,062623} \times 0,045
 E_{0.08} = 2,099 \text{ cal/cm}^2
Domain waktu 0,08 – 0,57 detik
E_{0.57} = 1,39814 \times (2,618 + 1,142 + 1,257 +
(20,397)^{1,062623} \times 0,49
E_{0.57} = 21{,}321 \text{ cal/cm}^2
Total Insiden Energi Bus 5E1Q23
E_{total} = 1,949 + 2,099 + 21,321
E_{total} = 25,369 \text{ cal/cm}^2
BUS 5R1 RAWMILL ID FAN (FCT = 0.37)
Domain waktu 0 – 0,035 detik
E_{0.035} = 1,39814 \times (26,917 + 0,083 + 1,971 +
 1.971)^{1.062623} \times 0.035
 E_{0.035} = 1.877 \text{ cal/cm}^2
 Domain wak<mark>tu 0,0</mark>35 – 0,0<mark>8 det</mark>ik
 E_{0.08} = 1,39814 \times (23,63 + 0,034 + 1,314 +
 1.314)^{1,062623} \times 0.045
 E_{0.08} = 2,03 \text{ cal/cm}^2
Domain waktu 0,08 – 0,37 detik
E_{0.37} = 1.39814 \times (22,086 + 1.314 + 1.314)^{1.062623} \times
0,29
E_{0.37} = 12,25 \text{ cal/cm}^2
Total Insiden Energi BUS 5R1 RAWMILL ID FAN
E_{total} = 1,877 + 2,03 + 12,25
 Bus 6S1Q21 (FCT = 0,57)
Domain waktu 0 - 0.035 detik
```

 $E_{total} = 16,157 \text{ cal/cm}^2$

 $E_{0,035} = 1,39814 \times (0,388 + 5,312 + 5,203 +$

 $20,413)^{1,062623} \times 0,035$

 $E_{0.035} = 1.901 \, \text{cal/cm}^2$

Domain waktu 0,035 – 0,08 detik

 $E_{0.08} = 1,39814 \times (0,163 + 3,551 + 3,509 + 1,000)$

 $(20,4)^{1,062623} \times 0,045$

 $E_{0,08} = 2{,}139 \, \text{cal/cm}^2$

Domain waktu 0.08 - 0.57 detik

 $E_{0,57} = 1,39814 \times (3,437 + 3,459 + 20,395)^{1,062623} \times$

 $E_{0.57} = 22,998 \text{ cal/cm}^2$

Total Insiden Energi Bus 6S1Q21

 $E_{total} = 1,9001 + 2,139 + 22,998$

 $E_{total} = 27,039 \text{ cal/cm}^2$

BUS 348 RAWMILL DRIVE (FCT = 0.37)

Domain waktu 0 – 0,035 detik

 $E_{0.035} = 1,39814 \times (19,812 + 0,308 + 5,359)^{1,062623} \times$ 0,035

 $E_{0.035} = 1,527 \text{ cal/cm}^2$ Domain waktu 0.035 - 0.08 detik $E_{0.08} = 1,39814 \times (18,711 + 0,134 + 3,573)^{1,062623} \times$ $E_{0.08} = 1,714 \text{ cal/cm}^2$ Domain waktu 0,08 – 0,37 detik $E_{0,37} = 1,39814 \times (18,594 + 3,573)^{1,062623} \times 0,29$ $E_{0.37} = \text{cal/cm}^2$ Total Insiden Energi BUS 348 RAWMILL DRIVE $E_{total} = 1,527 + 1,714 + 10,913$ $E_{total} = 14,153 \text{ cal/cm}^2$

Bus 6S1Q23 (FCT = 0,57)

Domain waktu 0 – 0,035 detik

 $E_{0.035} = 1.39814 \times (3.558 + 1.875 + 20.418)^{1.062623} \times$ 0.035

 $E_{0.035} = 1,551 \text{ cal/cm}^2$

Domain waktu 0,035 – 0,08 detik

 $E_{0.08} = 1,39814 \times (2,256 + 1,36 + 20,403)^{1,062623} \times$ 0,045

 $E_{0.08} = 1,844 \text{ cal/cm}^2$

Domain waktu 0,08 – 0,57 detik

 $E_{0.57} = 1,39814 \times (1,999 + 1,227 + 20,399)^{1,062623} \times$ 0,49

 $E_{0.57} = 19,73 \text{ cal/cm}^2$

Total Insiden Energi Bus 6S1Q23

 $E_{total} = 1,551 + 1,844 + 19,73$

 $E_{total} = 23,125 \text{ cal/cm}^2$

BUS 548 CEMENT MILL (FCT = 0.37)

Domain waktu 0 - 0.035 detik

 $E_{0.035} = 1,39814 \times (17,637 + 0,331 + 3,066 + 0,081 + 0,08$

 $0.19 + 0.072)^{1.062623} \times 0.035$

 $E_{0.035} = 1,267 \text{ cal/cm}^2$

Domain waktu 0,035 – 0,08 detik

 $E_{0.08} = 1,39814 \times (17,315 + 0,412 + 2,044 + 0,034 + 0,004$

0.08 + 0.029) $^{1.062623} \times 0.045$

 $E_{0.08} = 1,489 \text{ cal/cm}^2$

Domain waktu 0,08 – 0,37 detik

 $E_{0,37} = 1,39814 \times (17,233 + 2,044)^{1,062623} \times 0.29$

 $E_{0.37} = 9,407 \text{ cal/cm}^2$

Total Insiden Energi BUS 548 CEMENT MILL

 $E_{total} = 1,267 + 1,489 + 9,407$

 $E_{total} = 12,164 \text{ cal/cm}^2$

D. Perhitungan FPB Berdasarkan Hasil Perhitungan Insiden Energi Arc Flash

Hasil perhitungan insiden energi arc flash dengan m<mark>engg</mark>unakan metode modifikasi maup<mark>un s</mark>tandar IEEE 1584-2002 sistem kelistrikan PT. Semen Padang setelah dilakukan resetting, akan digunakan untuk memperoleh jarak aman bagi pekerja dari titik potensi bahaya arc flash. Hasil perhitungan jarak aman ini nantinya digunakan sebagai acuan bagi pekerja untuk menentukan titik aman serta perlengkapan pelindung diri yang dibutuhkan saat bekerja.

Adapun penyederhanaan rumusnya untuk kategori tegangan 1-15 kV yang digunakan adalah sebagai berikut :

$$D_B = \left[4{,}184 \frac{E}{E_R} D^X \right]^{\frac{1}{X}} \tag{9}$$

dengan:

- E Insiden Energi (cal/cm²)
- E_B Insiden energi dalam J/cm² pada jarak batasan. Dapat di set pada nilai 5.0 J/cm²
- Jarak dari titik arc ke pekerja (mm). Untuk sistem 6,3 kV, digunakan 910 mm.
- Eksponen jarak. Untuk sistem 6,3 kV, digunakan 0,973

Pada sub-bab ini akan dibahas perhitungan flash protection boundary dari hasil perhitungan insiden energi arc flash sesuai dengan standar IEEE 1584-2002. Perhitungan dilakukan pada tiap-tiap bus dari sistem kelistrikan PT. Semen Padang setelah dilakukan resetting. Berikut ini adalah perhitungan untuk tiap-tiap bus tersebut.

Bus 5E1Q22

E = 30.838

$$D_B = \left[4,184 \cdot \frac{30,838}{5} \cdot 910^{0,973}\right]^{\frac{1}{0,973}}$$

 $D_B = 25699,41 \text{ mm} = 25,699 \text{ m}$

BUS 21 KILN ID FAN

E = 19.443

$$D_B = \left[4,184 \cdot \frac{19,443}{5} \cdot 910^{0,973}\right]^{\frac{1}{0,973}}$$

 $D_B = 15997,10 \text{ mm} = 15,997 \text{ m}$

Bus 5E1Q23

E = 31.682

$$D_B = \left[4,184 \cdot \frac{31,682}{5} \cdot 910^{0,973}\right]^{\frac{1}{0,973}}$$

 $D_B = 26422,56 \text{ mm} = 26,423 \text{ m}$

BUS 5R1 RAWMILL ID FAN

E = 19.836

$$D_B = \left[4,184 \cdot \frac{19,836}{5} \cdot 910^{0,973}\right]^{\frac{1}{0,973}}$$

 $D_B = 16329,52 \text{ mm} = 16,33 \text{ m}$

Bus 6S1Q21

E = 30.935

$$D_B = \left[4,184 \cdot \frac{30,935}{5} \cdot 910^{0,973}\right]^{\frac{1}{0,973}}$$

 $D_B = 25782,49 \text{ mm} = 25,782 \text{ m}$

BUS 348 RAWMILL DRIVE E = 16,079

$$D_B = \left[4,184 \cdot \frac{16,079}{5} \cdot 910^{0,973}\right]^{\frac{1}{0,973}}$$

 $D_B = 13159,75 \text{ mm} = 13,16 \text{ m}$

Bus 6S1Q23 E = 25.244

$$D_B = \left[4,184 \cdot \frac{25,244}{5} \cdot 910^{0.973} \right]^{\frac{1}{0.973}}$$

$$D_B = 20921,02 \text{ mm} = 20,921 \text{ m}$$

BUS 548 CEMENT MILL

E = 13,36

$$D_B = \left[4,184 \cdot \frac{13,36}{5} \cdot 910^{0,973} \right]^{\frac{1}{0,973}}$$

$$D_B = 10878,34 \text{ mm} = 10,878 \text{ m}$$

Hasil Simulasi Insiden Energi Arc Flash Pada Sistem Resetting Dengan Penambahan Rele Diferensial

Pada hasil perhitungan dari sistem resetting yang ditampilkan pada sub-bab sebelumnya, masih terdapat beberapa bus yang berada pada kategori 4. Oleh sebab itu, pada sub-bab ini akan ditampilkan hasil simulasi ketika sistem kelistrikan resetting dengan penambahan rele diferensial. Besarnya insiden energi arc flash pada tiap-tiap bus dapat dilihat pada Tabel 6.

Tabel 6 Hasil simulasi insiden energi arc flash pada PT. Semen Padang

sistem resetting dengan penambahan rele diferensial

BUS ID	Arus Bolted (kA)	Arus Arcin g (kA)	FCT (s)	Insiden Energi (cal/cm	Kategor i
Bus 5E1Q22	31,196	29,698	0,13	7,03	Level 2
BUS 21 KILN ID FAN	30,353	28,908	0,13	6,83	Level 2
Bus 5E1Q23	31,999	30,448	0,13	7,23	Level 2
BUS 5R1 RAWMILL ID FAN	30,93	29,449	0,13	6,97	Level 2
Bus 6S1Q21	31,288	29,784	0,13	7,06	Level 2
BUS 348 RAWMILL DRIVE	25,384	24,249	0,13	5,65	Level 2
Bus 6S1Q23	25,84	24,678	0,13	5,76	Level 2
BUS 548 CEMENT MILL	21,323	20,43	0,13	4,7	Level 2

Dari tabel diatas, dapat dilihat koordinasi waktu pemutusan CB pada masing-masing bus memiliki nilai 0,13 detik. Hal ini dikarenakan masing-masing CB pada bus akan melokalisir gangguan dengan waktu tercepat. Sebagai contoh, ketika terjadi gangguan pada Bus 5E1Q22 pada sistem resetting, waktu melokalisir gangguan di-setting 0,57 detik, hal ini akan berdampak pada besarnya insiden energi. Akan tetapi, dengan penambahan rele diferensial, waktu melokalisir gangguan menjadi 0,13 detik. Sehingga, diharapkan ketika terjadi gangguan pada bus tertentu, gangguan dilokalisir secepat mungkin oleh CB terdekatnya.

Sama halnya dengan perhitungan metode modifikasi pada sistem resetting, insiden energi arc flash diperoleh dengan beberapa pertimbangan, antara lain berkurangnya besar kontribusi arus hubung singkat berdasarkan periode gelombang arus hubung singkat, waktu pemutusan masingmasing circuit breaker yang menuju titik gangguan, dan juga kontribusi arus hubung singkat dari motor induksi berdasarkan kapasitasnya.

Perbandingan Besar Energi Arc Flash Sistem Resetting Dan Sistem Resetting Penambahan Rele Diferensial (Berdasarkan Standar IEEE 1584-2002 dan Metode Modifikasi)

Setelah pada beberapa sub-bab sebelumnya dilakukan perhitungan dengan menggunakan standar IEEE 1584-2002 dan metode modifikasi pada sistem resetting, perbedaan insiden energi arc flash dapat dilihat pada Tabel 7.

Tabel 7 Perbandingan perhitungan besar insiden energi arc flash sesuai standar IEEE 1584-2002 dengan modified pada sistem resetting

BUS ID	Insiden Energi (cal/cm2) Resetting	Kategori	Insiden Energi (cal/cm2) Modified	Kategori
Bus 5E1Q22	30,838	Level 4	26,128	Level 4
BUS 21 KILN ID FAN	19,443	Level 3	16,628	Level 3
Bus 5E1Q23	31,682	Level 4	25,369	Level 4
BUS 5R1 RAWMILL ID FAN	19,836	Level 3	16,157	Level 3

Bus 6S1Q21	30,935	Level 4	27,039	Level 4
BUS 348 RAWMILL DRIVE	16,079	Level 3	14,153	Level 3
Bus 6S1Q23	25,244	Level 4	23,125	Level 3
BUS 548 CEMENT MILL	13,36	Level 3	12,164	Level 3

Dari tabel tersebut, ditampilkan data besar insiden energi arc flash setelah resetting untuk perhitungan dengan standard IEEE 1584-2002 dibandingkan dengan perhitungan dengan metode modifikasi. Tabel tersebut menunjukkan bahwa insiden energi arc flash dengan metode modifikasi perhitungan lebih kecil dari pada standard IEEE 1584-2002. ini dikarenakan dalam metode modifikasi, dipertimbangkan berkurangnya arus kontribusi hubung singkat menurut periode waktu hubung singkat. Selain itu juga dipertimbangkan pula waktu pemutusan circuit breaker dari masing-masing sumber yang berkontribusi menuju titik gangguan, dan untuk periode steady state, kontribusi dari motor juga dihilangkan, sehingga metode modifikasi menghasilkan insiden energi arc flash yang lebih kecil. Sedangkan dalam perhitungan standard IEEE 1584-2002, tidak dipertimbangkan hal-hal tersebut, demikian juga dalam penentuan waktu pemutusan CB sebagai nilai FCT (Fault Clearing Time), yaitu dipilih waktu pemutusan yang terlama. Dengan penjelasan seperti diatas, metode modifikasi lebih akurat dalam menentukan besarnya insiden energi yang ada.

Sama halnya pada sistem resetting dengan penambahan rele diferensial, dengan menggunakan perhitungan metode modifikasi diperoleh nilai insiden energi lebih kecil dibandingkan dengan perhitungan standar IEEE 1584-2002. Untuk lebih jelas, perbandingan perhitungan menggunakan standar IEEE 1584-2002 dan metode modifikasi pada sistem resetting penambahan rele diferensial dapat dilihat pada Tabel 8.

Tabel 8 Perbandingan perhitungan besar insiden energi arc flash sesuai standar IEEE 1584-2002 dengan modified pada sistem resetting penambahan rele diferensial

Insiden Energi (cal/cm2) Resetting	Kategori	Insiden Energi (cal/cm2) Modified	Kategori
7,033	Level 2	6,254	Level 2
6,832	Level 2	6,081	Level 2
7,226	Level 2	6,224	Level 2
6,970	Level 2	6,019	Level 2
7,055	Level 2	6,387	Level 2
5,650	Level 2	5,122	Level 2
5,757	Level 2	5,408	Level 2
4,694	Level 2	4,378	Level 2
	Energi (cal/cm2) Resetting 7,033 6,832 7,226 6,970 7,055 5,650 5,757	Energi (cal/cm2) Resetting 7,033 Level 2 6,832 Level 2 7,226 Level 2 6,970 Level 2 7,055 Level 2 5,650 Level 2 5,757 Level 2	Energi (cal/cm2) Resetting Kategori Energi (cal/cm2) Modiffed 7,033 Level 2 6,254 6,832 Level 2 6,081 7,226 Level 2 6,224 6,970 Level 2 6,019 7,055 Level 2 6,387 5,650 Level 2 5,122 5,757 Level 2 5,408

Hasil perhitungan FPB (flash protection boundary) dengan metode modifikasi pada sistem resetting kelistrikan PT. Semen Padang lebih kecil dibandingkan dengan menggunakan standar IEEE 1584-2002. Dengan kata lain, jarak aman pekerja dari titik bahaya arc flash dengan menggunakan metode modifikasi memiliki jarak yang lebih dekat. walaupun tetap tetap harus menggunakan PPE yang telah ditetapkan yang akan dijabarkan pada pembahasan berikutnya. Perbandingan FPB perhitungan standar IEEE 1584-2002 dengan metode modifikasi dapat dilihat pada Tabel 9.

Tabel 9 Perbandingan FPB berdasarkan standar IEEE 1584-2002 dengan metode modifikasi sistem resetting

BUS ID (cal/cm2) Kategori (cal/cm2) Kategori Resetting Modified

Bus 5E1Q22	30,838	25,699	26,128	21,674
BUS 21 KILN ID FAN	19,443	15,997	16,628	13,622
Bus 5E1Q23	31,682	26,423	25,369	21,027
BUS 5R1 RAWMILL ID FAN	19,836	16,330	16,157	13,225
Bus 6S1Q21	30,935	25,782	27,039	22,451
BUS 348 RAWMILL DRIVE	16,079	13,160	14,153	11,542
Bus 6S1Q23	25,244	20,921	23,125	19,118
BUS 548 CEMENT MILL	13,36	10,878	12,164	9,879

Sedangkan untuk FPB (flash protection boundary) dengan metode modifikasi pada sistem restting penambahan rele diferensial dapat dilihat pada Tabel 10.

Tabel 10 Perbandingan FPB berdasarkan standar IEEE 1584-2002 dengan metode modifikasi sistem resetting penambahan rele diferensial

BUS ID	Insiden Energi (cal/cm2) Resetting	Kategori	Insiden Energi (cal/cm2) Modified	Kategori
Bus 5E1Q22	7,033	21,674	6,254	4,986
BUS 21 KILN ID FAN	6,832	13,622	6,081	4,844
Bus 5E1Q23	7,226	21,027	6,224	4,962
BUS 5R1 RAWMILL ID FAN	6,970	13,225	6,019	4,794
Bus 6S1Q21	7,055	22,451	6,387	5,095
BUS 348 RAWMILL DRIVE	5,650	11,542	5,122	4,061
Bus 6S1Q23	5,757	19,118	5,408	4,294
BUS 548 CEMENT MILL	4,694	9,879	4,378	3,456

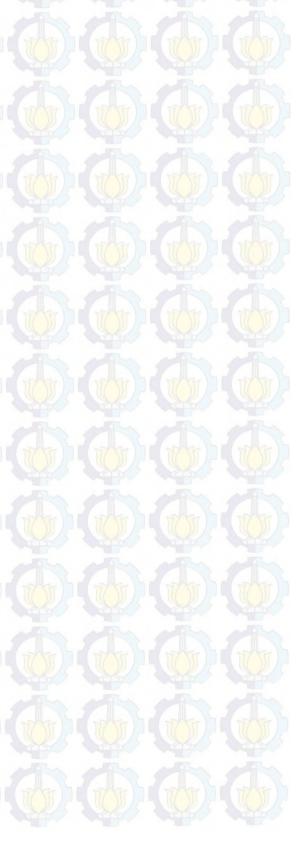
Personal Protective Equipment (PPE) merupakan alat perlindungan diri yang harus digunakan ketika melakukan suatu pekerjaan di daerah yang beresiko akan bahaya arc flash. Dari hasil perhitungan insiden energi sesuai standar IEEE 1548-2002 dan metode modifikasi sistem setelah resetting, Bus 6S1Q23 mengalami penurunan nilai insiden energi arc flash yang cukup signifikan yang mengakibatkan pengelompokan kategori (lihat Tabel 4) menjadi pada kategori 3 dari sebelumnya kategori 4. Hal ini berdampak pula terhadap jenis PPE yang yang harus digunakan. Sedangkan untuk bus lainya juga mengalami penurunan nilai insiden energi arc flash, akan tetapi pengelompokan kategori tidak mengalami perubahan.

Jenis PPE yang harus digunakan berdasarkan kategori bahaya arc flash berdasarkan perhitungan standar IEEE 1584-2002 dapat dilihat pada Tabel 11

Tabel 11 Jenis PPE berdasarkan kategori bahaya arc flash berdasarkan perhitungan metode modifikasi sistem resetting

BUS ID	Insiden Energi (cal/cm2)	Kategori	Jenis PPE
BUS 21 KILN ID FAN	16,628	Kategori 3	 Pakaian lengan panjang tahan api Celana panjang tahan api Jaket dan celana untuk arc flash sesuai kategori Helm pengaman sesuai kategori Kacamata safety Pelindung telinga Sarung tangan kulit Sepatu safety khusus Pakaian lengan panjang tahan api Celana panjang tahan api Jaket untuk arc flash (dua lapis atau lebih) Helm pengaman sesuai kategori Kacamata safety Pelindung telinga Sarung tangan kulit Sepatu safety khusus
BUS 5R1 RAWMILL ID FAN	16,157		
BUS 348 RAWMILL DRIVE	14,153		
BUS 548 CEMENT MILL	12,164		
Bus 6S1Q23	23,125		
Bus 5E1Q22	26,128	Kategori 4	
Bus 5E1Q23	25,369		
Bus 6S1Q21	27,039		

V. KESIMPULAN


Berdasarkan hasil simulasi besar insiden busur api dan koordinasi rele pengaman pada PT. Semen Padang yang telah dilakukan, maka dapat diambil beberapa kesimpulan sebagai berikut:

- 1. Koordinasi proteksi pada sistem kelistrikan di PT. Semen Padang memiliki sistem koordinasi yang kurang tepat, terdapat delay waktu yang melebihi gradding time, serta beberapa kurva rele pengaman memotong kurva beban seperti kurva rele RL-21DIST02-DT yang memotong arus pengisian (inrush current) pada trafo TR. 21DIST02-DT maupun kurva rele RL-5R1M01-RMF yang memotong arus starting (lock rotor current) motor 5R1M01-RMF. Hal ini mengakibatkan sistem bekerja secara tidak sempurna. Sehingga diperlukan koordinasi ulang pada sistem koordinasi proteksi di sistem kelistrikan PT. Semen Padang.
- Perhitungan insiden energi arc flash dengan menggunakan metode modifikasi, perhitungan lebih akurat dalam merepresentasikan insiden energi yang sebenarnya. Hal ini karena metode modifikasi mempertimbangkan berkurangnya kontribusi hubung singkat berdasarkan periode waktu hubung singkat, dan mempertimbangkan waktu putusnya masing-masing circuit breaker untuk melokalisir Sehingga hasil perhitungan metode gangguan. modifikasi lebih kecil dari pada perhitungan dengan standard IEEE 1584-2002. Sebagai contoh insiden energi pada Bus 5E1Q22 dengan perhitungan standar IEEE1584-2002 adalah 30,838 cal/cm2 sedangkan dengan metode modifikasi adalah 26,128 cal/cm2.
- 3. Hasil perhitungan insiden energi arc flash saat kondisi resetting masih berbahaya terutama pada bus utama Bus 5E1Q22, Bus 5E1Q23, Bus 6S1Q21, dan Bus 6S1Q23 yang berada pada kategori 4. Sehingga dilakukan studi penambahan rele diferensial pada sistem proteksi sebagai pengaman utama. Hasil perhitungan insiden energi dari penambahan rele diferensial diperoleh nilai insiden energi menurun menjadi kategori 2. Hal ini dikarenakan ketika terjadi gangguan pada salah satu dari keempat bus tersebut, rele diferensial bekerja sebagai pengaman utama dengan waktu yang sangat cepat, sedangkan rele arus lebih sebagai back up.

DAFTAR PUSTAKA

- [1]. Wu, Alex Y., "Modified Medium Voltage Arc Flash Incident Energy Calculation Method", IEEE Transaction on Industry Application, USA, 2008.
- [2]. Jones, Ray. A, "Safety BASICsTM Handbook for Electrical Safety Edition 2", Cooper Bussman, Inc., USA, 2004.
- [3]. IEEE Std. 1584-2002., "IEEE Guide for Performing Arc Flash Hazard Calculation", Institute of Electrical and Electronics Engineers, Inc 2002

- [4]. Albert Marroquin, "Evaluating NFPA 70E Arc Flash Hazard Category Tables", Electrical Product & Solutions, September 2007
- [5]. Lazar Irwin "Electrical System Analysis and Design for Industrial Plant", McGraw-Hill Inc., USA, Ch, 1, 1980
- [6]. Wahyudi, "Diktat Kuliah Pengaman Sistem Tenaga Listrik", Teknik Elektro ITS, Surabaya, Bab 1, 2014.

