Izza, Maries Lailatul (2014) Peramalan Penjualan Sepeda Motor Menurut Tipe Dengan Pendekatan Autoregressive Integrated Moving Average With Exogeneous Input (Arimax) Di Kabupaten Banyuwangi. Undergraduate thesis, Institut Teknologi Sepuluh Nopember.
Preview |
Text
1310100082-Undergraduate_Thesis.pdf - Accepted Version Download (1MB) | Preview |
Abstract
Sampai saat ini transportasi masal di Indonesia masih belum
terkelola dengan baik, hal ini menyebabkan masyarakat lebih banyak
memilih untuk menggunakan kendaraan pribadi, salah satunya adalah
sepeda motor. Penjualan sepeda motor di kabupaten Banyuwangi
meningkat pada bulan-bulan tertentu, hal ini diduga adanya pengaruh
dari variasi kalender. Pada penelitian ini dilakukan pemodelan penjualan
sepeda motor menggunakan metode ARIMAX dengan pendekatan model
deterministic dan stochastic yang dibandingkan menggunakan kriteria
nilai SMAPE. Hasil dari penelitian menunjukkan bahwa model terbaik
untuk penjualan ketiga tipe sepeda motor adalah menggunakan model
deterministic.
=============================================================================================================
Until now mass transportation in Indonesia is still not managed
properly, this causes more people choose to use private vehicles, one of
which is a motorcycle. Motorcycle sales in Banyuwangi district increased
in certain months, it is suspected the influence of variations in the
calendar. In this research, modeling motorcycle sales ARIMAX approach
using deterministic and stochastic models are compared using criteria
SMAPE value. The results of the study showed that the best model for all
three types of motorcycle sales is to use deterministic models.
Item Type: | Thesis (Undergraduate) |
---|---|
Additional Information: | RSSt 519.55 Izz p 3100014056755 |
Uncontrolled Keywords: | ARIMAX, Deterministic, SMAPE, Stochastic |
Subjects: | H Social Sciences > HA Statistics > HA30.3 Time-series analysis Q Science > QA Mathematics > QA276 Mathematical statistics. Time-series analysis. Failure time data analysis. Survival analysis (Biometry) |
Divisions: | Faculty of Mathematics and Science > Statistics > 49201-(S1) Undergraduate Thesis |
Depositing User: | Yeni Anita Gonti |
Date Deposited: | 15 Dec 2020 04:43 |
Last Modified: | 15 Dec 2020 04:43 |
URI: | http://repository.its.ac.id/id/eprint/82310 |
Actions (login required)
View Item |