Manda, Yozi Reci (2021) Identifikasi Kanker Paru-Paru Dengan Citra X-Ray Menggunakan Klasifikasi K-Nearest Neighbor (KNN) Berdasarkan Ekstraksi Ciri Statistik Orde Dua. Undergraduate thesis, Institut Teknologi Sepuluh Nopember.
Text
01111640000064-Undergraduate_Thesis.pdf - Accepted Version Restricted to Repository staff only until 1 April 2023. Download (3MB) | Request a copy |
Abstract
Dalam pengklasifikasian hasil citra foto X-ray, terkhusus citra paru-paru pada umumnya hanya dilakukan secara visual oleh prakitisi medis yang memakan waktu cukup lama dan penilaian yang subjektif. Oleh karena itu, diperlukan metode klasifikasi citra paru-paru yang hasilnya objektif dan cepat. Penelitian ini bertujuan untuk melakukan identifikasi citra kanker paru-paru menggunakan metode K-Nearest Neighbor berdasarkan ekstraksi ciri statistik orde dua. K-Nearest Neighbor adalah sebuah metode klasifikasi terhadap suatu objek berdasarkan data pembelajaran yang jaraknya paling dekat dengan ojek tersebut. Penelitian ini menggunakan citra paru-paru berjumlah 100 citra yang terbagi menjadi 60 citra pelatihan dan 40 citra pengujian. Penelitian ini menggunakan software Matlab 2016b. Hasil penelitian ini menunjukkan bahwa akurasi metode K-Nearest Neighbor sebesar 55.
=====================================================================================================
In the classification of X-ray imagery, especially lung imagery is general visually by medical pre-disease that takes a long time and subjective assessment. Therefore, it is necessary to classification method of lung imagery whose results are objective and fast. This study goals to identify lung cancer imagery using K-Nearest Neighbor method based on extraction of two orde statistic characters. K-Nearest Neighbor is a method of classification of an object based on learning data that is closest to the motorcycle taxi. This study used 100 lung imagery which was divided into 60 training images and 40 test images. This research uses Matlab 2016b software. The results showed that K-Nearest Neighbor testing accuracy showed 55%.
Keywords: Accuracy, Lung Image, K-Nearest Neighbor, Classification
Item Type: | Thesis (Undergraduate) |
---|---|
Uncontrolled Keywords: | Akurasi, Citra paru-paru, K-Nearest Neighbor, Klasifikasi, Accuracy, Lung Image, K-Nearest Neighbor, Classification |
Subjects: | Q Science > Q Science (General) > Q337.5 Pattern recognition systems |
Divisions: | Faculty of Science and Data Analytics (SCIENTICS) > Physics > 45201-(S1) Undergraduate Thesis |
Depositing User: | Yozi Reci Manda |
Date Deposited: | 06 Mar 2021 00:59 |
Last Modified: | 06 Mar 2021 00:59 |
URI: | http://repository.its.ac.id/id/eprint/83528 |
Actions (login required)
View Item |